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AbstractÐThis paper considers the problem of distributed
state estimation of a linear time-invariant (LTI) system by a
network of sensors in a discrete-time setting. Specifically, we
consider a consensus-based distributed Kalman Filter (KF) where
each sensor updates its estimate in two steps: a consensus
step dictated by a weighted and directed communication graph
followed by a local Luenberger filtering step. For a given network,
we show that the sub-optimal filtering gains that minimize an
upper bound of a quadratic filtering cost can be computed by only
exchanging state estimates and their covariance matrices among
agents. The resulting dynamics for the network’s covariance
matrices are represented by a set of coupled algebraic Riccati
equations (CARE’s) that can be analyzed to ensure stability.
Next, we connect some of the results from the Markovian jump
linear systems (MJLS) literature regarding the underlying CARE
dynamics to the distributed estimation problem, and provide sep-
arate necessary and sufficient conditions for successful estimation.
We show that the notion of strong detectability (S-detectability)
plays an important role in the stability of the filter matrices and
ensures that the noise-free error dynamics exponentially converge
to zero. We then utilize the notion of weak detectability (W-
detectability) to provide necessary conditions in terms of the
network topology and self-weights of the communication graph.
We further demonstrate how these notions of detectability can be
combined to search for feasible network topologies and weights
that ensure this sub-optimal performance. Numerical examples
are given to illustrate these results.

I. INTRODUCTION

Sensor networks have broad applications in environmental

surveillance and monitoring, collaborative information pro-

cessing, and scientific data gathering from spatially distributed

sources for environmental modeling and protection [1]±[3]. In

many applications involving large-scale complex systems, the

state of the system is monitored by a group of sensors spatially

distributed over large networks where the communication

between sensors is limited. To model such a scenario, consider

the discrete-time linear time-invariant (LTI) dynamical system

x(k + 1) = Ax(k) + ω(k) (1)

where k is the discrete-time index, x(k) ∈ R
n is the state

vector, A is the system matrix, and ω(k) ∈ R
n is the driving

noise assumed to be Gaussian with zero mean and positive

definite covariance Q. The state of the system is monitored

by a network of N agents indexed by i, each of which is

equipped with a sensor that receives a partial measurement of

the state that is modeled by

yi(k) = Cix(k) + vi(k), i = 1, . . . , N, (2)
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where yi(k) ∈ R
pi is the measurement made by sensor i

with Ci as the measurement matrix, and vi ∈ R
pi is the

measurement noise assumed to be Gaussian with zero mean

and positive definite covariance Ri. An important problem in

such networks is to develop distributed algorithms for state

estimation of the process in (1), where the goal is for each

agent to estimate the entire system state using its respective

local measurements and the information obtained from its

neighbors.

A. Related Work

This distributed filtering problem has received significant

attention over the past two decades. Earlier work in [4],

[5] considered the distributed estimation of scalar stochastic

systems over general graphs. In these works, it is typically

assumed that each node receives scalar local observations,

leading to local observability at every node. For more general

stochastic systems, a Kalman filter (KF)-based approach has

been explored by several researchers. In [6]±[9] consensus

filtering is conducted among agents to replicate a centralized

KF. These approaches rely on a two-step strategy running

on two time scales ± a KF-based state estimate update rule

on the system’s timescale and a data fusion step based on

average consensus at a much faster time scale. However, the

convergence to the consensus in such approaches requires

infinite communication steps between two consecutive local

updates, which is far from realizable in any systems.

For that reason, researchers investigated single time-scale

algorithms where the data fusion occurs once per time step

of plant dynamics [10]±[18]. In [13] and [16], the authors

develop single time-scale algorithms for the general case of

a directed communication network, where local observability

at every node is not necessarily satisfied. In these works, the

authors rely on state augmentation for casting the distributed

estimation problem as a problem of designing a decentralized

stabilizing controller for an LTI plant using the notion of

fixed modes. Recent work in [17] tackled the problem of

distributed estimation of LTI systems under this general setting

as well while alleviating the need for state augmentation and

proposed a multi-sensor observable canonical decomposition

of the networked system. Each node in the resulting distributed

filtering strategy utilizes a Luenberger observer to estimate the

modes that are observable using its own measurements, while

relying on network-wide consensus to estimate the remaining

unobservable modes. In general, to successfully implement

this approach, the modes that each agent needs to perform

consensus on should be determined during the design stage,

which may be difficult to assess when the network topology

changes. Furthermore, given a specific network topology and
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weights, the filtering gains that can be obtained using this

approach do not offer quantifiable measures to the optimality

of the estimates.

The success of the KF in centralized systems, thanks to its

optimality and its elegant algorithmic description, has made it

a popular basis for distributed estimation algorithms. Several

ideas have emerged to extend the Kalman filter to distributed

estimation [7]±[11], [15], [18]. The single time-scale variations

of the distributed KF, such as the ones proposed in [10], [11],

[15], [18], have prompted further investigation of these filters.

