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Functions Enabled by Distributed Gradient
Computation
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Abstract—This article proposes a distributed algorithm
for a network of agents to solve an optimization problem
with separable objective function and locally coupled con-
straints. Our strategy is based on reformulating the original
constrained problem as the unconstrained optimization of
a smooth (continuously differentiable) exact penalty func-
tion. Computing the gradient of this penalty function in a
distributed way is challenging even under the separabil-
ity assumptions on the original optimization problem. Our
technical approach shows that the distributed computation
problem for the gradient can be formulated as a system
of linear algebraic equations defined by separable problem
data. To solve it, we design an exponentially fast, input-to-
state stable distributed algorithm that does not require the
individual agent matrices to be invertible. We employ this
strategy to compute the gradient of the penalty function
at the current network state. Our distributed algorithmic
solver for the original constrained optimization problem in-
terconnects this estimation with the prescription of having
the agents follow the resulting direction. Numerical simula-
tions illustrate the convergence and robustness properties
of the proposed algorithm.

Index Terms—Distributed computation, distributed opti-
mization, exact penalty functions, interconnected systems,
linear algebraic equations with separable data.

I. INTRODUCTION

ETWORK optimization problems arise naturally as a way
N of encoding the coordination task entrusted to a multiagent
system in many areas of engineering, including power, com-
munication, transportation, and swarm robotics. The large-scale
nature of these network problems, together with technological
advances in communication, embedded computing, and parallel
processing, have sparked the development of distributed algo-
rithmic solutions that scale with the number of agents, provide
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plug-and-play capabilities, and are resilient against single points
of failure. This article is a contribution to the growing body of
work that deals with the design and analysis of provably correct
distributed algorithms that solve constrained optimization prob-
lems with separable objective functions and locally expressible
constraints. The novelty of our approach lies in the use of
continuously differentiable exact penalty functions to deal with
the constraints, thereby avoiding the characteristic chattering
behavior associated with nondifferentiable approaches, and the
reliance on gradient descent directions, thereby avoiding the
oscillatory behavior characteristic of primal-dual schemes.

A. Literature Review

The breadth of applications of distributed convex optimiza-
tion [2]-[4] has motivated a growing body of work that builds
on consensus-based approaches to produce rich algorithmic
designs with asymptotic convergence guarantees, see [5] for a
comprehensive survey. In this class of problems, each agent in
the network maintains, communicates, and updates an estimate
of the complete solution vector, whose dimension is independent
of the network size. This is in contrast to the setting considered
here, where the structure of the optimization problem lends itself
to having instead each agent optimize over and communicate
its own local variable. Considered collectively, these variables
give rise to the solution vector. Distributed algorithms to address
this setting fall under Lagrangian-based approaches that rely
on primal-dual updates, e.g., [6]-[11] or unconstrained refor-
mulations that employ nonsmooth penalty functions [12]-[14].
Our approach here is based on the exact reformulation of the
original problem using continuously differentiable penalty func-
tions [15]-[18]. The work in [16] establishes, under appropriate
regularity conditions on the feasibility set, the complete equiv-
alence between the solutions of the original constrained and the
reformulated unconstrained optimization problems. The work
in [17] proposes a continuously differentiable exact penalty
function that relaxes some of the assumptions of Pillo and
Grippo [16]. Notably, the works on continuously differentiable
exact penalty functions use centralized optimization algorithms
because the computations involved in the definition of the uncon-
strained penalty function are of a centralized nature. Our recent
work in [19] provides a framework to extend Nesterov accel-
eration to constrained optimization by investigating conditions
under which the penalty function is convex.
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B. Statement of Contributions

We consider nonlinear programming problems with a sep-
arable objective function and locally coupled constraints. The
starting point for our algorithm design is the exact reformu-
lation of the problem as an unconstrained optimization of a
continuously differentiable exact penalty function. Motivated
by enabling the computation of the gradient of this function
by the network agents, our first contribution is the design of
a distributed algorithm to solve a system of linear algebraic
equations, whose coefficient matrix and constant vector can be
decomposed as the aggregate of (not necessarily invertible) coef-
ficient matrices and constant vectors, one per agent. We establish
the exponential convergence and characterize the input-to-state
stability properties of this algorithm. Building on it, our second
contribution is the structured computation of the gradient of the
penalty function in a distributed way. We accomplish this by
showing that the calculation of certain nondistributed terms in
the gradient can be formulated as solving appropriately defined
systems of linear algebraic equations defined by separable data.
Our third and last contribution is the design of the distributed
algorithm that solves the original constrained optimization prob-
lem. This algorithm is based on following the gradient descent
of the penalty function while estimating the actual value of
the gradient with the distributed strategy that solves systems
of linear algebraic equations. We establish the convergence of
the resulting interconnection and illustrate its performance in
simulation, comparing it with alternative approaches. We end
by noting that since the proposed approach relies on the dis-
tributed computation of the gradient, the methodology can also
be used for accelerated distributed optimization using Nesterov’s
method, something which we also illustrate in simulation.

[I. PRELIMINARIES

In this section, we present our notational conventions and
review basic concepts on graph theory and constrained opti-
mization.

A. Notation

Let R and N be the set of real and natural numbers, respec-
tively. We let X° and X denote the interior and closure of X,
respectively. For a real-valued function f : R™ — R, welet V f
denote its gradient. When we take the partial derivative with
respect to a specific argument x, we employ the notation V, f.
We denote vectors and matrices by lowercase and uppercase
letters, respectively. With a slight abuse of notation, we let
(a;b) denote the concatenated vector containing the entries
of vectors a and b, in that order. A’ denotes the transpose
of a matrix A. A ® B denotes the Kronecker product of two
matrices A and B. We use 0 and 1 to denote the vector or
matrix of zeros and ones of appropriate dimension, respec-
tively. diag(v) € R™*" denotes the diagonal matrix with the
elements of v € R™ in its diagonal. Similarly, for a group of
square matrices { A; }ie(1,... ny € R™*™, diag(4;) € Rmmmn
denotes the block-diagonal matrix with each of the matrices A;
arranged along the principal diagonal. We use A2(A) to denote

the smallest nonzero eigenvalue of matrix A, regardless of the
multiplicity of eigenvalue 0. null(A) denotes the nullspace or
kernel of a matrix A. We use dim(W) to denote the dimension
of vector space W.

