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ABSTRACT

We study the revenue guarantees and approximability of item pric-
ing. Recent work shows that with ! heterogeneous items, item-
pricing guarantees an " (log!) approximation to the optimal rev-
enue achievable by any (buy-many) mechanism, even when buy-
ers have arbitrarily combinatorial valuations. However, !nding
good item prices is challenging – it is known that even under unit-
demand valuations, it is NP-hard to !nd item prices that approxi-
mate the revenue of the optimal item pricing better than " (

√
!).

Our work provides a more !ne-grained analysis of the revenue
guarantees and computational complexity in terms of the number
of item “categories” which may be signi!cantly fewer than !. We
assume the items are partitioned in # categories so that items within
a category are totally-ordered and a buyer’s value for a bundle
depends only on the best item contained from every category.

We show that item-pricing guarantees an " (log#) approxima-
tion to the optimal (buy-many) revenue and provide a PTAS for
computing the optimal item-pricingwhen# is constant.We also pro-
vide a matching lower bound showing that the problem is (strongly)
NP-hard even when # = 1. Our results naturally extend to the case
where items are only partially ordered, in which case the revenue
guarantees and computational complexity depend on the width of
the partial ordering, i.e. the largest set for which no two items are
comparable.

CCS CONCEPTS

• Theory of computation → Algorithmic mechanism design;
Computational pricing and auctions.
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1 INTRODUCTION

A dominant theme within algorithmic mechanism design is simplic-
ity versus optimality – establishing that simple mechanisms can
approximate optimal ones within many settings. The simple mech-
anism in most of these results is an item pricing, where the seller
determines a !xed price for each item and buyers can purchase any
set of items at the sum of the corresponding prices. Item pricings are
also an important class of mechanisms from a practical viewpoint –
most real world mechanisms are indeed item pricing mechanisms.
However, despite their simplicity and popularity, !nding good item
prices for multi-item settings is a notoriously challenging problem
and it is known to be inapproximable within a factor better than√
! even for unit-demand buyers [10].
In this paper, we focus on structuredmechanism design instances

and perform a !ne grained analysis of the approximability of item
pricing as well as its approximate optimality. We consider a stan-
dard multi-parameter mechanism design setting where a revenue
maximizing seller o"ers multiple items for sale to a buyer whose
value for the items is drawn from a known distribution. We de!ne
a new parameterization over value distributions wherein items
can be partitioned into a few categories and items within each
category can be ordered by desirability. We show that the number
of categories governs both the approximability and approximate
optimality of item pricings.

Ordered items and the approximability of item pricing. At the
heart of our parameterization is the so-called FedEx Problem that
was !rst studied by Fiat et al [23]. In the FedEx Problem, the items of-
fered by the seller correspond to shipping times for a package; each
buyer has a deadline for shipping their package and obtains a !xed
value if the shipping time meets their deadline. The FedEx Problem
occupies a sweet-spot between single-parameter mechanism design
settings where a buyer’s preferences can be fully described through
a scalar value; and multi-parameter settings where di"erent (sets of)
items bring the buyer di"erent values. Accordingly it exhibits some
but not all of the complexity of multi-parameter settings. Indeed, as
we show, in contrast to the general case, the optimal item pricing
for Fedex instances can be computed in polynomial time.

The FedEx Problem is a special case of “totally ordered” settings
where items can be ranked by quality and every buyer type weakly
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prefers a higher ranked item to a lower ranked one.1 More gen-
erally, we consider settings where items can be partitioned into #
categories such that within each category items are totally ordered
by quality:

Consider, for example, a car dealership that sells #
di"erentmodels of cars. Eachmodel comes in a variety
of di"erent trims – the most basic trim along with
a sequence of upgrades. For any particular model or
category, every buyer has the same ordering of values
over di"erent trims although values di"er arbitrarily
across buyers and across categories. One buyer may
value the luxury trim $5,000 higher than the standard
trim and another may value them the same, but no
buyer values the standard trim more than the luxury
trim.
For another example, consider an internet service
provider such as Comcast, AT&T or Spectrum that of-
fers multiple products such as TV, internet, and phone
service. Each individual product has quality or ser-
vice levels that are ordered. In particular, every buyer
weakly prefers higher internet speeds to lower speeds
and unlimited talk time to limited talk time. How-
ever, buyers may assign di"erent values to di"erent
combinations of the three services.
Yet another example is of a streaming media company
such as Net#ix or Amazon pricing TV shows. The
seasons of each show form an ordered list – viewers
typically would not watch season 2 without watching
season 1, for example. # shows, accordingly, corre-
spond to a # category setting. Each category contains
items corresponding to the !rst several seasons of the
same show.

We emphasize that both the totally ordered setting and the #-
category setting are multi-parameter settings where the buyer’s
values are combinatorial and described as functions over the set of
items allocated to the buyer. Beyond the ordering over items within
each category, we make no assumptions on the buyer’s values over
sets of items.

Our main computational !nding is that the approximability of
item pricing is governed by the parameter # . For the totally ordered
(# = 1) and #-category settings, we provide a polynomial time
approximation scheme with a running time that depends exponen-
tially on # . For any given $ > 0, our algorithm returns an item
pricing that approximates the revenue of the optimal item pricing
within a factor of (1 + $) and runs in time poly(%,!poly(!/") ,&)
where ! is the number of items,% is the support of the distribution
and & is the bit complexity of buyer’s value distribution. Our ap-
proximation scheme is almost the best possible2, as we show that
!nding the optimal item pricing is strongly NP-hard even for # = 1.
Our algorithm is particularly relevant and useful when # is a small
constant such as in the examples described above.

1In the FedEx setting, for example, every buyer weakly prefers earlier shipping times
to later ones.
2There dependency on ! and " may be improved.

Theorem 1.1. For any distribution of support size% over

#-category valuations ' : 2[#] → [1, 2$ ], we can compute an (1 + $)-
approximate item pricing in poly(%,!%&'( (!,1/") ,&) time.

The approximate optimality of item pricing. As aforementioned, a
central problem in multi-item mechanism design is approximating
the revenue of the optimal mechanism in multi-parameter settings
by simple mechanisms like item pricing. In fact, in the kinds of
settings we study in this paper (with no assumptions on the value
distributions), it is known that no simple mechanisms can provide
any !nite approximation to the optimal revenue in the worst case.
This general case impossibility of simple-versus-optimal results has
led to two complementary lines of work in recent years.

The !rst looks at structured settings for which approximately-
optimal mechanisms can be characterized. The FedEx problem [23,
35] and its extensions to so-called “interdimensional” settings [19,
20] belong to this line of work; in these settings, the optimal mech-
anism can have an exponential or even unbounded description
complexity but under appropriate assumptions, mechanisms with
polynomial menu size provide an approximation. Another series
of works [1, 11, 34] bounds the revenue gap between item pric-
ings and optimal mechanisms assuming that the buyer’s values are
subadditive and independent across di"erent items.

The second line of work places an extra incentive constraint on
the revenue maximization problem. Instead of viewing a mecha-
nism as a one time interaction between the seller and a buyer, it
is assumed that the buyer can visit the mechanism multiple times
purchasing di"erent bundles of items. In this “buy-many" setting,
complicated mechanisms that extracted arbitrarily higher revenue
than simpler ones are no longer incentive compatible as the buyer
can buy multiple cheaper options instead of a single expensive
one. In fact, recent work [15] shows that item-pricing achieves a
Θ(log!) approximation to the optimal buy-many mechanism and
this is tight in a strong sense as no simple mechanism, i.e. one with
polynomial description complexity, can approximate the optimal
revenue better than a logarithmic factor.

Our work uni!es the two approaches and considers the rev-
enue approximation of item pricing in more structured buy-many
settings. Our !rst !nding is that item pricing is the optimal buy-
many mechanism in the FedEx setting. More generally, we !nd
that the revenue guarantees of item pricing are again governed
by the parameter # of our parameterization. In the totally ordered
setting where # = 1, we show that item pricing is no longer optimal
but achieves a constant factor approximation to the optimal buy-
many revenue. For # categories, we show that the approximation is
Θ(log#). This gives a smooth degradation of the revenue guarantee
as the instances become less and less structured.

Theorem 1.2. For any distribution over #-category valuation func-
tions, the optimal item pricing guarantees a 1/Θ(log#) fraction of
the revenue achievable by the optimal buy-many mechanism.

Implications for Buy-Many Mechanism Design. Even though our
focus in this work is on item pricing and its revenue guarantees,
our result gives the !rst computationally e$cient algorithm for
computing approximately optimal buy-many mechanisms in struc-
tured settings. In contrast to the setting of buy-one mechanisms
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where the optimal mechanism can typically be computed via a lin-
ear program of polynomial size in the support of the distribution of
values, no such algorithm is known for buy-many settings. In fact,
we observe that the

√
! inapproximability of item-pricing even for

unit-demand settings, directly implies a
√
!/log(!) inapproximabil-

ity for buy-many mechanisms as one can e$ciently convert any
buy-many mechanism into an item pricing one with a logarithmic
loss in approximation3. Our results show that for structured set-
tings, the optimal buy-many mechanism is e$ciently approximable
and that such an approximation can be achieved via item pricing.

We remark that being able to obtain approximate item pricing
or buy-many mechanisms is important even in cases where the
optimal buy-one mechanism might be easier to compute. This is be-
cause buy-one mechanisms may be inherently complex and di$cult
for the buyers to understand and participate in. More signi!cantly,
in many settings, it may be unrealistic to expect that the revenue
promised by a buy-one mechanism is achievable in practice. For
cases like shopping from a retail store, it may not be feasible to im-
plement a buy-one mechanism as buyers faced with superadditive
prices would break their desired bundle into smaller ones visiting
the store multiple times. This would result in signi!cantly lower
revenue than expected by the buy-one model.

Extensions. We further consider settings where there is a partial
ordering over items. Consider, for example, an electronics company
that manufactures both cameras and cell phones. Some cell phones
capture all of the features of certain cameras, and therefore all
buyers weakly prefer the former to the latter. But not all cameras
and cell phones are comparable. We say that an item ( dominates
another item ) if for every set * of items containing both ( and ) ,
every buyer is indi"erent between getting * or * \ { )}.