In [10], a diffusion-based KF is proposed where the covariance

matrices from each sensor are updated incrementally by in-

corporating the observation matrices of the sensor’s neighbors

in a sequential manner such that only local information is

required within the algorithm. However, the local estimates

generated at each node do not offer any quantifiable optimality

measure for the overall networked system. In [11], the authors

propose a consensus-based distributed linear filter, where each

sensor updates its estimate in two steps: a local update step

using its own observations followed by a consensus step

with its neighbors. The work done there offers a certain

sub-optimal performance and the authors go on to provide

sufficient conditions for the convergence of this distributed

filter for a given network topology and weights in terms of the

feasibility of a set of linear matrix inequalities (LMIs). While

these LMI checks provide an effective way to numerically test

whether or not a networked filter will successfully estimate the

system state, they do not offer insight into the necessary net-

work connectivity and weights needed for the stability of the

networked filter’s estimation error. In contrast, the authors in

[15] employ structural analysis to derive the network topology

requirements for successful estimation. While this structural

analysis is useful in specifying the topological connections in

the sensor network, it structural nature (i.e., the zero and non-

zero structure of entries in the filter matrices) does not offer

insight into the role of the consensus weights in distributed

filtering. More recent work in distributed Kalman filtering

is presented in [18] where the authors utilize covariance

intersection for fusing the estimates and covariance matrices

for each agent with those of their neighbors. The authors split

the communication graph into an observation topology (over

which the observations, or measurements, and their matrices

are exchanged), and a covariance intersection topology (over

which the covariance intersection procedure occurs).

In all of these distributed KF approaches, each agent needs

to exchange their local measurements, measurement matrices,

noise covariance matrices, or filtering gains in addition to their

estimate and estimate covariance matrices with its neighbors

in order to successfully estimate the system. This presents a

drawback in networks with limited bandwidth as it increases

the burden on the communication network to effectively ex-

change this data.

B. Summary of Contributions

In this work, we propose a consensus-based distributed

KF for time-invariant topologies that only requires agents to

exchange their estimates and their covariance matrices. For

a given network topology and consensus weights, we derive

the sub-optimal filtering gains that minimize an upper bound

of a quadratic estimation error cost function. Our approach

does not require additional information to be exchanged (such

as local measurement matrices, gain matrices, noise matrices,

or raw measurements) as in [11], [18], and does not require

each node to determine which modes to observe directly and

which ones to be estimated through consensus as was the

case in [17]. We leverage existing results on the underlying

CARE equations to derive separate necessary and sufficient

conditions for our distributed KF. Combining these sufficient

conditions, which can be efficiently checked numerically, and

the necessary conditions, which can be verified by inspection,

facilitates the search for viable communication topologies and

consensus weights that ensure successful estimation.

The remainder of this paper is organized as follows. In

Section II we provide the notation and preliminary results

used throughout this paper, and discuss the error dynamics

of our distributed filter. In Section III we derive the sub-

optimal distributed KF gains for a given network that are

computed using the CARE of the network. In Section IV we

present the separate necessary and sufficient conditions for our

distributed KF. A numerical example is given in Section V,

where we utilize the aforementioned conditions to effectively

search for consensus weights that ensure successful estimation.

Concluding remarks are finally provided in Section VI. In the

appendices, we provide a proof that was omitted to improve

readability, and show that these results hold when the order

of the filtering and consensus steps is reversed.

II. BACKGROUND AND PROBLEM SETUP

A. Notation

For normed spaces X and Y, we set B(X,Y) as the

space of all bounded linear operators of X into Y, and use

B(X) ≜ B(X,X). We denote by R
n the n-dimensional real

Euclidean spaces and B(Rn,Rm) the normed bounded linear

space of m×n real matrices, with the uniform induced-norm

represented by ∥.∥, and use B(Rn) ≜ B(Rn,Rn). We use the

notation null(X) to indicate the kernel of a matrix X . The

spectral radius of an operator T ∈ B(X) is denoted by rσ(T ),
while the superscript ′ indicates the transpose of a matrix, and

⊗ represents the Kronecker product. We denote the expected

value by E{·}, and use tr(·) to indicate the trace.

Throughout this paper, we will work with a collection of

N matrices when deriving the sub-optimal filtering gains for

our distributed filter. Therefore, it comes up naturally that a

convenient space to be used is the one defined by H
n,m, which

is the linear space made up of all N -sequences of matrices

V = (V1, . . . , VN ) with Vi ∈ B(Rn,Rm). For simplicity we

set Hn ≜ H
n,n. For V ∈ H

n,m we write V ′ = (V ′

1 , . . . , V
′

N ) ∈
H

m,n and say that V ∈ H
n is symmetric if V = V ′. We

set H
n0 (respectively, H

n+) as the space made up of all

N -sequences of symmetric positive semidefinite (respectively,

positive definite) matrices. For V, S ∈ H
n, we write V ≥ S

if V − S = (V1 − S1, . . . , VN − SN ) ∈ H
n0, and that V > S

if V − S ∈ H
n+, i.e., Vi − Si > 0. Finally, for a set of N

matrices, Mi ∈ B(Rn), we denote by diag[Mi] the Nn×Nn
block-diagonal matrix with Mi in the diagonal.
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estimate, x̂i(k), and the state estimates by all other agents

within its communication range, i.e.,

ξi(k) =

N
∑

j=1

wij x̂j(k), i = 1, . . . , N. (10)

where wij is the element of W representing the consensus

weight associated with the time-invariant network topology.

