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Abstract

Linear analysis of gas flows around orbiting binaries suggests that a centrifugal barrier ought to clear a low-density
cavity around the binary and inhibit mass transfer onto it. Modern hydrodynamics simulations have confirmed the
low-density cavity, but show that any mass flowing from large scales into the circumbinary disk is eventually
transferred onto the binary components. Even though many numerical studies confirm this picture, it is still not
understood precisely how gas parcels overcome the centrifugal barrier and ultimately accrete. We present a detailed
analysis of the binary accretion process, using an accurate prescription for evolving grid-based hydrodynamics
with Lagrangian tracer particles that track the trajectories of individual gas parcels. We find that binary accretion
can be described in four phases: (1) gas is viscously transported through the circumbinary disk up to the centrifugal
barrier at the cavity wall, (2) the cavity wall is tidally distorted into accretion streams consisting of near-ballistic
gas parcels on eccentric orbits, (3) the portion of each stream moving inwards of an accretion horizon radius
r a¯ —the radius beyond which no material is returned to the cavity wall—becomes bound to a minidisk orbiting
an individual binary component, and (4) the minidisk gas accretes onto the binary component through the
combined effect of viscous and tidal stresses.

Unified Astronomy Thesaurus concepts: Accretion (14); Hydrodynamical simulations (767); Binary stars (154);
Black holes (162)

1. Introduction

Circumbinary disks are frequent evolutionary accessories to
binaries spanning celestial scales. They are observed or
expected from small scales around planet-moon systems
(Benisty et al. 2021), star-planet binaries in protoplanetary
nebulae (Ward 1997; Kley & Nelson 2012), and young stellar
binaries (Mathieu et al. 1997; McCabe et al. 2002; Krist et al.
2005; Orosz et al. 2012) up to much larger scales around
massive black hole (BH) pairs (Artymowicz & Lubow 1996;
Armitage & Natarajan 2002; Milosavljevic & Phinney 2005).
The problem of the dynamics and observable signatures of such
circumbinary disks has been a central issue in astrophysics for
decades because the interaction between the disk and central
binary is vital for both the evolution of embedded moons,
planets, binary stars, or BHs as well as the identification of
such binaries in astronomical surveys. Specifically, it is
important to understand the complex flow of material around
compact binaries near the central regions of the disk—well
within the self-gravitating radius—in order to develop a
detailed understanding of the binary mass accretion rate, the
observational signatures of the disk itself, and the effects of
accretion and gravitational forces on the orbital evolution of the
central components.

The problem of mass flow in the central regions of a
circumbinary disk was at first primarily studied in the context
of low-mass-ratio planets in protoplanetary disks. In such a
situation the tidal torques launched from the low-mass satellite
perturb a standard Keplerian accretion disk, expelling material
from the corotation region and carving out an annular gap in

the orbital path of the satellite (Lin & Papaloizou 1986;
Goldreich & Tremaine 1980; Artymowicz & Lubow 1994). As
the mass ratio of the satellite is increased, however, the annular
gap widens. Beyond a mass ratio q∼ 0.04 (D’Orazio et al.
2016), the tidal torques drive a morphological transition in the
disk whereby the binary depletes material from the entire
central region manufacturing an evacuated cavity of radius
approximately double the semimajor axis of the binary (e.g.,
Artymowicz & Lubow 1996; Escala et al. 2005; MacFadyen &
Milosavljević 2008; D’Orazio et al. 2013; Farris et al. 2015;
Miranda et al. 2017).
In this case of large mass ratio (q 0.04), cavity carving

binaries, this understanding is mostly empirical. Original
analytic study of the dynamics of gas disks around binaries
of similar mass (e.g., q 0.1) predicted that the tidal torques
from these large-q binaries would act as a dam against the
accretion flow, suppressing and possibly even shutting off gas
accretion onto the binary components (Pringle 1991; Milo-
savljevic & Phinney 2005; Liu & Shapiro 2010; Kocsis et al.
2012a, 2012b). For observational purposes, such a result could
markedly diminish the feasibility of observing compact dual-
AGN and late-stage, pre-gravitational-inspiral massive BH
binaries. However, these studies considered the one-dimen-
sional case assuming axisymmetry.
Numerical simulations of this problem revealed that while

the tidal distortions from the binary do in fact carve out a
depleted central cavity, the cavity and its associated features are
far from axisymmetric: the cavity is found to be lopsided and to
precess at approximately the analytic quadrupolar frequency,
there exists an m= 1 density feature, or lump, that orbits that
binary at ∼5 times the binary orbital period, each binary
component forms its own accretion disk, termed a minidisk,
and unstable stream-like structures form on dynamical times,
delivering material from the wall of the outer cavity onto the
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binary minidisks (MacFadyen & Milosavljević 2008; Cuadra
et al. 2009; Shi et al. 2012; Farris et al. 2015; Shi &
Krolik 2015; Tang et al. 2017; Muñoz et al. 2019; Muñoz &
Lithwick 2020; Ragusa et al. 2020). Of primary importance, a
series of these numerical studies measured the rate of gas
accretion onto the central binary and found that the binary
accretion rate is nearly identical to that expected for a single
object embedded in a Keplerian accretion disk (Roedig et al.
2012; Shi et al. 2012; D’Orazio et al. 2013; Farris et al. 2015).
However, there is work showing that the accretion rate can be
sensitive to disk parameters such as the thickness of the disk
(Ragusa et al. 2016; Tiede et al. 2020).

Despite this growing empirical consensus regarding the
dynamics of accretion flows in the vicinity of astrophysical
binaries, the literature is lacking a physical explanation
describing how gas is able to penetrate the barrier of the
rotating binaryʼs Roche potential, cross the evacuated cavity,
and accrete onto a binary component. Shi & Krolik (2015)
showed that there are specific orbital parameters that result in
the dynamical accretion of a parcel of gas and posit that such
phase-space coordinates are achieved by the shock deflection of
rejected stream material as it impacts the cavity wall (although
this remains to be demonstrated). The goal of this paper is to
develop a physical description of how fluid elements travel
from the outer disk, into accretion streams, and onto minidisks
through which they are ultimately accreted; namely, to describe
how binaries accrete. To do so, we simulated the simplest case
of a circular, equal-mass binary accreting from a thin disk at
high resolution in two dimensions with 106( ) passive tracer
particles so as to follow and analyze the accretion histories of
fluid elements in the disk. We focus first on understanding this
problem for 2D, isothermal disks and leave the effects of
general relativity, magnetic fields, and radiation to future
investigation.

This paper is organized as follows. In Section 2 we describe
the details of our computational methodology and setup. In
Section 3 we present the results of our simulations and the
analysis. Finally, in Section 4 we summarize our main results
and discuss some of their implications.