We use the parameter # to denote the “width” of the partial
ordering over items—the size of the largest set of incomparable
items or the longest anti-chain in the partial ordering. Note, that
the #-category setting is a special case of this more general width-#
setting. Our PTAS for item pricing of Theorem 1.1 as well as the
buy-many revenue approximation result of Theorem 1.2 naturally
extend to this more general setting with the same guarantees.

A more relaxed condition for partial ordering across items speci-
!es that item ( dominates another item ) if all sets of items * that do
not contain items ( or ) , adding ( to * is always preferable to adding
) . Unfortunately, we show that under such a weak condition, pric-
ing cannot guarantee a constant fraction of the optimal buy-many
revenue even in simple settings. In fact, even with additive buyers
over totally ordered items, we show that no buy-many mechanism
with polynomial description complexity can achieve better than
1/+ (log log!) fraction of the optimal buy-many revenue (see Sec-
tion 4.4). It is an interesting open question left by our work to show
that this bound is indeed achievable by item pricing.

Our techniques. Our techniques are easiest to understand in the
context of a unit-demand buyer with totally ordered items. Our
analysis of the gap between item pricings and optimal buy-many
mechanisms in this setting hinges on a characterization of the

3The e$cient algorithm comes from the constructive proof of the item pricing mecha-
nism that) (log#)-approximates the optimal buy-many mechanism in [15]

buyer’s optimal buy-many strategy. Faced with a menu of random-
ized options, the buyer essentially behaves like a Pandora’s box
algorithm which at every step opens a box (i.e. purchases a lottery)
and obtains a random reward. Because the same lotteries can be
purchased any number of times, the buyer’s optimal strategy is to
pick a single lottery repeatedly until an item of a certain minimum
value is instantiated. This characterization allows us to relate the
buyer’s utility to the value of the item(s) bought by the buyer. We
can then apply a lemma from [15] that relates the revenue obtained
by an item pricing to the change in the buyer’s utility at di"erent
scalings of that item pricing.

In order to approximate the optimal item pricing for a unit de-
mand buyer with totally ordered items, we view the buyer as addi-
tive over item upgrades: the purchase of an item ( can be viewed
equivalently as the purchase of the base item 1 along with a series of
upgrades, 1 to 2, 2 to 3, and so on till ( . The bene!t in doing so is that
with some slight loss in approximation, we can group upgrades into
di"erent pricing scales, and price each scale independently. This
permits a dynamic programming based algorithm for optimizing
the prices of the upgrades. The pricing found in this manner can
be easily converted into an item pricing with the same revenue.

1.1 Other Related Work

The computational complexity of item pricing for a single buyer has
been studied previously for a variety of valuation functions. One
widely studied setting is the #-hypergraph pricing problem, where
each possible realization of the buyer is unit-demand over a set of
at most # items. It has been shown that there exists an algorithm

with competitive ratio" (min(#,
√
! log!)) [10] (also see [2, 5, 27]),

and is hard to approximate within Ω(min(#1−" ,!1/2−" )) under the
Exponential Time Hypothesis [10] (also see [3, 8, 9]). Such results
also extend to a single-minded buyer that wants an entire set of at
most# items. The speci!c casewhere# = 2 is called the graph vertex
pricing, for which there is an e$cient algorithm with competitive
ratio 4 [2]. No e$cient algorithm can give an approximation ratio
better than 4 assuming the Unique Games Conjecture [31] (also see
[27, 29]). Another special case is the tollbooth problem, where the
buyer demands a path on a path graph. This problem is strongly
NP-hard [22], and a PTAS is known [26] (also see [2, 24]).

Another line of work studies the problem of selling to a unit-
demand buyer with item values drawn from independent distribu-
tions. For general distributions, computing the optimal item pricing
is NP-hard [18]. The optimal item pricing revenue can be approxi-
mated to within a factor of 2 (providing a 4-approximation to the
optimal revenue overall) [11, 12], and a PTAS (or QPTAS) exists if
the item values are drawn from monotone hazard rate (or regular)
distributions [6]. The problem of !nding the revenue from the opti-
mal mechanism for a unit-demand buyer with independent item
values has been further studied: it is known that no e$cient exact
algorithm exists unless the polynomial-time hierarchy collapses
[17], and a QPTAS exists [30].

The recent decade has seen much work on approximating the
optimal revenue via simple mechanisms such as item pricing and
grand bundle pricing: for a single unit-demand buyer [11, 13]; an
additive buyer [1, 28, 32]; a subadditive buyer [14, 34]; as well as for
multi-buyer settings [7, 12, 14, 21, 36]. All of these results require
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independence across individual item values. For correlated item
values, simple mechanisms cannot provide !nite approximations to
the optimal revenue and bounded gaps are only known in compari-
son to the optimal buy-many revenue. [4] shows that item pricing
gives " (log!)-approximation to the optimal buy-many revenue
for a unit-demand buyer. [15] further generalizes the result to a
general-valued buyer, and [16] characterizes the tight menu-size
complexity of the mechanism needed for (1 + $)-approximation in
revenue.

1.2 Organization

We present our results by iteratively building from the simplest case
of the FedEx-Problem in Section 3, to the case of totally-ordered
items in Section 4 and !nally the general case with partially ordered
items in Section 5.

2 DEFINITIONS

We study the multidimensional mechanism design problem where
the seller has ! heterogeneous items to sell to a single buyer, and
aims to maximize the revenue. The buyer’s value type is speci!ed
by a valuation function ' : 2[#] → R≥0 that assigns a non-negative
value to every set of items. The valuation functions are monotone:
for any *,, ⊆ [!] with * ⊆ , and any valuation function ' , we
have ' (*) ≤ ' (, ). We study the Bayesian setting, where the buyer’s
valuation function ' is drawn from a publicly known distribution
D over the set of all monotone valuation functions.

Unit-demand Buyers. We say that a buyer is unit-demand over
all items, if the buyer is only interested in purchasing one item,
and her value for any set of items is solely determined by the item
that is most valuable to her. In other words, for any set * ⊆ [!],
' (*) = max*∈+ ' ({(}). When there is no ambiguity, we use '* to
denote ' ({(}) for a unit-demand buyer of type ' .

Totally-ordered Items. We say that a unit-demand buyer has
totally-ordered values, if for every possible value realization ' of
the buyer, '1 ≤ '2 ≤ · · · ≤ '# .

Partially-ordered Items. Let ( denote a partial ordering over the
! items. We say that the buyer has partially-ordered values with
respect to the relation ( if for every realizable valuation function
' , every pair of items ( and ) with ( ( ) , and every set * ⊆ [!], we
have ' (* ∪ {(, )}) = ' (* ∪ { )}). We say that the item ) dominates ( .
In other words, the buyer may discard from his allocated set any
item that is dominated by another item in his allocation with no
loss in value. As a consequence, the only “interesting” allocations
over partially-ordered items are sets that form antichains, i.e. where
no two items are comparable. An important parameter of a partially
ordered set is its width that is de!ned to be the size of the largest
antichain. We use # to denote the width of the partial ordering
(. An important special case of partially-ordered items is the #-
category setting where items are partitioned in #-categories. In
this setting, items within a category are totally ordered and every
buyer’s value for a bundle depends only on the best item of each
category it contains.

Input Model for the Computational Problem. When we study com-
putational problems, we assume that the input distribution D is

provided explicitly over a support of size %. Each buyer type '

in the support is a vector of size " (!! ) that speci!es the buyer’s
value ' (, ) for all possible sets, of size at most # ,4 and is accompa-
nied with a probability of realization Pr[']. We further assume that
the value ' (, ) of each set of items is either 0, or in range [1,R].
Without loss of generality we assume that each buyer type ' in the
support D is non-trivial: ' ( [!]) ≥ 1.

Single-buyer Mechanisms. By the Taxation Principle [33], any
single-buyer mechanism can be described as a menu of possible
outcomes, and the buyer can select one menu option. Each outcome
- = (., /) ∈ Δ(2[#] ) × R≥0 is a lottery that is speci!ed by a
randomized allocation . over the sets of items, and a price / that is
the payment of the buyer if she wants to get such an allocation. For
any set * ⊆ [!], .+ denotes the probability that only items in set *
are allocated to the buyer, and we have ‖. ‖1 = 1 5. We will use . (-)
and / (-) to denote the allocation and the payment of any lottery
-. For any buyer of valuation function ' , her value for lottery - is
de!ned by ' (-) ≡ E+∼,' (*); her utility for purchasing - is de!ned
by 0- (-) ≡ ' (-) − / (-). We will also use * ∼ - to denote a set of
items drawn from set distribution . (-).

Given a mechanism M with a menu of lotteries Λ, the buyer
selects the menu option - that maximizes her utility 0- (-). When
there are multiple lotteries with the same highest utility for the
buyer, the seller can choose the most expensive lottery to sell to the
buyer. Without loss of generality, we assume that for any allocation
. ∈ Δ(2[#] ) over the sets of items, there is a corresponding price
/ (.) such that (., / (.)) ∈ Λ. We also use the pricing function
/ as an alternative de!nition of the mechanism M. The buyer’s
utility is de!ned as 0% (') = ' (.) − / (.). The buyer’s payment
is Rev% (') = / (.), and we write the revenue of mechanism / as
Rev% = E-∼DRev% ('). Since the mechanism only allows the buyer
to interact with the mechanism for once, it is also called buy-one
mechanism.

Buy-manyMechanisms. In an (adaptively) buy-manymechanism,
the buyer is allowed to interact with the mechanism for multiple
times. To be more precise, a buy-many mechanismM generated
by a set Λ of lotteries can be de!ned as follows. The buyer can
adaptively purchase a (random) sequence of lotteries in Λ, which
means that in each step, the buyer can decide which lottery to
purchase given the instantiation of the previous lotteries in the
sequence. The buyer gets the union of all items allocated in each
step and pays the sum of the prices of all purchased lotteries. For
any adaptive algorithm A, de!ne ΛA = (-A,1, -A,2, · · · ) to be the
random sequence of lotteries purchased by the buyer of type ' . The
expected value of the buyer is

' (ΛA) ≡ E(+1,+2,· · · )∼(.A,1,.A,2,· · · )'

(
⋃

*≥1
**

)

,

4Note that it su$ces to specify the buyer’s value over sets of size at most ! , where !
is the width of the partial ordering over items, because the buyer only desires sets that
form antichains.
5Throughout the paper we assume ‖, ‖1 = 1 since in an adaptively buy-many mecha-
nism, a buyer will only purchase a lottery with total allocation 1, otherwise she can
repeatedly purchase the lottery and get a larger utility.
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and the payment of the buyer is

/ (ΛA) ≡ EA
∑

*≥1
/ (-A,* ).