After all agents complete the consensus step, each agent then

updates its estimate by performing a local filtering step based

on the intermediate estimate ξ(k), i.e.,

x̂i(k + 1) = Aξi(k) + Li

(

yi(k)− Ciξi(k)

)

. (11)

where Li is the filter gain. Combining (10) and (11), we obtain

the dynamic equation for each agent’s estimate

x̂i(k + 1) =A





N
∑

j=1

wij x̂j(k)





+ Li



yi(k)− Ci





N
∑

j=1

wij x̂j(k)







 .

(12)

Letting ϵi(k) = x(k)− x̂i(k) denote the estimation error for

agent i at time k, we obtain the following one-step formulation

for the estimation error for each agent

ϵi(k+1) = (A−LiCi)
N
∑

j=1

wijϵj(k)+ω(k)−Livi(k). (13)

Focusing on the noise-free dynamics of the estimation errors

in (13) and denoting the noise-free error for agent i by εi(k),
we have

εi(k + 1) = (A− LiCi)
N
∑

j=1

wijεj(k). (14)

Defining the network-wide noise-free estimation error as

ε(k) = [ε1(k)
′ · · · εN (k)′]′, one can show that the network-

wide dynamics for ε(k) are given by

ε(k + 1) = Bε(k), (15)

where B ≜ diag[A−LiCi](W ⊗ In) ∈ B
(

R
Nn

)

. Clearly, the

system in (15) is asymptotically stable if rσ(B) < 1.

Definition 2 (Distributed detectability): For the system in

(1)±(2) and the consensus weights W , we say (A,C,W ) is

detectable in the distributed sense if there exist gain matrices

Li, i = 1, ..., N , such that rσ(B) < 1.

III. SUB-OPTIMAL DISTRIBUTED KALMAN FILTERING

To find the optimal filtering gains for this distributed

problem, we introduce the following finite horizon quadratic

filtering cost function

J(k) =

k
∑

t=0

N
∑

i=1

E{∥ϵi(t)∥2}. (16)

Ideally, we would like to obtain the optimal filtering gains

that minimize the cost function in (16). However, due to

the complexity of this optimization problem, we focus on

providing filtering gains that minimize an upper bound of the

cost function in (16). This, in turn, leads us to a sub-optimal

distributed filtering scheme with quantifiable performance.

Lemma 3: Define Ξ(k) = (Ξ1(k), . . . ,ΞN (k)) ∈ H
n0,

where Ξi(k) = εi(k)εi(k)
′. Let P (k) ∈ H

n0 be defined

recursively as

P (k + 1) = L(P (k)), P (0) = Ξ(0), (17)

with Γi = (A− LiCi). Then,

Ξ(k) ≤ P (k), ∀k ≥ 0.

Furthermore, define Σ(k) ∈ H
n+ and P (k) ∈ H

n+, where

Σi(k) = E{ϵi(k)ϵi(k)′} denotes the covariance of agent

i’s estimation error with noise in (13), and Pi(k) is defined

recursively as

Pi(k+1) = Li(P (k)) +Q+LiRiL
′

i, P (0) = Σ(0), (18)

with Γi = (A−LiCi), Ri being the covariance matrix of the

measurement noise for sensor i, and Q being the covariance

matrix of the process noise. Then,

Σ(k) ≤ P (k), ∀k ≥ 0.

Proof: See Appendix A.

Lemma 3 provides an upper bound for each agent’s co-

variance matrix. This in turn allows us to establish an upper

bound, J̄(k), for the cost function J(k) in (16), where

J̄(k) =

k
∑

t=0

N
∑

i=1

tr(Pi(t)), (19)

with Pi(·) defined in (18). From Lemma 3, it immediately

follows that

J(k) ≤ J̄(k).

The following theorem establishes the filtering gains that

minimize the upper bound shown in (19) for our distributed

filtering scheme.

