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The self-lensing of a massive black hole binary (MBHB), which occurs when the two BHs are aligned
close to the line of sight, is expected to produce periodic, short-duration flares. Here we study the shapes of
self-lensing flares (SLFs) via general-relativistic ray tracing in a superimposed binary BH metric, in which
the emission is generated by geometrically thin accretion flows around each component. The suite of
models covers eccentric binary orbits, black hole spins, unequal mass binaries, and different emission
model geometries. We explore the above parameter space and report how the light curves change as a
function of, e.g., binary separation, inclination, and eccentricity. We also compare our light curves to those
in the microlensing approximation, and show how strong deflections, as well as time-delay effects, change
the size and shape of the SLF. If gravitational waves (GWs) from the inspiraling MBHB are observed by
LISA, SLFs can help securely identify the source and localizing it on the sky, and to constrain the graviton
mass by comparing the phasing of the SLFs and the GWs. Additionally, when these systems are viewed
edge-on the SLF shows a distinct dip that can be directly correlated with the BH shadow size. This opens a
new way to measure BH shadow sizes in systems that are unresolvable by current VLBI facilities.
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I. INTRODUCTION

Massive black hole binaries (MBHB) are thought to
reside in the nuclei of numerous galaxies as a result of
galaxy mergers [1]. As their orbits shrink, they will
eventually merge due to gravitational wave radiation.
MBHBs are also the primary candidates to be observed
by LISA [2], and are targeted by searches for gravitational
waves (GWs) via pulsar timing arrays (PTAs; [3]). MBHBs
are expected to be surrounded by a gaseous circumbinary
disk, from which material is accreted towards both black
holes (BHs), forming a so-called minidisk around each
component. In many cases, the accretion rates are expected
to be close to the Eddington limit, and the minidisks are
then best described by geometrically thin and optically
thick accretion flows. Electromagnetic emission from these
systems should be detectable starting well before the
merger and should persist all the way to the merger [4,5].
Observational evidence for compact MBHBs was, how-

ever, until recently sparse (see, e.g., Ref. [6,7] for com-
prehensive recent reviews). The first detected candidates
are large-separation binaries of several kpc [8,9]. More
recently, with large optical time-domain surveys, several

active galactic nuclei (AGN) have been identified that show
quasiperiodic behavior in their light curves [10–14].
This periodicity can be attributed either to perio-

dic hydrodynamical modulations of the accretion flow
[15–19], or to relativistic Doppler effects [20,21]. One
Kepler source KIC-11606854 [21], also known as Spikey,
shows, in addition, a short duration flare, lasting for a time
scale of an hour. This short duration makes an accretion-
induced flare scenario unlikely, since the viscous and the
orbital timescales in the disk regions believed to be
responsible for optical emission are both too long com-
pared to the flaring time. An alternative mechanism for
these flares is self lensing of the MBHB [21–23].
Assuming the BHs orbit on elliptical Keplerian orbits,

self-lensing can occur when the binary is viewed close to
edge-on. For a distant observer, one of the minidisks is
lensed by the other BH twice per orbit. Lensing occurs
when the two BHs are aligned with respect to the line of
sight, such that the source is within the Einstein angle of the
lens. The Einstein angle for a point-mass lens is given by
(e.g., Ref. [24])

θE ¼ rE=D ¼
ffiffiffiffiffiffiffiffiffiffiffi
4GM
Dc2

r
; ð1Þ
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where rE is the Einstein radius, G is Newton’s constant, M
is the mass of the lens, D−1 ≡D−1

L −D−1
S , DL and DS are

the distances to the lens and the source, respectively, and c
is the speed of light.
Previous work has raised the possibility of such self-

lensing, using simple models [21,22,25–27]. In these
studies, lensing was approximated in the limit of micro-
lensing, meaning that the lens and the source are both taken
to be pointlike, and the deflections angles are assumed to be
small [28]. These simple models demonstrated that self-
lensing, together with the Doppler modulation from the
orbital motion, can produce the observed sinusoidal trends
in the light curves, as well as produce recurring lensing
flares for nearly edge-on binaries. However, they did not
consider the effects of finite light travel time and photon
trajectories in strongly relativistic spacetimes. Additionally,
[27,21] both assume the emission from each component to
be pointlike.
Reference [22] presented, in addition, the first exhaus-

tive study, including the dependence of the flare shapes on
source morphology by including a finite-sized disk emission
model. The minidisks were assumed to extend from the
innermost stable circular orbit (ISCO) to the tidal truncation
radius. On the other hand, these models still utilized the
microlensing approximation, for each disk patch.
The strong bending of photon trajectories in the strongly

relativistic regions can introduce new effects in two ways.
First, in the “source”, the lensing of the minidisk emis-
sion by its own central BH warps the emission region
around it, enlarging its apparent size on the sky and
strongly distorting its shape. Second, for sufficiently
compact binaries, rays passing near the other BH (i.e.,
the “lens”) can suffer further large deflections.
To our knowledge, the first mentions of MBHB self-

lensing modeled with general-relativistic ray tracing
(GRRT) was made by [29], who computed the emission
from thin Novikov-Thorne disks in curved spacetimes.
They modeled a binary with a mass ratio of q ¼ 0.01 and
showed a single light curve. See also related works by [30]
who ray traced numerical binary metrics with a far away
artificial screen, on ray tracing general relativistic mag-
netohydrodynamics (GRMHD) MBHB simulations by
[31,32], on emission from binary neutron stars [33,26]
on lensing by stellar transits around a supermassive BH.
More recently, [23] studied lensing flares by ray-tracing the
image of the disk around the background BH that is lensed
by the other (foreground) BH. This method allowed them to
compute light curves that include strong lensing distortions
of the source morphology. This work, however, does not
use a binary metric, only considers circular equal mass
binaries, and does not include Doppler modulations due to
orbital motion.
In this work, we expand on these recent studies by

including the above, previously neglected, effects, and by
exploring how the light curves of self-lensing binaries

depend on numerous model parameters. In Sec. II, we
construct an approximate superposed Cartesian binary
metric, explain our adaptive general-relativistic ray-tracing
code, and describe our semianalytical emission models. In
Sec. III, we report the results of our parameter exploration,
which are further discussed in Sec. IV. Finally in Sec. V, we
summarize our main findings and the implications of
this work.

II. METHODS

In this section, we introduce our approximate superposed
binary metric and the Kepler orbits used for the binary,
explain our adaptive general-relativistic ray-tracing code,
and finally describe our emission models and introduce our
model parameters.

A. Metric

For constructing an approximate binary metric, we use a
superposition of two Cartesian Kerr-Schild metrics [34], this
approach is similar toRefs. [29,35].Our covariant superposed
metric, gμν, in geometric units G ¼ M ¼ c ¼ 1, is given by

gμν ¼ ημν þ hpμν þ hsμν; ð2Þ

where (p=s) superscripts indicate the primary or secondary
BH, and q is the mass ratio q≡Ms=Mp ≤ 1. The metric is a
superposition of the Minkowski metric ημν defined as ημν ¼
ð−1; 1; 1; 1Þ, and two source terms hp=sμν ¼ fp=slp=sμ lp=sν for
the BHs, where f is a scaling factor, and lν is a Killing vector.
The source terms are shiftedwith respect to the original spatial
coordinates  x via  xp=s ¼  x −  xbhwith  xbhp=s the positionvector
of the BH. The factor f and Killing vector lν are given by

f ¼ 2r3

r4 þ a2z2
; ð3Þ

lν ¼

0
BBBBB@

1
rxþay
r2þa2

ry−ax
r2þa2

z
r

1
CCCCCA
; ð4Þ

where r is the radial coordinate, equivalent to the radius in
spherical Kerr-Schild coordinates, given by

r2¼
R2 − a2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2 − a2Þ2 þ 4a2z2

p
2

; ð5Þ

R2 ¼ x2 þ y2 þ z2: ð6Þ

All termsf and lν are either using thevariables for the primary
or secondary BH. The contravariant metric is similarly
defined as
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gμν ¼ ημν − hμν;p − hμν;s; ð7Þ

with hμν;p=s ¼ fp=slμ;p=slν;p=s. Here lν;p=s is identical to lp=sν

except that the temporal component changes sign.
The choice for a superposed metric violates the non-

linearity of the Einstein equation. However, [36] showed that
a superposed metric in post-Newtonian (PN) harmonic
coordinates recovers the behavior of more extensive PN
approximate metrics. In this work, we only consider rela-
tively wide binaries, i.e., with separation dmuch larger than
Rg and vγ < 1, where Rg ¼ GM

c2 is the gravitational radius, v

the orbital velocity, and γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
the Lorentz factor.

