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ABSTRACT

We study the revenue guarantees and approximability of item pric-
ing. Recent work shows that with n heterogeneous items, item-
pricing guarantees an O(log n) approximation to the optimal rev-
enue achievable by any (buy-many) mechanism, even when buy-
ers have arbitrarily combinatorial valuations. However, finding
good item prices is challenging - it is known that even under unit-
demand valuations, it is NP-hard to find item prices that approxi-
mate the revenue of the optimal item pricing better than O(~/n).

Our work provides a more fine-grained analysis of the revenue
guarantees and computational complexity in terms of the number
of item “categories” which may be significantly fewer than n. We
assume the items are partitioned in k categories so that items within
a category are totally-ordered and a buyer’s value for a bundle
depends only on the best item contained from every category.

We show that item-pricing guarantees an O(log k) approxima-
tion to the optimal (buy-many) revenue and provide a PTAS for
computing the optimal item-pricing when k is constant. We also pro-
vide a matching lower bound showing that the problem is (strongly)
NP-hard even when k = 1. Our results naturally extend to the case
where items are only partially ordered, in which case the revenue
guarantees and computational complexity depend on the width of
the partial ordering, i.e. the largest set for which no two items are
comparable.
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1 INTRODUCTION

A dominant theme within algorithmic mechanism design is simplic-
ity versus optimality — establishing that simple mechanisms can
approximate optimal ones within many settings. The simple mech-
anism in most of these results is an item pricing, where the seller
determines a fixed price for each item and buyers can purchase any
set of items at the sum of the corresponding prices. Item pricings are
also an important class of mechanisms from a practical viewpoint —
most real world mechanisms are indeed item pricing mechanisms.
However, despite their simplicity and popularity, finding good item
prices for multi-item settings is a notoriously challenging problem
and it is known to be inapproximable within a factor better than
y/n even for unit-demand buyers [10].

In this paper, we focus on structured mechanism design instances
and perform a fine grained analysis of the approximability of item
pricing as well as its approximate optimality. We consider a stan-
dard multi-parameter mechanism design setting where a revenue
maximizing seller offers multiple items for sale to a buyer whose
value for the items is drawn from a known distribution. We define
a new parameterization over value distributions wherein items
can be partitioned into a few categories and items within each
category can be ordered by desirability. We show that the number
of categories governs both the approximability and approximate
optimality of item pricings.

Ordered items and the approximability of item pricing. At the
heart of our parameterization is the so-called FedEx Problem that
was first studied by Fiat et al [23]. In the FedEx Problem, the items of-
fered by the seller correspond to shipping times for a package; each
buyer has a deadline for shipping their package and obtains a fixed
value if the shipping time meets their deadline. The FedEx Problem
occupies a sweet-spot between single-parameter mechanism design
settings where a buyer’s preferences can be fully described through
a scalar value; and multi-parameter settings where different (sets of)
items bring the buyer different values. Accordingly it exhibits some
but not all of the complexity of multi-parameter settings. Indeed, as
we show, in contrast to the general case, the optimal item pricing
for Fedex instances can be computed in polynomial time.

The FedEx Problem is a special case of “totally ordered” settings
where items can be ranked by quality and every buyer type weakly
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prefers a higher ranked item to a lower ranked one.! More gen-
erally, we consider settings where items can be partitioned into k
categories such that within each category items are totally ordered
by quality:

Consider, for example, a car dealership that sells k
different models of cars. Each model comes in a variety
of different trims — the most basic trim along with
a sequence of upgrades. For any particular model or
category, every buyer has the same ordering of values
over different trims although values differ arbitrarily
across buyers and across categories. One buyer may
value the luxury trim $5,000 higher than the standard
trim and another may value them the same, but no
buyer values the standard trim more than the luxury
trim.

For another example, consider an internet service
provider such as Comcast, AT&T or Spectrum that of-
fers multiple products such as TV, internet, and phone
service. Each individual product has quality or ser-
vice levels that are ordered. In particular, every buyer
weakly prefers higher internet speeds to lower speeds
and unlimited talk time to limited talk time. How-
ever, buyers may assign different values to different
combinations of the three services.

Yet another example is of a streaming media company
such as Netflix or Amazon pricing TV shows. The
seasons of each show form an ordered list — viewers
typically would not watch season 2 without watching
season 1, for example. k shows, accordingly, corre-
spond to a k category setting. Each category contains
items corresponding to the first several seasons of the
same show.

We emphasize that both the totally ordered setting and the k-
category setting are multi-parameter settings where the buyer’s
values are combinatorial and described as functions over the set of
items allocated to the buyer. Beyond the ordering over items within
each category, we make no assumptions on the buyer’s values over
sets of items.

Our main computational finding is that the approximability of
item pricing is governed by the parameter k. For the totally ordered
(k = 1) and k-category settings, we provide a polynomial time
approximation scheme with a running time that depends exponen-
tially on k. For any given € > 0, our algorithm returns an item
pricing that approximates the revenue of the optimal item pricing
within a factor of (1 + €) and runs in time poly(m, npoly(k/e) p)
where n is the number of items, m is the support of the distribution
and b is the bit complexity of buyer’s value distribution. Our ap-
proximation scheme is almost the best possiblez, as we show that
finding the optimal item pricing is strongly NP-hard even for k = 1.
Our algorithm is particularly relevant and useful when k is a small
constant such as in the examples described above.

!In the FedEx setting, for example, every buyer weakly prefers earlier shipping times
to later ones.
2There dependency on k and € may be improved.
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THEOREM 1.1. For any distribution of support size m over
k-category valuations v : 2[nl — [1,2°], we can compute an (1+€)-
approximate item pricing in poly(m, nP°lY(K:1/€) b time.

The approximate optimality of item pricing. As aforementioned, a
central problem in multi-item mechanism design is approximating
the revenue of the optimal mechanism in multi-parameter settings
by simple mechanisms like item pricing. In fact, in the kinds of
settings we study in this paper (with no assumptions on the value
distributions), it is known that no simple mechanisms can provide
any finite approximation to the optimal revenue in the worst case.
This general case impossibility of simple-versus-optimal results has
led to two complementary lines of work in recent years.

The first looks at structured settings for which approximately-
optimal mechanisms can be characterized. The FedEx problem [23,
35] and its extensions to so-called “interdimensional” settings [19,
20] belong to this line of work; in these settings, the optimal mech-
anism can have an exponential or even unbounded description
complexity but under appropriate assumptions, mechanisms with
polynomial menu size provide an approximation. Another series
of works [1, 11, 34] bounds the revenue gap between item pric-
ings and optimal mechanisms assuming that the buyer’s values are
subadditive and independent across different items.