B. Graph Theory

We present basic concepts from graph theory following Godsil
and Royle [20]. We denote an undirected graph by G = (V, E),
with V as the set of vertices and £ C )V x V as the set of edges.
(i,7) € Eifand only if (4,7) € €. A vertex j € V) is a neighbor
of ¢ iff (¢, j) € £, and k is a two-hop neighbor of 7 if there exists
j € Vsuchthat (,5) € £ and (4, k) € €. The set of all one-hop
neighbors of 7 is denoted by N;. A graph is connected if there
exists a path between any two vertices. The degree of a node
is the number of edges connected to it. The degree matrix D €
R™ ™ is the diagonal matrix with D;; = deg(v;). The adjacency
matrix A € R™*" is defined by A;; = 1if (4,7) C £and A;; =
0 otherwise. The Laplacian matrix is L = D — A. Note that
1'L =0 and 0 is a simple eigenvalue of L if and only if the
graph G is connected.

C. Constrained Optimization

Here, we introduce basic concepts of constrained optimiza-
tion following Bertsekas [21]. Consider the following nonlinear
optimization problem:

min  f(x)

zeD (1)

st g(x) <0, h(z)=0
where f:R" =R, g: R® - R™,, and h:R™ — RP are
twice continuously differentiable functions with p < n, and
D C R™ is a compact set, which is regular (ie., D = D°).
The feasible setof (1)is F = {z | € D, g(x) < 0,h(x) = 0}.
Based on the index sets for the inequality constraints

Io(z) ={j | gj(z) = 0}
I (x) ={j [ g;(x) = 0}
we define the following regularity conditions.

1) The linear independence constraint qualification (LICQ)
holds at x € R™ if {vgj(x)}jejo($) @] {th’}ke{l,“.,p}
are linearly independent.

2) The extended Mangasarian—Fromovitz constraint qual-
ification (EMFCQ) holds at z € R™ if {th}ke{l ,,,,, »}
are linearly independent and there exists z € R"™ with

(2a)

(2b)

Vgi(x)'z <0 VjeIli(z)
Vhi(z)'z2=0 Vke{l,...,p}.

The Lagrangian function L : R™ x R™ x R? — R associ-
ated with (1) is given by

Lz, a, 1) = f(x) + Ag(z) + p'h(x)

where L € R™ and p € RP are the Lagrange multipliers (also
called dual variables) associated with the inequality and equality
constraints, respectively. A Karush—Kuhn-Tucker (KKT) point
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for (1) is a triplet (Z, A, i) such that

Under any of the aforementioned regularity conditions, the KKT
conditions are necessary for a point to be locally optimal.

D. Continuously Differentiable Exact Penalty Functions

With exact penalty functions, the basic idea is to replace the
constrained optimization problem (1) by an equivalent uncon-
strained problem. Here, we introduce continuously differen-
tiable exact penalty functions following Glad and Polak [15]
and Di Pillo and Grippo [16]. Beyond the knowledge of the
availability of such functions, the reader can defer parsing
through the specific technical details below until they become
critical in Section V below. The key observation is that one can
interpret a KKT tuple as establishing a relationship between
a primal solution Z and the dual variables (A, ji). In turn, the
following result introduces multiplier functions that extend this
relationship to any x € R™.

Proposition II.1: (Multiplier functions and their deriva-
tives [16]): Assume that LICQ is satisfied at all x € D.

Let G(x) = diag(g(x)) and, for ~ # 0, define N :R"™ —
R (m+p)x(m+p) by

Vg(x)'Vg(z) +~° G*(x)
Vh(z)Vg(x)

Vy(2)'Vh(z)

Vh(z)'Vh(z)|’ ©)

N(m):[

Then, N(x) is a positive definite matrix for any = € D. Given
the functions 2 — (A(z), u(z)) defined by

)| _ e [Vt
Lw]‘ N “l

Vh(z)
one has the following.
1) If (2, A, ji) is a KKT triple for problem (1), then A(Z) = A
and u(T) = .
2) Both functions are continuously differentiable and their
Jacobian matrices are given by

Vf(x) )

Va@)| _ -1 [B@)
vuey] =V s ®
where
R(x) = Vg(a)' Vi L(x,x(x), u(x))
+Zeg»”VIL(x,X(x),u(x))’Vng(m) (6a)
+27°A(z)G(2)Vg(z)
S(x) = Vh(z)'ViL(z, A(x), p(x))
+ Z NV L(x, M), () V2 hi(z)  (6b)
k=1

where we use the shorthand notation

Vo L2, 4(2), p(2)) = [Va L (2, 4, )] 1=1(2)

n=p(x)

VaL(z, A(x), p(x)) = [VEL(, &, 1) smina)

n=p(x)
A(x) = diag(A(x)), and e and €], denote, respectively,
the jth and kth columns of the m x m and p x p identity

matrix.

The multiplier functions in Proposition II.1 can be used to
replace the multiplier vectors in the augmented Lagrangian of
Rockafellar [22] to define the continuously differentiable exact

penalty function. Given e > 0 and j € {1,...,m}, define
. . € 1/2
yi(@) = (—min [0,9,() + $3;(@)) )

and let Y¢(x) = diag(y“(z)). Consider the continuously differ-
entiable function f¢: R™ — R

f@) = f(@) + Mx) (9(x) + Y (2)y(2)) + () h(=)

2 llge) + Y @y @I+ - Ih@I o)

The following result characterizes the extent to which f€ is an
exact penalty function.

Proposition I1.2: (Continuously differentiable exact penalty
function [16]): Assume LICQ is satisfied at all x € D and
consider the unconstrained problem

min f(x).

zeDeo

Then, the following holds.

1) There exists € such that the set of global minimizers of (1)
and (8) are equal for all € € (0, €].

2) If (z, A, j1) is a KKT point for problem (1), then V f€(Z) =
0 forall e > 0.

3) Under the additional assumption that EMFCQ holds on D,
there exists € such that for all € € (0, ¢, Vf(Z) = 0 im-
plies that (Z, A(Z), ;4(Z)) is a KKT point for problem (1).