Any buy-many mechanism can be described by a buy-one menu,
where the buyer is only allowed to purchase a single lottery. This
is because the expected outcome of any adaptive algorithm A can
be described by the allocation ∪* (** ∼ -A,* ), and an expected
payment / (ΛA). We say that a buy-one menu Λ satis!es the buy-
many constraint, if for every adaptive algorithm A, there exists a
cheaper single lottery - ∈ Λ dominating it. Rigorously speaking,
there exists - ∈ Λ with / (-) ≤ / (ΛA) such that there exists
a coupling between a random draw * from -, and the union of
random draws * ′ from ΛA , satisfying * ⊇ * ′. Intuitively, a buy-
one menu satis!es the buy-many constraint, if the buyer always
prefers to purchase a single option from the menu, even if she has
the option to adaptively interact with the mechanism for multiple
times. In later sections, when we refer to a “buy-many mechanism”
with menu Λ, we are always referring to a buy-one mechanism
with menu Λ that satis!es the buy-many constraint.

3 WARM-UP: ITEM PRICING IN THE FEDEX
SETTING

In this section, we study the item pricing in the FedEx setting
[23]. The buyer’s value distribution in the FedEx problem has the
following structure. Any buyer type ' is de!ned by the pair of
parameters ((-, '/ ) with '* = 0 for ( < (- and '* = '/ otherwise.
In other words, the buyer is totally-ordered and has at most two
distinct values for all items, with the lower value being 0.

3.1 The Optimality of Item Pricing

Our !rst observation is that item pricing achieves the optimal rev-
enue obtained by any buy-many mechanism.

Theorem 3.1. For any value distribution in the FedEx setting, there
exists an item pricing that achieves the optimal buy-many revenue.

Proof. Consider a buyer with value function ' in the FedEx
setting. Recall that the buyer only values items with index ≥ (- and
values all of them equally. Therefore the buyer obtains the same
value from an allocation . = (.1, .2, · · · , .#) as from an allocation
. ′ where . ′*! =

∑
*≥*! .* and .

′
* = 0 for ( ≠ (- .

Given any buy-many menu {(., /)}, consider replacing every
lottery (., /) with ! di"erent options:
(. (1) , / (1) ) = ((

∑
0≥1 . 0 , 0, · · · , 0), /),

(. (2) , / (2) ) = ((0,
∑

0≥2 . 0 , 0, · · · , 0), /), · · · ,
(. (#) , / (#) ) = ((0, · · · , 0, .#), /). By our observation above, for
every buyer type ' , one of the ! new options bring the same utility
to the buyer as (., /) and all other options bring lower utility. As a
result, the newmechanism is identical in its allocations and revenue
to the original one.

Observe that the new mechanism sells each item separately (but
with di"erent probabilities of allocation). We have the following
observation:

Observation 3.2. In a mechanism that sells each item separately,
an adaptively buy-many buyer always purchases an item with allo-
cation 1.

The observation is true since if the buyer of type ' purchases
a lottery - that sells item (- with probability .*! , the buyer can
repeatedly purchase the same lottery until she gets the item, which
increases her utility. We may therefore drop any options that al-
locate items with probability less than 1 from the menu without
changing the allocations or revenue of the mechanism. This !nal
mechanism is an item pricing, and Theorem 3.1 follows. !

3.2 A Poly-Time Algorithm for Finding Optimal
Item Pricings

In this section, we show that the optimal item pricing in the FedEx
setting can be computed e$ciently. We actually prove a stronger
result: for each realized buyer type ' , if the buyer has at most two
distinct item values, the optimal item pricing can be computed in
polynomial time via dynamic programming. For each buyer type
' , let '1 and '/ denote the two di"erent item values in ' , and let
(- be the smallest item type with item value '/ . In other words,
'1 = '2 = · · · = '*!−1 = '1 , and '*! = '*!+1 = · · · = '# = (/ . If
'1 = '# , we de!ne (- = 1 and '1 = '/ = '1. The FedEx Problem is
a special case with '1 = 0.

Theorem 3.3. In the totally-ordered setting, if each realized buyer
type has at most two distinct item values, then the optimal item pricing
can be computed in polynomial time.

Proof. Let Pr['] be the realization probability of ' under input
value distribution D. Without loss of generality, we only study
item pricings with monotone item prices /1 ≤ /2 ≤ · · · ≤ /# . For
a buyer type with '/ > '1 , the buyer would either purchase item
1, or item (- , or nothing. For a buyer type with '/ = '1 , the buyer
would either purchase item 1, or nothing.

To compute the optimal item pricing, we !rst !nd a set of feasible
prices for each item, then use a dynamic program to !nd the optimal
item pricing. De!ne Π1 = {'1 |' ∼ D, ( ∈ [!]} ∪ {0} be the set
of all possible values for item 1, including 0. Let Π∗ = {1 |1 =

'/ − '1 + 2,2 ∈ Π1, ' ∼ D} ∪ Π1 . We !rst observe that we may
restrict prices to lie in a set of polynomial size without loss in
revenue. The proof of this lemma is deferred to Section A.

Lemma 3.4. There exists an optimal item pricing such that /1 ∈ Π1 ,
and /* ∈ Π∗ for each ( ≥ 2.

Now we are ready to !nd the optimal item pricing. Let 3 [2, (, 1]
denote the total revenue from buyer types ' with (- ≤ ( , under a
monotone item pricing that has already priced the !rst ( items, with
/1 = 2 and /* = 1. Then we have the following recursive formula:

3 [2, (, 1] = max
2′ ≤2,2′ ∈Π∗

{
3 [2, ( − 1, 1′] +

∑

-:*!=*

Pr[']4 [',2, 1]
}
,

where 4 [',2, 1] is the payment of buyer type ' with item price 2
for item 1, and price 1 for item (- . In other words, 4 [',2, 1] = 1 if
'/ − 1 ≥ '1 − 2 and '/ ≥ 1; 4 [',2, 1] = 2 if '1 − 2 > '/ − 1 and
'1 ≥ 2; 4 [',2, 1] = 0 otherwise. The recursive formula is based on
the following fact: if /1 is !xed, the revenue contribution of buyer
types with (- = ( only depends on /* . The optimal item pricing
revenue we want to compute is max(∈Π",2∈Π∗,2≥( 3 [2,!, 1]. Since
the table has a polynomial number of entries, and the inductive
steps can be computed in polynomial time, the total running time
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is also polynomial in the number of items and the support size of
the distribution. !

4 ITEM PRICING IN THE TOTALLY-ORDERED
SETTING

In the previous section we observed that for the FedEx setting, item
pricing is not only optimal but also polynomial-time computable.
When considering the general totally-ordered setting, both proper-
ties no longer hold. We show that for a general-valued buyer, item
pricings may achieve strictly less revenue than the optimal buy-
many mechanism. We complement this result by showing that item
pricing gives a constant approximation in revenue to the optimal
buy-many mechanism. Next, we show that computing the optimal
item pricing in the totally-ordered setting is strongly NP-hard, thus
there is no FPTAS algorithm !nding the revenue obtained by the
optimal item pricing. We complement the hardness result by provid-
ing a PTAS computing an approximately optimal item pricing, thus
giving a tight characterization of the computational complexity of
the problem.

4.1 Item Pricing Is a Constant Approximation
to the Optimal Buy-Many Revenue

We !rst provide an example which shows that in the totally-ordered
setting, the optimal item pricing and the optimal buy-many mecha-
nism may have a constant factor revenue gap. Consider the follow-
ing example: Let there be 2 items and 3 unit-demand buyers, with
the following values for items 1 and 2 respectively, each realized
with probability 1

3 :

' (1) = (0, 5), ' (2) = (1, 3), ' (3) = (1, 2).

The optimal buy-one mechanism has the following menu:

-1 = ((0, 1), 5), -2 =
((
2

3
,
1

3

)

,
5

3

)

, -3 = ((1, 0), 1) .

The lotteries are written in the form of ((.1, .2), /) where .1 and
.2 are the probabilities of the buyer getting items 1 or 2 respectively,
and / is the price for this lottery. In the mechanism, each buyer ' (*)

prefers to purchase lottery -* . Observe that the menu of lotteries
satis!es the buy-many constraint. This is because to achieve the
allocation of any -* using the other two lotteries in the menu, one
always needs to pay more than /* . Thus the mechanism is also the
optimal buy-many mechanism, with revenue 23

9 . Observe that the
optimal item pricing for this instance is /1 = 1, /2 = 3, which yields
a revenue of 7

3 <
23
9 . Thus there can be a constant gap between the

optimal item pricing revenue and the optimal revenue obtained by
any (buy-many) mechanism.

Then we show that item pricings can actually achieve a con-
stant fraction of the revenue obtained by the optimal buy-many
mechanism.

Theorem 4.1. For any unit-demand buyer with totally-ordered
value for all items, item pricing gives a 5.4 approximation in revenue
to the optimal buy-many mechanism.

Proof. Let / be the optimal buy-many mechanism. De!ne 5 to
be the following item pricing: 5* , the price of item ( , is the cheapest
price at which an adaptive buyer can obtain an item with index

at least ( with probability 1 from repeatedly purchasing a single
lottery. In other words,

5* = min
, ∈Δ( [#]) :

∑
#≥$ , #=1

/ (.).

We will show that a scaling of 5 gives a constant fraction of the
optimal revenue obtained by buy-many mechanisms. We use the
following lemma from [15] that relates the revenue of an appropri-
ate scaling of 5 to the change in the buyer’s utility as the pricing
function changes from a low scaling factor, ℓ , to a high one, ℎ.

Lemma 4.2. (Lemma 3.1 of [15]) For any pricing 5 and any 0 <

ℓ ≤ ℎ, let 8 be drawn from [ℓ,ℎ] with density function 1
3 log(ℎ/ℓ) .

