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Numerical and Topological Conditions for Sub-optimal Distributed
Kalman Filtering*

Osama Ennasr and Xiaobo Tan

Abstract—This paper considers the problem of distributed
state estimation of a linear time-invariant (LTI) system by a
network of sensors in a discrete-time setting. Specifically, we
consider a consensus-based distributed Kalman Filter (KF) where
each sensor updates its estimate in two steps: a consensus
step dictated by a weighted and directed communication graph
followed by a local Luenberger filtering step. For a given network,
we show that the sub-optimal filtering gains that minimize an
upper bound of a quadratic filtering cost can be computed by only
exchanging state estimates and their covariance matrices among
agents. The resulting dynamics for the network’s covariance
matrices are represented by a set of coupled algebraic Riccati
equations (CARE’s) that can be analyzed to ensure stability.
Next, we connect some of the results from the Markovian jump
linear systems (MJLS) literature regarding the underlying CARE
dynamics to the distributed estimation problem, and provide sep-
arate necessary and sufficient conditions for successful estimation.
We show that the notion of strong detectability (S-detectability)
plays an important role in the stability of the filter matrices and
ensures that the noise-free error dynamics exponentially converge
to zero. We then utilize the notion of weak detectability (W-
detectability) to provide necessary conditions in terms of the
network topology and self-weights of the communication graph.
We further demonstrate how these notions of detectability can be
combined to search for feasible network topologies and weights
that ensure this sub-optimal performance. Numerical examples
are given to illustrate these results.

I. INTRODUCTION

Sensor networks have broad applications in environmental
surveillance and monitoring, collaborative information pro-
cessing, and scientific data gathering from spatially distributed
sources for environmental modeling and protection [1]-[3]. In
many applications involving large-scale complex systems, the
state of the system is monitored by a group of sensors spatially
distributed over large networks where the communication
between sensors is limited. To model such a scenario, consider
the discrete-time linear time-invariant (LTI) dynamical system

x(k+1) = Ax(k) + w(k) (1)

where k is the discrete-time index, z(k) € R™ is the state
vector, A is the system matrix, and w(k) € R™ is the driving
noise assumed to be Gaussian with zero mean and positive
definite covariance (). The state of the system is monitored
by a network of N agents indexed by ¢, each of which is
equipped with a sensor that receives a partial measurement of
the state that is modeled by
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where y;(k) € RPi is the measurement made by sensor 4
with C; as the measurement matrix, and v; € RPi is the
measurement noise assumed to be Gaussian with zero mean
and positive definite covariance R;. An important problem in
such networks is to develop distributed algorithms for state
estimation of the process in (1), where the goal is for each
agent to estimate the entire system state using its respective
local measurements and the information obtained from its
neighbors.

A. Related Work

This distributed filtering problem has received significant
attention over the past two decades. Earlier work in [4],
[5] considered the distributed estimation of scalar stochastic
systems over general graphs. In these works, it is typically
assumed that each node receives scalar local observations,
leading to local observability at every node. For more general
stochastic systems, a Kalman filter (KF)-based approach has
been explored by several researchers. In [6]-[9] consensus
filtering is conducted among agents to replicate a centralized
KF. These approaches rely on a two-step strategy running
on two time scales — a KF-based state estimate update rule
on the system’s timescale and a data fusion step based on
average consensus at a much faster time scale. However, the
convergence to the consensus in such approaches requires
infinite communication steps between two consecutive local
updates, which is far from realizable in any systems.

For that reason, researchers investigated single time-scale
algorithms where the data fusion occurs once per time step
of plant dynamics [10]-[18]. In [13] and [16], the authors
develop single time-scale algorithms for the general case of
a directed communication network, where local observability
at every node is not necessarily satisfied. In these works, the
authors rely on state augmentation for casting the distributed
estimation problem as a problem of designing a decentralized
stabilizing controller for an LTI plant using the notion of
fixed modes. Recent work in [17] tackled the problem of
distributed estimation of LTI systems under this general setting
as well while alleviating the need for state augmentation and
proposed a multi-sensor observable canonical decomposition
of the networked system. Each node in the resulting distributed
filtering strategy utilizes a Luenberger observer to estimate the
modes that are observable using its own measurements, while
relying on network-wide consensus to estimate the remaining
unobservable modes. In general, to successfully implement
this approach, the modes that each agent needs to perform
consensus on should be determined during the design stage,
which may be difficult to assess when the network topology
changes. Furthermore, given a specific network topology and
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weights, the filtering gains that can be obtained using this
approach do not offer quantifiable measures to the optimality
of the estimates.