In this limit [36] showed that the addition of “fake” mass
(Fig. 7 in their work), e.g., the mass not accounted for in the
stress-energy tensor of the Einstein equations given the
metric we use, is small. [36] computed for their superposed
metric that for a 40Rg binary the “fake” mass would be of
the order of 10−7 M⊙. The leading order correction for our
metric would be the tidal deformation, which scales with
the binary separation a as 1=a3. In this work we limit
ourselves to the smallest separation of 100Rg, resulting in
an order 10−6 effect.
The benefit of a superposed metric is that it is computa-

tionally cheap, and therefore ideal for performing our
parameter study as long as the binaries have large sepa-
rations, where, e.g., tidal deformations and gravitational
radiation remain small corrections. In our case, we will
limit ourselves to large separations of at least 100Rg which
also ensures that the orbital velocity remains at most mildly
relativistic.

B. Keplerian orbits

Our assumed superposed metrics take the BH positions
as an input. We assume the BHs to be on Keplerian orbits
with eccentricity e. To find the position of the BHs given a
separation aper at periapsis, total binary massM, mass ratio
q, eccentricity e, and time t, we solve the Kepler equations
in the center-of-mass frame following [37]. We initially
orient coordinate axes such that the orbital angular momen-
tum vector of the binary is aligned along the z-axis, which
is further assumed to be parallel to the individual BH spin
axes (although we will relax the latter assumption below by
rotations of the BH spin axis and the orbital axis). In more
detail, to find the positions of the BHs as a function of time,
we use the following steps:
(1) Given the periapsis distance, find the semimajor

axis amajor ¼ aper=ð1 − eÞ and compute the orbital

period T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π2a3major=ð1þ qÞ

q
.

(2) Given the period T and the input time t, define the
phase n ¼ 2πt=T.

(3) Solve Kepler’s equation, nðt − t0Þ ¼ E − e cosE for
the eccentric anomaly E, using a Newton-Raphson
algorithm (here t0 sets the pericenter passage time).

(4) Given E, find the radial distance r ¼ amajor×
ð1 − e cosEÞ.

(5) Given r, find the phase angle f ¼ t
ffiffiffiffiffiffiffiffiffiffiffi
1þ q

p
=r3=2

(for e ¼ 0) or f ¼ cos−1½ðamajorð1 − e2Þ=r − 1Þ=e�
(for e ≠ 0).

The position vector is then given by

 X ¼

0
B@

X

Y

Z

1
CA ¼

0
B@

r cos f

r sin f

0

1
CA: ð8Þ

Finally, we introduce a rotation of the binary around the
z-axis by a node angle Ω and around the y axis by the
inclination angle I. The rotation around the y axis keeps
the BH spin axes fixed in the z direction. The angular
momentum vectors of both minidisks are also kept aligned
with BH spin axes and are in this case misaligned with the
binary orbit. The inclination angle of the observer is defined
with respect to the angular momentum vector of the binary,
with the observer located in the x-z plane, as illustrated in
Fig. 1. This results in the following rotated position vector:

 X ¼

0
B@

r cosðf þΩÞ cos I
r sinðf þΩÞ

r cosðf þ ΩÞ sin I

1
CA: ð9Þ

FIG. 1. Illustration of the model setup. The binary’s center of
mass is at the origin, and the observer is located in the x-z plane.
The binary’s orbital plane is tilted with respect to the observer’s
line of sight by the angle iorbit. The BH spin axes and the orbital
angular momentum vectors of the minidisks are kept parallel to
the z-axis and are misaligned with the binary’s orbital plane by
the angle I. The node angle Ω specifies the orientation of the
semimajor axis of the elliptical binary orbit within the orbital
plane; rotating the binary while keeping the observer’s position
fixed will change the moment during the orbit when the two BHs
are aligned with the line of sight.
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The positions of the individual BHs are then given by
 xp ¼ 1

1þq
 X and  xs ¼ − q

1þq
 X.

The velocity of the binary is computed by taking the time
derivate of the position vector and is given by

 V ¼

0
B@

ð_r cosðf þΩÞ − r _f sinðf þ ΩÞÞ cos I
_r sinðf þ ΩÞ þ r _f cosðf þ ΩÞÞ

ð_r cosðf þ ΩÞ − r _f sinðf þΩÞÞ sin I

1
CA; ð10Þ

where

_r ¼ 2π
amajore sin f

T
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p ð11Þ

r _f ¼ 2π
amajorð1þ e cos fÞ

T
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p : ð12Þ

The BH velocity vector is then given by  vp ¼ 1
1þq

 V and

 vs ¼ − q
1þq

 V. These velocities are used to compute
the Doppler shift of the observed frequency via νobs ¼
νemitted=ðγð1 − vkÞÞ, where γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
is the Lorentz

factor, and vk the velocity parallel to the line of sight.

C. Adaptive general-relativistic ray tracing

To generate synthetic images and light curves, we
adapted the general-relativistic ray tracing (GRRT) code
RAPTOR [38,39]. The code integrates the geodesic equation
and simultaneously solves the radiation transport equation
for multiple frequencies. The geodesic equation is given by

d2xα

dλ2
¼ −Γα

μν
dxμ

dλ
dxν

dλ
; ð13Þ

with λ is the affine parameter and Γα
μν the connection

coefficients given by

Γα
μν ¼

1

2
gαρ½∂μgνρ þ ∂νgμρ − ∂ρgμν�: ð14Þ

The connection coefficients depend on the derivates of the
metric. These derivates are numerically computed by the
code using a first-order finite difference method.
Light rays are initialized as geodesics attached to a pixel

on a virtual camera held by the observer. We use a covariant
tetrad camera described in [40], positioned far away from
the center of mass, dcam ¼ 104. As the code integrates the
geodesic equation, it simultaneously solves the radiative
transfer equation backward in time, which is given by

dIν
ν3dλ

¼ jν expð−τνÞ: ð15Þ

Here jν is the local specific emissivity coefficient and τν
is the optical depth, defined as τν ¼

