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Abstract

In this proceeding, we highlight the computation of leading fermionic three-loop correc-
tions to electroweak precision observables (EWPOs) accomplished recently. We summa-
rize the numerical analysis and provide an outlook.
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1 Introduction

The electroweak precision observables (EWPOs) are a group of quantities associated with the
propetties of the Z and W bosons. They can be obtained from measurements of processes medi-
ated by W and Z bosons, where the experimentally irreducible background has been carefully
removed. The EWPOQs, as one of the most crucial testbeds of the Standard Model (SM), played
a key role in the physics program of LEP and SLC and they will be further scrutinized at fu-
ture high-luminosity e*e™ colliders, such as FCC-ee, ILC, CLIC, and CEPC, with substantially
improved precision. One can only fully take advantage of these high-precision measurements
with accurate theoretical predictions whose uncertainties are well-controlled. The latter re-
quire calculations of multi-loop radiative corrections together with the better knowledge of
theory input parameters. Up till now, the theoretical predictions of the EWPOs, such as (i)
the W-boson mass My, (ii) the partial widths of the Z-boson Ty, and (iii) the effective weak
0o
and four-loop level contributions given by top Yukawa coupling enhancement [23-30] within
the SM. All these corrections amount to predictions with theoretical uncertainties being safely
below the current experimental precision (see Ref [31-33] for detailed reviews). Yet the ex-
pected precision of future e*e™ colliders impose the need of computing three and four-loop
corrections at full EW O(a®) and mixed EW-QCD O(a?a,) and O(aasz). In this proceeding,

mixing angle sin have been known up to full two-loop level [1-22], and partial three-
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we survey the recently accomplished calculations of leading fermionic three-loop corrections
to EWPOs at full EW O(a®) and mixed EW-QCD O(a?a,), where “leading fermionic” refers
to the maximal number of closed fermionic loops at given orders. In sec. 2, we introduce the
renormalization procedures for cases with and without QCD contributions. Sec. 3 highlights
the technical aspects including the derivative and evaluation of the master integral (MI) and
the computer algebra tools we used. One can find numerical results and shed light on future
projections thereby in sec. 4 and the Conclusion, respectively.

2 Renormalization

2.1 Renormalization Schemes

We adopted the on-shell (OS) renormalization scheme for all electroweak radiative corrections.
For corrections involving QCD, such as the case of leading fermionic three-loop at O(a?a),
where the top-quark mass receives radiative corrections from gluon exchange, we use OS
scheme and modified minimal subtraction scheme (MS) alternately to describe the renormal-
ized top-quark mass. The reason for using both schemes is the following: the OS top mass
definition is subject to the renormalon ambiguity from which the MS top-quark mass prescrip-
tion is exempt. The MS top-quark mass prescription is thus preferable in practical calculations,
yet an extra step is required to relate the MS value to an observable. These two schemes are
related by a finite function, which has been carried out up to four-loop level [39—45]. The
results carried out in both schemes after summing up all orders in perturbation theory should
converge up to non-perturbative effects, and our numerical comparison between two schemes
will reveal an inkling of it (see 4).

In the OS scheme, the physical mass of the massive unstable particle is defined to be the real
part of the complex pole of the propagator, while the width is proportional to the imaginary
part of the pole as follows,

So = M — lm, (1)

where M is the renormalized mass defined to be on-shell and the T is the width.!. For a massive
gauge boson, by requiring the inverse of Dyson re-summed two-point function to be zero at
the pole as

D(s)=Z(s— M) —5M Z + %(s)|,—,,= 0, 2
we get the renormalization conditions
—2 1 —2 . —
SM =Z'®x(M —iMT) (3)

so(M° — iMT)
ZM ’

T= @

When deriving the renormalization condition for the Z boson, a more subtle complexity emerges
from taking v — Z mixing effect into account (see detailed discussion in Ref. [46,47]). The

renormalization conditions for massive fermions, akin to massive gauge boson cases, can also

be obtained through D, (p)| pr=M2—iMy L, = 0, where D, is the inverse of fermion two-point
function written as