Given the result of Proposition I1.2, we next turn our attention
to solve the unconstrained optimization problem (8). The next
result, whose proof is given in the appendix, characterizes the
extent to which the gradient descent dynamics of f€ satisfies
the constraints while finding the optimizers of the original
constrained optimization problem.

Proposition I1.3: (Constraint satisfaction under gradient dy-
namics of penalty function): Given the optimization problem (1),
assume LICQ is satisfied at all = € D. Consider the gradient
dynamics & = —V f¢(x) of the penalty function f€in (7). Then,
if at any time tg, x(to) € F, we have the following.

1) (Equality constraints): x(t) € F, for all ¢t > to and all
€ > 0 if the problem (1) has just equality constraints.

2) (Scalar inequality constraint): There exists € > 0 such
that x(t) € F, for all t >ty and all € € (0, if the
problem (1) has only one inequality constraint.

3) (General constraints): In general, there is no guarantee
that the evolution of the gradient dynamics stays feasible
when the problem (1) has more than one constraint if one
of them is an inequality.

®)
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Ill. PROBLEM STATEMENT

We consider separable network optimization problems where
the overall objective function is the aggregate of individual
objective functions, one per agent, and the constraints are lo-
cally expressible. Formally, consider a group of n € N agents,
whose interaction is modeled by an undirected connected graph
G = (V,€). Each agent i € V is responsible for a decision
variable x; € R. Agent ¢ is equipped with a twice continuously
differentiable function f; : R — R. The optimization problem
takes the form

min
zeD

f(x) = Jilzs)
i; )

st g(x) <0, h(z)=0

with twice continuously differentiable vector-valued functions
g:R" = R™ h:R"™ — RP,and p < n.Eachcomponent {g; :
R™ — R}, and {h), : R™ — R}]_, of the constraint func-
tions is locally expressible. Such kind of coupled constraints
arise in numerous applications, such as power [23], communi-
cation [24], and transportation [25] networks, to name only a few.
By locally expressible, we mean that, for each constraint, e.g., g;,
there exists an agent, which we term corresponding agent, such
that the function g; depends on the state of the corresponding
agent and its one-hop neighbors’ state. We assume that all the
agents involved in a constraint know the functional form of
the constraint and its derivatives. According to this definition,
different constraints might have different corresponding agents.
Under this structure, agents require up to two-hop communi-
cation to evaluate any constraint in which they are involved
(one-hop communication in the case of the corresponding agent
and two-hop communication in the case of the other agents
involved in the constraint).

Our aim is to develop a smooth distributed algorithm to find an
optimizer of the constrained problem (9). Our solution strategy
employs a continuously differentiable exact penalty function,
cf., Section II, to reformulate the problem as an unconstrained
optimization one. We then face the task of implementing its
gradient dynamics in a distributed way. To do so, we show that
the problem of distributed calculation of Lagrange multiplier
functions and other necessary terms in the gradient of the penalty
function can be formulated as a linear algebraic equation with
separable data (cf., Section V). In turn, we justify how this
algebraic equation can be solved in a distributed manner (cf.,
Section IV). Finally, we combine both sets of results to propose
a distributed algorithmic solution based on smooth gradient
descent to solve (9).

Remark 1: (Alternative approaches): To solve problem (9) in
a distributed way, we can instead construct the Lagrangian and
then use primal-dual (also known as saddle-point) dynamics [6],
[26], [27]. This dynamics uses gradient descent in the primal
variable and gradient ascent in the dual variable. For the problem
structure described earlier, these dynamics is distributed (requir-
ing up to two-hop communication). However, the dynamics is
in general slow, exhibits oscillations in the distance from the
feasible set, and there is no guarantee of satisfying the constraints

during the evolution, even if the initial state is feasible. Also, it
is not clear how to apply accelerated methods, cf., Nesterov [28]
to the primal-dual approach. Another approach to solve (9) in
a (up to two-hop) distributed way consists of reformulating the
problem as an unconstrained optimization [12]-[14] by adding
to the original objective function nondifferentiable penalty terms
replacing the constraints [29] and employing subgradient-based
methods. However, these methods are difficult to implement,
often lead to chattering, and the study of their convergence
properties requires tools from nonsmooth analysis. Yet an-
other approach is the alternating direction method of multi-
pliers [9], which requires using some additional reformulation
techniques [30] to make it distributed and convergence to an
optimizer is only guaranteed when the optimization problem is
convex. Although it enjoys fast convergence, each agent needs
to solve a local optimization problem at every iteration to update
its state, which might be computationally inefficient depending
on the form of the constraint and the objective functions. °

IV. LINEAR ALGEBRAIC EQUATIONS DEFINED BY
SEPARABLE PROBLEM DATA

In this section, we propose a novel exponentially fast dis-
tributed algorithm to solve linear algebraic equations, whose
problem data are separable. As we argue later, such linear equa-
tions arise naturally when considering the distributed solution
of exact penalty optimization problems, but the discussion here
is of independent interest.

Given a group of agents, consider a system of linear equations,
whose coefficient matrix and constant vector are the aggregation
of individual coefficient matrices and constant vectors, one per
agent. Formally

n n

(Z)szgyi (10)
i=1 i=1

where n is the number of agents, v € R? is the unknown solution
vector, and N; € R7°? and b; € RY are the coefficient matrix
and constant vector corresponding to agent ¢. Our approach
is based on first reformulating (10) into a one-hop distributed
system of equations. By one-hop (respectively, two-hop) dis-
tributed, we mean that each equation in the system only involves
some corresponding agent and its neighbors (respectively, two-
hop neighbors).

We start by endowing each agent with its own candidate ver-
sion v; € R? of v. Then, assuming a connected communication
graph among the agents, (10) can be equivalently rewritten as

}:Mm:z}i (11a)
=1 =1
(Lo I)v=0 (11b)

where v = [v1;...;v,] € R™. Note that in order for (11b) to
be true, it must hold that v = 1 ® v, i.e., all v;’s are the same.
Although (11b) is one-hop distributed, (11a) is not distributed.
To address this, we introduce a new variable y; € R? per agent
ie€{l,...,n}. Let y = [y1;...;yn] € R™ and consider the
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following set of equations:

N -L®I
L) (V) Z (P (12)
L®Il, 0 y 0
——
P q
where N = diag(N;) € R"?*"? and b = [by;...;b,] € R™.