2. Numerical Methods

In this section, we detail the numerical tools and experiments
used to explore the question of how binaries accrete. All
simulations were performed using an upgraded version of the
code Mara3 (Zrake & MacFadyen 2012; Tiede et al. 2020;
Zrake et al. 2021) written in Rust (Mara-F3O).

2.1. Simulation Setup

Mara-F30 solves the vertically averaged Navier–Stokes
equations

v , 1t sink· ( ) ( )¶ S +  S = S

v vv I v FP , 2t sink g( ) · ( ) ( )t¶ S +  S + - = S +

via a finite volume Godunov scheme in Cartesian coordinates.
In Equations (1) and (2), Σ denotes the vertically integrated
surface density of the disk, v is the gas velocity vector, and
P cs

2= S is the vertically integrated pressure in an isothermal
disk. In Equation (2), τ is the viscous stress tensor, sink

S is a
mass removal term meant to model the accretion of material
onto each component, and Fg=−Σ∇fg is the vertically

integrated gravitational force density. The gravitational poten-
tial is
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with r1 and r2 the distances from the respective binary
component, and rs the gravitational softening length to account
for the vertical averaging of the gravitational force and to
prevent its divergence. rs is nominally chosen to be 5% of the
binary semimajor axis. The disk is chosen to have scale height
(h/r)= 0.1 with the isothermal equation of state,
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and the viscous stress tensor is given as

v v v . 5ij i j j i ij k k( ) ( )t n d= S ¶ + ¶ - ¶

The viscosity is set to be constant as ν= 10−3.
In order to model the sub-grid accretion of material onto the

central objects, we employ a standard mass sink (Farris et al.
2015; Tang et al. 2017; Moody et al. 2019; Muñoz et al. 2019;
Duffell et al. 2020; Tiede et al. 2020) of radius rsink and
removal timescale tsink,

e e t . 6r r r rsink
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6
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rsink is taken as the gravitational softening length rs and the
removal timescale is chosen in the marginally fast limit,
t 10 bsink

1 = W- (where Ωb is the binaryʼs orbital frequency). The
choice of tsink does not significantly alter the results for circular
orbits (Moody et al. 2019; Westernacher-Schneider et al. 2021;
J. Zrake et al. 2022, in preparation), but for robustness we
include a brief exploration of the slow-sink limit with
t bsink

1 = W- in Section 3.2. Recently, Dempsey et al. (2020)
and Dittmann & Ryan (2021) have suggested that using so-
called “torque-free” sinks can reduce sensitivity to sink
parameters, but the latter similarly found negligible variations
for equal-mass binaries. In future work, we intend to explore
the effect of such torque-free sinks on this paperʼs results.
The disk is initialized with peak surface density at rd= 4a

and a mildly depleted cavity region
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This represents a steady-state solution to Equations (1) and (2)
with zero viscosity and a single, central object of mass
M=M1+M2.
For simplicity, in this paper, we only consider equal-mass

binaries fixed on a circular orbit and assume that the disk mass
Md is much less than that of the binary Md=M such that the
Toomre parameter Q∼ (h/r)(M/Md)? 1. In this way, Σ0 is
arbitrary, and we can ignore the diskʼs self-gravity. Further, the
assumption of fixed circular orbits has been supported by
evidence that near-circular orbits (of eccentricity, ò 0.1) are
driven toward the circular limit, retaining their negligible
eccentricities (Muñoz et al. 2019; Zrake et al. 2021). The
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simulation domain extends out to 15 a in each Cartesian
direction, and the number of zones is selected to give a grid
resolution of Δxcell≈ 0.015 a.

2.2. Tracer Implementation

A major drawback of Eulerian schemes is that the fluid is
described by the evolution of fields at fixed spatial locations
and the past history of individual fluid elements is not tracked.
One solution to this is Lagrangian smoothed particle hydro-
dynamic (SPH) schemes that discretize the fluid into particles
that are integrated forward via derived physical fields (e.g.,
Gingold & Monaghan 1977; Lucy 1977; Monaghan 1992;
Price 2012), but these struggle to resolve the innermost regions
of the binary accretion flow (Ragusa et al. 2016, 2020; Heath &
Nixon 2020). A middle ground between these two is to
introduce passive tracer particles into conservative Eulerian
schemes (e.g., Enßlin & Brüggen 2002; Dubey et al. 2012;
Dubois et al. 2012). These tracer particles have no mass and
simply advect along with the fluid flow, but they allow one to
follow hydrodynamic histories of fluid elements in a Lagran-
gian description of the flow.

The most common type of tracer particle, as described, is a
velocity field tracer. These tracers compute an estimate of the
local fluid velocity and integrate forward in time according to
the time-stepping procedure of the Eulerian solution. Typically
this velocity is calculated either by sampling the nearest cell
velocity or via higher-order interpolation schemes (although it
has been demonstrated that this does not significantly affect
results; Federrath et al. 2008; Vazza et al. 2010; Konstandin
et al. 2012). One demonstrated drawback of choosing the tracer
velocity from the reconstructed velocity field is that it can lead
to over/underdensities at convergence/divergence points in the
fluid. This is because two velocity field tracers can be
arbitrarily close on two separate sides of a cell interface, and
even though they are at nearly identical locations in the fluid,
drawing their velocities from the reconstructed fields can imbue
them with meaningfully different velocities (Genel et al. 2013).

In order to overcome the mismatch between the mass flow
implied by the reconstructed velocity field and the actual flow
as determined by the Riemann solutions across each interface,
we choose the velocity for tracer j as a linear combination of
the velocities associated with the flux returned by the Riemann
solver at each cell interface v(Fi 1 2

HLL
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v v F v F
x
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with Δxi the cell width and δxij the distance of tracer j from the
cell face at i− 1/2. In this way, the tracer velocity is chosen to
directly reflect the mass flow at each simulation time step as
determined by the Riemann solver. Given that the tracers can
accurately follow the mass flow in the disk, all other
instantaneous hydrodynamic quantities (e.g., density or angular
momentum) can be queried at any point in time in order to
recreate the hydrodynamic history of a given mass parcel in a
Lagrangian description of the flow. Tests on the reliability of
the tracers in this regard are presented in the Appendix.

Computationally, each tracer is defined solely by its unique
ID and its current coordinates to keep it as lightweight as
possible. The tracers are updated every time step with the same
second-order Runge–Kutta scheme as the fluid, and any
information about the local fluid state is recorded at each

tracer data output. We chose the number of tracers to be
comparable to the number of cells Ntracers≈ 2.3× 106∼Ncells.
For all tracer results presented in this paper, tracer data were
output every P0.02 b. In this way, we are able to construct time
series for given fluid elements, and a Lagrangian description of
their flows in post-processing.