Dy(p)=Zy(p —My) + =y (p*) — Z, 6 M. (5)

!The mass and width defined here are theoretically well-defined and gauge-invariant [34-37], but the experi-
mental mass and width M, T used, are related to M, T by the relations M = M/\/ 14T2/M2,T= F/ V1+T2/M2
[38].
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Figure 1: Diagramatic 1-PIleading fermionic self-energy functions at different orders.
V; and V, denote the possible different in- and outgoing gauge bosons. Vertices "®"
and "x" indicate the counterterms at the loop order O(a,a) or O(a?), and O(a) or
Ofa,), distinguished by red (with QCD) and blue (without QCD), respectively.

Hence we get the top-quark mass counterterm and width as

5M¢u(p) = qulmzw(p)u(prZ:Mi—ierw

6
Tyu(p) = ZJ12SZ¢(p)u(p)|p2:Mi_ierw. 6)
By recursively applying the renormalization conditions eq. (3) eq. (4), we can obtain
widths and mass counterterms in terms of 1-PI self-energies up to arbitrary orders (see ex-
plicit expressions in Refs. [46,47]). Since all EWPOs we want to compute are extracted from
processes where the massive gauge bosons appear to be intermediate states only, the final re-
sults should be independent of field strength renormalization constants (we have checked it
explicitly in our calculations). It is thus safe to set Z to be 1 in our cases.
In the MS scheme, the mass counterterm is meant to subtract the ultraviolet divergent
piece along with constants log(4m) and yg. At one-loop QCD level, it is

SCfgf
1672

om, =

1
(= +log4m —v; ) m (). %
And it relates to the OS top-quark mass by

M C M?
_t:1+M(31ogM—§—4)+0(a§) (8)

m; 4

at one-loop level in QCD. Moreover, the renormalized weak mixing angle is defined by demand-

ing that the relation sin? 8, = 1 —Miv /M; holds to all orders. The electromagnetic charge,
as a fundamental parameter, is renormalized to the coupling strength in Thompson scattering.
Due to the non-perturbative contribution of light-quark fermionic loops at zero momentum
in the Thompson limit, this contribution, parametrized as Aay, 4, is usually extracted from
measurements of ete™ — hadrons [52-54].

2.2 EWPOs definitions

2.2.1 Fermi constant Gu

The Fermi constant can be precisely obtained from muon decay. In the SM, it is defined as

— % _(1+4r), ©)

G, = —
ﬁs%M W

"

where all QED contributions have already been taken into account in the determiation of G,,
from the muon lifetime. Here Ar features all higher-order corrections at the orders that we are
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interested in. This relation can be used to iteratively to determine the W-boson mass within
the SM:

| 1 a

—2 —21 T
M2 =M=+ | 2= —2 1+ Ar)). (10)
w z —
2°\* vigt
2.2.2 Effective weak mixing angle sin? 95 ”

The effective weak mixing angle is defined as associated with the ratio of the Z-boson vector
coupling form factor and the axial-vector coupling form factor. It is most sensitively determined
at the Z-pole where the Z /y* interference and photon exchange are suppressed. Hence we are
interested in computing

sin Oeff = —4|Qf|(1 + mA—f(s)) S:M{ (1D
where
2, z(s)
(12)
2.,7(s)
Af(s)= af(s) — a}/s—i-YZZ}—(s)’
Y

where v¥ and a¥ are the effective vector and axial-vector couplings of vertices X f f, and the
self-energy Yyy stems from y — Z mixing at higher-orders.