Note that the set of equations (12) is one-hop distributed. The
following result characterizes the equivalence between (10) and
(12).

Proposition IV.1: (Equivalence between (10) and (12)): The
solutions of (12) are of the form (1 ®v;y + 1 ®y), where
v € R?solves (10), N(1®v) —b = (L ® I,)y,and y € R

Proof: Note that (12) can be rewritten as

Ny b1
v= || +(L&l)y (13a)
Ny, bn
(L®I,)v=0. (13b)
Equation (13b) implies that v =1 ® v, with v € R™. Then,
from (13a), we have foreachi € {1,...,n}

Niv =b; + (L; ® 1,)y

where L; denotes the ith row of the Laplacian L. Summing over
all agents, we obtain

(Z Ni> v=> b+ (Lil)y.
i=1 i=1 i=1

Since 1'L = 0, the last summand vanishes, which yields (10).
The expression for y again follows directly from the fact that
1'L=0.

Our next goal is to synthesize a distributed algorithm to
solve (12). Our algorithm design is based on formulating this
equation as an unconstrained optimization problem. Let z =
(v;y) and consider the quadratic function V; : R?9" — R

Vila) = 5(P2—q) (P2 — ). (149

Note that V; vanishes over the solution set of Pz = q and takes
positive values otherwise. The problem of solving (12) can be
reformulated as

min Vi (z).
The gradient descent dynamics of V; is given by
z=—-P'(Pz—q).

‘When convenient, we refer to this dynamics as ¢graq. In expanded
form, it takes the form

v=-N[Nv—(L®I,)y-b]|—(L*®I,)v
¥y =(L®IL)Nv—(L®I)y—b]
From (15), each agent i € {1,...,n} has the dynamics

(15a)
(15b)

vy = —Nj | Njv; — b; — Z(yi_yj) - Z(UiL_ij)

JEN; JEN;

> wh -l

JeN;

gi =y (Nivi = bi = (Nju; — by)) —
JEN;

where v =3 oy, (vk —v;) and yf =30y, (ye — y5)-
This algorithm is two-hop distributed, meaning that to execute
it, each agent i € {1,...,n} needs to know its state (v;; y;) and
the state of its two-hop neighbors. The next result characterizes
its convergence properties.

Proposition IV.2: (Exponential convergence of (15) to solu-
tion of linear system): The dynamics (15) converges to a solution
of (12) exponentially with a rate proportional to Ao (P'P).

Proof: Let w € null(P) and note

w'z = —w'P'(Pz—q) =0.

This means that the dynamics of z is orthogonal to null(P). Let
us decompose z(t) as z(t) = z(t) + 2z (t). Here, z(t) is the
component of z(¢) in null(P) and z, (¢) is the component or-
thogonal to it. From the aforementioned discussion, we have that
z|(t) = z(0) under the dynamics (15). Since this component
does not change, consider the particular solution z* of (12) that
satisfies z| = 2z (0). Note that z* defined in this way is unique.

Now, consider the Lyapunov function V5 : R27" — R
1 *\/ *
Vale) = L@ -2V (a- =)

The derivative of V5 along the dynamics (15) is given by

(16)

Ly Va(2) = (2 —2")'%
- (z—="VP'(Pz—q)
=—(z—-2z")YP'P(z —z") < —2x:(P'P)Va(z).

The last inequality follows from the fact that the evolution
of z is orthogonal to the nullspace of P. This proves that,
starting from z(0), the dynamics converges to the solution z*
of (12) exponentially fast with a rate determined by the minimum
nonzero eigenvalue of P'P.

Next, we examine the robustness to disturbances of the
dynamics (15). This is motivated by the observation that, in
practical scenarios, one may face errors in the execution due to
imperfect knowledge of the problem data, imperfect information
about the state of other agents, or other external disturbances.
Formally, we consider

z = ¢gra(2) +d(t) = —P'(Pz—q) +d(t) (17

where d(t) denotes the disturbance.

Proposition IV.3: (Robustness of (17) against disturbances):
The dynamics (17) is input-to-state stable (ISS) with respect to
the set of equilibria of (15).

Proof: The disturbance d(t) in (17) can be decomposed as
d(t) = d)(t) + d_(t). Due to the presence of d(t) € null(P),
the component of z(¢) in null(P) does not remain constant
any more. In fact, along (17), we have w'z = w’dH for all
w € null(P) and, therefore, we deduce that z (t) = d (t). Con-
sider then the equilibrium trajectory ¢ — z*(t), where z*(t) is
uniquely determined by the equations Pz*(f) = q and z(t) =
z|(t). Let V3 be the same function as in (16), but now with the
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time-varying z*(t). The derivative of V5 is given by
LgpytdVa = (2 —2") (2 — 27)

—(a— 2 (—P'(Pa—q) +d—d))

(z—2z")(-P'(Pz—q) +d,)

—)2(P'P)|z

IN

—2'|? + ||z — 2" [ld. |
—z|[[|l

IN

—a(P'P)||lz — 2| + |1z

Choose 6 € (0,
decomposed as

1). Then, the aforementioned inequality can be

LoyutrdVe < —ro(P'P)(1—0)|z — z"||

— 4o(P'P)f||z — 2°||* + ||z — z"|l|d].

Hence, Ly, +aV2< 22 (P'P)(1-0)||z—z"|? if ||z — z*|| >
%. From [31, Th. 4.19], this means that the system is
ISS with respect to the set of equilibria with gain ~(r) =
/(A2 (P'P)0).

Proposition I'V.3 implies that the trajectories of (17) asymptot-
ically converge to a neighborhood of the set of equilibria of (15)
(with the size of the neighborhood scaling up with the size of the
disturbance). All equilibria correspond to solutions of (10). The
results of this section show that the system (10) can be solved
in a distributed and robust way.