Theorem 1: For a given matrix of consensus weights, W ,

the filtering gains that minimize the upper bound in (19) can

be computed using the same network topology and weights in

a two-step approach. During the consensus step, each agent

computes an intermediate covariance matrix by performing a

convex combination of their own Pi(k) and those of their

neighbors, i.e.,

Πi(k) =

N
∑

j=1

wijPj(k). (20)

Then, during the filtering step, each agent computes the

local filtering gain to be used in (11) using the intermediate

covariance

Li(k) = AΠi(k)C
′

i(Ri + CiΠi(k)C
′

i)
−1, (21)

and updates its covariance upper bound according to

Pi(k + 1) =AΠi(k)A
′ +Q−AΠi(k)C

′

i×
(CiΠi(k)C

′

i +Ri)
−1CiΠi(k)A

′. (22)
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Proof: First, we show that the optimal cost J̄∗(k) is

obtained using the gains

L∗

i (k) = AEi(P ∗(k))C ′

i(Ri + CiEi(P ∗(k))C ′

i)
−1, (23)

with P ∗(0) = Σ(0), and P ∗(k) ∈ H
n+ is computed using

(18) with the gains L∗

i (k).
Let J̄(k) denote the cost when an arbitrary set of gains

Li(k) is used, and let P (k) ∈ H
n+ denote the matrices

obtained when these arbitrary gains are used in (18). To show

the desired result, we need to show that

J̄(k)− J̄∗(k) =

k
∑

t=0

N
∑

i=1

tr(Pi(t)− P ∗

i (t)) ≥ 0.

We do that by induction. For P (0) ≥ P ∗(0), it can be

shown through matrix manipulation (see [19]) that

Pi
∗(1)− Pi(1)

= (A− L∗

iCi)Ei(P ∗(0)− P (0))(A− L∗

iCi)
′

− (Li − L∗

i )(Ri + CiEi(P (0))C ′

i)(Li − L∗

i ).

Since P (0) ≥ P ∗(0) and (Ri + CiEi(P (0))C ′

i) > 0, it im-

mediately follows that Pi(1) ≥ P ∗

i (1) and J̄(k)− J̄∗(k) ≥ 0.

Now, let P (k) ≥ P ∗(k). Utilizing the same matrix manipula-

tion as above, since (Ri + CiEi(P (k))C ′

i) > 0, it follows

that Pi(k + 1) ≥ P ∗

i (k + 1) for all k ≥ 0. Finally, we

show that these sub-optimal gains and the matrices P ∗(k)
can be computed in the distributed manner shown in (20)±

(22). Indeed, substituting L∗

i (k) in (18), and after performing

additional matrix manipulation, we can write

P ∗

i (k + 1) = AEi(P ∗(k))A′ +Q−AEi(P ∗(k))C ′

i×
(CiEi(P ∗(k))C ′

i +Ri)
−1CiEi(P ∗(k))A′, (24)

which is the same expression obtained when substituting (20)

into (21) and (22).

Substituting Πi(k) from (20) into (22) yields the set of

CARE’s in (9). We refer to the filter resulting from (10)±(11)

and (20)±(22) as the distributed KF ± due to its similarity to

the centralized Kalman filter ± and it presents an attractive

solution to the distributed filtering problem as it provides a

sub-optimal scheme with quantifiable performance.

IV. CONDITIONS FOR STABILITY OF ESTIMATION ERROR

For a centralized estimation problem, the detectability of

the pair (A,C) plays an important role in the convergence

the centralized KF. Therefore, it is natural for us to seek

a similar notion for the distributed problem. In this section,

we employ some of the results reported in [19]±[21] to

provide sufficient and necessary conditions for the stability of

the estimation errors under this distributed KF. Specifically,

we make use of the notions of mean square detectability

(MS-detectability), i.e., relating to the second moment of

the underlying random variable, and weak detectability (W-

detectability) [19], [21], to introduce similar notions for our

distributed filtering problem. For a complete discussion on

MS-detectability and relevant results in MJLS, we refer the

reader to [19] and references therein. Roughly speaking, MS-

detectability requires the existence of filtering gains that result

in a contraction of an operator on the space of a set of matrices,

and can be verified using LMI-based techniques [19]. On the

other hand, W-detectability does not require the contraction

property imposed by the MS-detectability [20], and instead

deals with the observable subspaces for each agent, resulting

in topological conditions that can be verified by inspection.

In what follows, we introduce the notion of strong de-

tectability (S-detectability) for our distributed filtering prob-

lem, an analogy to the MS-detectability in MJLS systems. S-

detectability ensures that the upper bounds of the error covari-

ance matrices can be stabilized and remain bounded, which we

use to derive conditions on some of the network’s consensus

weights. We then consider the W-detectability property for our

distributed system, and utilize the results in [21] and [20] to

arrive at the network topologies necessary for the success of

this distributed filter.

A. Sufficient Conditions

Theorem 2: If there exist gain matrices L1, . . . , LN , and

symmetric positive definite matrices P ∈ H
n+ and S ∈ H

n+

such that

P − T (P ) = S, (25)

with Γi = A − LiCi, then the noise-free error dynamics in

(14) are exponentially stable. This holds when T is replaced

by L,V, or J .

Proof: To show the desired result, we define the Lyapunov

function

V (k) =

N
∑

i=1

εi(k)
′Piεi(k).

It follows that,

V (k + 1)− V (k)

=

N
∑

i=1





N
∑

j=1

wijεj(k)
′



Γ′

iPiΓi





N
∑

j=1

wijεj(k)





− εi(k)
′Piεi(k)

≤
N
∑

i=1









N
∑

j=1

wijεj(k)
′Γ′

iPiΓiεj(k)



− εi(k)
′Piεi(k)



 .