The success of the KF in centralized systems, thanks to its
optimality and its elegant algorithmic description, has made it
a popular basis for distributed estimation algorithms. Several
ideas have emerged to extend the Kalman filter to distributed
estimation [7]-[11], [15], [18]. The single time-scale variations
of the distributed KF, such as the ones proposed in [10], [11],
[15], [18], have prompted further investigation of these filters.
In [10], a diffusion-based KF is proposed where the covariance
matrices from each sensor are updated incrementally by in-
corporating the observation matrices of the sensor’s neighbors
in a sequential manner such that only local information is
required within the algorithm. However, the local estimates
generated at each node do not offer any quantifiable optimality
measure for the overall networked system. In [11], the authors
propose a consensus-based distributed linear filter, where each
sensor updates its estimate in two steps: a local update step
using its own observations followed by a consensus step
with its neighbors. The work done there offers a certain
sub-optimal performance and the authors go on to provide
sufficient conditions for the convergence of this distributed
filter for a given network topology and weights in terms of the
feasibility of a set of linear matrix inequalities (LMIs). While
these LMI checks provide an effective way to numerically test
whether or not a networked filter will successfully estimate the
system state, they do not offer insight into the necessary net-
work connectivity and weights needed for the stability of the
networked filter’s estimation error. In contrast, the authors in
[15] employ structural analysis to derive the network topology
requirements for successful estimation. While this structural
analysis is useful in specifying the topological connections in
the sensor network, it structural nature (i.e., the zero and non-
zero structure of entries in the filter matrices) does not offer
insight into the role of the consensus weights in distributed
filtering. More recent work in distributed Kalman filtering
is presented in [18] where the authors utilize covariance
intersection for fusing the estimates and covariance matrices
for each agent with those of their neighbors. The authors split
the communication graph into an observation topology (over
which the observations, or measurements, and their matrices
are exchanged), and a covariance intersection topology (over
which the covariance intersection procedure occurs).

In all of these distributed KF approaches, each agent needs
to exchange their local measurements, measurement matrices,
noise covariance matrices, or filtering gains in addition to their
estimate and estimate covariance matrices with its neighbors
in order to successfully estimate the system. This presents a
drawback in networks with limited bandwidth as it increases
the burden on the communication network to effectively ex-
change this data.

B. Summary of Contributions

In this work, we propose a consensus-based distributed
KF for time-invariant topologies that only requires agents to
exchange their estimates and their covariance matrices. For
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a given network topology and consensus weights, we derive
the sub-optimal filtering gains that minimize an upper bound
of a quadratic estimation error cost function. Our approach
does not require additional information to be exchanged (such
as local measurement matrices, gain matrices, noise matrices,
or raw measurements) as in [11], [18], and does not require
each node to determine which modes to observe directly and
which ones to be estimated through consensus as was the
case in [17]. We leverage existing results on the underlying
CARE equations to derive separate necessary and sufficient
conditions for our distributed KF. Combining these sufficient
conditions, which can be efficiently checked numerically, and
the necessary conditions, which can be verified by inspection,
facilitates the search for viable communication topologies and
consensus weights that ensure successful estimation.

The remainder of this paper is organized as follows. In
Section II we provide the notation and preliminary results
used throughout this paper, and discuss the error dynamics
of our distributed filter. In Section III we derive the sub-
optimal distributed KF gains for a given network that are
computed using the CARE of the network. In Section IV we
present the separate necessary and sufficient conditions for our
distributed KF. A numerical example is given in Section V,
where we utilize the aforementioned conditions to effectively
search for consensus weights that ensure successful estimation.
Concluding remarks are finally provided in Section VI. In the
appendices, we provide a proof that was omitted to improve
readability, and show that these results hold when the order
of the filtering and consensus steps is reversed.

II. BACKGROUND AND PROBLEM SETUP
A. Notation

For normed spaces X and Y, we set B(X,Y) as the
space of all bounded linear operators of X into Y, and use
B(X) £ B(X,X). We denote by R™ the n-dimensional real
Euclidean spaces and B(R™, R™) the normed bounded linear
space of m x n real matrices, with the uniform induced-norm
represented by ||.||, and use B(R") £ B(R",R™). We use the
notation null(X) to indicate the kernel of a matrix X. The
spectral radius of an operator 7 € B(X) is denoted by r(T),
while the superscript ’ indicates the transpose of a matrix, and
® represents the Kronecker product. We denote the expected
value by E{-}, and use tr(-) to indicate the trace.

Throughout this paper, we will work with a collection of
N matrices when deriving the sub-optimal filtering gains for
our distributed filter. Therefore, it comes up naturally that a
convenient space to be used is the one defined by H™™, which
is the linear space made up of all N-sequences of matrices
V=MW,...,Vn) with V; € B(R”,R™). For simplicity we
set H" £ H™". For V € H™™ we write V' = (V/,...,V}) €
H™™ and say that V € H" is symmetric if V = V’. We
set H"® (respectively, H"") as the space made up of all
N-sequences of symmetric positive semidefinite (respectively,
positive definite) matrices. For V, .S € H", we write V' > S
ifV—-8=0W;—5,....,Vy — Sy) € H", and that V > S
if V-8 ¢ H*, ie., V; — S; > 0. Finally, for a set of N
matrices, M; € B(R™), we denote by diag[M;] the Nn x Nn
block-diagonal matrix with M, in the diagonal.
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Fig. 1: Example network of 6 agents with source components
Sl = {1} and SQ = {5,6}

B. Communication Network

We represent the communication network and consensus
weights by W € B(R™) where elements w;; are nonnegative
scalars and the rows sum up to one, i.e.,

N
> wi=1, i=1,..,N,
j=1

with w;; > 0 if agent ¢ can obtain information from agent j;
otherwise, w;; = 0.
For a weight matrix W, define recursively,

N
wi) =Y wh Nwg,  wl) =0y, 3)
k=1

as the total weight of the directed paths of length [ from node
J to node i, where d;; = 1 if i = j; otherwise J;; = 0. We
recall the following definition of a source component in the
network [17].