Remark 2: (Distributed algorithms for linear algebraic equa-
tions): Although we consider the linear algebraic equations (10)
here to perform the distributed computation of the gradient of
the penalty function, solving linear algebraic equations in a
distributed fashion is an interesting problem on its own, cf., [2],
[32], [33]. Different algorithmic solutions exist depending on
the assumptions about the information available to the individual
agents. Specifically, equations with the same structure as (10)
appear frequently [34] with applications to distributed sensor
fusion [35] and maximum-likelihood estimation [36]. Spanos
et al. [35] exploit the positive definiteness of the matrices and
Xiao et al. [36] use elementwise average consensus to find the
solutions of (10). Lu and Tang [34] also exploit the positive
definite property of the individual matrices and require the agents
to know the state as well as the matrices of the neighbors.
The algorithmic design procedure we employ here is similar
to the one used in [37], which leads to an algorithm that also
does not require the positive definiteness of the individual ma-
trices. Interestingly, the convergence analysis in [37] uses the
linearity of the dynamics and La Salle’s invariance principle to
conclude exponential stability, although it does not guarantee
that the agents converge to the same solution. By contrast, the
Lyapunov-based technical analysis presented here, based on
exploiting the orthogonality of the dynamics to the nullspace
of the reformulated system matrix, allows us to lower bound
the exponential convergence rate and formally characterize the
robustness properties of the algorithm against disturbances. Both
properties are key for the application later in Section VI to
distributed gradient computation via characterizing the stability
of the interconnected system. °

V. DISTRIBUTED COMPUTATION OF THE GRADIENT OF
PENALTY FUNCTION

We pursue next our strategy to solve the constrained optimiza-
tion problem (9) in a distributed fashion by using the gradient
dynamics of the continuously differentiable exact penalty func-
tion (7). In this section, we first identify the challenges associated
with the distributed computation of V € and then employ the
algorithmic tools and results of Section IV to address them.

The gradient of f€(x) with respect to x; is given by

me=mﬁm+Zme%m

) k(@) Vi hie(2) + > (@) Vi, i ()
k=1 k=1
+3 (05(2) +42(@) Vit @)
+ %Z )+ yj z)) Va,95()
j=1
2 P
+ 2 2 () (o). (18)

In this expression, and with the assumptions made in Section III,
if agent i knew (A(z), p(x)), then it could compute all the terms
locally except for

m p

pil@) =D (95 (@) 4y (@) Vo, () + D (@) Vo, i (@)

Jj=1 k=1

The rest of this section is devoted to show how to deal with these
two issues. First, we show how we can formulate and solve the
problem of calculating (A(z), pt(2)) in a distributed way. After
that, we show how agent 4 can calculate p;(z) with only local
information and communication.

A. Distributed Computation of Multiplier Functions

Given z € R", (A(z), pu(x)) are defined by the linear alge-
braic equation (4). Note that this equation can also be written
as

Vf(x). (19)

Mﬂrmy
Vh(z)

The next result proves that we can actually decompose the matrix
N () and the right-hand side of (19) as the summation of locally
computable matrices. This makes the equation have the same
structure as (10), and hence we can use the distributed algorithm
in Section IV to solve it.

Proposition V.1: (Equivalence between (10) and (19)): For
each x € R", calculating (A(x), u(z)) can be cast as solving a
linear algebraic equation of the form (10).
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Proof: For convenience, for each ¢ € {1,...,n}, we define

gi(z) = (gi1(x),...,8im(x)) € R™, where
% if 4 is involved in constraint g;
g () =4 " . (20)
0 otherwise

and n; is the total number of agents involved in con-
straint j € {1,...,m}. From this definition, we have that
S (diag(vei(z)))? = v* G*(x). Using this fact, we define
N;(x), foreachi € {1,...,n} as

Va,g(x)
Vi, h(z)

L | (diag(res ()))* 0
0 0

Ni(z)= |Vai9(@) Vi ()]

From the definition (3) of N (z), note that

N(z) :ZNi(x) (21)
i=1
The right-hand side of (19) could be decomposed as
Vh( i leh Vwifi( z)

Hence, (19) is equivalent to (10) with ¢ = m + p, completing
the proof.

From the definition of the matrices {N;}? ; in the proof
of Proposition V.1, one can deduce that, individually, these
matrices might not be positive definite in general. This highlights
the importance of the algorithm (15) to solve equations with
separable problem data when the coefficient matrices are not
necessarily positive definite. Combining Proposition V.1 with
the discussion of Section IV, we deduce that each agent can
compute (A(x), u(z)) in a distributed way.

B. Distributed Computation of the Gradient

Here, we describe how agent i € {1,...,n} can calcu-
late p;(z) locally, completing the distributed computation of
Vo, [(2).

Proposition V.2: (Local computation of p;(x)): For each
x € R™, agent i € {1,...,n} can calculate p;(z) locally via
communication with its two-hop neighbors.

Proof: In compact form, p;(x) can be written as

!
9(w) + Y (2)y (x) vmmm]

pi(x) = h(z)

Ve ()

This means that p;(x) is given by the ith column of [g(z) +
ye(z); h(z)]'[VA(z); V(z)']. From (5), this is equivalent to
saying that p;(z) is given by —o(z)'(r;(x); s;(x)), where
o(x) = N~Y(x)[g(x) + Y¢(z)y(x); h(x)] whose transpose is
[g(x) + Y¢(z)y(z); h(x)] N~1(z) (since N (x) is symmetric)
and (7;(x); s;(x)) denotes the ith column of [R(z); S(x)]. Based
on this, we divide the distributed computation of p;(x) in two
parts, which are as follows.

a) First, we show how all agents can compute o(x) using a
two-hop distributed algorithm.

b) Next, we show that each agent ¢ € {1,...,n} can calcu-
late r;(x) and s;(x) locally via communication with its
two-hop neighbors.

For (a), consider the following equation in p:

mm+y%@wuﬂ.

h(x)
We can decompose the right-hand side of the above equation as

yf(w)] s lgi<xi;2;§%<x>] (1)

i=1
where g; () is defined in (20), and y?(z) and h;(z) are defined
similarly. From (21) and (24), (23) has the structure described
in (10) and, hence, can be solved in a distributed manner by the
algorithm of Section IV.