Reversing the order of the sums, we have

V (k + 1)− V (k)

≤
N
∑

i=1

εi(k)
′





N
∑

j=1

wjiΓ
′

jPjΓj − Pi



 εi(k),

and using T in (6) yields

V (k + 1)− V (k) ≤
N
∑

i=1

εi(k)
′ (Ti(P )− Pi) εi(k).

From (25), we have

Pi − Ti(P ) = Si, i = 1, . . . , N,
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and thus

V (k + 1)− V (k) ≤ −
N
∑

i=1

εi(k)
′Siεi(k).

From the fact that S ∈ H
n+, we get V (k + 1) − V (k) < 0

and the error dynamics in (14) are exponentially stable. From

Lemma 1, it follows that this result holds when T is replaced

by L,V, or J .

From Lemma 1, it is clear that there exist matrices P ∈ H
n+

and S ∈ H
n+ such that (25) holds iff there exist gain matrices

L1, . . . , LN such that rσ(L) < 1 with Γi = A − LiCi. This

gives rise to the following stronger notion of detectability for

our distributed filter based on the operators defined in (5)±(8).

Definition 3 (S-detectability): For the system in (1)±(2) and

the consensus weights W , we say (A,C,W ) is S-detectable

if there exists a set of gain matrices Li, i = 1, ..., N , such that

rσ(L) < 1 with Γi = A− LiCi.

Corollary 1: If (A,C,W ) is S-detectable, then (A,C,W )
is detectable in the sense of Definition 2.

Proof: The result follows immediately from Lemma 1

and Theorem 2.

Generally speaking, the reverse is not necessarily true. That

is, finding gain matrices such that rσ(B) < 1 does not

imply that rσ(L) < 1. Indeed, consider the example of a

scalar system monitored by two agents, where Γ1 = 1.3 and

Γ2 = 0.75, with consensus weights

W =

[

0.1 0.9
0.1 0.9

]

,

It can be verified that rσ(B) = 0.975 while rσ(L) = 1.04.

The interchangeability between the operators allows us to

check for S-detectability using any of the given operators using

LMI techniques such as the ones shown in [11] and [19].

Specifically, we show that the following numerical check can

determine S-detectability of (A,C,W ).
Proposition 1: (A,C,W ) is S-detectable if there exist

matrices Y1, ..., YN and X ∈ H
n+ such that the following

set of N LMIs are feasible for all i = 1, . . . , N
[

Mi,11 Mi,12

M ′

i,12 Mi,22

]

> 0, (26)

where

Mi,11 = Xi, Mi,22 = diag[Xi]

and

M ′

i,12 =

















√
w1i(X1A− Y1C1)

...√
wji(XjA− YjCj)

...√
wNi(XNA− YNCN )

















.

Proof: Applying the Schur complement lemma, the LMIs

in (26) are feasible if for i = 1, . . . , N

Xi−
N
∑

j=1

wji(XjA−YjCj)
′X−1

j (XjA−YjCj) > 0, Xi > 0.

Grouping terms and using the definition of T in (6) yields

X − T (X) > 0

with Γi = A − X−1
i YiCi. The result then follows from

Theorem 2 and Lemma 1.

Note that while S-detectability is sufficient for exponential

stability of the noise-free error dynamics in (14), it is only

necessary for the convergence of the CARE’s to a stabilizing

solution. The full necessary and sufficient conditions for the

convergence of the CARE’s can be found in [19], but they

are difficult to verify and are beyond the scope of this

paper. Nevertheless, it has been shown that if (A,C,W ) and

(A′, Q
1

2 ,W ′) are S-detectable, then the CARE’s converge to

a unique stabilizing solution [19]. An LMI-based approach

similar to the one used in Proposition 1 can be employed to

check for S-detectability of (A′, Q
1

2 ,W ′).

B. Necessary Conditions

An important aspect of this distributed filtering problem is

to find a matrix of consensus weights W that satisfies the

S-detectability condition, as the LMI-based approach does

not offer much insight into the topological conditions of

the network. It is important, therefore, to investigate the

conditions required for S-detectability, as they are required for

the filter covariance matrices to remain bounded and ensure

that the noise-free dynamics are exponentially stable. The

mathematical description of S-detectability mimics the notion

of MS-detectability in MJLS, allowing us to leverage some of

the results there in analyzing the conditions on the consensus

weights and network connectivity needed for the stability of

the estimation errors. The remainder of this section is aimed

at providing the necessary conditions for S-detectability of

(A,C,W ) in terms of network topology and communication

weights.