Then for any valuation function ' ,

E3 [Rev36 (')] ≥
0ℓ6 (') − 0ℎ6 (')

ln(ℎ/ℓ)
.

In order to utilize this lemma, choosing ℎ = 1, we show that
the buyer obtains a low utility under pricing 5 and high enough
utility at an appropriate scaling ℓ5. We begin with two observations.
The !rst shows that in any buy-many mechanism, the value of any
set obtained by the buyer with non-zero probability is at least the
expected utility of the buyer.

Lemma 4.3. For any buyer type ' and any buy-many mechanism
/ , the buyer purchases - = (., / (.)) in / , then for any set , in the
support of . , ' (, ) ≥ 0% (').

Proof. Since - is the optimal lottery purchased by the buyer,
purchasing it is also the optimal adaptive strategy of the buyer.
Thus, if the buyer buys - and gets any set , in the support of .
allocated, she would not purchase another lottery on the menu,
in particular, -. Since the value gain of purchasing - with set , at
hand is at most ' (-) − ' (, ), therefore ' (-) − ' (, ) ≤ / (-) which is
the price of purchasing -. Thus ' (, ) ≥ ' (-) − / (-) = 0% ('). !

We emphasize that the lemma holds for arbitrary buyer types
and not just unit-demand valuations. The second observation shows
that for any lottery, its price in / is lower bounded by the price of
some item in its support in item pricing 5.

Lemma 4.4. For any allocation . ∈ Δ( [!]), there exists an item (
in the support of . , such that 5* ≤ / (.).

Proof. Let ( be the item with the lowest type in the support of
. . Then we have

∑
0≥* . 0 = 1, thus 5* ≤ / (.) by de!nition of 5. !

Now we come back to the proof of the theorem. Fix any buyer
type ' . We will consider four di"erent pricing mechanisms: the
optimal buy-many pricing / , the item pricing 5 constructed above,
and their scalings 9/ and ℓ5 with 9, ℓ ∈ [0, 1].

Let -′ denote the lottery the buyer purchases under pricing 9/ .
By Lemma 4.4, there exists an item ) in the support of -′, such that
/ (-′) ≥ 5 0 . Then

Rev7% (') = 9/ (-′) ≥ 95 0 . (1)

Next, let - denote the lottery the buyer purchases under pricing / .
Then, by Lemma 4.3, we have

' 0 ≥ 07% (') ≥ ' (-) − 9/ (-) = ' (-) − / (-) + (1 − 9)/ (-)
= 0% (') + (1 − 9)Rev% (') . (2)
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where the second inequality follows by noting that the buyer has
the option of purchasing - under 9/ . Next, we note that since the
buyer has the option of purchasing item ) under pricing ℓ5, we
have

0ℓ6 (') ≥ ' 0 − ℓ5 0 . (3)

Finally, by the de!nition of the pricing 5, it has identical individual
item prices as in / , so it o"ers a strictly subset of options in / . Thus
the buyer can purchase any set of items more cheaply under / than
under 5, which means

0% (') ≥ 06 ('). (4)

By ℓ
7 (1) + (2) + (3) + (4),

0ℓ6 (') − 06 (') ≥ (1 − 9)Rev% (') −
ℓ

9
Rev7% (') . (5)

By applying Lemma 4.2 to (5), there exists a random scaling
factor 8 , such that

Rev36 (') ≥
0ℓ6 (') − 06 (')

ln(1/ℓ)

≥
1

ln(1/ℓ)

(

(1 − 9)Rev% (') −
ℓ

9
Rev7% (')

)

. (6)

Since / is the optimal buy-many mechanism, it achieves higher
revenue than ℓ/ , which means E-∼8 [Rev% (')] ≥ E-∼8 [Revℓ% (')].
Taking the expectation over ' on both sides of (6), we have

Rev36 = E-∼8 [Rev36 (')]

≥
1

ln(1/ℓ)

(

(1 − 9)Rev% −
ℓ

9
Rev7%

)

≥
1

ln(1/ℓ)

(

1 − 9 −
ℓ

9

)

Rev% .

Take ℓ = 0.03485 and 9 = 0.18668, we have Rev36 ≥ 0.18668Rev% .
Since 85 is a (randomized) item pricing, thus there exists an item
pricing that gives a constant 1/0.18668 < 5.4-approximation to the
revenue obtained by the optimal buy-many mechanism.

!

4.2 Hardness of Computing the Optimal Item
Pricing

In this section, we show that it’s strongly NP-hard to compute the
optimal revenue that can be obtained by item pricing mechanisms,
which means that there exists no FPTAS for the problem unless
P=NP. Let OrderedItemPricing denote the following problem:
For a unit-demand buyer with ordered valuation over ! items, let :
be the value distribution with support size%. Compute the optimal
revenue obtained by item pricing.

Theorem 4.5. OrderedItemPricing is strongly NP-hard, even
when each realized buyer has at most three distinct item values.

Proof. We prove the theorem via a reduction fromMax-Cut.
For anyMax-Cut instance with graph4 (; , <), let ! = |; | > 180

be large enough. Consider an instance of OrderedItemPricing
with ! + 1 items. For convenience, we assume that each node in ;
also has an index in [!]. We want the following properties of the
optimal item pricing for the instance:

(1) The optimal item pricing has integral item prices for each
item;

(2) /#+1 = 6!, and there is a set of buyer types purchasing item
! + 1with realization probability 51 = 0.9 that do not depend
on the structure of the graph and contribute =1 (!) to the
total revenue;

(3) /* = 3( − 1 or 3( − 2, and there is a set of buyer types purchas-
ing items in [!] with realization probability 52 <

1
12#51 that

do not depend on the structure of the graph and contribute
=2 (!) to the total revenue;

(4) In addition to all previous buyers, for each ((, )) ∈ < with
( < ) , there exists a set ,* 0 of buyer types, and real number
=* 0 (!) > 0 that is irrelevant to the graph structure such that:
if / 0 − /* = 3( ) − (), then the revenue contribution from ,* 0
is =* 0 (!); if / 0 − /* ≠ 3( ) − (), then the revenue contribution

from ,* 0 is =* 0 (!) + 1
#10 . The realization probability of any

buyer type is polynomially bounded by! (at least /+>2 (!−1)).
Before going to the construction, we !rst show the strongly

NP-hardness of OrderedItemPricing for an instance with above
properties. This proves the claim of the Theorem.

Given an instance with such properties, we can calculate the
revenue of the optimal item pricing for the instance. The total
revenue contributed from buyer types from Property 2 and 3 is
=1 (!) + =2 (!). For any cut ? = (;1,; \ ;1), if each item ( in ;1
is priced 3( − 1, while each item ) in ; \ ;1 is priced 3 ) − 2, the
total revenue contributed from buyer types from Property 4 is∑

(*, 0)∈9 =* 0 (!) + 1
#10 |? |. Thus, for a graph4 (; , <) with maximum

cut @max, the corresponding instance of OrderedItemPricing has
maximum revenue

ℎ(4) = =1 (!) + =2 (!) +
∑

(*, 0)∈9
=* 0 (!) +

1

!10
@max .

This builds a bijection between the maximum cut of 4 , and the
optimal item pricing revenue of theOrderedItemPricing instance
constructed from 4 . Since all inputs for the OrderedItemPricing
instance are polynomially bounded, we know that problem
OrderedItemPricing is strongly NP-hard from the APX-hardness
of Max-Cut.

Now let’s go back to show how to construct the
OrderedItemPricing instance satisfying every property.

Property 1. To make sure that the optimal item pricing has all
integral prices, we only need to construct the distribution such
that each buyer type has integral value for every item. For such an
instance, if the optimal item pricing does not have integral price for
every item, we can round up the price for each item to the closet
integer without reducing the revenue. The reason is that such a
round up procedure does not change the incentive of any buyer
type. If a buyer ' prefers to purchase item ( to ) under pricing / ,
which means '* − /* ≥ ' 0 − / 0 , then '* − 1/* 2 ≥ ' 0 − 1/ 0 2 since
'* and ' 0 are both integer. Thus we can only focus on the class of
item pricing with integral item prices.

Property 2. Construct a buyer type with value '#+1 = 6! for item
! + 1, and '* = 0 for all ( ≤ !. In other words, the buyer only wants
to purchase item ! + 1 with value 6!, and is not interested in any
other item. The buyer type appears with probability 51, where 51 is
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very close to 1. We will make sure that the rest of the buyer types
will contribute less than 51 revenue, so the optimal pricing will
not set a price less than 6! for item ! + 1. This will be done by
letting the rest of the buyer types have maximum item value ≤ 6!
for each item and appear with probability <

1
6#51 =

3
20! in total.

The revenue contribution of the buyer is =1 (!) = 6!51 by setting
/#+1 = 6!.

Property 3. For each ( ∈ [!], construct a buyer type ' with value
'1 = '2 = · · · = '*−1 = 0, '* = '*+1 = · · · = '#+1 = 3( − 1,
which appears with probability 5′2 =

1
36#251 =

1
40#2 ; a buyer type

' ′ with value ' ′1 = · · · = ' ′*−1 = 0, ' ′* = · · · = ' ′#+1 = 3( − 2,

which appears with probability 1
3*−25

′
2; and a buyer ' ′′ with value

' ′′1 = · · · = ' ′′*−1 = 0, ' ′′* = · · · = ' ′′# = 3( − 2, ' ′′#+1 = 6!, which
appears with probability 5′2. Under any item pricing, all buyers
would purchase item ( , item !+1, or nothing. Note that the price for
item !+1 has been !xed to 6! by Property 2. We have the following
cases:

• If /* ≤ 3( − 3, then all three buyer types prefer to purchase
item ( , which lead to total revenue (3(−3) (5′2+

1
3*−25

′
2+5

′
2) =

(3*−3) (6*−3)
3*−2 5′2 < 6!5′2 for the three buyer types.

• If /* ≥ 3( , then buyer ' and buyer ' ′ cannot a"ord to pur-
chase any item, while buyer ' ′′ prefers to purchase item !+1,
which lead to revenue 6!5′2.