R λcurrent
0 νανdλ. The

integral goes from the “camera” to the current point of
integration, and αν is the specific absorption coefficient
which depends on the emission model (described in the
following section). During the integration of a geodesic, we
keep track of the coordinate time and change the positions
of the BHs correspondingly. This introduces a retarded time
in our models, often referred to as “slow-light” in the ray-
tracing literature. This is in contrast to “fast light”, where all
dynamical processes are ignored, i.e., the metric as well as
the plasma is assumed static during the ray-tracing (effec-
tively corresponding to an infinite speed of light).
Since the binaries studied in this work have large

separations and high resolution is needed only close to
the BHs or to the Einstein ring, using a purely uniform
resolution camera is computationally inefficient since most
of the field of view is empty. To this end, we speed up our
code by implementing a quadtree adaptive mesh refinement
scheme on the camera plane, enabling the code to add
resolution during run time only in the regions of interest. Our
method differs from the approach by [41], who introduced
adaptive gridding by using recursive subdivision of the
image plane which is not block based. Our method is closer
to adaptive mesh refinement strategies as used in GRMHD,
e.g., [42]. The code initializes a uniform camera grid at
relatively low resolution, consisting ofN1 ×M1 blocks with
n ×m pixels. Given a predefined field of view (fov) of the
total image fovx by fovy, each block has a fov of block
fovx ¼ fovx=N1 and block fovy ¼ fovy=M1, with pixel
separation of dx ¼ block fovx=n and dy ¼ block fovy=m.
Each block has a unique set of indices i, j fromwhichwe can
compute the coordinates of the lower-left corner

lcornerxðiÞ ¼ −fovx=2þ i × block fovx ð16Þ

lcorneryðjÞ ¼ −fovy=2þ j × block fovy; ð17Þ

and assign an initial set of impact parameters α, β for the
pixel given a set of indices k, l,

α ¼ lcornerxðiÞ þ ðkþ 0.5Þdx ð18Þ

β ¼ lcorneryðjÞ þ ðlþ 0.5Þdy: ð19Þ

Every block is then ray-traced by the code, and the total
intensity of each pixel is computed. The code then com-
putes the sum sij of the relative differences for every pixel
with index ðk; lÞ in a block and their four direct neighbors
(excluding diagonals) via skl ¼

P
mn jIkl − Imnj=Ikl, and

when the maximum of this sum in a block exceeds a user-
defined threshold sth, refinement is triggered for the whole
block. For sth we use a value of 0.2, corresponding with an
increase of more than 20 percent between adjacent pixels.
When refinement is triggered, the block splits in two in both
directions, the level is incremented by one, and new indices
for the new blocks are computed via
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i ¼ 2iparent þ kchild mod 2 ð20Þ

j ¼ 2jparent þ kchild=2; ð21Þ

where kchild is an index that runs from zero to four and iparent
and jparent are the original ði; jÞ indices of the parent block.
The coordinates of the lower-left corners of the new blocks
are computed via

lcornerxðiÞ ¼ −fovx=2.þ i × block fovx=2level−1 ð22Þ

lcorneryðjÞ ¼ −fovy=2.þ j × block fovy=2level−1; ð23Þ

where level is the current resolution level, from which the
impact parameters can be computed from Eq. (19).
For each pixel in the block, the code then recomputes the

emission at the new resolution level. This procedure repeats
every time the refinement criterion is met or until the level
of refinement of a block reaches a user-defined maximum.
A high-resolution example of an adaptive image is

shown in Fig. 2, where white lines indicate blocks. The
speedup obtained by this method depends on the image
morphology. If an Einstein ring is present, the emission
region is enlarged, and more high resolution blocks are
triggered. In this case, the speedup is approximately a
factor three compared to a uniformly sampled image with
the smallest pixel size used in the adaptive case, while in
the absence of an Einstein ring, the speedup is approx-
imately a factor ten.

Additionally, we can predict the location of the BHs on
the image by solving Kepler’s equation for the expected
arrival time of the light ray at the BH. The code then only
computes the blocks that are close to the predicted
positions. This results in an additional factor of four
speedup for our widest binaries (amajor ¼ 1000Rg).

D. Emission model

To describe the emission from the plasma around each
BH component, we adopt multicolor “minidisks”, generat-
ing radiation by an optically thick and geometrically thin
accretion flow. The disk resides in the plane perpendicular
to the BH spin axis, meaning that the disk’s angular
momentum vector is parallel to the BH’s spin axis. In
what follows, the two BH spin axes will be assumed to be
aligned with respect to one another. This choice is not
strongly physically motivated, but was made to limit
the number of models presented in this work. In reality
misalignment between the secondary and primary can be
expected [see e.g., Refs. [43,44]]. The minidisk extend
from an inner radius Rinner up to the tidal radius. The inner
radius is either at the event horizon, Rh ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
or

at the ISCO, given by

RISCO ¼ 3þ Z2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3 − Z1Þð3þ Z1 þ 2Z2Þ

p
; ð24Þ

Z1 ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

3
p

ð ffiffiffiffiffiffiffiffiffiffiffi
1þ a3

p þ
ffiffiffiffiffiffiffiffiffiffiffi
1 − a3

p
Þ; ð25Þ

Z2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2 þ Z2

1

q
; ð26Þ

where a is the dimensionless spin parameter of the BH. The
tidal truncation radius of a minidisk is given approximately
by [45]

Rtidal;p ¼ 0.27q−0.3amajorð1 − eÞ; ð27Þ

Rtidal;s ¼ 0.27q0.3amajorð1 − eÞ: ð28Þ

When a geodesic crosses the disk, the intensity is com-
puted from a black body spectrum. The temperature of the
black-body spectrum is set via T ¼ T0M−0.25

6 r−3=45 ×ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Rh=R

p
. Here T0 is a normalization factor, which

we set to T0 ¼ 3 × 107K, such that the peak of our spectra
in the plasma frame is similar to the spectra found by [4,5].
These studies of the spectral shape in hydrosimulations
included shock-heating of the minidisk and found it to
dominate over viscous heating. The BH mass (either
primary or secondary) is specified in terms of M6 ¼
MBH=ð106 M⊙Þ and the radius by r5 ¼ r=ð5rgÞ, and the
dependence on radius and mass follows a typical thin disk
temperature profile [46]. For illustration, black-body spec-
tra in the local frame of the disk at a series of radii are
shown in Fig. 3.

FIG. 2. Example of a ray-traced image in one of our models,
illustrating the adaptive grid of the camera pixelization. White
lines indicate blocks of equal resolution, each containing
252 pixels. Higher resolution blocks are triggered only when a
block overlaps with the source.
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The velocity profile is assumed either to be circular or
additionally includes a radial free-fall velocity component.
The latter is used in the variants of our model, discussed
below, in which we set the inner radius to be smaller than
the ISCO. Purely circular Kepler orbits inside the ISCO are
nonphysical and hence the accretion flow in the inner
regions will have significant radial velocities. The spatial
component of the four-velocity is given, in Boyer-Lindquist
coordinates, by

ur ¼
�
0; if Rinner ¼ RISCO

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rða2 þ r2Þ

p
Δ=Σ; otherwise

ð29Þ

uθ ¼ 0; ð30Þ
uϕ ¼ utω; ð31Þ

where Σ ¼ ðr2 þ a2Þ2 − a2Δ sinðθÞ2, Δ ¼ r2 þ a2 − 2r,
and ω ¼ 1=ðr3=2 þ a1=2Þ is the angular velocity, where a
is the BH spin. The time component of the four-velocity is
then computed in such a way that it ensures the right
normalization uμuμ ¼ −1 of the four-velocity, via

ut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−1 − ururgrrÞ=Ψ

p
; ð32Þ

Ψ ¼ gtt þ 2ωtotgtϕ þ ω2
totgϕϕ: ð33Þ

Here the metric components are in Boyer-Lindquist coor-
dinates and are given by

gtt ¼ −
�
1 −

2r
ρ

�
ð34Þ

grr ¼ Σ=Δ ð35Þ

gtϕ ¼ −
2ar sin2 θ

ρ
ð36Þ

gϕϕ ¼
�
r2 þ a2 þ 2a2r sin2 θ

ρ

�
sin2 θ ð37Þ

ρ ¼ r2 þ a2 cos2 θ: ð38Þ

The four-velocity in Boyer-Lindquist coordinates is then
transformed to Cartesian Kerr-Schild coordinates.