2.3. The Purely Gravitational Problem

In addition to the ability to track the Lagrangian histories of
fluid parcels, the use of tracer particles also provides us with
the four-dimensional phase-space coordinates of said fluid
elements at any tracer output time in the simulation. This
enables the ability to compare the full hydrodynamic evolution
of a fluid element with purely gravitational evolution.
In the purely gravitational problem—the circular restricted

three-body problem (cr3bp)—the only constant of motion is a
particleʼs Jacobi constant

c U v2 , 10j
2˜ ( )= - -

where rU g b
2( )f W= - ´ is the Roche potential4 and ṽ is the

particle velocity in the binary orbital frame. In addition to being
a constant of motion, cj defines restricted regions in the binary
orbital plane separated by so-called zero-velocity curves
(ZVCs) set by the condition cj<− 2U. There exists a family
of such ZVCs that connect and divide the binary orbital plane
into� 2 distinct topological regions. For equal-mass binaries,
the curve in this set with the smallest value of cj is that which
goes through the L2 and L3 Lagrange points. This is given as
c a3.64j b
crit 2 2= W , and gravitational orbits with c cj j

crit> are
topologically confined to either the outer disk or to one of the
minidisks (see, e.g., Figure 2 in D’Orazio et al. 2016), i.e., they
are gravitationally incapable of moving from the outer disk,
across the cavity, and onto a minidisk without the assistance of
other sources like pressure or viscosity. On the other hand,
particles with c cj j

crit< are dynamically allowed to cross the
cavity ballistically.
When integrating orbits, we used an adaptive Dormand–

Prince, fifth-order Runge–Kutta method that explicitly con-
served cj to fractional order 10−6 or better.

3. Results and Discussion

We ran our simulations for more than a viscous time at the
cavity wall (r= 2.5 a), ∼700 orbits, before recording tracer
trajectories, so that the disk has relaxed into a quasi-steady
state. The right panel of Figure 1 shows the surface density of
the disk after 650 orbits. The left panel shows the distribution
of tracers embedded in the disk. We see that the tracers follow
the flow morphology, as reflected in the minidisks, the cavity
shape and structure,5 the streams, and the density waves in the
outer disk.
We define the quasi-steady configuration as one in which the

specific angular momentum imparted to the binary per unit
accreted mass ℓ L M0  º is approximately constant. A 30 orbit
moving average of this quantity is shown in the bottom panel

4 Note that sometimes U is defined as the negative of the Roche potential to
eliminate the leading minus sign in Equation (10).
5 We note that the kink-like features at the cavity edge occur as the result of
shock interactions in the cavity wall and can similarly be observed in other
high-resolution binary simulations (e.g., Muñoz et al. 2020; Duffell et al. 2020;
D’Orazio & Duffell 2021; Dittmann & Ryan 2021).
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of Figure 2 alongside the time-averaged binary accretion rate in
the top panel6, M . In contrast with ℓ0, M possesses some
secular evolution as the finite CBD is slowly depleted, but it
has been demonstrated that this does not significantly affect the
angular momentum transfer (Muñoz et al. 2020). We observe
the start-up phase for the first ∼200 orbits, after which the disk
settles into said quasi-steady configuration. We also find,
consistent with other recent studies (e.g., Muñoz et al. 2019;
Moody et al. 2019; Tiede et al. 2020), that the equilibrium
value of the accretion eigenvalue ℓ0 for (h/r)= 0.1 disks is
greater than the critical value ℓc= 1.5 ℓ, meaning that the binary
experiences orbital softening, a 0 > . ℓ0= ℓc would mean that
the binary receives just enough angular momentum to balance
orbital hardening caused by the addition of mass to the
components.

3.1. Qualitative Picture

Mass is transported inward through the CBD by the
(effective) viscous stress. Gas parcels begin to experience the
influence of the binary in the range 3.5a–8a, in the form of
random deflections from outward-propagating pressure waves,
launched from the CBD inner edge at r; 2.5a. Indeed, gas
motions around the CBD wall 2.0a–3.5a are highly unsteady
due to the strong tidal influence of the binary (Section 3.3).
Fluid elements experience strong orbital radialization in this
range, developing increasingly eccentric orbits as they move
inward. The CBD wall itself is highly eccentric with e; 0.3
(Section 3.4). These observations are consistent with the
established picture of circumbinary accretion.

What has remained unclear until now is how material from
the cavity wall loses enough angular momentum to enter the
low-density cavity around the binary, and ultimately join one of
the minidisks. The tracer particles enable us to measure precise
trajectories of the gas parcels, and answer this question directly.

We observe that the gas flow into the cavity is generally in the
form of a narrow, fast-moving stream connecting the cavity
wall to a minidisk (see Figure 1). An important clue as to the
dynamics of the accretion streams is that they form and
dissolve twice during each binary orbit. In Section 3.4 we will
show that the stream formation is the result of tidal stressing
from the binary; it is a uniquely gravitational (as opposed to
hydrodynamical) process.
We find (Sections 3.2 and 3.5) that after being swept into a

stream, a fluid element has one of two fates: (1) it directly
enters one of the binary minidisks, in less than a binary orbit
following the stream formation, or (2) it is flung back to the
cavity wall. Two-dimensional trajectories illustrating each
scenario are shown in Figure 3, where the top and middle

Figure 1. Tracer particle positions (left) and disk surface density profile (right) in the fluid after 650 orbits. Gray circles in the right panel are included for future
reference: the inner dotted circle for rah ∼ 1.05 a (Section 3.2), and the outer dashed one for rcap ∼ 1.6 a (Section 3.4).

Figure 2. Accretion rate and change in binary angular momentum per unit
accreted mass. The disk achieves a quasi-steady state (e.g., approximately
constant angular momentum delivery to binary) after ∼200 orbits.

6 See Tiede et al. (2020) for details on the quasi-steady condition and
specifics on how these quantities are calculated.
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rows show examples of Scenarios 1 and 2, respectively.7 Fluid
elements returning to the cavity wall (Scenario 2) are often
swept into another stream within the next few binary orbits (as
shown in the middle row of Figure 3), but others can return to
the CBD wall for tens or even hundreds of orbits. A small
subset of tracer particles from Scenario 1 hover near a
Lagrange point for ∼1 orbit before falling onto a minidisk;
examples are shown in the bottom panel of Figure 3.

The accretion streams penetrate inward and temporarily
connect to one of the minidisks. The gas parcels near the
leading edge of the stream are decelerated either by an
accretion shock or pressure wave, and join the outer portion of
that minidisk, while the gas parcels toward the trailing edge of
the stream are rejected and rejoin the CBD. We show in
Section 3.5 that some fluid elements are absorbed into the
minidisk on which they are initially decelerated, while others
are transferred to the other minidisk.