The second line of work places an extra incentive constraint on
the revenue maximization problem. Instead of viewing a mecha-
nism as a one time interaction between the seller and a buyer, it
is assumed that the buyer can visit the mechanism multiple times
purchasing different bundles of items. In this “buy-many"” setting,
complicated mechanisms that extracted arbitrarily higher revenue
than simpler ones are no longer incentive compatible as the buyer
can buy multiple cheaper options instead of a single expensive
one. In fact, recent work [15] shows that item-pricing achieves a
©(log n) approximation to the optimal buy-many mechanism and
this is tight in a strong sense as no simple mechanism, i.e. one with
polynomial description complexity, can approximate the optimal
revenue better than a logarithmic factor.

Our work unifies the two approaches and considers the rev-
enue approximation of item pricing in more structured buy-many
settings. Our first finding is that item pricing is the optimal buy-
many mechanism in the FedEx setting. More generally, we find
that the revenue guarantees of item pricing are again governed
by the parameter k of our parameterization. In the totally ordered
setting where k = 1, we show that item pricing is no longer optimal
but achieves a constant factor approximation to the optimal buy-
many revenue. For k categories, we show that the approximation is
O(log k). This gives a smooth degradation of the revenue guarantee
as the instances become less and less structured.

THEOREM 1.2. For any distribution over k-category valuation func-
tions, the optimal item pricing guarantees a 1/©(log k) fraction of
the revenue achievable by the optimal buy-many mechanism.

Implications for Buy-Many Mechanism Design. Even though our
focus in this work is on item pricing and its revenue guarantees,
our result gives the first computationally efficient algorithm for
computing approximately optimal buy-many mechanisms in struc-
tured settings. In contrast to the setting of buy-one mechanisms



Pricing Ordered Items

where the optimal mechanism can typically be computed via a lin-
ear program of polynomial size in the support of the distribution of
values, no such algorithm is known for buy-many settings. In fact,
we observe that the v/n inapproximability of item-pricing even for
unit-demand settings, directly implies a v/n/log(n) inapproximabil-
ity for buy-many mechanisms as one can efficiently convert any
buy-many mechanism into an item pricing one with a logarithmic
loss in approximation®. Our results show that for structured set-
tings, the optimal buy-many mechanism is efficiently approximable
and that such an approximation can be achieved via item pricing.

We remark that being able to obtain approximate item pricing
or buy-many mechanisms is important even in cases where the
optimal buy-one mechanism might be easier to compute. This is be-
cause buy-one mechanisms may be inherently complex and difficult
for the buyers to understand and participate in. More significantly,
in many settings, it may be unrealistic to expect that the revenue
promised by a buy-one mechanism is achievable in practice. For
cases like shopping from a retail store, it may not be feasible to im-
plement a buy-one mechanism as buyers faced with superadditive
prices would break their desired bundle into smaller ones visiting
the store multiple times. This would result in significantly lower
revenue than expected by the buy-one model.

Extensions. We further consider settings where there is a partial
ordering over items. Consider, for example, an electronics company
that manufactures both cameras and cell phones. Some cell phones
capture all of the features of certain cameras, and therefore all
buyers weakly prefer the former to the latter. But not all cameras
and cell phones are comparable. We say that an item i dominates
another item j if for every set S of items containing both i and j,
every buyer is indifferent between getting S or S \ {j}.

We use the parameter k to denote the “width” of the partial
ordering over items—the size of the largest set of incomparable
items or the longest anti-chain in the partial ordering. Note, that
the k-category setting is a special case of this more general width-k
setting. Our PTAS for item pricing of Theorem 1.1 as well as the
buy-many revenue approximation result of Theorem 1.2 naturally
extend to this more general setting with the same guarantees.

A more relaxed condition for partial ordering across items speci-
fies that item i dominates another item j if all sets of items S that do
not contain items i or j, adding i to S is always preferable to adding
Jj. Unfortunately, we show that under such a weak condition, pric-
ing cannot guarantee a constant fraction of the optimal buy-many
revenue even in simple settings. In fact, even with additive buyers
over totally ordered items, we show that no buy-many mechanism
with polynomial description complexity can achieve better than
1/0(loglog n) fraction of the optimal buy-many revenue (see Sec-
tion 4.4). It is an interesting open question left by our work to show
that this bound is indeed achievable by item pricing.

Our techniques. Our techniques are easiest to understand in the
context of a unit-demand buyer with totally ordered items. Our
analysis of the gap between item pricings and optimal buy-many
mechanisms in this setting hinges on a characterization of the

3The efficient algorithm comes from the constructive proof of the item pricing mecha-
nism that O (log n)-approximates the optimal buy-many mechanism in [15]
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buyer’s optimal buy-many strategy. Faced with a menu of random-
ized options, the buyer essentially behaves like a Pandora’s box
algorithm which at every step opens a box (i.e. purchases a lottery)
and obtains a random reward. Because the same lotteries can be
purchased any number of times, the buyer’s optimal strategy is to
pick a single lottery repeatedly until an item of a certain minimum
value is instantiated. This characterization allows us to relate the
buyer’s utility to the value of the item(s) bought by the buyer. We
can then apply a lemma from [15] that relates the revenue obtained
by an item pricing to the change in the buyer’s utility at different
scalings of that item pricing.

In order to approximate the optimal item pricing for a unit de-
mand buyer with totally ordered items, we view the buyer as addi-
tive over item upgrades: the purchase of an item i can be viewed
equivalently as the purchase of the base item 1 along with a series of
upgrades, 1 to 2, 2 to 3, and so on till i. The benefit in doing so is that
with some slight loss in approximation, we can group upgrades into
different pricing scales, and price each scale independently. This
permits a dynamic programming based algorithm for optimizing
the prices of the upgrades. The pricing found in this manner can
be easily converted into an item pricing with the same revenue.

1.1 Other Related Work

The computational complexity of item pricing for a single buyer has
been studied previously for a variety of valuation functions. One
widely studied setting is the k-hypergraph pricing problem, where
each possible realization of the buyer is unit-demand over a set of
at most k items. It has been shown that there exists an algorithm
with competitive ratio O(min(k, y/nlogn)) [10] (also see [2, 5, 27]),
and is hard to approximate within Q (min(k!~¢, n1/2-€)) under the
Exponential Time Hypothesis [10] (also see [3, 8, 9]). Such results
also extend to a single-minded buyer that wants an entire set of at
most k items. The specific case where k = 2 is called the graph vertex
pricing, for which there is an efficient algorithm with competitive
ratio 4 [2]. No efficient algorithm can give an approximation ratio
better than 4 assuming the Unique Games Conjecture [31] (also see
[27, 29]). Another special case is the tollbooth problem, where the
buyer demands a path on a path graph. This problem is strongly
NP-hard [22], and a PTAS is known [26] (also see [2, 24]).

Another line of work studies the problem of selling to a unit-
demand buyer with item values drawn from independent distribu-
tions. For general distributions, computing the optimal item pricing
is NP-hard [18]. The optimal item pricing revenue can be approxi-
mated to within a factor of 2 (providing a 4-approximation to the
optimal revenue overall) [11, 12], and a PTAS (or QPTAS) exists if
the item values are drawn from monotone hazard rate (or regular)
distributions [6]. The problem of finding the revenue from the opti-
mal mechanism for a unit-demand buyer with independent item
values has been further studied: it is known that no efficient exact
algorithm exists unless the polynomial-time hierarchy collapses
[17], and a QPTAS exists [30].