• If /* = 3( − 1, then buyer ' purchases item (; buyer ' ′ pur-
chases nothing; buyer ' ′′ purchases item ! + 1, which leads
to total revenue (3( − 1)5′2 + 6!5′2.

• If /* = 3( − 2, then the !rst buyer purchase item ( , the second
buyer purchases item ( , the third buyer purchases item ! + 1,
which leads to revenue (3( − 2) (5′2 +

1
3*−25

′
2) + 6!5′2 = (3( −

1)5′2 + 6!5′2.

Thus setting /* = 3( − 1 or 3( − 2 gives the same optimal revenue for
the three buyers, while setting any other price leads to a revenue
loss of at least (3( −1)5′2. We set 5′2 to be large enough such that the
rest of the buyers (to be de!ned in Property 4) cannot contribute
5′2 revenue, which can be done by letting the rest of the buyer
types have maximum item value ≤ 6! and appear with probability
<

1
6#5

′
2 =

1
240!

3 in total. So the optimal pricing only sets /* = 3( −1
or 3( − 2 for item ( .

The total revenue contribution of the buyers is
=2 (!) =

∑#
*=1 ((3(−1)5′2 +6!5

′
2). The total realization probability of

the buyers added in this property is at most 35′2 for each ( , thus at

most 3!5′2 =
3

40# . The set of the buyers and the revenue contribution
only depend on !, and does not depend on the graph structure.

Property 4. For each edge ((, )) ∈ < with ( < ) , let . = 3( − 2, and
2 = 3 ) − 2. Consider set ,* 0 of buyer types formed by the following

4 types of buyers ' (1) , ' (2) , ' (3) , ' (4) :

• '
(1)
1 = · · · = '

(1)
*−1 = 0, ' (1)* = · · · = '

(1)
0−1 = . ,

'
(1)
0 = · · · = '

(1)
#+1 = 2;

• '
(2)
1 = · · · = '

(2)
*−1 = 0, ' (2)* = · · · = '

(2)
0−1 = . + 1,

'
(2)
0 = · · · = '

(2)
#+1 = 2 + 1;

• '
(3)
1 = · · · = '

(3)
*−1 = 0, ' (3)* = · · · = '

(3)
0−1 = . ,

'
(3)
0 = · · · = '

(3)
#+1 = 2 + 1;

• '
(4)
1 = · · · = '

(4)
*−1 = 0, ' (4)* = · · · = '

(4)
0−1 = . + 1,

'
(4)
0 = · · · = '

(4)
#+1 = 2.

In other words, the four type of buyers would purchase item ( , item
) or nothing, and has slightly di"erent values for item ( and ) . Our
goal here is to determine the appearance probability of each buyer
type in the value distribution, such that if /* ≡ / 0 mod 3, then these
buyer types contribute =* 0 (!) to the total revenue; if /* ! / 0 mod 3,
then these buyer types contribute =* 0 (!) +!−10 to the total revenue.

Let A be the following 4 × 4 outcome matrix, such that each
element of the matrix corresponds to the payment of a (row) buyer
under a speci!c (item) item pricing:

pricing (%$ ,% # )

(,, ()

(, + 1, ( + 1)

(,, ( + 1)

(, + 1, ()

(-$ , -# ) of the buyer










(,, ()

2
(, + 1, ( + 1)

2
(,, ( + 1)

2
(, + 1, ()

.

0 2 + 1 2 + 1 . + 1
. . 2 + 1 .
2 2 2 2










For any vector z ∈ R4≥0,Az correspond to the vector of the revenues
of the 4 pricings (/* , / 0 ) = (.,2), (. + 1,2 + 1), (.,2 + 1), (. + 1,2),
given that 1ℓ buyers of type ℓ appear. To satisfy Property 4, we need
to !nd a vector z such that Az = (=* 0 ,=* 0 ,=* 0 + !−10,=* 0 + !−10):
for some =* 0 ≥ 0.

By solving a for Aa = (1, 1, 1, 1): and b for Ab = (0, 0, 1, 1): , we
get

a =

(
1

22 + 2
,

.

2 (2 + 1) (2 + 1 − .)
,

2 − .

2 (2 + 1 − .)
, 0

):
,

b =

(
1

22 + 2
,−

.2 + 2 (2 + 1)2 − .2 (2 + 2)
2 (2 + 1) (2 + 1 − .) (2 − .)

,
2 − .

2 (2 + 1 − .)
,

1

2 − .

):
.

Taking

z = 2!−1023a + !−10b

= !−10
(
223 + 1

22 + 2
,
2. (2 − .)23 + .22 + 2. − 23 − 222 − 2

2 (2 + 1) (2 + 1 − .) (2 − .)
,

(223 + 1) (2 − .)
2 (2 + 1 − .)

,
1

2 − .

)

,

we have z ≥ 0, and

Az = (2!−1023, 2!−1023, 2!−1023 + !−10, 2!−1023 + !−10) .

Thus if with probability 1ℓ the buyer has type ' (ℓ) , the four buyer
types contribute =* 0 (!) = 2!−1023 revenue if /* ≡ / 0 mod 3, and
=* 0 (!) + !−10 = 2!−1023 + !−10 otherwise.

Now we compute the total realization probability of the four
buyer types in the distribution: ‖z‖1 < 1023!−10 < 270!−7 by the
de!nition of z and 2 < 3!. Since there are less than 1

2!
2 edges,

the total realization probability of all buyer types added in this
property is less than 1

2!
2 · 270!−7 = 135!−5 <

1
240#3 for ! > 180 as

required in Property 3. The total realization property of all buyer
types added in Property 3 and 4 is less than 3

40# + 1
240#3 <

3
20# as

required in Property 2. This completes the proof of the correctness
of the construction.

!
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4.3 A PTAS for Computing a Near-Optimal Item
Pricing

We complement the strongly NP-hardness result by developing
a PTAS algorithm for computing the optimal item pricing for a
unit-demand buyer with totally-ordered values.

Theorem 4.6. For a unit-demand buyer with totally ordered item

values, there exists an algorithm running in /+>2 (%,!%&'( (1/") , logR)
time that computes an item pricing that is (1 + $)-approximation in
revenue to the optimal item pricing.6

Proof. We prove the theorem in several steps.

(1) There exists a near optimal item pricing where all prices are
non-decreasing powers of (1 + $2). Let Π = {(1 + $2); |B ∈
Z}∪ {0}. Then for all item pricings / , there exists 5 (1) ∈ Π# ,
such that for all value functions ' ,

Rev6 (1) (') ≥ (1 −" ($))Rev% (').

(2) At a small loss in revenue, we can restrict prices to lie in
a small set. In particular, for all value distributions D with
value range R, there exists an e$ciently computable set
Π∗ ⊂ Π with |Π∗ | = /+>2 (1/$, logR) such that for all item
pricings 5 (1) ∈ Π# , there exists an item pricing 5 (2) ∈ Π∗#

satisfying

Rev6 (2) (D) ≥ (1 −" ($))Rev6 (1) (D) .

(3) Next, we de!ne for each unit demand buyer an additive value
function that closely mimics it. For a unit-demand value
function ' , de!ne '⊕* = '* − '*−1 and let '⊕ be the value

function that assigns to a set * ⊆ [!] the value
∑
*∈+ '

⊕
* .

We also de!ne a new kind of pricing that we will call an
interval pre!x pricing. Given a partition of the ! items into
C intervals, D*0,*1 , D*1,*2 , · · · , D*%−1,*% with (0 = 0 and (< = !, an
interval pre!x pricing 5 is a menu with ! options; The )th
option allocates the set D*ℓ , 0 = {(ℓ + 1, (ℓ + 2, · · · , )} at price
5 0 where (ℓ < ) ≤ (ℓ+1.
We furthermore say that an interval pre!x pricing 5 satis!es
price gap (E, F) if (1) menu options corresponding to di"erent
intervals are priced multiplicatively apart: for all ( , ) , and ℓ
with ( ≤ (ℓ < ) , 5 0 ≥ (1 + $2)=5* , (2) and, menu options cor-
responding to any single interval are priced multiplicatively
close to each other: for all ( , ) , and ℓ with (ℓ < ( < ) ≤ (ℓ+1,
5 0 ≤ (1 + $2)>5* .
We show that for value distributionD and its corresponding
additive value distribution D⊕ and item pricing 5 (2) ∈ Π∗# ,
there exists an e$ciently computable set Π′ with |Π′ | = |Π∗ |
and an interval pre!x pricing 5 (3) with 5

(3)
* ∈ Π′ for all

( ∈ [!] and price gap ( 1
"2

ln 1
"2
, 1
"3

ln 1
"2
), such that

Rev6 (3) (D⊕) ≥ (1 −" ($))Rev6 (2) (D).

The converse also holds: for every unit demand value func-
tion ' and interval pre!x pricing 5 with price gap

6The dependency on log R in the running time can actually be removed due to
Lemma 5.4.

( 1
"2

ln 1
"2
, 1
"3

ln 1
"2
), we can e$ciently compute an item pric-

ing 5 (4) such that

Rev6 (4) (') ≥ (1 −" ($))Rev6 ('⊕).

(4) Finally, we show that for any distribution over additive val-
ues '⊕ and any set Π′ of values, an optimal interval pre-
!x pricing 5, with 5* ∈ Π′ for all ( ∈ [!] and price gap
( 1
"2

ln 1
"2
, 1
"3

ln 1
"2
), can be found in time polynomial in |Π′ |,

!%&'( (1/") , and%.

The algorithm can be described as follows. By the last step, we
can e$ciently compute the optimal interval pre!x pricing 5 with
price gap ( 1

"2
ln 1

"2
, 1
"3

ln 1
"2
) for the distribution D⊕ over additive

buyer '⊕ that corresponds to the unit-demand distributionD, such
that all item prices are in Π′. By Step 3, we can e$ciently compute
an item pricing 5 (4) with Rev6 (4) (') ≥ (1 −" ($))Rev6 ('⊕). Also
by the !rst three steps,

Rev6 (4) (D)

≥ (1 −" ($))Rev6 (D⊕) ≥ (1 −" ($))Rev6 (3) (D⊕)

≥ (1 −" ($))Rev6 (2) (D) ≥ (1 −" ($))Rev6 (1) (D)

≥ (1 −" ($))Rev% (D)

for the optimal item pricing / . 5 (4) can be found in
/+>2 (%,!%&'( (1/") , |Π′ |) = /+>2 (%, logR,!%&'( (1/") ) time.