Definition 1 (Source component): A set of agents S =
{s1,.--,8p}, S C{1,...,N}, is a source component of the
network if there exists an integer [ > 0, such that wg.) >0
forany i,j € S, and forany ¢ € Sand j ¢ S, wg) = 0 for all
[>0.

Graphically, source components are connected components
of the graph with no incoming edges. Figure 1 shows an

example network of 6 agents that has two source components,
Sl = {1} and SQ = {5,6}

C. Coupled Riccati Equations

For any set of square matrices S € H", we define the
operators £ and L as

., EN(5)) € B(H") ()
where

where  L;(S) £ T;E(9)T; € B(R™),

for some T'; € B(R™),Vi=1,...,N.
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Similarly, we define the operators 7, V, and 7, as

T(S) = (Ti(S),...,Tn(S)) € B(H")  (6)

N
where T;(S) = ZwﬁI‘;SjI‘j € B(R"),
j=1
V() = (V(S),....Vn(S)) e BH") (D)
N
where VL(S) = Zwﬂl“;SLFJ S B(Rn),
j=1

J(9) = (J1(5),...,In(S)) € BH")  (8)

N
where  J;(S) = Zwijl"jsjl"; € B(R™).
j=1
The following result is important in the analysis of the coupled
Riccati equations.

Lemma 1 (Proof in [19]): Consider the operators in (5)—(8).
We have that

ro(L) =70(V) = 16(T) = 75(J) = 15(A),

where A = diag[T;QT;|(W®I,,2) € B (RN "*) . Furthermore,
the following statements are equivalent and hold when L is
replaced with 7,V, or J :

o Ty (.A) < 1.

o There exists some P € H"t such that P — L(P) > 0.

o For any S € H"", there exists a unique P € H"", such

that P — L(P) = S.

The CARE’s can be expressed in different ways using the
operators defined in (4)—(8). In this paper, we will focus on
the ones expressed as

Pi(k+1) =A&(P(k))A" + Q — A&i(P(k))Cix
(Ci&(P(R)C] + R)'Ci&i(P(k) A (9)

These CARE’s in (9) have received significant attention in
optimal filtering and control of MJLS [19]-[21]. We note the
following result from [19] regarding the convergence of these
equations.

Lemma 2 (Proof in [19]): The CARE’s in (9) converge to
the stabilizing solution

P, =A&(P)A" + Q — AE(P)C) x
(CLSL(P)CZ, + R,-)_lc'ié’i(P)A’
only if there exist matrices L1, ..., Ly such that 7,(£) < 1

with T'; = A — L;C;. The stabilizing gains in this case are
expressed as

Li = A&(P)C!(R; + C;&(P)C) L.

D. Problem Setup

To solve the problem of estimating (1) by a network of
sensors with measurements modeled by (2), we propose a two-
step approach to the distributed estimation problem. In the
first step, each agent produces an intermediate estimate of the
state, &;(k), by performing a convex combination of its own
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estimate, 7;(k), and the state estimates by all other agents
within its communication range, i.e.,

N
(k) = widj(k), i=1,...,N. (10)

j=1
where w;; is the element of W representing the consensus
weight associated with the time-invariant network topology.
After all agents complete the consensus step, each agent then
updates its estimate by performing a local filtering step based
on the intermediate estimate £(k), i.e.,

(k1) = 4609 + L (0 - G&®)). (D

where L; is the filter gain. Combining (10) and (11), we obtain
the dynamic equation for each agent’s estimate

N
Ei(k+1) =AY wi;d;(k)
=l (12)
N
j=1

Letting ¢;(k) = (k) —Z;(k) denote the estimation error for
agent ¢ at time k, we obtain the following one-step formulation
for the estimation error for each agent

N
EZ(k‘—i- 1) = (A — chz) Z wijej(k) +w(l<:) — Ll’Uz(k‘) (13)

Focusing on the noise-free dynamics of the estimation errors
in (13) and denoting the noise-free error for agent ¢ by &;(k),
we have

N

j=1

(14)

Defining the network-wide noise-free estimation error as
e(k) = [e1(k) ---en(k)']', one can show that the network-
wide dynamics for e(k) are given by

e(k+1) = Be(k), (15)
where B £ diag[A — L;C;](W ® I,,) € B (RN™). Clearly, the
system in (15) is asymptotically stable if r,(B) < 1.

Definition 2 (Distributed detectability): For the system in
(1)—(2) and the consensus weights W, we say (A,C,W) is

detectable in the distributed sense if there exist gain matrices
L;,i=1,...,N, such that r,(B) < 1.

ITII. SUB-OPTIMAL DISTRIBUTED KALMAN FILTERING

To find the optimal filtering gains for this distributed
problem, we introduce the following finite horizon quadratic
filtering cost function

k

> E{la®l™)

t=0 i=1

J(k) (16)

Ideally, we would like to obtain the optimal filtering gains
that minimize the cost function in (16). However, due to
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the complexity of this optimization problem, we focus on
providing filtering gains that minimize an upper bound of the
cost function in (16). This, in turn, leads us to a sub-optimal
distributed filtering scheme with quantifiable performance.