The recent decade has seen much work on approximating the
optimal revenue via simple mechanisms such as item pricing and
grand bundle pricing: for a single unit-demand buyer [11, 13]; an
additive buyer [1, 28, 32]; a subadditive buyer [14, 34]; as well as for
multi-buyer settings [7, 12, 14, 21, 36]. All of these results require
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independence across individual item values. For correlated item
values, simple mechanisms cannot provide finite approximations to
the optimal revenue and bounded gaps are only known in compari-
son to the optimal buy-many revenue. [4] shows that item pricing
gives O(log n)-approximation to the optimal buy-many revenue
for a unit-demand buyer. [15] further generalizes the result to a
general-valued buyer, and [16] characterizes the tight menu-size
complexity of the mechanism needed for (1 + €)-approximation in
revenue.

1.2 Organization

We present our results by iteratively building from the simplest case
of the FedEx-Problem in Section 3, to the case of totally-ordered
items in Section 4 and finally the general case with partially ordered
items in Section 5.

2 DEFINITIONS

We study the multidimensional mechanism design problem where
the seller has n heterogeneous items to sell to a single buyer, and
aims to maximize the revenue. The buyer’s value type is specified
by a valuation function v : 2 [n] - Ry that assigns a non-negative
value to every set of items. The valuation functions are monotone:
for any S,T C [n] with S C T and any valuation function v, we
have v(S) < o(T). We study the Bayesian setting, where the buyer’s
valuation function v is drawn from a publicly known distribution
D over the set of all monotone valuation functions.

Unit-demand Buyers. We say that a buyer is unit-demand over
all items, if the buyer is only interested in purchasing one item,
and her value for any set of items is solely determined by the item
that is most valuable to her. In other words, for any set S C [n],
0(S) = max;es v({i}). When there is no ambiguity, we use v; to
denote v({i}) for a unit-demand buyer of type v.

Totally-ordered Items. We say that a unit-demand buyer has
totally-ordered values, if for every possible value realization v of
the buyer, v; < vy < -+ < vp.

Partially-ordered Items. Let < denote a partial ordering over the
n items. We say that the buyer has partially-ordered values with
respect to the relation < if for every realizable valuation function
v, every pair of items i and j with i < j, and every set S C [n], we
have 0(S U {i, j}) = 0(S U {j}). We say that the item j dominates i.
In other words, the buyer may discard from his allocated set any
item that is dominated by another item in his allocation with no
loss in value. As a consequence, the only “interesting” allocations
over partially-ordered items are sets that form antichains, i.e. where
no two items are comparable. An important parameter of a partially
ordered set is its width that is defined to be the size of the largest
antichain. We use k to denote the width of the partial ordering
<. An important special case of partially-ordered items is the k-
category setting where items are partitioned in k-categories. In
this setting, items within a category are totally ordered and every
buyer’s value for a bundle depends only on the best item of each
category it contains.

Input Model for the Computational Problem. When we study com-
putational problems, we assume that the input distribution D is
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provided explicitly over a support of size m. Each buyer type v
in the support is a vector of size O(n¥) that specifies the buyer’s
value o(T) for all possible sets T of size at most k,* and is accompa-
nied with a probability of realization Pr{v]. We further assume that
the value v(T) of each set of items is either 0, or in range [1, R].
Without loss of generality we assume that each buyer type v in the
support D is non-trivial: v([n]) > 1.

Single-buyer Mechanisms. By the Taxation Principle [33], any
single-buyer mechanism can be described as a menu of possible
outcomes, and the buyer can select one menu option. Each outcome
A= (xp) € A2y x Ryg is a lottery that is specified by a
randomized allocation x over the sets of items, and a price p that is
the payment of the buyer if she wants to get such an allocation. For
any set S C [n], xs denotes the probability that only items in set S
are allocated to the buyer, and we have ||x||; = 1°. We will use x (1)
and p(A) to denote the allocation and the payment of any lottery
A. For any buyer of valuation function v, her value for lottery A is
defined by v(A) = Eg.,0(S); her utility for purchasing A is defined
by uy(4) = v(A) — p(4). We will also use S ~ A to denote a set of
items drawn from set distribution x(A).

Given a mechanism M with a menu of lotteries A, the buyer
selects the menu option A that maximizes her utility u,(1). When
there are multiple lotteries with the same highest utility for the
buyer, the seller can choose the most expensive lottery to sell to the
buyer. Without loss of generality, we assume that for any allocation
x € A(2["]) over the sets of items, there is a corresponding price
p(x) such that (x,p(x)) € A. We also use the pricing function
p as an alternative definition of the mechanism M. The buyer’s
utility is defined as u,(v) = v(x) — p(x). The buyer’s payment
is REV) (v) = p(x), and we write the revenue of mechanism p as
Rev), = E,. pREV, (0). Since the mechanism only allows the buyer
to interact with the mechanism for once, it is also called buy-one
mechanism.

Buy-many Mechanisms. In an (adaptively) buy-many mechanism,
the buyer is allowed to interact with the mechanism for multiple
times. To be more precise, a buy-many mechanism M generated
by a set A of lotteries can be defined as follows. The buyer can
adaptively purchase a (random) sequence of lotteries in A, which
means that in each step, the buyer can decide which lottery to
purchase given the instantiation of the previous lotteries in the
sequence. The buyer gets the union of all items allocated in each
step and pays the sum of the prices of all purchased lotteries. For
any adaptive algorithm A, define Az = (17,1, 47,2, - - - ) to be the
random sequence of lotteries purchased by the buyer of type v. The
expected value of the buyer is

0(AA) = E (5,8, )~ (Ansdap)? (U 51‘) ,

i>1

“Note that it suffices to specify the buyer’s value over sets of size at most k, where k
is the width of the partial ordering over items, because the buyer only desires sets that
form antichains.

SThroughout the paper we assume ||x||; = 1 since in an adaptively buy-many mecha-
nism, a buyer will only purchase a lottery with total allocation 1, otherwise she can
repeatedly purchase the lottery and get a larger utility.
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and the payment of the buyer is
p(AA) =Ba ) p(Aa).

i>1

Any buy-many mechanism can be described by a buy-one menu,
where the buyer is only allowed to purchase a single lottery. This
is because the expected outcome of any adaptive algorithm A can
be described by the allocation U;(S; ~ A4;), and an expected
payment p(A #). We say that a buy-one menu A satisfies the buy-
many constraint, if for every adaptive algorithm A, there exists a
cheaper single lottery A € A dominating it. Rigorously speaking,
there exists 1 € A with p(1) < p(Ag) such that there exists
a coupling between a random draw S from A, and the union of
random draws S’ from A g, satisfying S 2 S’. Intuitively, a buy-
one menu satisfies the buy-many constraint, if the buyer always
prefers to purchase a single option from the menu, even if she has
the option to adaptively interact with the mechanism for multiple
times. In later sections, when we refer to a “buy-many mechanism”
with menu A, we are always referring to a buy-one mechanism
with menu A that satisfies the buy-many constraint.