Next, we look at the decomposition of [R(z); S(x)] for (b).
We describe here only the decomposition for R(z) (the decom-
position for S(z) is similar). From (6a), R(z) in expanded form
is

N(x)o(x) = (23)

g(x) +Y*(x)
h(z)

p
+ ZMkVQhk(l“)

k=1

Vo) | P2 5) + 3 i) V0 ()

+ Z e (Vf(@) + 1 Vg(x) + 1/ Vh(z))V?g;(x)

+292A(2)G(2)Vg(x)'

which clearly corresponds to a sum of matrices. Here, we
look at the first column of these matrices one by one and
show that r1(x) it can be calculated by agent 1 with infor-
mation from its two-hop neighbors (following the same rea-
soning justifies that each r;(z) can be calculated by agent
i €{1,...,n}). The first column of the first matrix is given by
Vg(z) Vile(x).To calculate it, in additionto V2 f1 (), agent
1 only needs to know the partial derivative of the constraints in
which it is involved (which are available to it by assumption,
cf., Section III). The first column corresponding to the next
two matrices is given by Vg(z)' (3272, (V3, ,.9;(2))A;(x) +
(V2 hy(x))pw(x)). For these, agent 1 only needs in-
formatlon about the partial first and second derivatives of
the constraints in which it is involved, in addition to the
values of the multiplier functions. The first column corre-
sponding to the next three matrices is 7", e/(V f(z)' +

MVg(z) + W/ Vh(z))VZ, gj(z). The calculation of the first
term is straightforward. Rewriting the second term as
Yo el Vg(x) V2, 9i(x) and knowing the structure of
Vg(x)'V2,, g;(z) from the discussion earlier, we can say that
it can be calculated by agent 1 (a similar observation applies
to the third term). Regarding the last matrix, the first column is
292 [A191 V2,915 - - - ; AmGm Ve, gm). Clearly, agent 1 only needs
to know the values and partial derivatives of the constraints in

which it is involved for calculating this, concluding the proof.
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Remark 3: (Scalability with the number of agents): In the
preliminary conference version [1] of this work, we had all
agents compute the Jacobian matrix of the multiplier functions
to calculate p;(x). Since the dimension of the Jacobian matrix
is (m 4+ p) X n, this approach was not scalable with the number
of agents. With the approach described here, instead, each agent
only needs to compute a vector of size (m -+ p) X 1, whichscales
independently with the number of agents n. °

Based on Propositions V.1 and V.2, for a given x € R", we
can compute asymptotically the values of A(x), u(z), and o(x),
and in turn, the gradient of the penalty function in a distributed
way. For its use later, we denote by Py () the corresponding
matrix defined as in (12), which now depends on x due to the
x-dependence of V; and b; (and hence IN and b) in (19) and (23).

Remark 4: (Robustness in the calculation of gradient): From
Proposition IV.3, the distributed calculation of the gradient of
the exact penalty function is robust to bounded disturbances
due to errors in the problem data (e.g., errors in the value of
the constraint functions or the gradients of the objective and
constraint functions), packet drops, or communication noise.
Furthermore, since the matrix N(z) = Y "" N;(z) is positive
definite (and hence invertible) from Proposition II.1, it follows
that all equilibria have the same unique variable v, whereas
the auxiliary ones y may take multiple values according to
Proposition IV.1. This means that, for a given x € R", the
primary variables {v; }?_; converge uniquely to A(z), u(z), and
o(x) under each of the algorithms described earlier. °

VI. DISTRIBUTED OPTIMIZATION VIA INTERCONNECTED
DyNAMICS

In this section, we finally put all the elements developed so
far together to propose a distributed algorithm to solve (9). The
basic idea is to implement the gradient dynamics of the exact
penalty function. However, the algorithmic solutions resulting
from Section V only asymptotically compute the gradient of the
exact penalty function at a given state. This state, in turn, changes
by the action of the gradient descent dynamics. The proposed
distributed algorithm is then the result of the interconnection of
these two complementary dynamics.

Formally, the gradient descent dynamics of f€, which serves
as reference for our algorithm design, takes the form

& ==V (). (25)
For convenience, define y :R"™ — R2™+P) by y(z)=
(A(z), u(x), o(x)) and rewrite (25) as & = Pgraa(z, X ()) for an
appropriate function 1),,q defined by examining the expression
in (18) fori € {1,...,n} (note that, given the assumptions on
the problem functions, for each z € R, the function 9gr,q is
locally Lipschitz in its argument , and from Proposition II.1 and
(23), x — x(z) is continuously differentiable). The variable x
corresponds to those terms appearing in the gradient that are not
immediately computable with local information. However, with
the distributed algorithms described in Section V, the network
agents can asymptotically compute () in a distributed fashion.
Let T € R*™*P) denote the augmented variable containing
the estimates of x(x) and the associated auxiliary variables,

available to the network agents via
T = ¢est(x ) T)

where tes (2, T) denotes the algorithms of the form (15) de-
scribed in Section V. Let x = P, T denote the projection of
T onto the x space, i.e., corresponding to the set of primary
variables. From Proposition IV.2, we note that, for fixedz € R",
X — x(z) exponentially fast. Hence, with the information avail-
able to the agents, instead of (25), the network implements

& = Pyraa (1, Py ). (26b)

Our proposed algorithm is the interconnected dynamical sys-
tem (26). When convenient, we refer to it as jere. Note that
this algorithm is two-hop distributed. Moreover, for each equi-
librium (2eq, Yeq), of (26), its z-component x4 is an equilibrium
of (25) (which is also a KKT point of problem (9) if EMFCQ is
satisfied, cf., Proposition I1.2). We characterize the convergence
properties of the algorithm (26) next.

Theorem VI.1: (Asymptotic convergence of distributed algo-
rithm to solution of optimization problem): Assume LICQ is
satisfied at each @ € D. For each z, let L, (x) be the Lipschitz
constant of x — ©grad(2, x). Then, the equilibria of the inter-
connected dynamics (26) are asymptotically stable if there exists
a > 0 such that

(26a)

max [la (x)
z€D Ao (Pest(-ﬁ)/Pest(m))

where 10 () = 75 (0L (#) + | Vax (@) [)? + Ly () Vax ()]

Proof: We start by noting that (27) is well defined since, from
the definitions of R(x) and S(x) in (6) and the expression of
the gradient in (18), we deduce that Lx(x) is continuous in z,
and, moreover, since D is compact, L,, and ||V, x|| are bounded
over D. Consider now the Lyapunov function candidate for the
interconnected system as

Ve(z, 1) = af(z) + Va(z,T)

<1

27)