Lemma 3: Define Z(k) = (Z1(k),...,Enx(k)) € H"O,
where Z;(k) = e;(k)e;(k)'. Let P(k) € H" be defined
recursively as

Pk 4 1) = £(P(R),
with T'; = (A — LlCZ) Then,
=(k) < P(k),

Furthermore, define (k) € H"" and P(k) € H"", where
Yi(k) = E{e;(k)e;(k)'} denotes the covariance of agent
i’s estimation error with noise in (13), and P;(k) is defined
recursively as

Pi(k+1) = L;(P(k))+Q + L;R; L,

P(0) = £(0), a7

vk > 0.

P(0) = (0), (18)

with I'; = (A — L;C;), R; being the covariance matrix of the
measurement noise for sensor ¢, and Q being the covariance
matrix of the process noise. Then,

S(k) < P(k), Yk >0.

Proof: See Appendix A. [ ]

Lemma 3 provides an upper bound for each agent’s co-

variance matrix. This in turn allows us to establish an upper
bound, J(k), for the cost function J(k) in (16), where

B k N
Tk =32 S w(Pi(e)),

t=0 i=1

19)

with P;(-) defined in (18). From Lemma 3, it immediately
follows that
J(k) < J(k).

The following theorem establishes the filtering gains that
minimize the upper bound shown in (19) for our distributed
filtering scheme.

Theorem 1: For a given matrix of consensus weights, W,
the filtering gains that minimize the upper bound in (19) can
be computed using the same network topology and weights in
a two-step approach. During the consensus step, each agent
computes an intermediate covariance matrix by performing a
convex combination of their own P;(k) and those of their
neighbors, i.e.,

N

(k) = wi; P; (k). (20)
j=1

Then, during the filtering step, each agent computes the

local filtering gain to be used in (11) using the intermediate

covariance

Li(k) = AIL(K)C{(R; + CiIL(K)C) ™Y, 2D
and updates its covariance upper bound according to
(CiIL;(K)Cl + Ry) " *CilL; (k) A'. (22)
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Proof: First, we show that the optimal cost J*(k) is
obtained using the gains

L; (k) = A&(P*(k))C{(R; + Ci&;(P*(k))C) ™, (23)

with P*(0) = ¥(0), and P*(k) € H"" is computed using
(18) with the gains L} (k).

Let J(k) denote the cost when an arbitrary set of gains
L;(k) is used, and let P(k) € H"* denote the matrices
obtained when these arbitrary gains are used in (18). To show
the desired result, we need to show that

kE N
J(k) = J*(k) =Y > " ue(Pi(t) — PF(t) > 0.
t=0 i=1
We do that by induction. For P(0) > P*(0), it can be
shown through matrix manipulation (see [19]) that

P*(1) = Pi(1)
= (A= L;C;)&(P(0) — P(0))(A— L;Cy)
— (Li — L})(R; + C:&(P(0))C}) (Li — L).

Since P(0) > P*(0) and (R; + C;&;(P(0))C}) > 0, it im-
mediately follows that P;(1) > P;(1) and J(k) — J*(k) > 0.
Now, let P(k) > P*(k). Utilizing the same matrix manipula-
tion as above, since (R; + C;&;(P(k))Cl) > 0, it follows
that P;(k + 1) > Pf(k + 1) for all k& > 0. Finally, we
show that these sub-optimal gains and the matrices P*(k)
can be computed in the distributed manner shown in (20)-
(22). Indeed, substituting L} (k) in (18), and after performing
additional matrix manipulation, we can write

Pk +1) = A&(P*(k)A + Q — A& (P*(k))C; x

(Ci&(P*(k))C! + R) 1 Ci&(P* (k) A, (24)

which is the same expression obtained when substituting (20)
into (21) and (22). [ |
Substituting II;(k) from (20) into (22) yields the set of
CARE’s in (9). We refer to the filter resulting from (10)—(11)
and (20)—(22) as the distributed KF — due to its similarity to
the centralized Kalman filter — and it presents an attractive
solution to the distributed filtering problem as it provides a
sub-optimal scheme with quantifiable performance.

IV. CONDITIONS FOR STABILITY OF ESTIMATION ERROR

For a centralized estimation problem, the detectability of
the pair (A,C) plays an important role in the convergence
the centralized KF. Therefore, it is natural for us to seek
a similar notion for the distributed problem. In this section,
we employ some of the results reported in [19]-[21] to
provide sufficient and necessary conditions for the stability of
the estimation errors under this distributed KF. Specifically,
we make use of the notions of mean square detectability
(MS-detectability), i.e., relating to the second moment of
the underlying random variable, and weak detectability (W-
detectability) [19], [21], to introduce similar notions for our
distributed filtering problem. For a complete discussion on
MS-detectability and relevant results in MJLS, we refer the
reader to [19] and references therein. Roughly speaking, MS-
detectability requires the existence of filtering gains that result
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in a contraction of an operator on the space of a set of matrices,
and can be verified using LMI-based techniques [19]. On the
other hand, W-detectability does not require the contraction
property imposed by the MS-detectability [20], and instead
deals with the observable subspaces for each agent, resulting
in topological conditions that can be verified by inspection.

In what follows, we introduce the notion of strong de-
tectability (S-detectability) for our distributed filtering prob-
lem, an analogy to the MS-detectability in MJLS systems. S-
detectability ensures that the upper bounds of the error covari-
ance matrices can be stabilized and remain bounded, which we
use to derive conditions on some of the network’s consensus
weights. We then consider the W-detectability property for our
distributed system, and utilize the results in [21] and [20] to
arrive at the network topologies necessary for the success of
this distributed filter.