3 WARM-UP: ITEM PRICING IN THE FEDEX
SETTING

In this section, we study the item pricing in the FedEx setting
[23]. The buyer’s value distribution in the FedEx problem has the
following structure. Any buyer type v is defined by the pair of
parameters (iy, vgy) with v; = 0 for i < i, and v; = vy otherwise.
In other words, the buyer is totally-ordered and has at most two
distinct values for all items, with the lower value being 0.

3.1 The Optimality of Item Pricing

Our first observation is that item pricing achieves the optimal rev-
enue obtained by any buy-many mechanism.

THEOREM 3.1. For any value distribution in the FedEx setting, there
exists an item pricing that achieves the optimal buy-many revenue.

Proor. Consider a buyer with value function v in the FedEx
setting. Recall that the buyer only values items with index > i, and
values all of them equally. Therefore the buyer obtains the same
value from an allocation x = (x1,x2,- -+, X,) as from an allocation
x’ where xi'v = Yisi, xi and x] = 0 for i # iy.

Given any buy-many menu {(x, p)}, consider replacing every
lottery (x, p) with n different options:

(W, pM) = (Tj1%,0,-++,0),p),

(<2, p®) = (0,552 %7,0.-+,0).p). -+,

(x<”),p(”>) = ((0,---,0,xpn), p). By our observation above, for
every buyer type v, one of the n new options bring the same utility
to the buyer as (x, p) and all other options bring lower utility. As a
result, the new mechanism is identical in its allocations and revenue
to the original one.

Observe that the new mechanism sells each item separately (but
with different probabilities of allocation). We have the following
observation:

OBSERVATION 3.2. In a mechanism that sells each item separately,
an adaptively buy-many buyer always purchases an item with allo-
cation 1.
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The observation is true since if the buyer of type v purchases
a lottery A that sells item i, with probability x; , the buyer can
repeatedly purchase the same lottery until she gets the item, which
increases her utility. We may therefore drop any options that al-
locate items with probability less than 1 from the menu without
changing the allocations or revenue of the mechanism. This final
mechanism is an item pricing, and Theorem 3.1 follows. O

3.2 A Poly-Time Algorithm for Finding Optimal
Item Pricings

In this section, we show that the optimal item pricing in the FedEx
setting can be computed efficiently. We actually prove a stronger
result: for each realized buyer type v, if the buyer has at most two
distinct item values, the optimal item pricing can be computed in
polynomial time via dynamic programming. For each buyer type
v, let 1 and vy denote the two different item values in v, and let
iy be the smallest item type with item value vp. In other words,
v =0y = =0, 1 =ovp,and v;, = Vj 41 = -+ = 0p = ig. If
01 = vy, we define iy = 1 and v, = vy = v1. The FedEx Problem is
a special case with vy, = 0.

THEOREM 3.3. In the totally-ordered setting, if each realized buyer
type has at most two distinct item values, then the optimal item pricing
can be computed in polynomial time.

ProOF. Let Pr[v] be the realization probability of v under input
value distribution 9. Without loss of generality, we only study
item pricings with monotone item prices p; < ps < -+ < py. For
a buyer type with vy > vy, the buyer would either purchase item
1, or item iy, or nothing. For a buyer type with vy = vg, the buyer
would either purchase item 1, or nothing.

To compute the optimal item pricing, we first find a set of feasible
prices for each item, then use a dynamic program to find the optimal
item pricing. Define I}, = {v1|o ~ D,i € [n]} U {0} be the set
of all possible values for item 1, including 0. Let IT* = {z|z
vg —op +y,y € IIp,0 ~ D} UIIL. We first observe that we may
restrict prices to lie in a set of polynomial size without loss in
revenue. The proof of this lemma is deferred to Section A.

LEMMA 3.4. There exists an optimal item pricing such that py € Iy,
and p; € IT* for eachi > 2.

Now we are ready to find the optimal item pricing. Let Fy, i, z]
denote the total revenue from buyer types v with i, < i, under a
monotone item pricing that has already priced the first i items, with
p1 =y and p; = z. Then we have the following recursive formula:

{F[y, i-1,2']+ Z Pr{0]Glo,y, z]},

V=i

Fly,i,z] = max

7/ <z,z' €ll*

where G[v, y, z] is the payment of buyer type v with item price y
for item 1, and price z for item i,. In other words, G[o,y,z] = z if
vg—z>v1—yandoyg 2 z;G[v,y,z] =yifo; —y > vg —zand
v1 > y; G, y, z] = 0 otherwise. The recursive formula is based on
the following fact: if p; is fixed, the revenue contribution of buyer
types with i, = i only depends on p;. The optimal item pricing
revenue we want to compute is maXyer zell*,z>y Fly, n, z]. Since
the table has a polynomial number of entries, and the inductive
steps can be computed in polynomial time, the total running time
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is also polynomial in the number of items and the support size of
the distribution. ]

4 ITEM PRICING IN THE TOTALLY-ORDERED
SETTING

In the previous section we observed that for the FedEx setting, item
pricing is not only optimal but also polynomial-time computable.
When considering the general totally-ordered setting, both proper-
ties no longer hold. We show that for a general-valued buyer, item
pricings may achieve strictly less revenue than the optimal buy-
many mechanism. We complement this result by showing that item
pricing gives a constant approximation in revenue to the optimal
buy-many mechanism. Next, we show that computing the optimal
item pricing in the totally-ordered setting is strongly NP-hard, thus
there is no FPTAS algorithm finding the revenue obtained by the
optimal item pricing. We complement the hardness result by provid-
ing a PTAS computing an approximately optimal item pricing, thus
giving a tight characterization of the computational complexity of
the problem.

4.1 Item Pricing Is a Constant Approximation
to the Optimal Buy-Many Revenue

We first provide an example which shows that in the totally-ordered
setting, the optimal item pricing and the optimal buy-many mecha-
nism may have a constant factor revenue gap. Consider the follow-
ing example: Let there be 2 items and 3 unit-demand buyers, with
the following values for items 1 and 2 respectively, each realized
with probability %:

o = (0,5),0? = (1,3),0%) = (1,2).
The optimal buy-one mechanism has the following menu:

21

b= (0053~ (3.5):3) 2 = .00

The lotteries are written in the form of ((x1, x2), p) where x; and
X7 are the probabilities of the buyer getting items 1 or 2 respectively,
and p is the price for this lottery. In the mechanism, each buyer oD
prefers to purchase lottery A;. Observe that the menu of lotteries
satisfies the buy-many constraint. This is because to achieve the
allocation of any A; using the other two lotteries in the menu, one
always needs to pay more than p;. Thus the mechanism is also the
optimal buy-many mechanism, with revenue %. Observe that the
optimal item pricing for this instance is p; = 1, p2 = 3, which yields
a revenue of % < %. Thus there can be a constant gap between the
optimal item pricing revenue and the optimal revenue obtained by
any (buy-many) mechanism.