(28)

where V5 is defined as in (16), but due to the dependence of z* on
x from (19) and (23), is now a function of z too. The derivative
of V along the dynamics (26) is

Lijr Ve, T)
= (aVf(@) + Vi V2) Yeraa (@, Py T) + Vr Vatbea (@, T)
< —(aVfi(z) + Vax(X — x(2))) (Vf<(2)
— Perad (2, X) + Ygraa (@, X(2))) = A2 (@)X — x(2)|”

where we have added and subtracted V f(2) = Ygra(, X())
t0 Ygraa(z, Py Y) and used the shorthand notation Ag(z) =
A2 (Pl (2)Pes(2)). Hence, we have

est
!/
melerc‘/‘:('x? T) S - HVf (x)|||] A €

X —x(x) X — x ()|

IV f<(2)] ]

with

a ~3(aLy(z) + ||vzx||>1 ,

A= l—émLX(x) FIVaxl)  Rale) = Ly(@)||Vax])
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Next, we examine the positive-definiteness nature of the 2 x 2-
matrix A(x). Since & > 0, note that A(z) > 0if the determinant
is positive. For = € D, the latter holds if and only if « is such
that

N () /22(x) < 1.

Hence, under (27), this inequality holds over D, and conse-
quently Ly, . Ve(z,T) < 0 over D x R4 (m+p),

The condition (27) in Theorem VI.1 can be interpreted as
requiring the estimation dynamics (26a) to be fast enough to en-
sure the error in the gradient computation remains manageable,
resulting in the convergence of the interconnected system. In
general, however, (27) might not be satisfied. To address this,
and inspired by this interpretation, we propose to execute the
estimation dynamics on a tunable timescale, substituting (26a)
by

7Y = eq(, T). (29)

Here, 7 > 0 is a design parameter capturing the timescale at
which the estimation dynamics is now executed. Resorting to
singular perturbation theory, cf., [31], [38], one could show that
x(t) = Tgraa(t) as 7 — 0, where z4r0q denotes the trajectory of
the gradient descent dynamics (25). However, for the proposed
approach to be practical, it is desirable to have a strictly positive
value of the timescale below which convergence is guaranteed.
The following result shows that such critical value exists.

Proposition VI.2: (Asymptotic convergence of distributed al-
gorithm via accelerated estimation dynamics): Assume LICQ
is satisfied at each = € D and let

)\min (PéstPest)

! = >0
2Ly [V x|

Ty =
where Amin (Pl Pest) denotes the minimum of Ao (Pl (2)Peg
(z)),and L, and ||V, Y| denote the maximumof L, and ||V, x|
respectively, over D. Then, for any 7 € [0, 7..), the equilibria of
the interconnected dynamics (26b) and (29) are asymptotically
stable.

Proof: Let o> 0 and consider the Lyapunov function
candidate (28). Define

a —3(aLy(z) + [[Vax|)
—5(aLy(@) +[IVaxl)) 7 t22(2) — Ly(@)[ Vaxl)

Following the same line of argument as in the proof of
Theorem VI.1, we arrive at

IVfe (@)l
X = x@)

A (z)=

/

L Ve(®,T) < = l A, (z)

IV f<(2)] ]

X = x (@)

and the condition 7 < Ao (z)/nq () to ensure Ly, . Vo(z, T) <
0. Using the bounds for L, and ||V;x]|, we upper bound 7,
over D as
_ 1, - _ = _
Na(2) < fla = @(O‘Lx + ||VIX||)2 + Ly [[VaX]|-
Consequently, it is enough to have 7 < Ao (x) /7, forall z € D.
To establish the maximum admissible value of 7, we can select

the value of o minimizing 7),. Since 7, is strictly convex in
« € [0, 00), this is given by the solution of

d (1, - o
T (enr17aa?) o

After some algebraic manipulations, one can verify that a* =
V2 X||/Ly- Substituting this value in the expression of 7, and
taking the minimum over all x € D yields the definition of 7..

Note that the conditions identified in Theorem VI.1 and
Proposition VI.2 to ensure convergence are based on upper
bounding the terms appearing in the Lie derivative of the Lya-
punov function candidate using two-norms and, as such, are
conservative in general. In fact, the algorithm may converge
even if these conditions are not satisfied, something that we
have observed in simulation.

Remark 5: (Constraint satisfaction with the distributed dy-
namics): The centralized gradient descent on which we build
our approach enjoys the constraint satisfaction properties stated
in Proposition II.3. This means, using a singular perturbation ar-
gument [31], [38], that the distributed gradient descent approach
proposed here has the same guarantees as 7 — 0. Although
for a fixed 7 > 0, we do not have a formal guarantee that
the state remains feasible, we have observed this to be the
case in simulations, even under general constraints. We believe
this is due to the error-correcting terms in the original penalty
function, which penalize deviations from the feasible set. This
anytime nature is especially important in applications where the
optimization problem is not stand alone and its solution serves
as an input to other layer in the control design (for example, as
a power/thermal set point, cf., [39], [40]), where the algorithm
should yield a feasible solution if terminated in finite time. e

VII. SIMULATIONS

Here, we illustrate the effectiveness of the proposed dis-
tributed dynamics (26). Our optimization problem is inspired
by Kelly er al. [24]: we consider 50 agents connected in a circle
forming a ring topology and seeking to solve

na 2 filed)
' st. Az <C

Here, f;(x;) = ilogx; fori € {1,...,50}. The sparse matrix
A € R?3%%0 ig such that each of the 23 constraints it defines
involves a different corresponding agent and its one-hop neigh-
bors. We take D = {z € R" | 10! < ||z|l» < 10}. Through-
out the simulations, we consider the exact penalty function (7)
with € = 1072 and v = 1. Since the dynamics are in continuous
time, we use a first-order Euler discretization for the MATLAB
implementation with stepsize 1073. We compare the perfor-
mance of the proposed distributed algorithm with values 7 = 1
and 7 = 107!, respectively, against the centralized gradient
descent (25), the saddle-point dynamics [27] of the Lagrangian,
and the centralized and the distributed Nesterov’s accelerated
gradient method [28] of the penalty function. To implement the
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Fig. 1. Evolution of the objective function value under the proposed
distributed dynamics with = = 10~! and 1, respectively, the centralized
gradient descent, the centralized and the distributed (using the proposed
approach with 7 = 1) Nesterov’s accelerated gradient method of the
penalty function, and the saddle-point dynamics of the Lagrangian.