E. Model parameters

In total we performed a suite of 28 simulations. The
full list ofmodel parameters thatwewill vary can be grouped
in three sets; namely the orbital parameters: periapsis aper,
eccentricity e, orbital inclination iorbit, and nodal angleΩ; the
BHparameters: BHmassM, mass ratioq, spinap=s, BH spin
inclination iBH;p=s; and the emission parameters: opacity τ,
and the inner radius Rinner. A cartoon of the geometry of our
model configuration is shown in Fig. 1 and the various
models and their parameters are summarized in Table I.

FIG. 3. Black-body spectra for a binary mass of M ¼ 107 M⊙,
and mass ratio q ¼ 1 at various radii in the disk. The temperature
is normalized so that the spectra resemble those found in
hydrodynamical simulations [5].

TABLE I. Summary of the parameters of our fiducial model
(M0, first row) and its 27 variants. The four categories indicated
by four separate columns refer to parameters related to the disk,
the binary’s orbit, the BHs, and the opacity of the emitting region.
Different rows indicate exploring the impact of each parameter.
The parameters that are varied with respect to the fiducial model
M0 are shown in bold font.

Disk Orbit Black hole Opacity

Rinner aper e iorbit Ω Mp q a iBH τ

Fiducial model

M0 rh 100 0 90 0 107 1 0 90 Thick

Inner radius dependence

M1 rISCO 100 0 90 0 107 1 0 90 Thick

Binary orbital inclination dependence

M2a rh 100 0 89 0 107 1 0 90 Thick
M2b rh 100 0 88 0 107 1 0 90 Thick
M2c rh 100 0 87 0 107 1 0 90 Thick
M2d rh 100 0 86 0 107 1 0 90 Thick
M2e rh 100 0 85 0 107 1 0 90 Thick
M2f rh 100 0 80 0 107 1 0 90 Thick

Binary separation dependence

M3a rh 200 0 90 0 107 1 0 90 Thick
M3b rh 300 0 90 0 107 1 0 90 Thick
M3c rh 400 0 90 0 107 1 0 90 Thick
M3d rh 500 0 90 0 107 1 0 90 Thick
M3e rh 1000 0 90 0 107 1 0 90 Thick

Eccentricity dependence

M4a rh 100 0.3 90 0 107 1 0 90 Thick
M4b rh 100 0.6 90 0 107 1 0 90 Thick
M4c rh 100 0.9 90 0 107 1 0 90 Thick

(Table continued)
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We compute the synthetic images at four frequencies
uniformly spaced between 2.5 keV and 10 keV; we focus
on the X-ray emission since it is typically produced close
to the BH horizon. Light curves are then generated by
integrating the images and taking the sum of the total fluxes
at each frequency. In what follows light curves show the
2.5 keVemission. The initial resolution is chosen such that
the images and light curves are well resolved spatially and
in time when three levels of resolution are used. We found
empirically that a base resolution of N2 pixels, together
with two adaptive refinement levels, is sufficient for all our
models when N is given by

N ¼ 250

�
aper

100Rg

��
1þ e
1 − e

��
1

q

�
: ð39Þ

Our highest-resolution model is M4c, with an effective
resolution of 19; 0002 in each direction; with “effective
resolution” we mean the resolution if the image was
sampled uniformly with the resolution of the highest
refined block. In reality the adaptive resolution and only
computing the blocks close to the BHs allows us to only
compute a small fraction of the effective resolution. Light
curves are sampled using 1000, 5000, or 10,000 points
depending on how finely detailed we find the temporal
structure to be. A sampling of 5000 points is used for the
eccentric models and the models with separations of 500
and 1000 Rg. The sampling of 10,000 points is used for
models M9 and M10 since they have the sharpest temporal

features generated by the photon ring (see discussion
below). Even with the optimization from adaptive reso-
lutions and only computing blocks close to the BH
position, the models are computationally expensive due
to the large volume of images that needed to be computed,
namely almost 400,000 in total (77,000 points at four
frequencies), the total computational cost of the project
exceeded one million CPU hours.

III. RESULTS

This section reports the results of our synthetic images
and light curves for all the model parameters described in
the previous section.

A. Fiducial model

Snapshots of the apparent images and the full light curve
in the fiducial model can be seen in Fig. 4. The first three
panels show snapshots at three different orbital phases. The

TABLE I. (Continued)

Disk Orbit Black hole Opacity

Rinner aper e iorbit Ω Mp q a iBH τ

Viewing (Node) angle dependence

M5a rh 100 0.9 90 30 107 1 0 90 Thick
M5b rh 100 0.9 90 60 107 1 0 90 Thick
M5c rh 100 0.9 90 90 107 1 0 90 Thick

Mass ratio dependence

M6a rh 100 0 90 0 107 0.1 0 90 Thick
M6b rh 100 0 90 0 107 0.3 0 90 Thick

Spin magnitude dependence

M7a rh 100 0 90 0 107 1.0 0.5 90 Thick
M7b rh 100 0 90 0 107 1.0 0.95 90 Thick

Spin inclination dependence

M8a rh 100 0 90 0 107 1.0 0 0 Thick
M8b rh 100 0 90 0 107 1.0 0 45 Thick

Total mass dependence

M9a rh 100 0.0 90 0 105 1 0 90 Thick
M9b rh 100 0.0 90 0 109 1 0 90 Thick

Optical thickness dependence

M10 rh 100 0.0 90 0 107 1 0 90 Thin

FIG. 4. Light curve and images in the fiducial model. The top
three panels show images of the binary when they have the largest
projected separation on the sky (top panel), and at the rise and
peak of the lensing event (two middle panels). Blue colors
indicate an approaching BH, orange the receding BH. Bottom
panel: the combined light curve of the binary, with numbers
indicating the moments shown in the upper three panels.
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first panel shows the binary at half of the period, when the
two BHs align perpendicular to the line of sight. The
second and third panels show the binary at the beginning
and the maximum of a SLF. The blue and red colors in the
top three panels indicate emission by the minidisk of the
approaching, blueshifted, and receding, redshifted BH. The
bottom panel shows the total light curve at 2.5 keV,
combining the emission of both BHs, where the numbers
indicate the moments shown in the top panels.
At a quarter and three-quarters of the orbit, a SLF is

present in the light curve. This phase corresponds to the
moment when the two BHs are aligned along the line of
sight. The dip visible on top of the peak of the light curve
indicates that spatial variations in the minidisk emission
morphology can be discerned from these lensed light
curves. This is discussed in more detail in a companion
paper ([47], hereafter Paper II).
To understand how the inclusion of general-relativistic

effects, special relativistic Doppler boosts, and retarded
times affect our light curves, we incorporate these effects
one at a time into our model.
We start with a comparison between light curves

generated with microlensing and from GRRT. In the
literature, self-lensing is often approximated by the ampli-
fication factor A derived from microlensing, the so-called
“Paczynski curve” [28],