Before presenting the main result, however, we review some

of the relevant results from MJLS. Specifically, we make

use of the notion of W-detectability, which has been shown

to play an important role in the LQR control problem of

MJLS [20], [21]. W-detectability is a weaker condition than

S-detectability in that it does not require the existence of gain

matrices that result in rσ(L) < 1. It has been shown that W-

detectability is necessary for MS-detectability in MJLS [20],

and is therefore necessary for S-detectability in this distributed

estimation problem. The appeal for W-detectability is that it

offers an easier way to check, compared to S-detectability, and

allows us to consider the minimum network topology needed

for S-detectability. Some of the results listed in this subsection

require many of the auxiliary results developed in [21] and

[20]. To keep the discussion concise, we refer the reader to

those references for the full proofs of such results.

To formally define W-detectability in the context of dis-

tributed filtering, we consider the system

X(k + 1) = T (X(k)), Xi(0) = µix(0)x(0)
′, (27)
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where µi are nonnegative scalars such that
∑

i µi = 1 with

Γi = A, and introduce the functional

Wk
i (X) =

k−1
∑

t=0

tr(Xi(t)C
′

iCi), (28)

and define

Wk(X) =

N
∑

i=1

Wk
i (X). (29)

The following definition of W-detectability is adapted from

the one presented in [20].

Definition 4 (W-detectability): Consider the system in (27).

We say (A,C,W ) is W-detectable when there exist integers

k1, k2 ≥ 0 and scalars 0 ≤ δ < 1, γ > 0 such that Wk1(X) ≥
γ ∥X(0)∥ whenever ∥X(k2)∥ ≥ δ ∥X(0)∥, with ∥X∥ defined

as

∥X(k)∥2 =

N
∑

j=1

tr(Xi(k)
′Xi(k)).

For the sequence O(k) ∈ H
n0, defined recursively as

Oi(k + 1) = C ′

iCi +A′Ei(O(k))A, Oi(0) = 0, (30)

it has been shown (see [22]) that for the system in (27),

Wk(X) can be expressed as

Wk(X) =

N
∑

i=1

µix(0)
′Oi(k)x(0). (31)

Note that the expression inside the sum in (31) can be

expressed as

x(0)′Oi(k)x(0) =
k−1
∑

t=0

N
∑

j=1

w
(t)
ij ∥yj∥2 ,

which represents the total output energy available at node i at

time k after getting diffused by the network. The following

property for W-detectability is proven in [20].

Lemma 4: Consider the system in (27). (A,C,W ) is

W-detectable iff whenever Wn2N (X) = 0, one has that

∥X(k)∥ → 0 as k → ∞ for any scalars µi satisfying
∑

i µi = 1.

We define the set of observability matrices O =
{O1, · · · ,ON}, where

Oi =
[

Oi(0) · · · Oi(n
2N − 1)

]

′

(32)

for each i ∈ {1, . . . , N}, and the matrices Oi(k) are defined

recursively as

Oi(k + 1) = A′

iEi(O(k))Ai, Oi(0) = C ′

iCi. (33)

The following result relates the notion of W-detectability to

that of the kernel of the observability matrices Oi.

Lemma 5: (A,C,W ) is W-detectable iff for some

x(0) ∈ null(Oi), for any i ∈ {1, . . . , N}, we have that

limk→∞ ∥x(k)∥2 = 0, and the pair (A,Oi) is detectable.

Proof: First, we show that if x(0) ∈ null(Oi), for any

i ∈ {1, . . . , N}, then there exist scalars µi ≥ 0 satisfying
∑

i µi = 1 such that Wn2N (X) = 0. Indeed, if x(0) ∈
null(Os) for some s ∈ {1, . . . , N}, it immediately follows

from the definition of (30) and (32) that x(0)′Os(n
2N)x(0) =

0. Finally, setting the the scalaras µi = δis (δis = 1 if

i = s; otherwise δis = 0) results in Wn2N (X) = 0. The

proof is completed by applying Lemma 4 and noting that if

∥X(k)∥ → 0 then ∥x(k)∥ → 0.

We also utilize the following lemma that was presented

in [20] to establish the relationship between S-detectability

and W-detectability. Since the proof requires many of the

preliminary results developed in [20], we encourage the reader

to explore this reference for a complete proof of Lemma 6.

Lemma 6: If (A,C,W ) is S-detectable, then (A,C,W ) is

W-detectable.

Proof: The statement immediately follows from [20], af-

ter noting the similarity between the notions of S-detectability

in this distributed filtering problem and the MS-detectability

in MJLS.

Finally, we provide the following definition regarding source

components of the network.

Definition 5 (Detectable source component): A source com-

ponent S = {s1, . . . , sp} is detectable if the pair (A,CS) is

detectable, where CS =
[

C ′

s1
. . . C ′

sp

]′

.

In the example graph shown in Figure 1, the source com-

ponents S1 and S2 are detectable if (A,C1) and (A, [C ′

5C
′

6]
′)

are detectable, respectively.

We now present the following necessary conditions for S-

detectability.

Theorem 3: If (A,C,W ) is S-detectable, then:

1) Every source component in the network is detectable.

2) wii < (1/rσ(A
u
i ))

2 for each i = 1, . . . , N , where Au
i is

the unobservable partition of A using Ci.