A. Sufficient Conditions

Theorem 2: If there exist gain matrices Lq,..., Ly, and
symmetric positive definite matrices P € H"** and S ¢ H"*
such that

P-T(P)=5, (25)

with T'; = A — L;C;, then the noise-free error dynamics in
(14) are exponentially stable. This holds when 7 is replaced
by £,V,or J.

Proof: To show the desired result, we define the Lyapunov
function

N
V(k) = ei(k) Piei(k).
i=1

It follows that,

V(k+1) = V(k)
N N
= Zwiﬁj(k)/ F;Piri Zwijgj(k)
i Jj=1 Jj=1

—&; (]f)lplffz(k)

N
> wije; (k) TiPTie (k) | — ei(k) Piei(k)
j=1

Reversing the order of the sums, we have

Vik+1) = V(k)
N N
< Zsl(k)/ ijiI‘JPJFJ Pz Ei(k)a
i=1 j=1

and using 7 in (6) yields
N
V(k+1) = V(k) <Y ei(k) (Ti(P) — P)ei(k).

From (25), we have

P, Ti(P) = S,
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and thus
N
V(k+1)-V(k) < - Z gi(k)'Siei(k).
i=1

From the fact that S € H"", we get V(k+1) — V(k) <0
and the error dynamics in (14) are exponentially stable. From
Lemma 1, it follows that this result holds when 7T is replaced
by £,V, or J. [ |

From Lemma 1, it is clear that there exist matrices P € H**
and S € H" such that (25) holds iff there exist gain matrices
Ly,...,Ly such that r,(£) < 1 with T'; = A — L;C;. This
gives rise to the following stronger notion of detectability for
our distributed filter based on the operators defined in (5)—(8).

Definition 3 (S-detectability): For the system in (1)—(2) and
the consensus weights W, we say (A, C, W) is S-detectable
if there exists a set of gain matrices L;, ¢ = 1, ..., IV, such that
Tg(ﬁ) <1withT; = A - L;C;.

Corollary 1: If (A,C,W) is S-detectable, then (A, C, W)
is detectable in the sense of Definition 2.

Proof: The result follows immediately from Lemma 1

and Theorem 2. [ ]

Generally speaking, the reverse is not necessarily true. That
is, finding gain matrices such that r,(B) < 1 does not
imply that r,(£) < 1. Indeed, consider the example of a
scalar system monitored by two agents, where I'y = 1.3 and
I'y = 0.75, with consensus weights

0.1 0.9}

W= {0.1 0.9

It can be verified that r,(B) = 0.975 while r, (L) = 1.04.

The interchangeability between the operators allows us to
check for S-detectability using any of the given operators using
LMI techniques such as the ones shown in [11] and [19].
Specifically, we show that the following numerical check can
determine S-detectability of (A, C, W).

Proposition 1: (A,C,W) is S-detectable if there exist
matrices Y1, ...,Yy and X € H"" such that the following
set of N LMIs are feasible for all i =1,..., N

M; 12

M; 11
: >0, 26
{M{,m Mi,zz] 20
where
M; 11 = X, M; 29 = diag[X;]
and

,/wli(XlA — chl)
M= | Vw;i(X;A-Y;Cj)

«/U)Ni(XNA — YNCN)
Proof: Applying the Schur complement lemma, the LMIs
in (26) are feasible if forz =1,..., N

N
Xifz wﬂ(XjAfYJCJ)’Xj_l(XJAfYJC’j) >0, X;>0.

j=1
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Grouping terms and using the definition of 7 in (6) yields
X—-T(X)>0

with I'; = A — X, LY.C;. The result then follows from
Theorem 2 and Lemma 1. |

Note that while S-detectability is sufficient for exponential
stability of the noise-free error dynamics in (14), it is only
necessary for the convergence of the CARE’s to a stabilizing
solution. The full necessary and sufficient conditions for the
convergence of the CARE’s can be found in [19], but they
are difficult to verify and are beyond the scope of this
paper. Nevertheless, it has been shown that if (A, C, W) and
(A’,Qz,W') are S-detectable, then the CARE’s converge to
a unique stabilizing solution [19]. An LMI-based approach
similar to the one used in Proposition 1 can be employed to
check for S-detectability of (A’, Qz, W’ ).

B. Necessary Conditions

An important aspect of this distributed filtering problem is
to find a matrix of consensus weights W that satisfies the
S-detectability condition, as the LMI-based approach does
not offer much insight into the topological conditions of
the network. It is important, therefore, to investigate the
conditions required for S-detectability, as they are required for
the filter covariance matrices to remain bounded and ensure
that the noise-free dynamics are exponentially stable. The
mathematical description of S-detectability mimics the notion
of MS-detectability in MJLS, allowing us to leverage some of
the results there in analyzing the conditions on the consensus
weights and network connectivity needed for the stability of
the estimation errors. The remainder of this section is aimed
at providing the necessary conditions for S-detectability of
(A,C, W) in terms of network topology and communication
weights.