Now we elaborate on each step in more detail. For simplicity, we
assume 1

" is an integer.

Step 1. We !rst introduce a useful lemma for approximating
the revenue of a mechanism / via another pricing function 5 that
approximates / closely pointwise. Slightly di"erent forms of the
lemma appears in multiple papers in the simple-versus-optimal
mechanism design and the menu-size complexity literature, and is
attributed to Nisan7.

Lemma 4.7. For any $ > 0, let / and 5 be two pricing functions
satisfying 5(-) ≤ / (-) ≤ (1 + $)5(-) for all random allocations

- ∈ Δ(2[#] ). Then for scaling factor 8 = (1 + $)−1/
√
" and any

valuation function ' ,

Rev36 (') ≥ (1 − 3
√
$)Rev% (').

Now come back to Step 1 of the proof. Consider the optimal item
pricing / . Let5 be the item pricing that rounds the price of each item
down to the closest integral power of (1 + $2). Then for any lottery
-, 5(-) ≤ / (-) < (1 + $2)5(-). By Lemma 4.7, 5 (1) = (1 + $2)−1/"5
is an item pricing with power-of-(1 + $2) prices for each item, and
achieves (1 −" ($)) fraction of the revenue of / . This means that
focusing on !nding the optimal item pricing with discretized item
prices only loses a (1 −" ($))-factor in revenue.

Any item pricing is equivalent to an item pricing with non-
decreasing item prices in the totally ordered setting, since for any
pricing / , if there exist two items ( < ) with /* > / 0 , then no
buyer ever prefers ( to ) since item ( is worse in quality with higher
prices. Thus setting /* = / 0 keeps the incentive of all buyer types
unchanged, while after !nite such operations, we can get an item
pricing with non-decreasing item prices and the same revenue.

7For a more detailed discussion of the history of the idea of the lemma, we would
point the readers to footnote 24 of [25].
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Step 2. It su$ces to show that there exists an item pricing with
all item prices being either 0 or bounded in range [Ω($2),R], that
achieves an (1 −" ($)) fraction of the revenue of 5 (1) .

The proof has the same nudging idea as Lemma 4.7. Let 5 (2)

be de!ned as follows. For each item ( with 5
(1)
* ≤ $2, 5 (2)* = 0;

otherwise, 5 (2)* = (1 − $)5 (1)* . Then for each buyer type ' , assume

that she purchases item ( under 5 (1) and ) under 5 (2) . Since the
buyer prefers ( over ) under 5 (1) , we have

'* − 5
(1)
* ≥ ' 0 − 5

(1)
0 ; (7)

Since the buyer prefers ) over ( under 5 (2) , and (1−$) (5 (1) −$2) ≤
5 (2) ≤ (1 − $)5 (1) , we have

' 0 − (1−$) (5 (1)0 −$2) ≥ ' 0 −5
(2)
0 ≥ '* −5

(2)
* ≥ '* − (1−$)5 (1)* . (8)

Add inequalities (7) and (8), we have 5 (1)0 ≥ 5
(1)
* − $ + $2. Thus

5
(2)
0 ≥ (1 − $) (5 (1)0 − $2) ≥ (1 − $)5 (1)* − $ + $2 .

Taking the expectation over ' ∼ D. Observe that Rev6 (1) (D) ≥ 1

by selling only item ! at price 1, since in the input model we assume
that each valuation function has at least value 1 for some item. We
have

Rev6 (2) (D) ≥ (1−$)Rev6 (1) (D)−$ +$2 = (1−" ($))Rev6 (1) (D) .

The item prices of 5 (2) are in some set Π∗ with |Π∗ | = " ( 1" log R
" )

since all item prices in 5 (2) are in range [(1 − $)$2,R] and are
powers of (1 + $2) in 5 (1) multiplied by (1 − $).

Step 3. For item pricing 5 (2) , consider the following 1
" sets of

prices: for each ℓ ∈ [ 1" ], let

;ℓ =

{

(1 + $2)?
2
2
2G ∈ Z, G ≡ H %+I

1

$3
ln

1

$2
for H s.t.

ℓ

$2
ln

1

$2
≤ H <

ℓ + 1

$2
ln

1

$2

}

.

Since ;ℓ are disjoint sets with the union being the set of all power-
of-(1 + $2) prices, there exists a set of prices ;ℓ such that in item
pricing 5 (2) , the revenue contribution from items with price in;ℓ is
at most $ fraction of the total revenue. Consider the following item

pricing 5′: for any item with price 5 (2)* ∉ ;ℓ , 5′* = 5
(2)
* ; for any item

with 5 (2)* ∈ ;ℓ , 5′* is set to the smallest 5 (2)0 ∉ ;ℓ with ) > ( . In other

words, the prices of all items in ;ℓ are raised while the incentives
of all buyer types that do not purchase an item with price in ;ℓ in
5 (2) stay unchanged. Thus the revenue of 5′ is at least (1 −" ($))
fraction of the revenue of 5 (2) , Rev6′ (D) ≥ (1−" ($))Rev6 (2) (D).

Now we construct an interval pre!x pricing 5 as follows. The
price of each item 5* is set to 5′* , with all items naturally grouped
to intervals as follows: for any integer B , all items with log1+"2 5*
in range [ ;

"3
ln 1

"2
+ ℓ+1

"2
ln 1

"2
, ;+1
"3

ln 1
"2

+ ℓ
"2

ln 1
"2
) are grouped to

an interval. Then for any two items (, ) in the same interval, the
logarithm (with base 1 + $2) of the two prices di"ers by at most
1
"3

ln 1
"2
; for any two items ( < ) in di"erent intervals, the prices

di"er by a factor at least (1 + $2)
1
'2

ln 1
'2 >

1
"2
. Thus 5 has price gap

( 1
"2

ln 1
"2
, 1
"3

ln 1
"2
).

Let D*0,*1 , D*1,*2 , · · · , D*%−1,*% be the interval partitioning of the entire
set of items. Now we study the price of any set , = { )1, )2, · · · , )$ }
of items under such an interval pre!x pricing 5. Suppose that the
item with the largest index )$ is in interval D*(−1,*( . Then the price
5(, ) of the set is lower-bounded by 5′0) , and upper-bounded by 5

′
0)

plus the prices of all items in intervals prior to D*(−1,*( . The payment
for interval D*(−2,*(−1 is at most

5′*(−1 < $25′*(−1+1 ≤ $25′0) .

Similarly the payment for intervals with smaller indexes are geo-
metrically smaller, and sum up to at most $25′0) . This means that

5′0) ≤ 5(, ) ≤ (1 + 2$2)5′0) < (1 + 4$2)5′0) .
On the other hand, we introduce a new mechanism 5′′ called

pre!x pricing. In such a mechanism, the buyer can pay 5′* to obtain
a pre!x set of items {1, 2, · · · , (}. For any unit-demand buyer ' with
totally-ordered item values, she buys set {1, 2, · · · , (} under 5′′ if
and only if she buys ( under 5′. Also under 5′′, buyer ' and '⊕

purchase the same set. Thus Rev6′′ ('⊕) = Rev6′′ (') = Rev6′ ('). In
pre!x pricing 5′′, the price of set , is 5′′(, ) = 5′0) , which is the

price of the smallest pre!x that contains )$ . Thus

(1 + 2$2)−15(, ) ≤ 5′′(, ) ≤ 5(, ) ≤ (1 + 2$2)5′′(, ). (9)

By Lemma 4.7, there exists a scaling 5 (3) = (1 + 4$2)−1/(2")5 of
interval pre!x pricing 5 which gives (1 − " ($))-fraction of the
revenue of 5′′ for any buyer '⊕ . Thus

Rev6 (3) (D⊕)

≥ (1 −" ($))Rev6′′ (D⊕) = (1 −" ($))Rev6′ (D)
≥ (1 −" ($))Rev6 (2) (D).

Since all item prices in 5 are in Π∗, we have that all item prices in
5 (3) are in Π′ = {(1 + 4$2)−1/(2")2 |2 ∈ Π∗}.

The converse also holds: given any interval pre!x pricing 5 with
price gap ( 1

"2
ln 1

"2
, 1
"3

ln 1
"2
), we can de!ne pre!x pricing 5′′ such

that 5′′({1, 2, · · · , (}) = 5* . Then (9) still holds, which means that
by Lemma 4.7, there exists a scaling 5& = (1 + 4$2)−1/(2")5′′ of
pre!x pricing 5′′ which gives (1 −" ($))-fraction of the revenue
of 5 for any additive buyer '⊕ . Let 5 (4) be the item pricing with

5
(4)
* = 5& ({1, 2, · · · , (}). Then

Rev6 (4) (') = Rev6* (') = Rev6* ('⊕) ≥ (1 −" ($))Rev6 (') .

Step 4. We aim to solve the following problem: !nd the optimal
interval pre!x pricing 5 with price gap ( 1

"2
ln 1

"2
, 1
"3

ln 1
"2
) for an

additive buyer, such that the item prices 5* that de!ne 5 are in set
Π′.

This can be solved via the following dynamic program. Since the
buyer is additive, the revenue contribution from each interval can be
calculated separately without worrying about the incentive of the
buyer. Let 3 [(, 1] be the optimal revenue of the interval pre!x pric-
ing (with price gap (E, F) = ( 1

"2
ln 1

"2
, 1
"3

ln 1
"2
) and without pre!x

buying constraints) from only items in pre!x set {1, 2, · · · , (}, with
the last item price being 5* = 1. Then we can write the following
recursive formula:

3 [(, 1] = max
0<*,(≥2 (1+"2)−+ ,@≤( (1+"2)−, ,(,2∈Π′

{
3 [ ),J] +4 [ ), (,2, 1)

}
,
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where4 [ ), (,2, 1) denotes the optimal revenue of a pricing 5 which
sells a pre!x of interval D 0,* = { ) +1, ) +2, · · · , (} with price 5 0+1 = 2
and 5* = 5({ ) + 1, ) + 2, · · · , (}) = 1 to an additive buyer with
distribution D⊕ . In the recursive formula, we want all items in D 0,*
to be priced in range [2, 1] with 2 ≥ 1 (1 + $2)−> , with all items in
{1, 2, · · · , )} to be priced at most J ≤ 2 (1 + $2)−= . The objective
we want to solve is max2∈Π′ 3 [!, 1].