Proof: First, we show that the first statement holds. To

that end, if (A,C,W ) is S-detectable, then it is necessarily

W-detectable, and from Lemma 5 we have that (A,Oi) is

detectable for each i. It is easy to check that Oi(k) in (33)

can be written as

Oi(k) =
N
∑

j=1

w
(k)
ij A′kC ′

jCjA
k.

Let S be a source component, and denote by OS the

observability matrix corresponding to the pair (A,CS). It is

known that each agent i ∈ {1, . . . , N} is either part of a

source component, or there exists a directed path to i from

some agent j in a source component.

On the one hand, for some agent i ∈ S, it follows from

Definition 1 that there exists an integer l > 0 such that w
(l)
ij >

0 for every j ∈ S. It can then be checked that for any i ∈ S,

null(Oi) = null(OS), and S is a detectable source component

since for any x(0) ∈ null(OS), limk→∞ ∥x(k)∥2 = 0.

On the other hand, if i /∈ S, then there is no directed

path from i to j ∈ S, and null(Oi) ⊆ null(OS). However,

since (A,Oi) and (A,Oj) are detectable, with null(Oj) =
null(OS), then S is a detectable source component.

Now we show that the second statement holds. Indeed, if

(A,C,W ) is S-detectable, then there exist gain matrices Li,

i = 1, . . . , N , such that rσ(L) < 1. From Lemma 1, this

implies that P −L(P ) > 0 for some positive definite matrices
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P ∈ H
n+. Following the same approach as in [23], we have

that

Pi−(A− LiCi)
′

N
∑

j=1

wijPj(A− LiCi) > 0,

⇒ Pi−(
√
wii)(A− LiCi)

′Pi(
√
wii)(A− LiCi) > 0,

for i = 1, . . . , N , and therefore (
√
wiiA,Ci) is detectable. We

can then find a similarity transformation to transform the pair

(
√
wiiA,Ci) into

Āi = Ti (
√
wiiA)T

′

i =
√
wii

[

Ao
i 0

Ac
i Au

i

]

,

C̄i = CiT
′

i =
[

Co
i 0

]

,

where
√
wiiA

u
i represents the unobservable modes. Clearly, if

(
√
wiiA,Ci) is detectable then

√
wiiA

u
i must be stable, and

wii < (1/rσ(A
u
i ))

2.

These necessary conditions allow us to consider the weakest

communication topologies that are needed for S-detectability,

as well as the maximum values for the self-weights used in

consensus. Note that Theorem 3 does not require the overall

network to be connected as long as each source component

of the network is detectable in the sense of Definition 5.

Practically, these necessary conditions allow us to analyze

whether or not a given network prohibits our distributed KF

from successfully estimating the system by violating the re-

quirements in Theorem 3. Moreover, these conditions facilitate

the search for a viable W that renders (A,C,W ) S-detectable,

and ensures that the noise-free error dynamics are stable.

V. NUMERICAL EXAMPLES

We consider a two-dimensional system (i.e., n = 2) with

A =

[

2 1
−0.5 4

]

,

where the eigenvalues of A are λ1 = 2.2929 and λ2 = 3.7071,

and the system is unstable. This system is monitored by N =
10 sensors, and we denote by Nodd (respectively, Neven) the

set of odd (respectively, even) numbered agents. Let Ci = v1
for sensors i ∈ Nodd and Ci = v2 for i ∈ Neven, where v1
and v2 are the left eigenvectors corresponding to λ1 and λ2.

Clearly, no pair (A,Ci) is detectable on its own, implying

that all agents require additional information to satisfy the

conditions for S-detectability. Note that the spectral radius of

the unobservable partitions for odd-numbered agents is λ2, and

for even-numbered agents it is λ1. Therefore, we require that

wii < 1/λ2
2 = 0.073 for odd i and wii < 1/λ2

1 = 0.19 for

even i.
In order to find a network topology and weights that renders

the networked system S-detectable, we first identify the net-

work topologies that ensure W-detectability for the network.

For this example, we can find several different topologies

that satisfy the conditions in Theorem 3. Figure 2 shows

some of these possible configurations. Note that the overall

network does not need to be connected as long as every source

component is detectable.

To show the importance of the values of self weights wii,

we consider the cycle topology G1 shown in Figure 2(a) since

the diagonal entries wii indirectly impose that the remaining

consensus weight for each agent is 1 − wii. We simulate the

response of a distributed Kalman filter using (20)±(22) with

the filtering gains shown in (21) using the same cycle topology,

but with different wii values. The off-diagonal entries of W
representing the incoming edge for each agent in G1 are set

to 1 − wii. Specifically, we consider four sets of consensus

weight matrices, where

Wa :

{

wii = 0.03, i odd

wii = 0.05, i even
, Wb :

{

wii = 0.06, i odd

wii = 0.18, i even

Wc :

{

wii = 0.08, i odd

wii = 0.20, i even
, Wd :

{

wii = 0.12, i odd

wii = 0.25, i even

The simulations were initialized with x(0) =
[

−15 15
]

′

,

x̂i(0) =
[

0 0
]

′

, Pi(0) = ϵi(0)ϵi(0)
′, Ri = 10−3, and

Q = 10−3I , where I is the 2-by-2 identity matrix. Figure 3

shows the sum of the traces of the filter’s error covariance

matrices, which are the upper bounds of the network-wide

error norms, for various consensus weights. Figure 3 shows

the convergence behavior of the covariance matrices as the

self-weights vary under the same communication topology,

and highlights the importance of the consensus weights when

running the distributed KF. These results suggest a slower di-

vergence or convergence behavior as the self weights approach

their cutoff limits, with quickest divergence observed for Wd,

and the fastest convergence observed with Wa.