We can thus summarize the process of circumbinary
accretion in three stages: (1) inward viscous transport, (2) tidal
deformation, and (3) collisions with minidisks. The following
sections quantify these processes in-depth, based on data we
have gathered from our hydrodynamics simulations with tracer
particles.

3.2. Accretion Horizon

Before turning toward what causes fluid elements to accrete,
one question we sought to answer was at what point is a fluid
element considered to be accreted, and as a corollary, what is
the balance of flow across the binary cavity. In particular, does
fluid have to make it all the way to a minidisk in order to
eventually accrete? And conversely, how much of the flung, or
rejected, stream material is coming from fluid that has made it
to (or even previously been incorporated into) a minidisk?
To examine this, we considered all tracers in a 10 orbit

window (650–660 orbits) that started beyond some nominal
radius r̄ then crossed inside it (r r r r0 ¯ ¯>  < ) within the 10
orbits. We then looked at the distribution of tracer radii one
binary orbit (1 Pb) after having crossed r̄ (r r r1¯<  ) for 30
different r̄ values in a r a0.7 1.5¯< < . Four of these
distributions are illustrated in Figure 4 for
r a a a a0.8 , 1.0 , 1.2 , 1.4¯ [ ]= . We observe that as r̄ decreases,
the amount of material being flung back out to radii r1 1.5 a
similarly decreases, and by r a1.0¯  , 99% of all tracers that
cross r̄ are accreted and considered incorporated into minidisks
(r1< 1.0 a). We quantify this further in Figure 5 by integrating
the distributions from the topmost panel in order to determine
the empirical probabilities of accretion (r1< 1.0 a) and
expulsion (r1> 1.5 a), respectively, given that a tracer—or
fluid element—has penetrated the radius r r̄< . We observe,
consistent with our intuition from Figure 4, that accretion is a
functional inevitability after having penetrated a radius
r a1.0¯  , and the probability of expulsion only becomes
non-negligible for r a1.1¯  .
The bottom panel of Figure 5 shows the maximum radius

achieved after a tracer has crossed r̄ as determined by the 99th-
percentile radius in the distributions from Figure 4. From this
we once again see that for small enough r̄ , all tracers that

Figure 3. Accretion trajectories in the observer frame representative of the
scenarios described in Section 3.1. The top row (1) shows examples of fluid
elements that are immediately deposited from their stream onto a minidisk; the
middle row (2) shows examples of those that are flung back to the cavity wall
(at least once) and accrete later; and the bottom row (3) shows examples of
those that spend ∼1 orbit hovering around a Lagrange point before ultimately
joining a minidisk. The underlying map is the time-averaged density field in the
observer frame with the same color scale as Figure 1. The central region is
removed for clarity, but the dotted circle shows the binary orbit location. Each
trajectory begins at the red dot and travels counterclockwise (prograde around
the binary) as indicated by the arrow in the top left panel.

Figure 4. Distributions of tracer radii 1 orbit after a close approach to the
binary. The close approaches are defined as the time at which a given tracer
enters inside the radius r r̄< . As r̄ is lowered, we see that the number of
tracers returned to the cavity wall (r  2 a) steadily declines and eventually
shuts off for r a1.2¯  .

7 The appearance of spiral structures or a wave-like feature extending from
this excised region is the result of the nonphysical aliasing of the time-variable
stream structures since our snapshots are taken 10 times per orbit.

5

The Astrophysical Journal, 932:24 (14pp), 2022 June 10 Tiede et al.



crossed were accreted, but as r̄ is raised, the population of
tracers that do escape back to the cavity wall following their
close encounter re-emerges. Because of the instability of orbits
in the cavity region, the transition from a single peak
distribution of purely accreted gas to a double-peaked
distribution that also contains expelled/rejected fluid elements
is distinct and characterized by a sharp drop-off in rMax 1( ).
Accordingly, we identify this sharp drop-off (in our fiducial
run, shown as solid lines) at r r a1.05ah¯ = » as the accretion
horizon whereby functionally all material that crosses the
horizon is destined to be accreted onto a minidisk. We include
the same results for tsink in the slow-sink limit (dashed lines)
since altering the amount of material in the minidisks could
affect this result. While the numerical value of the accretion
horizon shifts by a few percent to r≈ 1.01 a, the qualitative
behavior and approximate location of the horizon remain. As
such, for the remaining analysis we will consider fluid elements
as accreted once they have crossed the accretion horizon
rah= 1.05 a and will use this interchangeably with the process
of a fluid element joining a minidisk. The location of this
accretion horizon is shown in the left panel of Figure 1.

It is worth mentioning that there exist a small set of outlier
tracer particles (<0.5%) that happen into phase-space coordi-
nates allowing them to slingshot around the binary and through
the central-most regions of the domain without impacting and
being consumed by a minidisk, thus escaping back to the cavity
wall. However, we do not observe any tracers that are
incorporated into a minidisk and are later dislodged and
returned to the cavity wall. Once fluid elements are subsumed

by a minidisk, they are destined to stay there and eventually be
accreted by the central component.
Recent hydrodynamical studies of thin circumbinary disks

have shown that including the binary in the simulation domain
and resolving the central regions of the accretion flow are
important for determining certain quantities such as the net
angular momentum transfer rate and the binary migration rate
(e.g., Tang et al. 2017; Muñoz et al. 2019). However, many
earlier studies excised the binary and central cavity (r a)
from the simulation domain (MacFadyen &Milosavljević 2008;
Shi et al. 2012; D’Orazio et al. 2013; Farris et al. 2015;
Miranda et al. 2017), yet their observations on the disk
morphology and binary accretion rate (sans the variability)
remain mostly accurate and consistent with the present
understanding. The presence of such an accretion horizon
offers an explanation as to why these studies were reasonably
accurate despite not resolving the central-most regions of the
flow; namely, that material that crossed the excision horizon at
r∼ a was functionally disconnected from the outer disk and
would no longer affect fluid in the simulation domain.