Then we show that item pricings can actually achieve a con-
stant fraction of the revenue obtained by the optimal buy-many
mechanism.

THEOREM 4.1. For any unit-demand buyer with totally-ordered
value for all items, item pricing gives a 5.4 approximation in revenue
to the optimal buy-many mechanism.

ProOF. Let p be the optimal buy-many mechanism. Define g to
be the following item pricing: g;, the price of item i, is the cheapest
price at which an adaptive buyer can obtain an item with index
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at least i with probability 1 from repeatedly purchasing a single
lottery. In other words,
i = min

B eninD o xy=1
We will show that a scaling of g gives a constant fraction of the
optimal revenue obtained by buy-many mechanisms. We use the
following lemma from [15] that relates the revenue of an appropri-
ate scaling of q to the change in the buyer’s utility as the pricing
function changes from a low scaling factor, ¢, to a high one, h.

p(x).

LEMMA 4.2. (Lemma 3.1 of [15]) For any pricing q and any 0 <
¢ < h, let a be drawn from [¢, h] with density function

Then for any valuation function v,

1
alog(h/t) "

trq (0) — tpq (0)
In(h/?)

In order to utilize this lemma, choosing h = 1, we show that
the buyer obtains a low utility under pricing g and high enough
utility at an appropriate scaling £q. We begin with two observations.
The first shows that in any buy-many mechanism, the value of any
set obtained by the buyer with non-zero probability is at least the
expected utility of the buyer.

Eq[REVq(0)] 2

LEmMA 4.3. For any buyer type v and any buy-many mechanism
p, the buyer purchases A = (x, p(x)) in p, then for any set T in the
support of x, 0(T) = up(v).

ProoF. Since A is the optimal lottery purchased by the buyer,
purchasing it is also the optimal adaptive strategy of the buyer.
Thus, if the buyer buys A and gets any set T in the support of x
allocated, she would not purchase another lottery on the menu,
in particular, A. Since the value gain of purchasing A with set T at
hand is at most v(1) — o(T), therefore v(1) — o(T) < p(A) which is
the price of purchasing A. Thus o(T) 2 v(A) = p(A) =up(v). O

We emphasize that the lemma holds for arbitrary buyer types
and not just unit-demand valuations. The second observation shows
that for any lottery, its price in p is lower bounded by the price of
some item in its support in item pricing q.

LEMMA 4.4. For any allocation x € A([n)), there exists an item i
in the support of x, such that q; < p(x).

PROOF. Let i be the item with the lowest type in the support of
x. Then we have 3} ;> ; x; = 1, thus g; < p(x) by definitionofq. O

Now we come back to the proof of the theorem. Fix any buyer
type v. We will consider four different pricing mechanisms: the
optimal buy-many pricing p, the item pricing q constructed above,
and their scalings fp and £q with f,¢ € [0,1].

Let A’ denote the lottery the buyer purchases under pricing fSp.
By Lemma 4.4, there exists an item j in the support of A’, such that
p(2) = gj. Then

REv, (0) = p(A') > Bg;. (1)
Next, let A denote the lottery the buyer purchases under pricing p.
Then, by Lemma 4.3, we have

ugp(v) 2 0(d) = fp(4) =v(A) - p(A) + (1 - B)p(d)
up(0) + (1 = B)REV, (0).

[ -

()
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where the second inequality follows by noting that the buyer has
the option of purchasing A under fp. Next, we note that since the
buyer has the option of purchasing item j under pricing £q, we
have

upq(v) 2 vj — £q;. 3)
Finally, by the definition of the pricing g, it has identical individual
item prices as in p, so it offers a strictly subset of options in p. Thus

the buyer can purchase any set of items more cheaply under p than
under g, which means

up(v) > uq(v). 4)
By 5(1)+(2)+(3) + (4).
upg(v) —ug(v) = (1 - B)REV,(v) - éREVﬁp(ZJ). (5)

By applying Lemma 4.2 to (5), there exists a random scaling
factor «, such that

u(q(v) - uq(v)
In(1/¢)

((1 —- BREv, (v) - éR}:Vﬁp(u)) . (6)

REV4q(0)

In(1/¢)

Since p is the optimal buy-many mechanism, it achieves higher

revenue than £p, which means E,.p[REV, (0)] = Ey-p [REVep (0)].

Taking the expectation over v on both sides of (6), we have

REveg = Eup [REVaq(U)]
> m ((1 - B)REV) — %REVﬁp)
> ! 1 d R
2 m ( - ﬁ - E) EVP’

Take ¢ = 0.03485 and f = 0.18668, we have REVgg 2 0.18668REV),.

Since aq is a (randomized) item pricing, thus there exists an item
pricing that gives a constant 1/0.18668 < 5.4-approximation to the
revenue obtained by the optimal buy-many mechanism.

m|

4.2 Hardness of Computing the Optimal Item
Pricing

In this section, we show that it’s strongly NP-hard to compute the
optimal revenue that can be obtained by item pricing mechanisms,
which means that there exists no FPTAS for the problem unless
P=NP. Let ORDEREDITEMPRICING denote the following problem:
For a unit-demand buyer with ordered valuation over n items, let D
be the value distribution with support size m. Compute the optimal
revenue obtained by item pricing.

THEOREM 4.5. ORDEREDITEMPRICING is strongly NP-hard, even
when each realized buyer has at most three distinct item values.

Proor. We prove the theorem via a reduction from Max-CuT.

For any Max-Cur instance with graph G(V, E), letn = |V| > 180
be large enough. Consider an instance of ORDEREDITEMPRICING
with n + 1 items. For convenience, we assume that each node in V'
also has an index in [n]. We want the following properties of the
optimal item pricing for the instance:
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(1) The optimal item pricing has integral item prices for each
item;

(2) pn+1 = 6n, and there is a set of buyer types purchasing item
n+ 1 with realization probability q; = 0.9 that do not depend
on the structure of the graph and contribute R;(n) to the
total revenue;

(3) pi = 3i—1or3i—2,and there is a set of buyer types purchas-
ing items in [n] with realization probability gz < ﬁql that
do not depend on the structure of the graph and contribute
R2(n) to the total revenue;

(4) In addition to all previous buyers, for each (i, j) € E with
i < j, there exists a set T;; of buyer types, and real number
R;j(n) > 0 that is irrelevant to the graph structure such that:
if pj — pi = 3(j — i), then the revenue contribution from T;;
is R;j(n); if pj — pi # 3(j — i), then the revenue contribution
from Tj is R;j(n) + ﬁ The realization probability of any
buyer type is polynomially bounded by n (at least poly(n~1)).

Before going to the construction, we first show the strongly
NP-hardness of ORDEREDITEMPRICING for an instance with above
properties. This proves the claim of the Theorem.