A ¼ u2 þ 2

u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 4

p : ð40Þ

Here u≡ b=rE, with b the offset between the lens and the
unlensed source position on the sky, and rE is the Einstein
radius. The assumptions made in deriving this simple
formula are that the deflection angles are small and that
the size of the source is much smaller than the Einstein
radius, so it can be treated as a point. We generate light
curves by moving the lens in front of (1) a point source, (2)
a Gaussian profile, and (3) a single BH image, where we
use the same orbital and BH parameters as in model M0.
We apply the microlensing amplification to every pixel

on the image plane and then compute the total flux for
every point along the orbit. The resulting light curves can
be seen in the top two panels of Fig. 5. The point source
model shows a strong peaked flare since as the source size
goes to zero equation (40) is singular (yielding the Einstein
ring). When we increase the source size by using a
Gaussian profile, the peak flattens, caused by the emission
being spread out compared to the focal point of the lens,
and the total amplification drops. The Gaussian has a width
of σ ¼ 10 ¼ 0.5rE. When we use the BH image of our
fiducial model, a double-peaked flare structure appears,
similar in shape to the full GRRT-generated light curve
shown in the second panel. Additionally microlensing
assumes that the radial separation between the source
and the lens is large, i.e that the angular size of the source

is small compared to the Einstein angle and the amplifi-
cation is singular for u ¼ 0. This results in overestimating
the expected amplification factor.
Within the Einstein ring, a secondary image of the lensed

BH is visible, as can be seen in panel 2 of Fig. 4. This image
is associated with strong deflections. To illustrate this, in
Fig. 6 we plot geodesics in the x-y plane of the binary. The
foreground BH, as well as the observer are on the right
(positive x). Close to the lens (within several Rg), there is a
subset of geodesics visible, which show large deflection
angles. Geodesics originating from positive y values reach
the lensed BH at negative y values, and result in a
secondary image of the source inside the Einstein ring.
Large deflection angles are not captured by microlensing.
Next, in addition to switching to GRRT we also add

(special) relativistic Doppler shifts caused by the Keplerian
velocity of the orbital motion. In this case, no retarded time
is taken into account. Hence, at every phase, we generate an
image by ray tracing over a static spacetime geometry: as
light propagates, the BHs do not move. Reference [23]
argues that for q ¼ 1 binaries, the line-of-sight velocity
components are equal but have opposite sign, and therefore
Doppler modulations cancel. This, however, is only correct
if the underlying spectrum of the emission is close to a
power-law; otherwise Doppler boosting and deboosting at
velocities �v do not have the same magnitude. In the case

FIG. 5. Various light curves showing the impact of different
physical effects. The top panel shows the difference between
microlensing models, assuming either point source, a source with
a Gaussian surface brightness distribution, or the actual source
BH image in our model. The second panel shows a comparison
between microlensing and GR-generated light curves. The third
panel shows the effect of relativistic Doppler boosting. The
bottom panel takes all effects into account by also including time-
delays.
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of a power-law the boosting is given by ΔF
F ¼ ð3 − αÞv,

where α is the slope of the power-law. Light curves of our
fiducial model with and without Doppler shift can be seen
in the third panel in Fig. 5. We also computed the individual
light curves of the BHs to show how the modulation in the
total light curve is generated. We see that the overall
Doppler modulation is out of phase between the two BHs
and of similar amplitude resulting in almost no modulation
in the overall light curve. However, some deviations can be
seen, especially during the flares. Part of the receding BH
disk enters the Einstein angle before it reaches zero line-of-
sight velocity; therefore, there still is some Doppler
deboosting resulting in a decrease in the first subpeak of
the flare. When the BH emerges from the Einstein angle it
already gained some approaching line-of-sight velocity,
and the resulting Doppler boosting increases the second
subpeak. Together this generates a slightly less asymmetric
peak profile compared to the light curve in panel two. For
unequal mass binaries Doppler or unequal accretion rates,
Doppler modulations will be more clearly visible.
Lastly, we also computed our models with the effects of

retarded time included (with “slow light”). In this case, the
BHs move as light propagates. The effect of this can be
seen in the bottom panel of Fig. 5. Again, we plot the total
combined light as well as the individual light curves for
each BH. The individual BHs show again a modulation that
we identify as Kerr-Doppler boosting [48] (which is not

limited to spinning BHs only), which is the Doppler effect
caused by the movement of the BHs, causing the approach-
ing BH to be blueshifted, while the receding BH is
redshifted. Similar to the relativistic Doppler boosting, this
effect also nearly cancels in the total light curve, but
similarly to the relativistic Doppler case the peak profile
is less asymmetric compared to the nonboosted flares.

B. Inner radius dependence

In our fiducial model, we chose the inner radius of each
minidisk to be at the event horizon. The motivation for this
is that recent numerical works [49] show that in the case of
geometrically thick flows, radiation inside ISCO does not
necessarily vanish. On the other hand, radiation from inside
ISCO is small for geometrically thin Novikov-Thorne
disks. To understand how the inner radius alters the light
curves, we computed model M1 with the inner radius at the
ISCO. This model M1, as well as our fiducial model M0,
can be seen in Fig. 7. The overall amplification in model
M1 is, somewhat counterintuitively, higher than in M0.
This is because after excising the inner region, the emission
region becomes concentrated in a narrow annular ring

FIG. 6. Geodesics in gray as an illustration of strong and weak
deflections. Orange disks indicate the minidisks around each BH
and black circles mark the event horizons. The observer is to the
right, so that the emission from the left-side BH is lensed by the
right-side BH. The rays originating from the source at positive y
and passing the lens at negative y suffer strong deflections and
form a secondary image whose brightness is not predicted
accurately by microlensing.

FIG. 7. Light curves showing the inner-radius dependence by
contrasting the fiducial model M0 (with the inner radius at the
event horizon) and its variant M1 (with the inner radius moved
out to ISCO). As the inner radius increases, there is a larger
central gap in the accretion flow, extending outside the horizon.
This enhances the amplitude of the flare, with a wider and broader
“dip” (top two panels). Additionally, the ISCO is outside the
photon sphere, resulting in a photon ring in the image plane of the
source. The photon ring adds an extra minor increase to the light
curve on either side of the central dip (bottom panel).
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around ISCO, whose effective width is smaller than in the
fiducial model. Also, the dip in the SLF is broader since the
central gap in the accretion flow is larger compared to our
fiducial model. Secondly, there are two additional features
visible in the SLF, on either side of the central “dip”, which
are caused by the presence of the “photon ring”. In the M0
model, the optically thick disk prohibits rays from circling
the hole, but, in the M1 model, the rays can circle once or
multiple times around the BH; an observer far away from
the black hole will measure these photons appearing from a
critical closed curve in the image that generates a ringlike
feature [50–53]. When the photon ring moves through the
focal point of the lens, a small increase in amplification is
visible. We anticipate that higher-order photon rings could
also become visible if an even higher image and time
resolution is used. These features are highlighted in the
bottom panel of Fig. 7, and are discussed in more detail in
Paper II [47].

C. Binary orbital inclination dependence

In Fig. 8 we compare models M2a—f with the fiducial
model. These models differ in the inclination angle between
the observer and the angular momentum vector of the
binary. The inclination angles for models M1a—f are 89°,
88°, 87°, 86°, 85°, and 80° respectively, while the fiducial
model is seen edge-on at 90°. As a function of inclination,

the height of the lensing flare decreases. This agrees with
the expectation from microlensing, where the amplification
factor depends only on the offset between the source and
the lens (in units of the Einstein radius). The offset
increases with decreasing inclination, and therefore, the
amplification efficiency drops, as already demonstrated by
[22]. Still, the overall flare remains visible even for disks
misaligned by 10°. On the other hand, the dip in the SLF
disappears for inclinations smaller than 87°, and is visible
only when the focal point moves over the BH shadow. This
is discussed in more detail in Paper II [47].

FIG. 8. Light curves showing the dependence on the observer’s
viewing angle. The fiducial model M0 has an inclination of 90°
(edge-on), and the models M2a—f have smaller inclinations of
89°, 88°, 87°, 86°, 85°, and 80° respectively. As the inclination
decreases, the separation on the image plane between the source
and the lens increases, resulting in a lower overall amplification,
as expected from microlensing-based models [22]. While the
overall flare remains visible even for disks misaligned by 10°, the
central dip disappears once the BH shadow’s projected offset
from the lens is too large (that is, in the models M2d,e,f which are
more than ∼3° from edge on).