3.3. Lagrangian Accretion Histories

In order to examine how tracers that end up in a minidisk are
able to accrete, we looked at histories of the tracer-specific
angular momentum j, radial velocity vr, and Jacobi constant cj.
Figure 6 shows these histories for all tracers that crossed the
binary cavity and joined a minidisk over a 10 orbit window
(650–660 orbits). The time coordinate (t̃ ) is rescaled as the
number of binary orbits after each tracer crossed the accretion
horizon rah= 1.05 a. Before addressing the color coding, we
notice that we can see two primary populations of fluid
elements that were accreted. The first and most prominent
group (making up the thickest blue band at the beginning of
each time series) are the fluid elements that are accreted directly
from the cavity wall. These gas parcels come from radii
characteristic of the cavity apoapse (2.9 a r 3.5 a) with
specific angular momentum j GMa1.5~ , and slightly
negative (inward) radial velocities characteristic of elliptical
orbits going from apoapse to periapse. The second population
of accreted parcels are those that participated in a stream within
the prior orbit and can be seen as the band of blue trajectories
that increase their radii from r 2.5 a, begin with larger
specific angular momenta j GMa1.55 , and have com-
paratively large positive radial velocities. In all four time series
we can see these fluid elements impact and become
incorporated into the cavity wall as their specific angular
momenta are lowered to j GMa1.5~ and their velocities
are redirected by the ram pressure in the cavity wall onto orbits
approaching periapse. Examples of this post-expulsion redirec-
tion can be seen in the trajectories in the second row of
Figure 3. We also see a smaller population of fluid elements
that have recently participated in a stream but hover near a
Lagrange point at r∼ 1 a that either eventually fall onto a
binary component minidisk or get swept in by another stream;
nonetheless do eventually accrete within ∼1 orbit.
The color coding of Figure 6 denotes the fate of each particle

in the cr3bp. From their phase-space coordinates at each output
time, we integrate each tracer forward for 1.25 Pb in the purely
gravitational problem. For each tracer at each output time, the
fluid element is classified by whether or not its purely
gravitational orbit takes it within the accretion horizon
r∼ 1.05 a—at which point it is regarded as accreted—or not.

Figure 5. (Top) Probability of accretion given that a tracer has crossed inside
of r̄ integrated from the distributions in Figure 4, and (Bottom) the 99th-
percentile radii from said distributions as functions of the approach radius
(solid lines). The solid vertical line indicates the accretion horizon,
rah ≈ 1.05 a. The dotted lines show the same result for tsink in the slow-sink
limit. In this limit the horizon is shifted by a few percent, ≈ 1.01 a.
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When a tracerʼs accretion becomes a ballistic process, it is
plotted in red; and when the purely gravitational trajectory is
not sufficient for accretion, the history is shown in blue. The
point at which a fluid element transitions to a trajectory that is
well approximated by gravity alone (again in the Boolean sense
of accretion versus no accretion) is demarcated by a purple
arrow with a white outline. The observations of note here are
that (a) most fluid elements that cross the binary cavity and
accrete become gravitationally destined to do so somewhere
between P t P1.0 0.4b b˜- -  where t̃ is the time after
accretion, and (b) there do not appear to be any strong
clumpings of transition points (purple triangles) where the
majority of fluid elements are deflected onto accreting orbits; or
where a fluid element appears to lose significant angular
momentum so as to fall into a strongly eccentric orbit. The
tracers appear to predominantly be on eccentric orbits around
the cavity and to smoothly, and seemingly at random, transition
onto ballistic orbits destined to accrete.

The distribution of times at which the accreted fluid elements
become effectively ballistic is shown in Figure 7. These times
appear to approximately follow a Gaussian distribution
about−0.7 Pb. Around 8% of all accreted parcels only become
gravitationally destined to do so within the final moments
(t P0.2 b˜ - ) before crossing the horizon and being deposited
onto a minidisk. These fluid elements that only enter the
ballistic phase during the physical moments of stream
formation are those that would not usually accrete in the
cr3bp, but in the full hydrodynamic problem have their orbits
slightly redirected by the transverse pressure gradient as the
stream resists orbit crossing (this population of pass-through
tracers can be seen in the final panels of Figure 8).

3.4. Stream Formation

To better understand the relative importance of gravitational
forces and hydrodynamic forces in the transfer of fluid across
the cavity, we performed a simple experiment of integrating
nested rings of particles placed initially on Kepler orbits around
a central binary (D’Orazio et al. 2013, 2016). The results of this
test are shown in Figure 8. The top row shows the time
evolution of 10 initially circular orbits through 0.55 Pb. The
dashed blue circle shows the accretion horizon and the smaller

Figure 6. Time series of radius (r), specific angular momentum ( j), radial velocity (vr), and Jacobi constant (cj) for all tracers accreted between 650 and 660 orbits. At
each output time, the tracers are integrated into the cr3bp for 1.25 orbits from their phase-space coordinates: the tracer time series is plotted in blue when the given
phase-space coordinates do not result in ballistic accretion, and switch to red when gravity becomes a full descriptor of tracer accretion. The purple arrows with white
outlines denote the time at which each fluid elementʼs becomes gravitationally destined to accrete.

Figure 7. Histogram of the transition times (where fluid element accretion
becomes a purely gravitational process) as denoted by the purple triangles in
Figure 6.
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tan dotted circles show the approximate truncation radius,
0.3 a, of each minidisk (Artymowicz & Lubow 1994; Eggle-
ton 1983). Of primary interest, we note that the tidal
perturbation of the initially circular orbits naturally results in
the formation of streams that both cross the accretion horizon
and also penetrate the Hill sphere of a binary component. The
tendency of initially circular orbits to be deformed into streams
due to gravity alone was similarly observed by D’Orazio et al.
(2013) (see also Pichardo et al. 2005, 2008). We find that
circular orbits of radius r 1.61 a result in the Hill sphere
penetrating tidal perturbations and r 1.72 a give orbits that
are perturbed beyond the accretion horizon.

The second row of Figure 8 shows the same experiment for
nested initially Keplerian orbits of eccentricity e= 0.285 with
their longitude of periapse initially perpendicular to the binary
semimajor axis. We choose e= 0.285 by taking the average of
the eccentricities

r v r v
re

v

GM
11

2 ( · ) ˆ ( )=
-

-

of all tracer particles in the cavity wall.8 In the case of eccentric
orbits the color represents the initial orbital periapse, rp, such
that the orbital semimajor axis can be determined as
ap= rp/(1− e). The addition of eccentricity to our initially
Keplerian rings breaks the symmetry of the tidal perturbations;
nonetheless, we observe the natural formation of stream
structures that both cross the accretion horizon and deliver
material within a component Hill sphere. The tidal deformation
is slightly less prominent in the eccentric case because the
orbital velocity at periapse exceeds that of the circular orbits,
but we determine that orbits with e= 0.285 and rp 1.56 a

cross a binary Hill sphere and rp 1.61 a cross the accretion
horizon.
We conclude that the formation of accretion streams and the

deposition of fluid onto binary minidisks is a natural
consequence of the tidal deformation of Keplerian orbits given
that such orbits pass sufficiently close to the binary. Therefore,
for a full fluid disk, so long as material can reliably be moved
down to orbits with periapse passage rp 1.6 a, the capture of
fluid appears an entirely gravitational process. As such, we
define a tidal capture radius r= rcap= 1.6 a such that initially
Keplerian orbits with periapse radius rp< rcap will be tidally
deformed into streams that penetrate the accretion horizon. rcap
is shown in Figure 1, and we can see that there is in fact
material within this radius at cavity periapse in the full
hydrodynamic problem.