Given an instance with such properties, we can calculate the
revenue of the optimal item pricing for the instance. The total
revenue contributed from buyer types from Property 2 and 3 is
Ry (n) + Ra(n). For any cut C = (V1,V \ 1), if each item i in V;
is priced 3i — 1, while each item j in V \ Vj is priced 3j — 2, the
total revenue contributed from buyer types from Property 4 is
2(i,j)eE Rij(n) + #|C|. Thus, for a graph G(V, E) with maximum
cut cmayx, the corresponding instance of ORDEREDITEMPRICING has
maximum revenue

h(G) = Ri(n) +Ro(m) + > Rij(n)+
(i.j)€E

1

— Cmax-
nlO

This builds a bijection between the maximum cut of G, and the
optimal item pricing revenue of the ORDEREDITEMPRICING instance
constructed from G. Since all inputs for the ORDEREDITEMPRICING
instance are polynomially bounded, we know that problem
ORDEREDITEMPRICING is strongly NP-hard from the APX-hardness
of Max-CuT.

Now let’s go back to show how to construct the
ORDEREDITEMPRICING instance satisfying every property.

Property 1. To make sure that the optimal item pricing has all
integral prices, we only need to construct the distribution such
that each buyer type has integral value for every item. For such an
instance, if the optimal item pricing does not have integral price for
every item, we can round up the price for each item to the closet
integer without reducing the revenue. The reason is that such a
round up procedure does not change the incentive of any buyer
type. If a buyer v prefers to purchase item i to j under pricing p,
which means v; — p; > vj — pj, then v; — [p;] > vj — [p;] since
v; and v; are both integer. Thus we can only focus on the class of
item pricing with integral item prices.

Property 2. Construct a buyer type with value v,41 = 6n for item
n+1,and v; = 0 for all i < n. In other words, the buyer only wants
to purchase item n + 1 with value 6n, and is not interested in any
other item. The buyer type appears with probability q1, where g is
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very close to 1. We will make sure that the rest of the buyer types
will contribute less than g; revenue, so the optimal pricing will
not set a price less than 6n for item n + 1. This will be done by
letting the rest of the buyer types have maximum item value < 6n
for each item and appear with probability < q1 20 n in total.
The revenue contribution of the buyer is R; (n) = 6nq; by setting
Pn+1 = 6n.

Property 3. For each i € [n], construct a buyer type v with value

= 02 = Zln+1—3i—1
a buyer type
1 1" =3i-2
which appears with probability 2 q5; and a buyer v’ with value
o) = .- =00 = =0 =3i-2,0], = 6n, which
appears with probability ¢}. Under any item pricing, all buyers
would purchase item i, item n+ 1, or nothing. Note that the price for
item n+1 has been fixed to 6n by Property 2. We have the following
cases:

o If p; < 3i — 3, then all three buyer types prefer to purchase
item £, which lead to total revenue (3i—3)(q;+ 3l+2q§ +qy) =

% 5 < 6ngy for the three buyer types.

o If p; > 3i, then buyer v and buyer v’ cannot afford to pur-
chase any item, while buyer v”” prefers to purchase item n+1,
which lead to revenue 6nq;.

e If p; = 3i — 1, then buyer v purchases item i; buyer v’ pur-
chases nothing; buyer v”’ purchases item n + 1, which leads
to total revenue (3i — 1)g; + 6nq;.

o If p; = 3i — 2, then the first buyer purchase item i, the second
buyer purchases item i, the third buyer purchases item n + 1,
which leads to revenue (3i - 2)(qj + ﬁq;) +6nq; = (3i -
1)qy + 6nqs,.

Thus setting p; = 3i — 1 or 3i — 2 gives the same optimal revenue for
the three buyers, while setting any other price leads to a revenue
loss of at least (3i —1)g5. We set gy, to be large enough such that the
rest of the buyers (to be defined in Property 4) cannot contribute
q; revenue, which can be done by letting the rest of the buyer
types have maximum item value < 6n and appear with probability
< %qé = ﬁrﬁ in total. So the optimal pricing only sets p; = 3i—1
or 3i — 2 for item i.
The total revenue contribution of the buyers is

Ra(n) = XL, ((3i—1)q, +6ngy). The total realization probability of
the buyers added in this property is at most 3q; for each i, thus at

(1 - =0i-1 = 0,0 = 0i+1
which appears with probability g; =

v’ with value o/

02>
.—Un

36n2
:---:u{I—OU

q1 =

=0

most 3ng;, = 40 . The set of the buyers and the revenue contribution
only depend on n, and does not depend on the graph structure.

Property 4. For each edge (i, j) € E with i < j,let x = 3i — 2, and
y = 3j — 2. Consider set T;; of buyer types formed by the following
4 types of buyers oD (@ 40 ),

N (m _

T=vi =X
= melh =y

0@ =20 20,0 = 0@, =,
UJ(‘Z) = E r(z?l y+1L

vf) = = (3) =0, U.(3) = = v](.i)l =X,
053) = = r(zi)l y+1;
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4= <4>=OU;4>= R
(4) _ oW _
v = Une1 =Y

In other words, the four type of buyers would purchase item i, item
Jj or nothing, and has slightly different values for item i and j. Our
goal here is to determine the appearance probability of each buyer
type in the value distribution, such that if p; = p; mod 3, then these
buyer types contribute R;;(n) to the total revenue; if p; Z p; mod 3,
then these buyer types contribute R;;(n) +n~1° to the total revenue.

Let A be the following 4 X 4 outcome matrix, such that each
element of the matrix corresponds to the payment of a (row) buyer
under a specific (item) item pricing:

vj,vj) of the buyer
( j) y

(xy)  (x+Ly+1) (xy+l) (x+1y)
(xy) Y Y y x

N (x+1Ly+1) 0 y+1 y+1 x+1
pricing (pi. ) (x,y+1) x x y+1 x
(x+1,9) y ) Y y

For any vector z € R> 0 Az correspond to the vector of the revenues

of the 4 pricings (p,,pj) =(xy),(x+Ly+1),(xy+1),(x+1Ly),
given that zy buyers of type ¢ appear. To satisfy Property 4, we need

to find a vector z such that Az = (R;j, R;j, Rij + n_w,Rij +n10)T
for some R;; > 0.

By solving a for Aa = (1,1, 1, I)T and b for Ab = (0,0, 1, l)T, we
get

( 1 x y—x )T
Y +y yy+Dy+1-x) yly+1-x)’
_( 1 2 +y(y+1)2 —xy(y +2) y—x 1 )T
4y yy+Dy+1-0)@y-x) yly+1-x)"y-x)

Taking

z = 10y3a +n 1%

20 +1 2x(y— 0y +xy? +2x -y - 2% —y

2

yi+y’ y(y+D(y+1-x)(y-x)
CQr+)y-x 1
yy+1-x) "y-x/
we have z > 0, and
Az = (2n~ 10y3 2n~ 10y3 2n~ y3 +n10, Zn_my3 + n_lo).