FIG. 9. Light curves showing the dependence on the separation
of the two BHs. The models M3a—e have separations of 200,
300, 400, 500, and 1000Rg, compared to 100Rg in the fiducial
model. As the separation increases, the angular size of the source
becomes smaller, resulting in a larger amplification since a larger
fraction of the source falls inside the Einstein angle, as well as a
narrower width in phase, since the source spends a smaller
fraction of the total orbit behind the lens; however, since the
period does grow, the width becomes large in physical time.
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D. Separation dependence

In Fig. 9 we show light curves for models M3a—e,
which differ from the fiducial model by varying the binary
separation. While the fiducial model has a separation of
100Rg, in M3a—e, this is increased to 200, 300, 400, 500,
and 1000Rg, respectively. In the bottom panel, we also
show the orbit of each model. With increasing separation,
the angular size of the source on the sky as seen by the lens
decreases, and, therefore, the light curve asymptotes to that
of a point source model. Since the angular size of the
emission region of the source shrinks, more emission falls
inside the Einstein angle at the moment of maximum
amplification, which results in a higher overall amplifica-
tion, similar to the top panel of Fig. 5. The width of the flare
also decreases with increasing separation, since the source
spends less time within the Einstein angle relative to its
orbital period. With increasing separation, the sizes of the
individual minidisks also increase, because the tidal trun-
cation radius becomes larger. However, this effect is
minimal for an edge on view, since the source emission
morphology is dominated by the strong lensing region
around the BH (see the top panel of Fig. 5).

E. Eccentricity and node angle dependence

In Fig. 10 we show the dependence of the light curves on
orbital eccentricity. While the fiducial model is circular,
models M4a—c have increasing eccentricities of e ¼ 0.3,
e ¼ 0.6, and e ¼ 0.9, respectively. Note that in all models,
we keep the pericenter distance the same. In the bottom
panel, we show the shape and orientation of the orbit in
each model. The eccentricity of the orbit introduces a clear
asymmetry between the two SLFs. One of the peaks is
larger in height compared to our fiducial model. When the
larger SLF occurs, the BHs are at apoapsis, while the BHs
are at periapsis at the second, smaller SLF. At apoapsis, the
separation is large, and the lensed BH has a smaller angular
size on the sky, which results in a larger amount of emission
closer to the focal point and causes the amplification to
increase. This is similar to what we found for our models
M3a—e. At periapsis, the binaries have the same separa-
tion, so the flare amplitudes remain similar. However, the
higher velocities in the more eccentric cases result in a
narrower peak at periapsis than in the fiducial case, since
the BH spends less time within the Einstein angle.
Since the orbit is no longer axisymmetric due to the

eccentricity, we also vary the nodal angle, to orient the
orbital ellipse differently with respect to the line of sight.
The light curves of the models M4c (e ¼ 0.9 and Ω ¼ 0)
and M5a—c (all with e ¼ 0.9 but Ω ¼ 30, 60, and 90°,
respectively) can be seen in Fig. 11. The bottom panel again
shows the orbital shape and orientation, with the observer
to the right at y ¼ 0. As we increase the nodal angle, the
height between the two SLFs becomes comparable since
the difference in separation at the two flares decreases, as

can be seen in the bottom panel of Fig. 11. The spacing
between the SLFs is now also nonuniform in orbital phase
or time, since the two lensing alignments occur at different
phases along the binary orbit.

F. Mass ratio dependence

The dependence on mass ratio is shown in Fig. 12.
Models M6a and M6b differ from the fiducial model
(q ¼ 1) by having q ¼ 0.1, and q ¼ 0.3, respectively.
The binary separation and total mass are kept constant.
The bottom panel again shows the orbits in the x-y plane.
As a function of q, the two SLFs differ in shape. When the
secondary BH is lensed, the flare has a smaller width since
the source morphology is smaller compared to the primary
BH. When the primary BH is lensed, the width of the light
curve is wider than the fiducial model since the source size
of the primary is larger than the secondary BH. The
secondary BH also dominates the measured flux via

FIG. 10. Light curves showing the eccentricity dependence.
The fiducial model is circular, while models M4a—c have
increasing eccentricities of e ¼ 0.3, 0.6, and 0.9, respectively.
The pericenter distance is kept constant in all four models. The
bottom panel shows the orbits in the x-y plane, with the observer
to the right at y ¼ 0. The more eccentric the binary, the larger the
separation at apoapsis, and the smaller the angular size of the
source; this results in a higher amplification of the flux, similarly
as for models M2a—e in Fig. 9. At periapsis, the orbital velocity
increases with e, and therefore the source spends a smaller
fraction of the orbit directly behind the lens making the flares
narrower.
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T ∝ M−1=4. Since there is a different amount of flux
generated by each BH, their Doppler effects no longer
cancel, a significant net Doppler modulation can be seen.

G. Spin and tilt angle dependence

Figure 13 shows the BH spin-dependent models
M7a—b. The fiducial model has a nonspinning BH, while
for models M7a—b both BHs have a spins of a ¼ 0.5 and

a ¼ 0.95, respectively. The effect of spin turns out to be
small on the global properties of the light curve; this is
expected since the spin does not affect the overall lensing
properties to first order. Spin alters the accretion disk’s
inner radius and its velocity profile in the innermost
regions. This results in a narrower dip in the light curve
and a lower second subpeak for each flare. Both of these
effects are small, but can be discerned in the bottom panel
of Fig. 13.

FIG. 11. Light curves showing the node angle dependence. All
curves have eccentricities of e ¼ 0.9, as in model M4c, but
models M5a—c change the nodal angle (Ω ¼ 0 in model M4c) to
Ω ¼ 30, 60 and 90°, respectively. The bottom panel shows the
orbits in the x-y plane, with the observer to the right at y ¼ 0. As
the nodal angle changes, the BHs align at different phases along
the orbit and align with the minor axis in the case of model M5c.
Since the lensing events happen at the closest approach here, the
spacing becomes nonuniform compared to M3a. Since the
separation decreases, the amplification drops, and the width
narrows due to higher velocities.

FIG. 12. Light curves showing the mass-ratio dependence.
Models M6a and M6b differ from the fiducial model (q ¼ 1)
by having q ¼ 0.1, and q ¼ 0.3, respectively. As the mass ratio
decreases, the angular size of the secondary BH’s disk decreases,
which results in a higher amplification factor when it is being
lensed. Simultaneously, the ratio between the primary source size
and the Einstein radius of the secondary as the lens becomes
larger, resulting in lower amplification and widening the flare
profile when the primary BH is lensed.
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Figure 14 shows M8a—b where we vary the inclina-
tion of the minidisks and the BH spin axes with respect to
the binary’s orbital plane. We assume that the mini-
disk angular momentum and the BH spin always remain
aligned with respect to one another. These models have
fixed spin magnitudes of a ¼ 0.95 and minidisk/spin axis
inclination angles of idisk ¼ 0° and idisk ¼ 45°, respectively.

When the minidisks are inclined, a new effect appears,
because the foreground disk, which is assumed to be
optically thick, can physically block the light from the
lensed background BH. Due to this occultation, the lensing
flare can be erased, or, for a face-on minidisk, replaced by a
depression similar to those see in planetary transit light
curves. This occultation was also found by [23].