3.5. Minidisk Capture

The approximately ballistic gas streams fall from the CBD
wall toward one of the minidisks. Some gas parcels are
subsumed directly into this near minidisk, while others skirt its
outer edge and get transferred to the far minidisk. The BH onto
which the parcel ultimately accretes (the accretor) can be either
the near or far one. By measuring the closest approach rmind a
gas parcel makes to its non-accretor BH, we can characterize
the capture process in terms of the fraction of gas that falls
directly from the CBD wall onto its accreting BH. Parcels that
do not experience a close approach to the non-accreting
component ( r rmin Hilld  ) are said to have accreted directly.
Figure 9 shows the distribution of rmind . It is bimodal,
indicating that a comparable amount of gas accretes directly
to the near component, as it accretes indirectly to the far one.
Accretion to the far component is marginally favored (54%).
Moreover, we see the effect of the accretion shock in the top

panel of Figure 10. As fluid elements are deformed into a

Figure 8. Tidal deformation of initially Keplerian orbits (prograde and counterclockwise). The first row is for initially circular orbits, and the second row is for nested
orbits with an initial eccentricity of e e 0.285wall¯= ~ . The binary is on a circular orbit in both cases, with both the binary and the fluid rotating counterclockwise. The
radii listed in the legend denote the radius in the circular case and the radius of periapse in the eccentric case (such that the semimajor axis of said orbits is
ap = rp/(1 − e)).

8 We find that the cavity wall is well described as those particles with specific
angular momenta GMa j GMa1.4 1.8< < .

8

The Astrophysical Journal, 932:24 (14pp), 2022 June 10 Tiede et al.



stream and approach the accretion horizon, their Jacobi
constant has dipped below cj

crit (a necessary–but not suffi-
cient–condition for ballistic mass transfer); but when they cross
the horizon and impact a minidisk, cj increases rapidly, crosses
cj
crit, and they become bound to their respective minidisk. The
distance from the component each fluid element becomes
bound to (r¢) and the minidisk truncation radius are shown in
the bottom panel for reference.

3.6. CBD Loss Cone

The presence of the accretion horizon and the fact that
stream formation and mass transfer onto minidisks is a
predominantly gravitational process poses similarities to the
theory of loss-cone orbits. The traditional loss cone, for objects
in orbit around a massive binary, is defined as those orbits with
small enough angular momentum at given energy E,
L(E)� Lℓc(E) such that their impact parameter is within
b< γ a; where gamma is some factor 1( )g ~  defining the
slingshot radius of the central binary (or in the single-object
case, the disruption radius) (Milosavljević & Merritt 2003). For
orbits with r? γa, or equivalently when |E|=GM/γa, the
critical angular momentum defining the loss cone is
L E a E a GM a2 2ℓc g

2( ) ( ) [ ( )]g f g g= - » . In the scenario of a
binary accreting from a thin disk of fluid (or nested Keplerian
rings), we have determined such a capture radius inside of
which the accretion of fluid elements is gravitational,
rcap= γcap a≈ 1.6 a.
For stellar mass objects in orbit around a massive binary,

those that pass close to the binary are imbued with angular
momentum, removed from the loss cone, and slingshot to
larger radii. However, for the CBD loss cone, the presence of a
viscous disk of fluid prevents such gravitational slingshots from
sending the higher angular momentum material to large radii.
When a stream is formed, ∼70% of the stream material (see
Figure 11) is imparted with some additional angular momen-
tum and is flung back to the CBD (visible in the trajectories of
Figure 6 starting with j GMa1.55 ). In the absence of the
CBD, this material would be removed from the binaryʼs radius
of influence, but it instead impacts the cavity wall and is
immediately redirected onto orbits once again eligible for tidal
capture.

Figure 9. For each tracer accreted between 650–600 orbits, the closest
approach to its non-accretor component. The left peak represents those fluid
elements that swing around the near component and join the minidisk of the far
component; and the right peak consists of those fluid elements that transfer
directly to the near minidisk. The size of the minidisks is ∼ 0.3 a.
Approximately ∼46% (diagonal hatching) of all accreted material transfers
directly to the near minidisk, and ∼54% (vertical hatching) joins the minidisk
of the far component. The inset shows an accretion stream with its respective
near and far components labeled for illustration.

Figure 10. (Top) Time series of Jacobi constants for all accreted tracers from
650–660 orbits. The dashed horizontal line denotes cj

crit. (Bottom) Distance
from each tracerʼs accretor component. The dotted dashed line shows the
truncation radius of the minidisk. The vertical line shows the approximate peak
time where elements become ballistic accretors from Figure 7.

Figure 11. Histogram of tracer times to accrete after having been pulled into a
stream taken over a 10 orbit window (650–670 orbits). While most fluid
elements (∼30%) are accreted in the orbit that spawned the stream, there is a
second accretion spike ∼3 orbits later. After ∼6 orbits, the remaining ∼30% of
fluid elements appear to be well mixed in the cavity wall, with little-to-no
memory of their close passage in a stream.
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This process is evident in Figure 11, which shows how many
orbits after participating in a stream it takes a fluid element to
accrete. The bottom panel shows the cumulative fraction of
stream tracers accreted after each orbit. The time of the stream
is taken as each time the binary semimajor axis is perpendicular
to the cavity longitude of periapse (which is assumed constant
since the cavity precession time is P10 b

2( ) ), and data is taken
from 650–670 orbits (equivalent to 40 streams). We see that
∼30% of the tracers comprising these streams are directly
accreted within the orbit that spawned the stream. There is a
second accretion spike 2–3 orbits after the initial stream as
some of the fluid elements that were originally expelled to the
cavity wall have been redirected onto orbits where they once
again are swept into a stream and deposited onto a minidisk.
This second accretion spike could be evidence of the shock
deflection suggested by Shi & Krolik (2015); but it could also
be a result of the fact that the flung material is fanned across the
farside of the cavity (see Figure 1) such that some of it has an
orbital commensurability with the moments of stream forma-
tion 2–3 orbits later. Approximately 4 orbits after the formation
of a stream, ∼60% of its fluid elements have been accreted, and
the remaining material has been well mixed back into the cavity
wall and has completely forgotten any history of having
participated in a stream.

We note that an important element of this study is that the
gravitational slingshot is necessarily interrupted by the cavity
wall because it is confined to the plane of the disk. However, in
3D it could be that some of the material is redirected out of the
disk plane and could possibly escape the system in out-of-the
plane, binary-torque driven winds. We intend to quantify this in
future work.

Returning to this notion of the CBD loss cone, while the rate
at which the loss cone is refilled in the traditional problem is set
by the two-body relaxation time, in the case of a circumbinary
disk this timescale is set by the viscous time in the inner disk.