2.2.3 Partial Width T[Z — ff]

the partial width T can be recast by the Z-boson self-energy and vector/axial-vector couplings
by applying optical theorem. It reads

—
= _ Ne My fiv.i2 f 2
Ty = =L RUIV: P+ R A/ LM?' (13)

Here ch = 3(1)for quarks(leptons), and Cy is given by Z self-energy contributions at given
orders. The radiators Ry , contain final-state QCD and QED radiations. In our case, when
only closed fermionic loops are considered, they are simply 1.

3 Technical Aspects

In this calculations we turned off CKM mixing and all fermion masses, except the top quark,
due to their negligible numerical impact. FEYNARTS 3.3 [55] and FEYNCALC 9.2.0 [56] are
employed for amplitudes generation and algebraic reduction. The numerical evaluation is car-
ried out by using TVID 2.0 [60]. Some O(D — 4) coefficients from scalar one-loop integrals
have been computed by following Eq. 4.1 in Ref. [62]. When comparing with previous re-
sults with two fermionic loops in Refs. [6,7], [12] and [18], we have found exact algebraic
agreement except one term

d [SZYZ(U(S)]Z
_E(f)’ (14)
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Figure 2: The MI topologies used for genuine two-loop self-energy contributions,
with notation taken from [60].

which stems from y — Z mixing at two-loop level in partial Z width, which was missing in
Ref. [18,19]. In Ref. [46,47], this error has been corrected and its numerical impact was
evaluated.

For genuine two-loop amplitudes, the MI reductions are done in two independent ways:
integration-by-part (IBP) identities [57] as implemented in FIRE6 [58], and the integral re-
duction techniques of Ref. [59]. We should mention that, unlike one-loop cases, the choice of
a MI basis at the two-loop level is not unique and may also not be minimal. One of the MI
bases used in this calculation is shown in Fig 2. However, despite the different choices of the
MI basis, the two independent calculations by the authors agree numerically. Furthermore,
one must also compute the derivatives of two-loop self-energy functions to carry out the nec-
essary renormalization counterterms. Care must be taken when deriving the derivative of the
two-loop self-energy master integral with zero external momentum. With the help of chain
rules, we obtain

3 1 32
I(;p*=0)= ————I(..;p?)
dp? 2d dp,dp* p2=0
2 d
e E[(1+a2+a5—§)(a22++a55+) (15)
+ m%az(az +1)2% + m§a5(a5 +1)5%*
+ ayas((m3 —m3 +m2)2*5" — 2+3_5+)I] ,
p2=0
whereas for p? # 0, one obtains [18,19]
b, 5 1 b,
—I(..; 0)= ———pHt——I(...: p
aprl P 70V = =5 5pt g TIlsp)
1
= ——[(az +as)—a,172" —as47 5" (16)

2p2
+ az(mg - mf + p2)2Jr + a5(m§ - mﬁ + p2)5+]l,
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Table 1: Benchmark input parameters used in the numerical analysis, based on
Ref. [33]. Both benchmark values for alternative top-quark mass prescriptions are
listed.

My = 91.1876 GeV }: Mz =91.1535 GeV
T, = 2.4952 GeV
My, = 80.358 GeV }: My = 80.331 GeV

Ty = 2.089 GeV
M, =173.0 GeV
m (4 =m,)=163.229 GeV.

My =0
a;=0.1179
a=1/137.035999084
Aa=0.05900

G, =1.1663787 x 107> GeV*

where I is defined as the most generic two-loop self-energy master integral

I(ay,ay,...,my,my, .., ;pz)
_J ddq1 ddq2 (17)
—J @ —mDa((qr +p)? —m)u((g2 — q1)? —m3)W (g3 — mD((gz + p)? —m2)s

and the standard lowering/raising operators are defined as

475 I =1(as—1,as +1). (18)

Then one can apply IBP identities again to further reduce the raised/lowered MI integrals
I(...; p*) down to the chosen MI basis such as Fig. 2.