Before presenting the main result, however, we review some
of the relevant results from MILS. Specifically, we make
use of the notion of W-detectability, which has been shown
to play an important role in the LQR control problem of
MIJLS [20], [21]. W-detectability is a weaker condition than
S-detectability in that it does not require the existence of gain
matrices that result in r,(£) < 1. It has been shown that W-
detectability is necessary for MS-detectability in MJLS [20],
and is therefore necessary for S-detectability in this distributed
estimation problem. The appeal for W-detectability is that it
offers an easier way to check, compared to S-detectability, and
allows us to consider the minimum network topology needed
for S-detectability. Some of the results listed in this subsection
require many of the auxiliary results developed in [21] and
[20]. To keep the discussion concise, we refer the reader to
those references for the full proofs of such results.

To formally define W-detectability in the context of dis-
tributed filtering, we consider the system

X(k+1) = T(X(k)),

X;(0) = p;x(0)z(0)', 27
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where f1; are nonnegative scalars such that ) . p; = 1 with
I'; = A, and introduce the functional

k—1
WEX) =Y w(Xi(6)CiCy), (28)
t=0
and define N
WHX) =Y WH(X). (29)
=1

The following definition of W-detectability is adapted from
the one presented in [20].

Definition 4 (W-detectability): Consider the system in (27).
We say (A, C,W) is W-detectable when there exist integers
k1,ke > 0 and scalars 0 < 6 < 1,7 > 0 such that W*1(X) >
~[|X (0)|| whenever || X (k2)|| > 0 || X (0)||, with | X|| defined
as

N
X ()7 = D2 Xk X, (k)

For the sequence O(k) € H"°, defined recursively as
O;(k+1)=ClC; + A'&(0(k)A, 0;(0) =0,

it has been shown (see [22]) that for the system in (27),
WP¥(X) can be expressed as

(30)

N
WHE(X) = pia(0) 05 (k) (0). (31)
i=1
Note that the expression inside the sum in (31) can be
expressed as

k—1 N

2(0Y0;(k)a(0) = >3 w1y,

t=0 j=1

which represents the total output energy available at node ¢ at
time k after getting diffused by the network. The following
property for W-detectability is proven in [20].

Lemma 4: Consider the system in (27). (A,C, W) is
W-detectable iff whenever W'V (X) = 0, one has that
IX(k)]|]| — 0 as & — oo for any scalars p; satisfying

duipi= L

We define the set of observability matrices O =
{01, -+ ,0n}, where
0; = [0i(0) Oi(n*N - 1))’ (32)

for each i € {1,..., N}, and the matrices O, (k) are defined
recursively as

Ok + 1) = ALE(O(k)) A;, 0;(0) =CiC;.  (33)

The following result relates the notion of W-detectability to
that of the kernel of the observability matrices O;.

Lemma 5: (A,C,W) is W-detectable iff for some
z(0) € null(0;), for any ¢ € {1,...,N}, we have that
limy_, o0 ||z(K)||* = 0, and the pair (4, O;) is detectable.

Proof: First, we show that if z(0) € null(O;), for any
i € {1,...,N}, then there exist scalars u; > 0 satisfying
S mi = 1 such that WW'N(X) = 0. Indeed, if x(0) €
null(O,) for some s € {1,..., N}, it immediately follows
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from the definition of (30) and (32) that 2:(0)’O(n?N)z(0) =
0. Finally, setting the the scalaras u; = d;5 (0;s = 1 if
i = s; otherwise &;s = 0) results in W”ZN(X) = 0. The
proof is completed by applying Lemma 4 and noting that if
| X (k)| — O then ||z(k)|| — O. ]

We also utilize the following lemma that was presented
in [20] to establish the relationship between S-detectability
and W-detectability. Since the proof requires many of the
preliminary results developed in [20], we encourage the reader
to explore this reference for a complete proof of Lemma 6.

Lemma 6: If (A,C,W) is S-detectable, then (A, C, W) is
W-detectable.

Proof: The statement immediately follows from [20], af-
ter noting the similarity between the notions of S-detectability
in this distributed filtering problem and the MS-detectability
in MJLS. |

Finally, we provide the following definition regarding source
components of the network.

Definition 5 (Detectable source component): A source com-
ponent S = {s1,...,s,} is detectable if the pair (A,Cs) is
detectable, where Cs = [C, Cgp}/.

In the example graph shown in Figure 1, the source com-
ponents S; and S, are detectable if (A4, Cy) and (A, [CLCE])
are detectable, respectively.

We now present the following necessary conditions for S-
detectability.

Theorem 3: If (A, C, W) is S-detectable, then:

1) Every source component in the network is detectable.
2) wi < (1/ry(A%))? for each i =1,..., N, where AY is
the unobservable partition of A using C;.

Proof: First, we show that the first statement holds. To
that end, if (A, C,W) is S-detectable, then it is necessarily
W-detectable, and from Lemma 5 we have that (A4,0;) is
detectable for each 4. It is easy to check that O;(k) in (33)
can be written as

N
Oi(k) =Y wit A*cho; A,
j=1

Let S be a source component, and denote by Os the
observability matrix corresponding to the pair (A,Cg). It is
known that each agent ¢ € {1,...,N} is either part of a
source component, or there exists a directed path to ¢ from
some agent j in a source component.

On the one hand, for some agent ¢ € S, it follows from
Definition 1 that there exists an integer [ > 0 such that wl(;) >
0 for every j € S. It can then be checked that for any ¢ € S,
null(O;) = null(Os), and S is a detectable source component
since for any (0) € null(Os), limy_,o ||z(k)|* = 0.