In Figure 12 we show 10 orbit averaged maps of the viscous
torque for the inner disk in the observer frame. As in Figure 3,
we have excised the innermost r< a for visual clarity. The dark
blue arrow denotes the average longitude of periapse. We see
that the torques are maximal at cavity apoapse, and that the

predominant effect is to remove angular momentum from fluid
elements in the cavity wall. In this way, as fluid elements orbit
the binary, viscous drag through the majority of the orbit
extracts angular momentum, moving the innermost orbits onto
increasingly eccentric orbits with decreasing rp. Thus, at some
point in their last orbit around the inner edge of the cavity, gas
parcels lose enough angular momentum that they become
gravitationally destined for tidal capture. We posit that it is for
this reason that no clear indicator appears in Figure 6 marking
the imminence of accretion, and why the transition from
requiring hydrodynamics for accretion to ballistically destined
to accrete is seemingly random.

3.7. Implications for Long-term Evolution

The notion of mass transfer from the CBD onto minidisks as
the result of delivering material close enough (r< γcap a) to the
binary for tidal capture provides a natural mechanism by which
the CBD can regulate its accretion rate. Namely, one can
imagine two characteristic accretion rates: (1) the viscous
feeding rate in the outer disk MCBD , and (2) the rate at which
mass is tidally stripped off the inner edge of the cavity wall and
actually fed onto minidisks Mcav . There is no ab initio reason
for these two accretion rates to be the same. However, in the
case of an infinite disk in a true steady state where the amount
of material accreted through the binary (M ) matches the outer
feeding rate M MCBD = , it must also be that M MCBD cav = . In
the absence of a true steady state, since Mcav is set by the inner
edge of the cavity wall, if M Mcav CBD > the binary will scour
away the inner edge of the cavity wall, material will not be
delivered fast enough to replenish the wall and remove angular
momentum from the innermost orbits, the inner edge will
recede such that rp> γcav a, and Mcap will decrease or turn off
completely. Conversely, if M MCBD cav > mass will pile up into
the lump at the cavity wall, the lump will grow increasingly
dense and steep until the viscous torque begins to infringe upon
the centrifugal barrier, the cavity inner edge will shift nearer to
the binary increasing the prominence of tidal deformations and
the mass of accretion streams, and Mcav will increase. Such
effects have been observed in Rafikov (2016). For a sufficiently
relaxed disk, then, these two effects will balance yielding a
steady (in the time-averaged sense) cavity structure that
mediates the equivalence M M MCBD cav  = = .
Moreover, to understand the location of the inner edge of the

binary cavity, in Figure 13 we show the time-averaged radial
profiles of the gravitational and negative-viscous torque
densities in the disk
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The analytic form of the binary potential derivative is used and
the rest of the quantities are measured from the simulation
checkpoints over 10 orbits (e.g., MacFadyen & Milosavlje-
vić 2008; Cuadra et al. 2009; Roedig et al. 2012; Shi et al.
2012; D’Orazio et al. 2013; Rafikov 2016). The approximate,
axisymmetric location of the cavity edge is given by the

Figure 12. Map of viscous torques averaged over 10 orbits in the lab frame
(treating the cavity orientation as fixed). The blue arrow shows the average
cavity argument of periapse and the inner dotted circle shows the binary orbit.
We see that viscous torques are maximal and negative near cavity apoapse.
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and is shown by the dotted vertical line in Figure 13. In our
simulations, this torque balance occurs at r= 1.95 a, which
visually agrees with the approximate average cavity locations
seen in Figures 1 and 12. We can think of this axisymmetric
approximation to the cavity location as the average cavity
distance seen by the binary in the co-orbiting frame. Moreover,
this balance implies that one can move the location of the
cavity wall slightly by varying the disk viscosity (but only
slightly because the gravitational torque density profile near the
equilibrium is largely inelastic). Increasing the viscosity would
cause the viscous torque profile to shift upward and move the
cavity edge closer to the binary, and decreasing ν would shift it
downward, moving the cavity further away. This effect has
been observed in studies that vary the disk viscosity (e.g.,
Miranda et al. 2017; Ragusa et al. 2020). In the limit of zero
viscosity ν= 0, we can see that a cavity would still form at
r∼ 2 a due to the root in the gravitational torque density,
consistent with notions of nonintersecting stable orbits at
r∼ 2 a (Pichardo et al. 2005, 2008). In this way, we posit that
binary accretion is the result of viscosity moving material from
the outer disk to the cavity edge, where—if near enough—
orbits are tidally deformed and captured as ballistic accretion
streams. We note that this average cavity radius as seen by the
binary is not sufficient to induce tidal capture and mass transfer
across the cavity, and the instantaneous cavity eccentricity
(e≈ 0.3 as measured in Section 3.4) is necessary for delivering
orbiting fluid elements beyond the tidal capture radius.

4. Summary and Conclusions

We have studied the history of how fluid elements accrete in
a two-dimensional isothermal disk around an equal-mass,
circular binary via tracer particles embedded in Eulerian
hydrodynamics. Our primary findings can be summarized as
follows:

(i) There exists an accretion horizon—a radius beyond
which functionally no material is returned to the cavity
wall—at r≈ 1.05 a for binaries embedded in thin,
isothermal circumbinary disks (Figure 5).

(ii) Nearly all accreted fluid elements become gravitationally
destined to do so around ∼0.7 orbits before crossing the
accretion horizon. Moreover, this ballistic transition does
not appear to correlate with abrupt changes in angular
momentum, radial velocity, or Jacobi constant. This
suggests that strong shocks are not the primary mech-
anism to transport angular momentum and allow gas to
accrete.

(iii) We demonstrate that stream formation and mass transfer
onto minidisks are driven by a gravitational process.
Accordingly, we determine a tidal capture radius,
rcap≈ 1.6 a.

In accordance with the observations (i)–(iii), we develop a
description of the mechanism by which fluid elements are
accreted from thin circumbinary disks around circular equal-
mass binaries and draw parallels to the theory of loss-cone
orbits. Specifically, the accretion of fluid from the outer CBD
follows a three-stage evolution:

(1) Fluid elements are viscously transported to the inner-
CBD and cavity wall. The stresses grow as the element
moves through the lump and closer to the cavity wall.

(2) Gas parcels persist in the inner regions of the CBD and
cavity wall ebbing and flowing through the binaryʼs
quadrupolar potential until they fall onto periapse
passages with rp< rcap and the proper azimuthal phase
to be tidally captured in accretion streams.

(3) Fluid elements are subsumed into a minidisk via an
accretion shock.