4 Numerical Results

Given the benchmark inputs in Tab. 1, the numerical results for the leading fermionic contribu-
tions to all above-mentioned EWPOs at both O(a®) and mixed EW-QCD O(a?a,) are shown in
Tab. 2. It is evident that all the corrections computed at leading fermionic three-loop level are
negligible for the precision tests conducted at the LEP and LHC, see Tab. 3. However, one can
also see that the experimental uncertainties mapped out by future e™e™ colliders are compa-
rable to the three-loop corrections. Hence these corrections computed in Refs. [46,47] cannot
be ignored. Combining the O(a®) and O(a’a;) corrections, we see AMy and AT having a
sizable corrections while others are subject to accidental cancellations. When switching the
top-quark mass from OS to MS prescription, using the benchmark value given in Tab. 1, the
overall magnitude of leading fermionic O(a?a,) corrections become noticeably smaller. This
is normally expected as MS prescription converges faster than OS for QCD corrections. We
perform the similar numerical evaluations summarized in Tab. 4.

A thorough comparison between OS and MS top mass prescription is given in Refs. [46,47]
Tab.5, from which one observes that the numerical shifts at two-loop and three-loop levels
partially compensate each other in both schemes as one would expect.
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Table 2: This table shows the numerical results of the leading fermionic three-loop
corrections to EWPOs at O(a®) and at O(a’a,) from Refs. [46,47]. The EWPOs
denoted with a prime use My, predicted from the Fermi constant G, rather than the
value in Tab. 1. One can see that the two contributions have comparable size, except
for AM,, where the mixed EW-QCD three-loop correction is about four times larger
in magnitude than the pure EW three-loop.

Ar | AMy (MeV) | Asin?6_, A’sin? 6, | AT, [MeV] | AT, [MeV]
O(a®) 2.5x 107 —0.389 | 1.34x 107> 2.09 x 107 0.331 0.255
O(a’ay) | -0.000109 1.703 | 1.31 x 10~ | —1.98 x 10> —0.103 0.229
Sum -0.000084 1.314 | 2.65 x 10™ 0.11 x 107 0.228 0.484

Table 3: This table demonstrates the current experimental uncertainties given by the
global fits of measurements taken from the LER SLD, and LHC vs. future experimental
accuracies projected for CEPC, FCC-ee, and ILC for three EWPOs [48-51]. For ILC,
the GigaZ option is considered, which is a Z-pole run with 100 fb™.

Global fits at LEP/SLD/LHC || Current intrinsic theo. error || CEPC | FCC-ee | ILC/GigaZ
My[MeV] 12 4(a?, a?a,) 1 05~1 2.5
I,[MeV] 2.3 0.4(a®, a’a,, aa?) 0.5 0.1 1.0
sin? 67, [107°] 16 45(a%, d’a,) 2.3 0.6 1

Table 4: Leading fermionic three-loop corrections to EWPOs at O(a®a,) with MS
prescription for the top mass.

X AXg2a) | AX(g2a,)
Ar[1074] —0.50

AM,y, [MeV] 0.78

sin® 6, [107°] | 0.75 | —0.76
Ty [MeV] —0.0093 | 0.143

As mentioned above, a previous paper has missed the term (14) contributing to Aff at
two-loop order. This missing term results in numerical impact around ((0.01) MeV to Aff.
This turns out to be relatively small but clearly non-negligible for the precision level we want
to achieve at future colliders.

5 Conclusions

In this proceeding, we highlight recent computations of leading fermionic three-loop correc-
tions to EWPOs at both O(a®) and mixed EW-QCD O(a?a,). These computations are carried
out in a fully gauge-invariant way. The numerical size of leading fermionic loop corrections
should be considerably large due to the power of top mass and N!' enhancement. However,
they turn out to be milder than one would expect due to some accidental cancellations. Hence,
other missing three-loop contributions may give corrections of similar magnitude, and they
need to be included to further reduce the intrinsic theoretical uncertainty down to the level
that matches the goals of future colliders. Here genuine electroweak three-loop integrals with
various scales in the denominators will come into play, which will require significant additional
work in the future.
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