On the other hand, if ¢ ¢ S, then there is no directed
path from ¢ to j € S, and null(O;) C null(Os). However,
since (A, ;) and (A, O;) are detectable, with null(O;) =
null(Os), then S is a detectable source component.

Now we show that the second statement holds. Indeed, if
(A,C, W) is S-detectable, then there exist gain matrices L;,
i = 1,...,N, such that r,(£) < 1. From Lemma 1, this
implies that P — L(P) > 0 for some positive definite matrices
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P € H™". Following the same approach as in [23], we have
that
N
R*(A — chl)l Z wl-ij(A — LlC’Z) > 0,
j=1

= Pi—(Vwii)(A — LiGi) Pi(Vwii) (A — LiC;) > 0,

fori =1,..., N, and therefore (,/w;; A, C;) is detectable. We
can then find a similarity transformation to transform the pair

(W/wiiA, Cz) into
0
A

o
A= T (AT = Vi |
(2
C; =Gl = [C? 0],
where /w;; A} represents the unobservable modes. Clearly, if
(ywi A, C;) is detectable then /w; Aj' must be stable, and
Wi < (1/7"0(14;‘))2 | |
These necessary conditions allow us to consider the weakest
communication topologies that are needed for S-detectability,
as well as the maximum values for the self-weights used in
consensus. Note that Theorem 3 does not require the overall
network to be connected as long as each source component
of the network is detectable in the sense of Definition 5.
Practically, these necessary conditions allow us to analyze
whether or not a given network prohibits our distributed KF
from successfully estimating the system by violating the re-
quirements in Theorem 3. Moreover, these conditions facilitate
the search for a viable T that renders (A, C, W) S-detectable,
and ensures that the noise-free error dynamics are stable.

V. NUMERICAL EXAMPLES

We consider a two-dimensional system (i.e., n = 2) with

2 1
A= {—0.5 4} ’
where the eigenvalues of A are A\; = 2.2929 and )y = 3.7071,
and the system is unstable. This system is monitored by N =
10 sensors, and we denote by N,qq (respectively, Neyern) the
set of odd (respectively, even) numbered agents. Let C; = v;
for sensors i € Nyqq and C; = vy for i € Neyen, Where vq
and vo are the left eigenvectors corresponding to A; and \s.

Clearly, no pair (A, C;) is detectable on its own, implying
that all agents require additional information to satisfy the
conditions for S-detectability. Note that the spectral radius of
the unobservable partitions for odd-numbered agents is Ao, and
for even-numbered agents it is A;. Therefore, we require that
wi; < 1/A3 = 0.073 for odd i and wy; < 1/A2 = 0.19 for
even ¢.

In order to find a network topology and weights that renders
the networked system S-detectable, we first identify the net-
work topologies that ensure W-detectability for the network.
For this example, we can find several different topologies
that satisfy the conditions in Theorem 3. Figure 2 shows
some of these possible configurations. Note that the overall
network does not need to be connected as long as every source
component is detectable.

To show the importance of the values of self weights w;;,
we consider the cycle topology G; shown in Figure 2(a) since

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.or

the diagonal entries w;; indirectly impose that the remaining
consensus weight for each agent is 1 — w;;. We simulate the
response of a distributed Kalman filter using (20)—(22) with
the filtering gains shown in (21) using the same cycle topology,
but with different w;; values. The off-diagonal entries of W
representing the incoming edge for each agent in G; are set
to 1 — w;;. Specifically, we consider four sets of consensus
weight matrices, where

Wi = 003,Z odd

W, : )
w;; = 0.05,7 even
W, : {

Wb : Wi = 00672 odd
w;; = 0.18,7 even

wi; = 0.20,7 even " Y wy; = 0.25,7 even

The simulations were initialized with z(0) = [~15 15]',
#;(0) = [0 0], P(0) = €(0)e(0), R = 1072, and
Q = 10721, where I is the 2-by-2 identity matrix. Figure 3
shows the sum of the traces of the filter’s error covariance
matrices, which are the upper bounds of the network-wide
error norms, for various consensus weights. Figure 3 shows
the convergence behavior of the covariance matrices as the
self-weights vary under the same communication topology,
and highlights the importance of the consensus weights when
running the distributed KF. These results suggest a slower di-
vergence or convergence behavior as the self weights approach
their cutoff limits, with quickest divergence observed for Wy,
and the fastest convergence observed with W,,.

Finally, we utilize Proposition 1 to search for a set of
consensus weights consistent with the other topologies in
Figure 2 that satisfy the S-detectability condition. For example,
searching for consensus weights consistent with the topology
in Figure 2(b), one can find that the following consensus
weights

W, 0 0 0 0
0 We 0 0 0

w=l0 0o W; 0 0],
0 0 0 W, 0
0 0 0 0 Ws

satisfy the S-detectability condition, where each W; describes
the weights for each source component, with

0.02 0.98
Wi = {0.9 0.1} '
A similar search can be done for the topology shown in

Figure 2(c), resulting in the consensus weights

005 0 0 0000 0 0 095
0 01 09 000000 0
0 095 005 000000 0
1 0 0 000000 0
w_|0 1 0 000000 0
1 0 0 000000 0
0O 1 0 000000 0
1 0 0 000000 0
0O 1 0 000000 0
(09 0 0 00000 0 01

/)
Authorized licensed use limited to: Michigan State University. Downloaded on July 04,5022 at 20:40:41 UTC from IEE% Xplore. Restrictions apply.

publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Control of Network Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2022.3181795

(@) Gi.