Thus if with probability z, the buyer has type v(¥), the four buyer
types contribute R;;j(n) = 2n7193 revenue if p; = pj mod 3, and
Rij(n) + n=10 = 2p=1043 4 10

Now we compute the total realization probability of the four
buyer types in the distribution: ||z||; < 10y*n~1 < 270n~7 by the
definition of z and y < 3n. Since there are less than %nz edges,
the total realization probability of all buyer types added in this
property is less than %nz 27007 =135n7° < 22003 for n > 180 as
required in Property 3. The total realization property of all buyer
types added in Property 3 and 4 is less than % + 24(1)n3 < zgn as
required in Property 2. This completes the proof of the correctness
of the construction.

otherwise.

[m]
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4.3 A PTAS for Computing a Near-Optimal Item
Pricing

We complement the strongly NP-hardness result by developing

a PTAS algorithm for computing the optimal item pricing for a

unit-demand buyer with totally-ordered values.

THEOREM 4.6. For a unit-demand buyer with totally ordered item
values, there exists an algorithm running in poly(m, nP°'¥(1/€) Jog R)
time that computes an item pricing that is (1 + €)-approximation in
revenue to the optimal item pricing.’

Proor. We prove the theorem in several steps.

(1) There exists a near optimal item pricing where all prices are
non-decreasing powers of (1 +€2). Let IT = {(1+ €?)"|r €
Z} U{0}. Then for all item pricings p, there exists {1 € 11",
such that for all value functions v,

REVq<1) (v) 2 (1 -0(€))REV) (0).

(2) At a small loss in revenue, we can restrict prices to lie in
a small set. In particular, for all value distributions D with
value range R, there exists an efficiently computable set
IT* c II with |IT*| = poly(1/e,1og R) such that for all item
pricings ¢(!) € IT", there exists an item pricing ¢(? € IT*"
satisfying

Rev,o) (D) > (1= O(e)Revyo (D).

(3) Next, we define for each unit demand buyer an additive value
function that closely mimics it. For a unit-demand value
function v, define UEB = v; — vj—1 and let v® be the value
function that assigns to a set S C [n] the value };¢g vi@.
We also define a new kind of pricing that we will call an
interval prefix pricing. Given a partition of the n items into
t intervals, I j,, Ii, iy, -+, Li;_, i, with ip = 0 and iy = n, an
interval prefix pricing g is a menu with n options; The jth
option allocates the set I, j = {ig + 1,i¢ + 2,- - -, j} at price
qj where iy < j < ip41.

We furthermore say that an interval prefix pricing g satisfies
price gap (y, 6) if (1) menu options corresponding to different
intervals are priced multiplicatively apart: for all i, j, and ¢
withi <ip < j,q;j > (1+ €2)Yg;, (2) and, menu options cor-
responding to any single interval are priced multiplicatively
close to each other: for all i, j, and £ with iy < i < j < ipy1,
qj < (1+€9)°g;.

We show that for value distribution D and its corresponding
additive value distribution D® and item pricing q(z) e ",
there exists an efficiently computable set I1” with |IT’| = |IT*|

and an interval prefix pricing q(3) with ql@ € I’ for all

L L1n 6—12), such that

i € [n] and price gap (6—12 In 3

REV,(5) (D% >(1- O(€))REV (2 (D).

The converse also holds: for every unit demand value func-
tion v and interval prefix pricing g with price gap

5The dependency on log R in the running time can actually be removed due to
Lemma 5.4.
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1 11

(Ghaa
ing q(4) such that

REV (s (0) > (1 0(€))Revy(0®).

In 51_2)’ we can efficiently compute an item pric-

(4) Finally, we show that for any distribution over additive val-
ues v® and any set IT” of values, an optimal interval pre-
fix pricing ¢, with q; € II’ for all i € [n] and price gap
(EL2 In ﬁ, ﬁ In 51_2)’ can be found in time polynomial in |IT’|,
nPoly(1/€) and m.

The algorithm can be described as follows. By the last step, we
can efficiently compute the optimal interval prefix pricing q with
price gap (ei2 In é 61—3 In elz) for the distribution D® over additive
buyer 0® that corresponds to the unit-demand distribution D, such
that all item prices are in II”. By Step 3, we can efficiently compute
an item pricing q(4) with Rqu(4) (v) = (1- O(e))Rqu(v$). Also
by the first three steps,

Rev, 4 (D)

> (1-0(€))Revg(D?) > (1~ 0(€))Rev ) (D)
> (1- O(e))REVq<z) (D)=(1- O(e))REVq(x) (D)
> (1-0(e))Revy(D)

for the optimal item pricing p. q(4) can be found in
poly(m, nP°ly(1/€) |11’|) = poly(m,log R, nP°!¥(1/€)) time.

Now we elaborate on each step in more detail. For simplicity, we
assume % is an integer.

Step 1. We first introduce a useful lemma for approximating
the revenue of a mechanism p via another pricing function g that
approximates p closely pointwise. Slightly different forms of the
lemma appears in multiple papers in the simple-versus-optimal
mechanism design and the menu-size complexity literature, and is
attributed to Nisan’.

LEMMA 4.7. For any e > 0, let p and q be two pricing functions
satisfying q(A) < p(A) < (1 + €)q(A) for all random allocations
A € A@2")). Then for scaling factor & = (1 + )"1/Ve and any
valuation function v,

REVaq(v) > (1 - 3Ve)Revy(v).

Now come back to Step 1 of the proof. Consider the optimal item
pricing p. Let g be the item pricing that rounds the price of each item
down to the closest integral power of (1 + €2). Then for any lottery
A, q(A) < p(A) < (1+€2)q(A). By Lemma 4.7, ¢V = (1+€2)"V/eq
is an item pricing with power-of-(1 + €2) prices for each item, and
achieves (1 — O(¢)) fraction of the revenue of p. This means that
focusing on finding the optimal item pricing with discretized item
prices only loses a (1 — O(e))-factor in revenue.

Any item pricing is equivalent to an item pricing with non-
decreasing item prices in the totally ordered setting, since for any
pricing p, if there exist two items i < j with p; > pj, then no
buyer ever prefers i to j since item i is worse in quality with higher
prices. Thus setting p; = p; keeps the incentive of all buyer types
unchanged, while after finite such operations, we can get an item
pricing with non-decreasing item prices and the same revenue.

"For a more detailed discussion of the history of the idea of the lemma, we would
point the readers to footnote 24 of [25].
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Step 2. Tt suffices to show that there exists an item pricing with
all item prices being either 0 or bounded in range [Q(e?), R], that
achieves an (1 — O(¢)) fraction of the revenue of q(ll,

The proof has the same nudging idea as Lemma 4.7. Let q(z)

be defined as follows. For each item i with q( ) < ¢ (2> = 0;

otherwise, qg ) = (1-¢) l( ). Then for each buyer type v, assume
that she purchases item i under q<1) and j under q(z). Since the

buyer prefers i over j under q(l), we have

_qll) (1)

ZUj—qj 5 (7)

Since the buyer prefers j over i under q(Z), and (1— e)(q(l) -€e%) <
q® < (1-€)q"V, we have

0j-(1-€)(g}" €% 2 0j-¢\" 2 vi-q” 2 vi-(1-0)g". (8)

o 5 @

Add inequalities (7) and (8), we have q;  zq; —€+ €2. Thus

2> (1- e)(qﬁ.l) -e?)>(1 —e)qgl) —e+é.