latter, we use 7 = 1 and replace (26b) with Nesterov’s accelera-
tion step. We use the same initial condition for all the algorithms.
Fig. 1 shows the evolution of the objective function under
each algorithm. One can observe that the proposed distributed
algorithm performs much better than the saddle-point dynamics.
Asexpected, centralized Nesterov’s accelerated gradient method
performs the best, followed by the distributed Nesterov method
obtained by applying the acceleration to our proposed distributed
algorithm. The output of the distributed algorithm for both values
of 7 is also close to that of the centralized gradient descent.
Fig. 2 show the evolution of the value of Ax — C for the
proposed distributed algorithm with 7 = 1 and the saddle-point
dynamics. Even though Proposition II.3 states that, for the
centralized gradient descent counterpart, there is no guaran-
tee of staying inside the feasible set for general constraints,
Fig. 2 shows that the distributed algorithm satisfies the con-
straints much better during the evolution than the saddle-point
dynamics.

In the next simulation, we illustrate the robustness of
the proposed dynamics. For this, we add a disturbance
to the dynamics (26) using random vectors at each it-
eration as follows. For (26a), we add d = f|lu(z,T)| x
(unit-norm random vector), where we use the MATLAB
function rand to generate random numbers between O
and 1. Similarly, for (26b), we add d = B|jw(z, P, )| x
(unit-norm random vector). For the scaling constant 3, which
also equals the ratio of the norm of the total disturbance to the
norm of the unperturbed dynamics, we use gradually increasing
values between 0.1 to 0.5. For each value of 3, we plot the
evolution of the objective function with 7 = 1 in Fig. 3. The plot
shows the graceful degradation of the performance as the ratio
of the norm of disturbance to the norm of unperturbed dynam-
ics increases, demonstrating the effectiveness of the proposed
dynamics against disturbances.
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Fig. 2. Evolution of the constraints under (a) the proposed distributed

dynamics with = = 1 and (b) the saddle-point dynamics.
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Fig. 3. Evolution of the objective function value under the proposed
distributed dynamics with 7 =1 in the presence of disturbances. The
amount of disturbance in percentage denotes the ratio of the norm of
the disturbance to the norm of the unperturbed dynamics.
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VIIl. CONCLUSION

We have considered the problem of distributed optimization
of a separable function under locally coupled constraints by a
group of agents. Our approach relies on the reformulation of
the optimization problem via a continuously differentiable exact
penalty function. To enable the distributed computation of the
gradient of this function, we have developed a distributed algo-
rithm, of independent interest, to solve linear algebraic equations
defined by separable data. This algorithm has exponential rate
of convergence, is ISS, and does not require the individual agent
matrices to be invertible. Building on this, we have introduced
dynamics to asymptotically compute the gradient of the penalty
function in a distributed fashion. Our algorithmic solution for
optimization consists of implementing gradient descent and
Nesterov’s accelerated method with the running estimates pro-
vided by this dynamics. We have shown the effectiveness of the
proposed algorithm in simulation and compared its performance
against a variety of other methods. Future work will explore
the design of distributed algorithms for finding the least-square
solutions of linear equations defined by separable problem data
that only rely on one-hop communication, distributed ways to
determine the timescale of the estimation dynamics necessary
to guarantee convergence, the characterization of the rate of
convergence of the accelerated implementation, the study of con-
straint satisfaction along the executions, and the extension of our
approach to problems involving global, nonsparse constraints.

APPENDIX
Proof of Proposition 11.3.

To prove the result, we examine the Lie derivative of the con-
straint functions along the dynamics. We consider the different
cases below.

(Equality constraints): Given the constraint function h, con-
sider the Lie derivative over the set F

Losvyeh(a) = ~Vh(o) ((V£(2) + Vhla)uta)

+Vu(z)h(x) + th(x)h(x))
= —Vh(z) (Vf(z) + Vh(z)u(2))

where we have used the fact that h(z) = 0 for 2 € F. Substi-
tuting the value of u(x) from (4)

L_ygeh(z) = =Vh(z) (Vf(z)
— Vh(z)N(z) " *Vh(z)Vf(z)) = 0.

This means that the constraint function remains constant along
the gradient dynamics over F. Hence, x(t) € F for all t > ¢,
regardless of the value of e.

(Scalar inequality constraint): With only one inequality con-
straint defined by a scalar-valued function g, we have x € F iff
g(z) < 0. To determine the invariance of the feasibility set, we
only need to look at points where g(x) = 0. In this case, the Lie

derivative is

2

Losyegla) = ~Vala) (Vala) + 200(0) ) o” 0)

where we have already used the fact that g(«) = 0 and the defini-
tion of A gx) from (4). Due to LICQ assumption, Vg(x)' Vg(x) >
0,andy* (x) > 0. Since VA is continuous, it is bounded over the
compact set D. Hence, there exists € such that for all € € (0, €],
L_yeg(xz) <0 for all z such that g(z) = 0. This means that
x(t) e F forall t > tg.

(General constraints): Here, we provide a counterexample
for the case with multiple inequality constraints (a similar one
can be constructed for the case of both equality and inequality
constraints). Consider now a vector-valued function g. The

expression of the Lie derivative evaluated at z such that g(x) = 0
is

Lovgeg = ~Vate) (Valo) + 290(a) ) Y0l (o)

The LICQ assumption implies that Vg(x)'Vg(z) is positive
definite. However, in general, this is not sufficient to ensure
that the trajectory of the gradient dynamics starting from x will
remain in F. To see this, consider the following example:

mlén (1 — 1)% + (23 +1)2

s.t. 11 —6x9 <0

7I1+I2§0.

Take z = (0;0), where g(«) = 0. After some calculations, it can
be verified that A(x) = (0; —2) and Y(2)y“(z) = (0;¢). As
aresult, Vg(z)'Vg(x)Y(z)y“(x) = (—7¢;2¢) and L_y g =
(14; 2e — 4). The first component of L _y - g is independent of e.
This means that no matter what value of € we choose, L_y g g
0 when g(z) = 0. Hence, the feasible set is not invariant.
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