Finally, we utilize Proposition 1 to search for a set of

consensus weights consistent with the other topologies in

Figure 2 that satisfy the S-detectability condition. For example,

searching for consensus weights consistent with the topology

in Figure 2(b), one can find that the following consensus

weights

W =













W1 0 0 0 0
0 W2 0 0 0
0 0 W3 0 0
0 0 0 W4 0
0 0 0 0 W5













,

satisfy the S-detectability condition, where each Wi describes

the weights for each source component, with

Wi =

[

0.02 0.98
0.9 0.1

]

.

A similar search can be done for the topology shown in

Figure 2(c), resulting in the consensus weights

W =

































0.05 0 0 0 0 0 0 0 0 0.95
0 0.1 0.9 0 0 0 0 0 0 0
0 0.95 0.05 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0.9 0 0 0 0 0 0 0 0 0.1

































.
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A. Proof of Lemma 3

For the noise-free case, we note that the matrix Ξi(k + 1)
can be explicitly written as

Ξi(k + 1) =



(A− LiCi)

N
∑

j=1

wijϵj



×



(A− LiCi)

N
∑

j=1

wijϵj





′

.

Using Remark 1, it follows that

Ξi(k + 1) ≤ (A− LiCi)

N
∑

j=1

wijΞj(k)(A− LiCi)
′.

Defining Ξ(k) ∈ H
n0, with Ξi(k) shown above, we have

Ξ(k + 1) ≤ L(Ξ(k))

with Γi = (A − LiCi), and the first statement can then be

proved by induction.

Assuming that the initial state x(0), and the noises vi(k)
and ω(k) are independent for all k ≥ 0, the second statement

can be proved in a similar manner. Since the noises have zero

mean and are independent with respect to themselves and x(0),
using Remark 1 it can be checked that

Σi(k + 1) = E {ϵi(k + 1)ϵi(k + 1)′}
≤ Li(Σ(k)) +Q+ LiRiL

′

i,

with Σ(k) = (Σ1(k), . . . ,ΣN (k)) ∈ H
n+ and Γi = (A −

LiCi). The second statement can then be proved by induction.

B. Reversing Order of Consensus and Filtering Steps

It is possible to derive an alternate version of this distributed

KF by reversing the order of which the consensus and filtering

steps are taken, resulting in the distributed filter described in

[11], and leading to a different form of the CARE’s. In this

case, the noise-free estimation error dynamics are given by

εi(k + 1) =

N
∑

j=1

wij (A− LjCj) εj(k). (34)

First we show that the dynamics in (34) are asymptotically

stable iff the dynamics in (13) are asymptotically stable. From

(34), the network-wide error dynamics can be expressed as

ε(k + 1) = B2ε(k), (35)

where B2 ≜ (W ⊗ In)diag[A − LiCi] ∈ B
(

R
Nn

)

. Since

(W ⊗ In) ∈ B
(

R
Nn

)

and diag[A − LiCi] ∈ B
(

R
Nn

)

, it

follows that rσ(B) = rσ(B2) and (15) is asymptotically stable

iff (35) is asymptotically stable.

The notion of S-detectability in Definition 3 implies that

there exist certain gain matrices such that the dynamics of

the upper bounds for the noise-free covariances in (17) are

asymptotically stable. To show that notion holds regardless

of the order of the consensus and filtering steps, we need to

consider the upper bounds of the noise-free covariances for

(35).

The upper bound for the noise-free covariance matrices

Ξi(k) can then be written as

P (k + 1) = J (P (k)), P (0) = Ξ(0), (36)

with Γi = (A− LiCi).
Lemma 1 implies that rσ(J ) = rσ(L). Therefore, the

dynamics in (17) are asymptotically stable iff (36) is asymptot-

ically stable, and the notion of S-detectability in Definition 3

does not depend on the order in which the steps are taken.

Furthermore, it has been shown in [19] that the coupled

Riccati equations arising from reversing the order converge

to a stabilizing solution iff the equations in (24) converge to

a stabilizing solution. Therefore, the necessary and sufficient

conditions we derive in Section IV do not depend on the

order of the consensus and filtering steps. However, this

realization of the filter requires agents to also share their local

measurement and noise covariance matrices, making it less

desirable than the distributed KF we propose here.
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