At this point, the element is bound to the minidisk and fated for
accretion onto its binary component.
There are a number of simplifying assumptions we made that

could influence these results. We have employed a locally
isothermal equation of state, but a more thorough treatment of
the disk thermodynamics as well as the radiation could
meaningfully alter the flow. Similarly, we have restricted
ourselves to two dimensions and ignored both magnetic fields
and general relativistic effects. The other primary limitation of
this work is that we have only considered equal-mass binaries
fixed on circular orbits. Moreover, this picture is tailored to
large mass-ratio binaries and does not apply to gap-carving
binaries in the planetary regime q 0.025. We might naively
expect our picture to apply for more eccentric orbits and for
binaries of differing mass ratios (and q 0.1), but this is left to
future study.
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NYU. Resources supporting this work were provided by the
NASA High-End Computing (HEC) Program through the
NASA Advanced Supercomputing (NAS) Division at Ames
Research Center. We acknowledge support by NSF grants
AST-2006176 (to ZH) and 1715661 (to Z.H. and A.M.).

Figure 13. Time-averaged radial profiles of gravitational and negative-viscous
torque densities. The radius at which the two are equal, at r = 1.95 a, is shown
with a vertical dotted line and corresponds to the approximate location of the
cavity wall.
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Appendix
Tracer Tests

In this appendix, we present a selection of idealized tests in
order to probe the reliability of our tracer particle implementa-
tion (Equation (9)). First, we measure the ability of the tracers
to track the flow and angular momentum in a steady-state disk
solution. Then, we examine two tests on the ability of the
tracers to accurately follow the flow of mass in our simulations;
the significance being that if the tracers can accurately follow
the mass flow in the disk, then all other instantaneous
hydrodynamic quantities can be queried at all points in time
in order to recreate the hydrodynamic history of a given mass
parcel in a Lagrangian picture of the flow.

A.1. Steady-state Disk

As a first test, in order to quantify the degree of diffusion in
the tracer implementation, we consider the steady-state form of
the initial condition presented in Section 2.1: the disk of
Equations (7) and (8) around a single point mass of mass M
with viscosity ν= 0. In this way, the radius and angular
momentum of all fluid elements in the disk will only be
changed by numerical dissipation introduced at the grid scale.
We run this steady-state disk for a numerical time equivalent to
500 binary orbits (with binary separation ab) and measure the
average percent change in tracer-specific angular momentum,
〈Δj〉/j0 (with j0 the initial specific angular momentum), per
equivalent-binary orbit (Pb). This is shown in Figure 14 after
300, 400, and 500 equivalent-binary orbits. While we find that
the tracers are slightly more dissipative in the innermost
regions of the steady-state solution, it requires more than 100
equivalent-binary orbits for the most dissipative average tracer
to change its specific angular momentum by 1%. This 1% error
time in the viscous disk (ν= 0.001) would be longer than a
local viscous time.

A.2. Spreading Ring

In order to test the tracers’ ability to track the redistribution
of mass in our simulations, we ran a 2D spreading ring test for
a Gaussian ring of width σ= 0.25 initially centered at r0= 4

(in arbitrary units of length) such that
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The total ring mass set by Σ0 is also arbitrary, the initial
velocity profile is Keplerian, and the kinematic viscosity is set
to ν= 0.01. The evolution of the diskʼs radial surface density
profile measured in the Eulerian fluid (lines) and in the tracer
particle distribution (crosses) is shown in the left panel of
Figure 15. The simulation was performed with uniform spatial
resolution Δ= 0.0104 in a domain extended from [− 8, 8] in
both the x- and y-directions with arbitrary length units. We
initialize∼ 5× 105 tracers evenly distributed on the grid where
each tracer is assigned a weight defining the amount of mass
associated with its assigned Lagrangian fluid element. The sum
of all weights is equivalent to the total mass in the domain.
Times are reported in units of the viscous time at the initial ring
location r0, and we see that the tracers follow the spreading of
the ring extremely accurately. We note that the spreading of the
initially Gaussian ring is not entirely viscous as the simulation
is run with an isothermal equation of state (Equation (4)), but
the purpose of the test is not to examine the accuracy of the
codeʼs viscosity prescription, but rather to inspect the ability of
our tracer particles to accurately follow the mass evolution of
the system. In this test, the tracers accurately follow the
diffusion of the gas.

A.3. Kelvin–Helmholtz Instability

We additionally ran a classical Kelvin–Helmholtz instability
(KHI) test in order to quantify the tracer particle accuracy at the
onset of turbulent flow with significant mixing layers and rapid
accelerations (as opposed to the nearly laminar coherent
motions of a steady or slowly spreading disk). In this problem,
we evolve the energy equation with an ideal gas law equation
of state and γ= 5/3. An HLLC approximate Riemann solver is
also employed (Toro 2009) in order to accurately preserve the
initially shearing contact discontinuities. The simulation is
performed in a 2D periodic box of extent Δx= 3.5 in each
direction (again with arbitrary length units). We initialize the
fluid with a high-density strip Σ1= 2.0 and right-flowing
velocity v 0.1x

1
( ) = for−0.5< y< 0.5. The rest of the domain

Figure 14. Average percent change in tracer-specific angular momentum, 〈Δj〉/j0, per equivalent-binary orbit (Pb) in an inviscid disk around a single central mass. It
would require > 100 binary orbits to change a tracerʼs j by ∼1% at r = 1 ab.

12

The Astrophysical Journal, 932:24 (14pp), 2022 June 10 Tiede et al.



is initialized with a lower density Σ2= 1.0 and a left flowing
velocity v 0.1x

2
( ) = - . The pressure is initially uniform. The

instability is seeded by a superposition of damped, sinusoidal
vertical velocity perturbations v v k x e ecosy 0 ( ) ( )= ++ - with
v0= 0.002, *e yexp 0.5 0.5 2[ ( ) ]= -  , and k= π. The sys-
tem is seeded uniformly with∼ 5× 105 tracer particles with
their weights accounting for the mass of their Lagrangian fluid
elements.

Figure 16 shows the evolution of the KHI in the tracer
particles (first three panels) initially placed in the high-density
strip (black dots). We see the emergence of increasingly large
rolls as the flow evolves. The timescale for the growth of the
instability is given by t k v2KHI 2 1

1( )p= S S D - where k is
the wavenumber of the velocity perturbation and
v v vx x

1 2
( ) ( )D = - . For comparison, the final panel shows the

gas density at the same time as the bolded panel of tracer
distributions. We see that the spiral arms and mixing layers are
recreated quite precisely in the tracer distributions. More
quantitatively, the right panel Figure of 15 shows the x-
averaged linear density profiles in both the gas (lines) and
constructed from the tracer distributions (crosses). We see that
the tracer particles are able to follow the vortices and gas
mixing throughout the onset of the KHI to a high degree of
accuracy.
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