H. Spectral dependence

To assess the spectral-slope dependence, we varied the
mass of the BHs in models M9a—b, which have total
binary masses of 105 M⊙ and 109 M⊙ respectively, com-
pared to 107 M⊙ for the fiducial model. These models are
shown in Fig. 15. This shifts the peak of our spectrum either
to lower or higher frequencies since T ∝ M−1=4. The
change of the peak alters the spectral slope, the slopes
are computed between 2.5 and 10 keV and are α ¼ 1.1,
1.7, and −0.8 respectively, where α≡ ½logðF10 keVÞ−
logðF2.5 keVÞ�=½logðν10 keVÞ − logðν2.5 keVÞ�. In the case of
our fiducial and M9a model, the spectral slope is positive,
while for the M9b model, the spectral slope turns to
negative values. This does, however, not affect the main
features we reported before. The morphology of the
emission region slightly changes, causing the flare to have

a lower amplitude. Since the orbit is eccentric and the BHs
have an equal mass, we do not see strong Doppler
modulation changes due to spectral slope difference, but
we anticipate those to be more prominent in a model with a

FIG. 13. Light curves showing the spin magnitude dependence.
The fiducial model has zero spin (a ¼ 0) while models M7a—b
have spins of a ¼ 0.9 and 0.95, respectively. The spin depend-
ence only has a relatively small effect on the asymmetry of the
double-peaked structure, since it only modifies the emission and
the space-time metric within a few gravitational radii of the BHs.

FIG. 14. Light curves showing the spin orientation dependence.
The BH spins and their minidisks in models M8a—b differ in
their inclination with respect to the line of sight. In the fiducial
model, both minidisks have idisk ¼ 90° (edge-on), whereas
models M8a—b have idisk ¼ 0° (face-on) and idisk ¼ 45°, re-
spectively. For nearly face-on minidisks, a new effect appears, as
the foreground disk can block the light from the lensed BH—this
physical occultation can erase the flare or replace it with a
transitlike depression.

FIG. 15. Light curves showing the dependence on the spectral
shape, via changing the BH masses. Models M9a—b have a BH
mass of 105 M⊙ and 109 M⊙, respectively, compared to 107 M⊙
in the fiducial model. This changes the spectral slope in the
observed X-ray band (between 2.5 an 10 keV) to α ¼ 1.1, 1.7,
and −0.8, respectively. The spectral slope only modestly affects
the overall flare amplitude. We expect it to have a larger impact
on the overall Doppler modulation during the orbit in the case of
an unequal-mass BH, where the Doppler effects from the two
BHs do not nearly cancel.
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large total binary mass and unequal mass ratios, or if i <
80° when the light curve is only dominated by the Doppler
modulations caused by the orbit.

I. Opacity dependence

Finally, in Fig. 16, we show model M10, which has an
optically thin disk. In order to isolate the effect of the
opacity alone, we retain the same geometrically thin shape
of the emission as in the other models (even if this is
unphysical). Since the opacity is zero, light rays can orbit
several times around the BH. This allows the photon ring to
become visible, in contrast to the optically thick models. In
model M10, the amplification is larger than in the fiducial
model since the photon ring is a sharp feature, compressing
most of the emission in the domain into a small solid angle.

IV. DISCUSSION

In this section, we compare our results to previous
works, list observational challenges for observing SLFs,
and discuss possible implications of a SLF measurement.

A. Comparison to previous works

Previous work by [21] showed that point source models
of self-lensing binaries could explain the observed flare for
the source KIC-11606854, which they dubbed as Spikey.
Compared to their work, we included GR effects and finite
source sizes. We find that the source size alters the width of
the self-lensing flare; the flare width, therefore, gives

information on the emission morphology of the lensed
source. Additionally, Kerr-Doppler boosting is shown to
increase the overall Doppler modulation of individual BH
light curves, leading to inaccurate model parameter pre-
dictions if only relativistic Doppler boosting is included. In
future work, we aim to fit our presented model to Spikey’s
light curve in different bands.
Reference [22] computed self-lensing light curves by

using the microlensing approximation. In contrast to [21],
Ref. [22] investigated the dependence on source size
morphology and found that it is possible to extract
information on the accretion disk structure, namely disk
sizes. This is in agreement with our findings. Additionally
to the work by [22], we also include strong lensing in the
vicinity of the individual BHs. This changes the source
morphology since the BH lenses the accretion flow around
itself. An infinitesimally thin accretion disk viewed edge-
on, as considered in the work by [22], would only show a
thin line, while in our case, we see a circle with a hole in it
(see top panel in Fig. 2). Reference [22] also computes light
curves in the case where the minidisk is misaligned with the
orbit, which generates source morphologies that are closer
to ours. However, since only very large binary periods are
considered (∼4 years, with a mass of 106 M⊙), the angular
size of the central hole in the minidisk emission is
negligibly small. The dip in the SLF that we report here
and in Paper II [47] is therefore not visible.
Compared to the work by [23] we use a superposed

binary metric, including dynamical evolution of the space-
time during light propagation. This results in the inclusion
of Kerr-Doppler boosting. The light curves also differ in
one distinct way between our work and the work by [29].
Due to different effective temperatures, the light curves of
[23] are more single-peaked, and only a less prominent,
minor asymmetry can be seen in their predicted light
curves. In their model, the spectrum’s peak is shifted
towards the UV, meaning that at harder X-ray wavebands,
the spectral slope is much steeper, resulting in much
stronger Doppler (de)boosting, which results in a less
symmetric image morphology. Similarly to us, they assume
an optically thick black-body spectrum. The choice of our
higher temperature is motivated by shock heating models
by e.g., [4,5]. If the minidisks, in reality, are cooler than we
adopted, this would shift the optimal frequency to observe
the dip to lower values. In general, the dip features should
be strongest in the frequency band that is emitted close to
the horizon, has a flat spectral slope (a steep slope would
make a single disk appear asymmetric without a clear
central shadow) or is dominated by an optically thin corona.
To study the dependence of the SLF on the exact spectral
shape in more detail, in future work we will ray-trace
the emission in either hydrodynamical or magnetohydro-
dynamics (MHD) simulations, which should provide
more realistic dynamical and thermodynamical models
for MBHBs.

FIG. 16. Light curves demonstrating the impact of optical
depth. Model M10 is identical to the fiducial model M0, except
the minidisks are assumed artificially to be optically thin, while in
the fiducial model M0 they are optically thick. The sharp features
seen for M10 arise from the photon rings. These can only form in
the optically thin case and concentrate the emission to a small
solid angle, allowing stronger amplification when parts of the
bright ring are behind the lens.
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We show that for the optically thin case, the peak width is
much narrower. Both our models have in common that the
underlying emission model is very simplified compared to
the realistic case of blazars and other AGN. In reality,
sources have multiple components contributing to the
spectra, e.g., the disk, jet, and X-ray corona. Therefore,
investigating how the light curves behave with more
realistic spectral models is needed to fully understand
the flare properties expected for these sources. If the source
morphology is more extended, e.g., in the optical/UV, we
would expect the overall width of the SLF to increase
as well.

B. Observational limitations

In our work, we neglect the dynamics of the accretion
flow. The viscous time scales are larger than the self-
lensing time scale, but it will add temporal variations on the
overall light curve. Dynamical accretion models have been
reported in the literature either in hydrodynamics [16,54]
and more recently also in GRMHD [32,36,55,56]. Future
ray-tracing of GRMHD simulations of MBHBs in higher
Eddington states should give more insight into the effect of
accretion flow dynamics on MBHB light curves. Work by
[32] shows ray traced images of a close separation MBHB
and compute bolometric luminosity as a function of the
azimuthal positon of the observer. For inclinations close to
the edge on a flare is present that also contains hints of a dip
(see their Fig. 11).
Accretion variability of AGN can also induce flares.