(b) Go.

(c) Gs.

Fig. 2: Possible communication topologies that satisfy the W-detectability conditions.
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Fig. 3: Comparison of the sum of the filter covariance matri-
ces for different consensus weights using the same network

topology G;.

Figure 4 shows the traces of the covariance upper bounds for
some of the found weights for the three topologies shown in
Figure 2. Indeed, it is clear from inspecting the traces of the
topology that the network does not need to be connected for
our distributed KF to accurately estimate the system’s state.

VI. CONCLUSION AND FUTURE WORK

In this paper, we consider the problem of distributed es-
timation of an LTI system by a network of sensors, where
the agents update their estimates by performing consensus
followed by local filtering. We present a distributed Kalman
filter, in which the filtering gains minimize an upper bound of
a quadratic filtering cost. These filtering gains are computed
using a set of coupled Riccati equations that, in turn, can be
updated in a distributed manner under the same network, and
the approach requires agents to only exchange their estimates
and their covariance matrices. We then provide the notion of S-
detectability, which ensures exponential stability of the noise-
free estimation errors, and provide a numerical method for
checking it. We then build on that notion to provide necessary
conditions in terms of the minimum network connectivity and
a limit on the self-weights used during the consensus step.

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https:/www.ieee.or

150 -
Gi
..... Gy
—Gs
—~ 100
=
5
S
AR
O T

4 5 6 7 8 9 10
Time index

Fig. 4: Comparison of the convergence of the sum of the filter
covariance matrices under different network topologies.

Future work will consider the numerical stability of the
Riccati equations and quantify how close these upper bounds
are to the true error values. We will also focus on the
off-diagonal consensus weights for the network and analyze
the consensus weights that guarantee S-detectability of the
network to complement the numerical checks. Finally, we
will consider extending these results to time-varying network
topologies.

APPENDIX

In this section, we provide the proof for Lemma 3 and show
that our results hold when the order of the filtering steps is
reversed. We make use of the following remark.

Remark 1 (From [11]): Given a set of N nonnegative scalars
§; summing up to one, a set of N vectors x;, and a set of N
matrices A;, the following holds

!

N
<Y siAimri Al
i=1

N N
i=1 i=1

1
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A. Proof of Lemma 3

For the noise-free case, we note that the matrix =;(k + 1)
can be explicitly written as

N

El(k‘ + 1) = (A — LZC’z) Z wij€5 | X
j=1

’

N
(A — chz) Z Wi €4

Jj=1

Using Remark 1, it follows that

N

j=1
Defining Z(k) € H"Y, with =;(k) shown above, we have
E(k+1) < L(E(K))

with I'; = (A — L;C;), and the first statement can then be
proved by induction.

Assuming that the initial state x(0), and the noises v;(k)
and w(k) are independent for all £ > 0, the second statement
can be proved in a similar manner. Since the noises have zero
mean and are independent with respect to themselves and x(0),
using Remark 1 it can be checked that

Si(k+1) = E{e;(k+ Dei(k+1)"}
< Li(2(k) + Q+ LiR; L},

with (k) = (Z1(k),...,2Xn(k)) € H*t and T; = (A —
L;C;). The second statement can then be proved by induction.

B. Reversing Order of Consensus and Filtering Steps

It is possible to derive an alternate version of this distributed
KF by reversing the order of which the consensus and filtering
steps are taken, resulting in the distributed filter described in
[11], and leading to a different form of the CARE’s. In this
case, the noise-free estimation error dynamics are given by

N
j=1
First we show that the dynamics in (34) are asymptotically
stable iff the dynamics in (13) are asymptotically stable. From

(34), the network-wide error dynamics can be expressed as
e(k+1) = Bae(k), (3%)

where By £ (W ® I,)diag[A — L;C;] € B(R""). Since
(W ® I,) € B(RY") and diag[4 — L,C;] € B (RV"), it
follows that r,(B) = ry(B2) and (15) is asymptotically stable
iff (35) is asymptotically stable.

The notion of S-detectability in Definition 3 implies that
there exist certain gain matrices such that the dynamics of
the upper bounds for the noise-free covariances in (17) are
asymptotically stable. To show that notion holds regardless
of the order of the consensus and filtering steps, we need to
consider the upper bounds of the noise-free covariances for
(35).
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The upper bound for the noise-free covariance matrices
E;(k) can then be written as

P(k+1) = J(P(k)),

with T'; = (A — chz)

Lemma 1 implies that r,(J) = rs(L). Therefore, the
dynamics in (17) are asymptotically stable iff (36) is asymptot-
ically stable, and the notion of S-detectability in Definition 3
does not depend on the order in which the steps are taken.
Furthermore, it has been shown in [19] that the coupled
Riccati equations arising from reversing the order converge
to a stabilizing solution iff the equations in (24) converge to
a stabilizing solution. Therefore, the necessary and sufficient
conditions we derive in Section IV do not depend on the
order of the consensus and filtering steps. However, this
realization of the filter requires agents to also share their local
measurement and noise covariance matrices, making it less
desirable than the distributed KF we propose here.

P(0) = £(0), (36)
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