Now we analyze the running time of the dynamic program.
Each (, ),2, 1 in the recursive formula has /+>2 (%,!, 1" ) possibilities.
The running time of calculating each 4 [ ), (,2, 1) is /+>2 (%,!> ) =
/+>2 (%,!

1
'3

ln 1
'2 ), since there are only at most F di"erent prices

for the items in D 0,* , thus at most /+>2 (!> ) di"erent non-decreasing
pricings. Therefore the dynamic program can be solved in
/+>2 (%,!%&'( (1/") , |Π′ |) time.

!

4.4 Discussion on Additive Buyers

In Section 4.1, we showed that for a unit-demand buyer with totally
ordered item values, item pricing gives a constant approximation
to the optimal buy-many revenue. We want to investigate whether
such nice properties generalizes to other class of valuation functions.
For example, for an additive buyer with totally-ordered item values,
can item pricings achieve a constant fraction of the optimal buy-
many revenue? Unfortunately, we give a negative answer to the
question through the following theorem.

Theorem 4.8. For any additive buyer with totally ordered value
for all items, item pricing cannot achieve an approximation ratio
+ (log log!) to the optimal (deterministic) buy-many mechanism.

The proof uses a reduction from an additive buyer with un-
ordered item values, which is known to have Ω(log!) revenue gap
between the optimal item pricing and the optimal deterministic
buy-many mechanism [15]. The proof is omitted due to page limit.

5 ITEM PRICING IN THE
PARTIALLY-ORDERED SETTING

In this section, we generalize the results for a unit-demand buyer in
the totally-ordered setting to a general-valued buyer in the partially-
ordered setting. We !rst show that item pricing gives an " (log#)-
approximation in revenue to the optimal buy-many mechanism,
where # is the width of the ordered set of items. Then we provide a
PTAS algorithm for !nding a near-optimal item pricing when # is a
constant. This way, we show that the width # of the ordered set is
the key parameter in both the performance and the computational
complexity of the item pricing mechanisms.

5.1 Item Pricing Gives an " (log#)
Approximation in Revenue to the Optimal
Buy-Many Mechanism

For a general-valued buyer, [15] shows that item pricing gives
an " (log!) approximation in revenue to the optimal buy-many
mechanism. Here we improve the approximation ratio to " (log#),
which is only related to the width of the partially ordered item set.

Theorem 5.1. For any buyer with partially ordered values for all
items with width # , item pricing gives an " (log#) approximation in
revenue to the optimal buy-many mechanism.

Similar to the totally-ordered setting, given an optimal mecha-
nism / , we de!ne item pricing 5 such that each 5* is the cheapest
way to get an item that dominates ( in / . We show that a scaling of 5
gives" (log#)-approximation to the optimal revenue. Compared to
the totally-ordered setting, the major di"erence is that Lemma 4.4
no longer holds. Instead, we show that for any allocation . of items,
there exists a set , in the support of . , such that 5(, ) ≤ #2/ (.).
The rest of the proof mostly still goes through.

Proof. Let S be the collection of sets that can be demanded by
the buyer, i.e. the set of antichains in the partial ordering. Given the
optimal buy-many mechanism / , de!ne item pricing 5 as follows:
5* , the price of item ( , is de!ned by the cheapest way of getting an
item that dominates it. In other words, if ** = { ) ∈ [!] | ) 5 (} is the
set of items that dominate ( ,

5* = min
, ∈Δ(S) :

∑
-∩.$≠∅ ,- =1

/ (.) = min
, ∈Δ(S)

/ (.)
∑
:∩+$≠∅ .:

.

We show that a scaling of 5 gives a 1/" (log#) fraction of the opti-
mal revenue obtained by buy-many mechanisms. Lemma 4.3 still
holds, while Lemma 4.4 needs to be modi!ed as follows.

Lemma 5.2. For any allocation . ∈ Δ(S), there exists a set , in
the support of . , such that 5(, ) ≤ #2/ (.).

Proof. Let * be the set of items, such that for any ( ∈ * , the
probability of getting an item that dominates ( is less than 1

! . In
other words,

* =






( ∈ [!]
2
2
2

∑

:∩+$≠∅
.: <

1

#






.

We !rst observe that there exists a set , in the support of . , such
that , does not contain any item in * . We reason this as follows.
Let * ′ ⊆ * be an antichain such that for any element ( ∈ * , there is
an element ) ∈ * ′ such that ( ⊇ ) . Intuitively, * ′ is the “bottom” of
set * in the preference graph such that all elements in * dominate
some element in * ′. Then for any ( ∈ * ′, the probability that a set
drawn from . contains an element that dominates ( is less than
1
! . Since *

′ is an antichain and there are at most # elements in * ′,
by union bound, the probability that a set drawn from . contains
an element that dominates some element in * ′ is less than 1. Thus
there exists a set, in the support of . , such that, does not contain
any item that dominates some element in * ′, thus does not contain
any item in * .

For any item ( ∈ , , by the de!nition of 5* ,

5* ≤
/ (.)

∑
:∩+$≠∅ .:

≤
/ (.)
1/#

= #/ (.) .

Then

5(, ) =
∑

*∈:
5* ≤

∑

*∈:
#/ (.) = |, |#/ (.) ≤ #2/ (.).

!
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Now we are ready to prove the theorem. The same as in the
proof of Theorem 4.1, we !x any buyer type ' , and de!ne the four
mechanisms as follows. Under the optimal pricing / , the buyer
purchases lottery -; under pricing 9/ the buyer purchases lottery
-′; under item pricing 5, the buyer purchases set * ; under pricing
ℓ5 the buyer purchases set * ′. Here we de!ne 9 =

1
2 and ℓ = 1

8!2 .
By Lemma 5.2, there exists a set, in the support of -′, such that

/ (-′) ≥ 1
!25(, ). Then

Rev7% (') = 9/ (-′) ≥
9

#2
5(, ). (10)

Inequality (2) still holds (by replacing item ) in (2) with set , ):

' (, ) ≥ 0% (') + (1 − 9)Rev% (') . (11)

Since the buyer has a larger utility purchasing item * ′ than, under
pricing ℓ5, we have

0ℓ6 (') ≥ ' (, ) − ℓ5(, ) . (12)

Since the buyer has a larger utility purchasing lottery - than buying
the collection of lottery -* for every ( ∈ * that de!nes 5* in / (which
has price 5* ), and -* allocates the buyer an item that dominates ( ,
we have

0% (') ≥ ' (∪-* ) −
∑

*∈+
/ (-* ) ≥ ' (*) −

∑

*∈+
5* = ' (*) − 5(*) = 06 (') .

(13)

By ℓ!2

7 (10) + (11) + (12) + (13), and apply 9 =
1
2 and ℓ = 1

8!2 ,

0ℓ6 (') − 06 (') ≥ (1 − 9)Rev% (') −
ℓ#2

9
Rev7% (')

=
1

2
Rev% (') −

1

4
Rev7% (') . (14)

By applying Lemma 4.2 to (14), there exists a random scaling
factor 8 , such that

Rev36 (') ≥
0ℓ6 (') − 06 (')

ln(1/ℓ)
(15)

≥
1

ln(8#2)

(
1

2
Rev% (') −

1

4
Rev7% (')

)

. (16)

Since / is the optimal buy-many mechanism, it achieves higher
revenue than ℓ/ , which means E-∼8 [Rev% (')] ≥ E-∼8 [Revℓ% (')].
Taking the expectation over ' on both sides of (15), the same as (6)
we have

Rev36 ≥
1

ln(8#2)

(
1

2
Rev% −

1

4
Rev7%

)

=
1

4 ln(8#2)
Rev% .

Thus there exists an item pricing which gives a 1
) (log!) fraction of

the revenue obtained by the optimal buy-many mechanism.
!

5.2 A PTAS Algorithm for Computing a
Near-Optimal Item Pricing in
Partially-Ordered Setting

In this section, we generalize the approximation algorithm for the
totally-ordered setting to the partially ordered setting, where the
width of the entire set of items is # . When # is a constant, the
algorithm is a PTAS.

Theorem 5.3. For a general-valued buyer with partially ordered
values, if the partially ordered set containing all items has width # ,

then there exists an algorithm running in /+>2 (%,!%&'( (!,1/") , logR)
time that computes an item pricing that is (1 + $)-approximation in
revenue to the optimal item pricing.

Proof Sketch. The algorithm is similar to the totally-ordered
setting, but we need to de!ne the generalized multi-dimensional
pre!xes and intervals. We also de!ne slightly di"erent interval pre!x
pricing and additive buyer.

• Pre!x: For any set , ∈ S, the pre!x parameterized by , is
a set of items K: ⊇ , such that item ) ∈ [!] is in K: if and
only if there exists ( ∈ , such that ) ( ( . Such a de!nition
ensures that for ,1,,2 ∈ S, ,1 ( ,2, K:1 ⊆ K:2 .

• Interval: For two sets, ,, ′ ∈ S with, ⊆ , ′, interval D: ,: ′ =

K: ′ \K: is a set of items with contiguous item types between
, and , ′ in the ordering graph.

• Interval pre!x pricing: Let D = (D:0,:1 , D:1,:2 , · · · , D:%−1,:% ) be
a partition of the ! items into C intervals, with ,0 = ∅, and
,< be a set of items that dominates all other items (with
K:% = [!]). An interval pre!x pricing 5 is a mechanism
de!ned by a vector of item prices (51,52, · · · ,5#): For any
set *ℓ ⊆ Dℓ of items, there is a menu allocating a set of items
K∗+ℓ = ∪1≤ 0≤ℓ−1,0 ∪ *ℓ , with price 5(K∗+ℓ ) =

∑
*∈A∗

.ℓ
5* . In

other words, to purchase any set of items in *ℓ , the buyer also
needs to purchase all sets of items ,1, · · · ,,ℓ−1 that de!ne
the previous intervals.