However, these flares are not periodic and can therefore be
averaged out by using phase folding. Additionally, since
self-lensing is purely a geometrical effect due to light
bending, it is achromatic. Therefore, amplification by self-
lensing should depend on the observed frequency relatively
weakly and strongly correlating between bands. In contrast,
accretion-induced variations are strongly frequency depen-
dent, and, empirically, the optical and UV fluctuations are
not fully correlated [57]. GRMHD also provides a first-
principle velocity profile for the accretion, which might
affect the observability of the double-spiked SLF profile we
report here and in Paper II [47], however Fig. 11 in [32]
shows azimuthal profiles of the bolometric luminosity
generated by ray tracing GRMHD simulation which do
show a hint of a dip within the SLF for edge on
configurations. In certain configurations, velocity uncer-
tainties may be less important, e.g., if the emission is
produced by an optically thin corona with small internal
bulk velocity, or if the spin axis of the lensed BH is
misaligned with respect to the orbital axis (so its emitting
material is face-on and has small line-of-sight velocities).
To scale our results to observables, the periods of our

light curves can be scaled by black hole mass. We showed
that there is some mass dependence on the light curve, but
this is minimal. For our fiducial model with separation of

100Rg and a total black hole mass of M ¼ 107 M⊙, the
period is roughly a day.
At fixed binary separation in gravitational units, the

orbital period scales linearly with total BH mass. As a
result, for BHs up to 109−10 M⊙, the periods reach 100–
1000 days (and larger if the binary separation is also
increased). In the present sample of binary quasar candi-
dates, identified based on their optical periodicity in large
time-domain surveys [10,11], the BH masses are skewed
towards these high masses, and the orbital periods are
comparable to a year. These candidates would be favorable
for searching for SLFs. In the case of our fiducial model
with a separation of a ¼ 100Rg the period of the orbit for a
109 M⊙ would be approximately 0.7 years. The SLF
duration is roughly ten percent of the total orbit, so the
duration of the SLF is ∼25 days. In the case of model M3e,
which has the largest separation among our circular models
(1000Rg), we find a total orbital period of 22 years, and an
SLF duration of approximately 160 days.
In our fiducial model, the binary inspiral time due to GW

emission is approximately 1.5 years ([58]; see Eq. 28 in
Ref. [59]). This makes it hard to catch such a short-lived
binary, with our fiducial parameters, in current surveys.
However, for large future time-domain surveys, such as by
the Vera Rubin Observatory’s Legacy Survey of Space and
Time (LSST), with a few-day cadence, these rare and short-
lived binaries should be present, and could be identified as
ultrashort periodic sources [60,61]. In the optical wave-
bands we expect a contribution by the spatially extended
circumbinary disk that would lower the observed amplifi-
cation of the lensed minidisk, mimicking a lower inclina-
tion angle. However, Doppler modulations and lensing
flares could still be identified, if the minidisks also have a
cooler, more extended black-body emission. Candidates
identified in a large time-domain survey, such as LSST,
could then be followed up by X-ray telescopes, such as
IXPE, XMM-Newton, or ATHENA, to study the emission
expected to be strongly dominated by the minidisks. The
GW inspiral time scales linearly with mass (at fixed binary
separation in gravitational units), increasing to as high as
∼102−3 years for the binary candidates with masses of
∼109M⊙ and periods of order a year [10,11]. Since the
inspiral time scales more steeply with binary separation
(T ∝ a4), increasing the separation will improve the
observability; the binaries will be longer lived, and the
SLFs will be stronger, due to smaller angular source sizes.
For example our model M3e with a separation of a ¼
1000Rg the GW inspiral time is 15,000 years with a binary
period of 2.6 months in the case of a 107 M⊙ binary and
106−7 years with a binary period of 22 years for binary
candidates with masses of ∼109 M⊙.
Apart from identifying MBHBs to begin with, a clear

practical obstacle to identifying lensing flares, and char-
acterizing their shapes, including the “dips”, is stochastic
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AGN variability. The typical X-ray variability of AGNs has
an RMS value of about 10% and 40% over a day to week
timescales [62,63]. The SLF exceeds this RMS value for
inclinations larger than 80°. However, the dip in the SLF for
edge-on viewing angles is of the order of 20% of the total
SLF amplification, although the time scales are much
shorter compared to the typical accretion-induced variabil-
ity. As stated before, phase folding can mitigate this
problem, but a first hint of the SLF should at least stand
out of accretion induced variability or system noise when
only one period is observed.

C. Implications

In this work we investigated the MBHB parameter
dependence on SLFs, and we report nondegenerate features
that when observed will help improve parameter predic-
tions. Observing equal-height SLFs is a strong indication of
a close to equal mass binary on a circular orbit. Any
deviations from this that result in the larger SLF to be
narrower than the smaller SLF indicates an unequal mass
binary. Eccentricity induces unequal height SLFs as well,
but in this case the smaller SLF is also narrower. The nodal
angle for eccentric binaries changes the relative spacing of
the SLFs within the full 2π orbital phase; this can be used to
constrain eccentricity and nodal angle. Inclination leaves is
imprint by keeping the width constant but the height
smaller. Separation distance sets the overall period of the
orbit but also the amplification factor of the SLF. We do not
find a strong dependency on spectral shape or black hole
spin. If the SLF is observed close the edge-on, there is a dip
visible in the SLF, caused by substructure in the source
morphology and is directly related to the size of the black
hole shadow, as discussed in more detail in Paper II [47].
Our results also have implications for future LISA

observations. If self-lensing flares are detected in the
electromagnetic observations for a LISA source prior to
its merger [64], with the phase of the flares tracking that of
GWs [27], it will help secure unambiguous identification of
the source. However, since the GWs are observed close to
merger, the binary’s orbital separation will be smaller than
in our fiducial model. This could introduce nonlinear terms
in the metric that would change the overall shape of the
SLF. Current projections make this possible for at least a
fraction of LISA binaries, i.e., binaries with accurate sky
positions derived from the GW inspiral signal days before
merger [65]. Having the electromagnetic source identified
will provide its precise sky location, and help better
constrain binary parameters such as the inclination angle
and distance. Secondly, the self-lensing flares always occur
at the same orbital phase, and are tied directly to the GW

phase through the binary’s orbital motion. Therefore, they
would provide a clean experiment to correlate the arrival
times of GWs and photons, which can be used to constrain
graviton masses and alternative theories of gravity in which
the propagation speeds of photons and gravitons differ [27].

V. CONCLUSIONS

In this study, we presented a self-lensing binary model,
extending on recent work. To this end, we utilized the
existing general-relativistic ray tracing code RAPTOR, which
we optimized by implementing an adaptive mesh refine-
ment scheme for the camera plane. We constructed a
superposed Cartesian binary metric in which the BHs
are on Keplerian orbits. The emission is assumed to be
produced by two minidisks surrounding each BH. We
generated synthetic light curves for a variety of orbital, BH,
and emission model parameters. We showed how finite
source sizes alter the shape of the light curves compared to
previous works that used point source modeling and
recovered point sourcelike behavior only when the sepa-
ration is sufficiently large. We highlighted the importance
of GR ray tracing for modeling these systems, by finding
discrepancies between microlensing and GR lensing. For
gravitational waves sources, as will be measured by LISA,
observing self-lensing flares would help orbital constraint
parameters such as the inclination and help constrain the
graviton mass. Observing SLFs provides an exciting
opportunity to not only constrain MBHB parameters
relevant to LISA GW observations but also opens a new
way to measure black hole shadow sizes in systems that are
unresolvable by current very long baseline interferometry
facilities.
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