• Additive-over-intervals buyer: Given an interval partition
D = (D:0,:1 , D:1,:2 , · · · , D:%−1,:% ), for an arbitrary value function
' and any set * = *1 ∪ *2 ∪ · · · ∪ *< of items with *ℓ ⊆ Dℓ for
every ℓ ∈ [C], de!ne

'⊕B (*) =
<∑

ℓ=1

(
' (*ℓ ∪,ℓ−1) − ' (,ℓ−1)

)
.

In other words, '⊕B (*ℓ ) is the value gain of getting set *ℓ ,
when the buyer ' has a set of items ,ℓ−1 at hand. ' and
'⊕B has the same behavior under an interval pre!x pricing
de!ned by interval partition D .

The proof for the totally-ordered setting can be generalized to the
partially ordered setting, if we use the above generalized de!nitions
of the terms. The key steps are shown as follows.

(1) There exists a near optimal item pricing where all prices are
powers of (1 + $2). Let Π = {(1 + $2); |B ∈ Z} ∪ {0}. Then
for all item pricings / , there exists 5 (1) ∈ Π# , such that for
all value functions ' ,

Rev6 (1) (') ≥ (1 −" ($))Rev% (') .

Furthermore, without loss of generality, we can assume that

for the item pricing 5 (1) we consider, set {( |5 (1)* ≤ 2} is a
pre!x for any 2 ∈ R.

(2) At a small loss in revenue, we can restrict prices to lie in
a small set. In particular, for all value distributions D with
value range R, there exists an e$ciently computable set
Π∗ ⊂ Π with |Π∗ | = /+>2 (1/$,#, log!, logR) such that for
all item pricings 5 (1) ∈ Π# , there exists an item pricing
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5 (2) ∈ Π∗# satisfying

Rev6 (2) (D) ≥ (1 −" ($))Rev6 (1) (D) .

(3) Given a partition of the ! items into C intervals,
D = (D:0,:1 , D:1,:2 , · · · , D:%−1,:% ) with ,0 = ∅, and ,< be a set of
items that dominates all other items (with K:% = [!]). We
furthermore say that for any interval partition D , an item
pricing 5 satis!es price gap (E, F) if (1) items corresponding
to di"erent intervals are priced multiplicatively apart: for
all ( , ) , and ℓ with ( ∈ K:ℓ and ) ∉ K:ℓ , 5 0 ≥ (1 + $2)=5* , (2)
and, menu options corresponding to any single interval are
priced multiplicatively close to each other: for all ( , ) , and ℓ

with (, ) ∈ Dℓ , 5 0 ≤ (1 + $2)>5* .
We show that for value distribution D and item pricing

5 (2) ∈ Π∗# , there exists an item pricing 5 (3) with 5 (3)* ∈ Π∗

for all ( ∈ [!] and price gap (E, F) = ( 1
"2

ln !
"2
, !
"3

ln !
"2
), such

that

Rev6 (3) (D) ≥ (1 −" ($))Rev6 (2) (D) .

(4) We de!ne a new kind of pricing that we will call an in-
terval pre!x pricing. Given a partition of the ! items into
C intervals D = (D:0,:1 , D:1,:2 , · · · , D:%−1,:% ), an interval pre!x
pricing 5 is a mechanism de!ned by a vector of item prices
(51,52, · · · ,5#): For any set *ℓ ⊆ Dℓ of items, there is a menu
allocating a set of items K∗+ℓ = ∪1≤ 0≤ℓ−1,0 ∪ *ℓ , with price

5(K∗+ℓ ) =
∑
*∈A∗

.ℓ
5* . In other words, to purchase any set of

items in *ℓ , the buyer also needs to purchase all sets of items
,1, · · · ,,ℓ−1 that de!ne the previous intervals.
We show that for every value function ' and item pricing

5 (3) ∈ Π∗# with price gap (E, F) = ( 1
"2

ln !
"2
, !
"3

ln !
"2
), there

exists an e$ciently computable set Π′ with |Π′ | = |Π∗ | and
an interval pre!x pricing 5 (4) with 5 (4)* ∈ Π′ for all ( ∈ [!]
and price gap ( 1

"2
ln !

"2
, !
"3

ln !
"2
), such that

Rev6 (4) (') ≥ (1 −" ($))Rev6 (3) (').

The converse is also true: for every value function ' and

interval pre!x pricing 5 with price gap ( 1
"2

ln !
"2
, !
"3

ln !
"2
),

we can e$ciently compute an item pricing 5 (5) such that

Rev6 (5) (') ≥ (1 −" ($))Rev6 (').

(5) We de!ne for each arbitrary-valued buyer ' and interval
partitioning D an additive-over-intervals value function that
closely mimics it. For an arbitrary value function ' , for any
set * = *1 ∪ *2 ∪ · · · ∪ *< of items with *ℓ ⊆ Dℓ for every
ℓ ∈ [C], de!ne

'⊕B (*) =
<∑

ℓ=1

(
' (*ℓ ∪,ℓ−1) − ' (,ℓ−1)

)
.

In other words, '⊕B (*ℓ ) is the value gain of getting set *ℓ ,
when the buyer ' has set of items ,ℓ−1 at hand. We write
D⊕

B as the distribution of '⊕B corresponding to ' ∼ D. ' and

'⊕B have the same behavior under an interval pre!x pricing
de!ned by interval partition D . When the interval partition
is clear from the context, we will omit D and write '⊕ = '⊕B .

We show that for every additive-over-intervals value func-

tion '⊕ and interval pre!x pricing 5 (4) with 5
(4)
* ∈ Π′,

and with price gap (E, F) = ( 1
"2

ln !
"2
, !
"3

ln !
"2
), there ex-

ists an e$ciently computable set Π& with |Π& | = |Π∗ | and
an item 5 (6) with 5

(6)
* ∈ Π& for all ( ∈ [!] and price gap

( 1
"2

ln !
"2
, !
"3

ln !
"2
), such that

Rev6 (6) ('⊕) ≥ (1 −" ($))Rev6 (4) (').

The converse also holds: for every value function ' and

item pricing 5 with price gap ( 1
"2

ln !
"2
, !
"3

ln !
"2
), we can

e$ciently compute an interval pre!x pricing 5 (7) with price

gap ( 1
"2

ln !
"2
, !
"3

ln !
"2
) such that

Rev6 (7) (') ≥ (1 −" ($))Rev6 ('⊕) .

(6) Finally, we show that for any distribution D over arbitrary
values and any set Π& of values, an optimal item pricing
5 for value distribution D⊕

B and the corresponding inter-
val partition D , with 5* ∈ Π& for all ( ∈ [!] and price gap

( 1
"2

ln !
"2
, !
"3

ln !
"2
), can be found in time polynomial in |Π& |,

!! ·%&'( (1/") , and%.

The complete reasoning is similar to the proof of Theorem 4.6
and is omitted.

!

We further notice that for a unit-demand buyer, the dependency
on logR can be removed. This is enabled via the following lemma.

Lemma 5.4. Let ; be a set of non-negative real numbers. Then we
can e"ciently !nd a set of power-of-(1 + $2) prices ; ′ with |; ′ | =
" ( |; |2 1

"2
ln 1

"2
) satisfying the following: For any buyer that is unit-

demand over ! items such that for any buyer type ' and item ( the
buyer has value '* ∈ ; , the optimal power-of-(1 + $2) item pricing /
satisfy /* ∈ ; ′ for any ( ∈ [!].

Given the lemma, since there are at most%! di"erent item values
in the input, we have |; | =%! in the lemma. The lemma can replace
Step 2 in the proof of Theorem 4.6 to remove the running time’s
dependency on logR. It can also be applied to Theorem 5.3 for a
unit-demand buyer. The proof of Lemma 5.4 is omitted.
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A OMITTED PROOFS FOR THE FEDEX
SETTING

Lemma 3.4. There exists an optimal item pricing such that /1 ∈ Π1 ,
and /* ∈ Π∗ for each ( ≥ 2.

Proof. We start with an arbitrary optimal item pricing / with
monotone item prices. Notice that a buyer ' will either purchase
item 1 or item (- due to the monotonicity of item prices.

If /1 ∉ Π1 , and /1 = /2 = · · · = /ℓ < /ℓ+1, suppose that we
raise the price of item 1, 2, · · · , ℓ by a small enough $ . For a buyer
of type ' , if the buyer prefers to purchase item 1 previously, then
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'1 ≥ /1. Since /1 ∉ Π1 , and '1 ∈ Π1 , we know that '1 > /1, thus
'1 ≥ /1 + $ for a small enough $ . Thus after the perturbation, she
either still prefers to purchase item 1 and pay $ more, or she will
switch to purchase a more expensive item, which means that her
payment increases. For any buyer that does not prefer to purchase
item 1 before perturbation, her preferred item does not change after
the price changes. Therefore, after the operation, the total revenue
does not decrease. The value $ can be chosen so as to enforce either
/1 + $ ∈ Π1 , or /1 + $ = /ℓ+1. By repeating this operation, we will
have /1 = /2 = · · · = / 0 ∈ Π1 for some ) ∈ [!], while maintaining
the optimality of / .

If ℓ is the smallest index such that /ℓ ∉ Π∗, and /ℓ = /ℓ+1 = · · · =
/ 0 < / 0+1, suppose that we raise the price of items ℓ, ℓ + 1, · · · , )
by a small enough $ . For a buyer of type ' , if (- ∉ [ℓ, )], the buyer’s
incentive does not change after the perturbation. Otherwise when
ℓ ≤ (- ≤ ) , if the buyer prefers to purchase item (- before the
perturbation, then '*! −/*! ≥ '1 −/1, and '*! ≥ /*! . Since /1 ∈ Π1 ,
'*! − '1 + /1 and '*! are both in Π∗. By /*! = /ℓ ∉ Π∗, '*! − /*! >

'1 − /1 and '*! > /*! . Therefore after the perturbation, for small
enough $ , she still prefers to purchase item (- and pay $ more.
Therefore, after the operation, the total revenue does not decrease.
The value $ can be as large as making /ℓ + $ ∈ Π∗, or making
/ℓ + $ = / 0+1. By repeating this operation, we will have /* ∈ Π∗ for
each ( ≥ 2, while maintaining the optimality of / . This !nishes the
proof of the lemma. !
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