Taking the expectation over v ~ D. Observe that Rqum (D) =1
by selling only item n at price 1, since in the input model we assume
that each valuation function has at least value 1 for some item. We
have

REV, 0 (D) 2 (1-€)REV (1) (D) —e+€” = (1-0(€))Rev,) (D).
The item prices of q(Z) are in some set IT* with |IT*| = O( log =)

since all item prices in q(z) are in range [(1 — €)e%, R] and are
powers of (1 +€2) in ¢! multiplied by (1 — ¢).

Step 3. For item pricing q(2>, consider the following é sets of
prices: for each ¢ € [ ], let

1 1
Ve = {(1+€2)SSEZ,szamod—31n—2foras.t.
fl 1 <a <{’+ll 1
n— —In—
€2 e €2 €2

Since V are disjoint sets with the union being the set of all power-
of-(1 + €2) prices, there exists a set of prices V; such that in item
pricing q(z), the revenue contribution from items with price in V; is
at most € fraction of the total revenue. Consider the following item
pricing q’: for any item with price qu) ¢ Vi, q; = qu); for any item
2 ¢ V¢, q; is set to the smallest qj@ ¢ Vp with j > i. In other
words, the prices of all items in V; are raised while the incentives
of all buyer types that do not purchase an item with price in V; in
q(z) stay unchanged. Thus the revenue of ¢’ is at least (1 — O(e))
fraction of the revenue of ¢(?), Revy (D) = (1- O(e))REVq(z) (D).

Now we construct an interval prefix pricing q as follows. The
price of each item g; is set to g;, with all items naturally grouped
to intervals as follows: for any integer r, all items with logy, .2 gi
in range [ 5 In eiz + ‘7:—21 In é r:—gl In 6—12 + é In e—lz) are grouped to
an interval. Then for any two items i, j in the same interval, the
logarithm (with base 1 + €2) of the two prices differs by at most
é In eiz; for any two items i < j in different intervals, the prices

with g;

1L
differ by a factor at least (1 +€2) <2 nZ s
1 1
(= In2 63 In ).

elz, Thus g has price gap

€’
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Let Iy i\, Iiy iy» - - 1i,_,,i, be the interval partitioning of the entire
set of items. Now we study the price of any set T = {j1, jo, - -, jp}
of items under such an interval prefix pricing g. Suppose that the
item with the largest index jp, is in interval I;,_, ;,. Then the price
q(T) of the set is lower-bounded by q}b, and upper-bounded by q}b
plus the prices of all items in intervals prior to I;,_, ;,. The payment
for interval I;, , ;, , is at most

Gias

<é qld 1+l = <é q]b

Similarly the payment for intervals with smaller indexes are geo-
metrically smaller, and sum up to at most ezq}b. This means that
q}b <q(T) <(1+ 262)61}17 < (1 +462)q}b.

On the other hand, we introduce a new mechanism g’ called
prefix pricing. In such a mechanism, the buyer can pay gq; to obtain
a prefix set of items {1, 2, - - - , i}. For any unit-demand buyer v with
totally-ordered item values, she buys set {1,2,- - ,i} under ¢’ if
and only if she buys i under q’. Also under ¢q”’, buyer v and 0®
purchase the same set. Thus REvg~ (0®) = Revgr (v) = REVy (0). In
prefix pricing g/, the price of set T is q’’(T) = q}b, which is the
price of the smallest prefix that contains ji. Thus

(1+2e2)71q(T) < ¢’ (T) < q(T) < (1 +2e¥)q”(T).  (9)

By Lemma 4.7, there exists a scaling ¢(3) = (1 + 4€2)~1/(2€) g of
interval prefix pricing g which gives (1 — O(e))-fraction of the
revenue of g’ for any buyer 0®. Thus

REVq(s) (DGB)
> (1- O(e))REVqN(D@) =(1- O(E))REVqI(Z))
> (1- O(e))REVq(z) (D).

Since all item prices in q are in IT*, we have that all item prices in
q(3) areinIl’ = {(1+ 462)_1/(2€)y|y eI}

The converse also holds: given any interval prefix pricing q with
price gap ( LInd 2, 613 In —) we can define prefix pricing ¢’/ such
that "’ ({1, 2 ,i}) = qi. Then (9) still holds, which means that
by Lemma 4.7, there exists a scaling ¢° = (1 + 4¢%)71/(2€) q" of
prefix pricing ¢’/ which gives (1 — O(¢))-fraction of the revenue
of ¢ for any additive buyer v®. Let q(4) be the item pricing with

g = ¢°({1,2,---,i}). Then

REVq<4) () = REVge (v) = REVgo %) > (1- 0(€))REv4(0).

Step 4. We aim to solve the following problem: find the optimal
interval prefix pricing q with price gap (6—12 In 61—2, é In é) for an
additive buyer, such that the item prices g¢; that define g are in set
.

This can be solved via the following dynamic program. Since the
buyer is additive, the revenue contribution from each interval can be
calculated separately without worrying about the incentive of the
buyer. Let F[i, z] be the optimal revenue of the interval prefix pric-
ing (with price gap (y,6) = (z Llnd e LIn —) and without prefix
buying constraints) from only items in preﬁx set {1,2,---,i}, with
the last item price being g; = z. Then we can write the following
recursive formula:

Fli,z] = {F[j, wl+G[j. iy, Z)},

max
j<i,yzz(1+€2)~%, w<y(1+e2)~V,y,zell’
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where G[}, i,y, z) denotes the optimal revenue of a pricing ¢ which
sells a prefix of interval Ij; = {j+1, j+2,--- ,i} with price gj41 = y
and g; = q({j + 1,j + 2,---,i}) = z to an additive buyer with
distribution D®. In the recursive formula, we want all items in I i
to be priced in range [y, z] with y > z(1 + €2)~%, with all items in
{1,2,---, j} to be priced at most w < y(1 + €2)7Y. The objective
we want to solve is max, ¢ F[n, z].

Now we analyze the running time of the dynamic program.
Each i, j, y, z in the recursive formula has poly(m, n, %) possibilities.
The running time of calculating each G[j, i, y, z) is poly(m, nd) =

poly(m, nei3 In e%), since there are only at most § different prices
for the items in I} ;, thus at most poly(n‘s) different non-decreasing
pricings. Therefore the dynamic program can be solved in
poly(m, nP?!y(1/€) 11’|) time.

4.4 Discussion on Additive Buyers

In Section 4.1, we showed that for a unit-demand buyer with totally
ordered item values, item pricing gives a constant approximation
to the optimal buy-many revenue. We want to investigate whether
such nice properties generalizes to other class of valuation functions.
For example, for an additive buyer with totally-ordered item values,
can item pricings achieve a constant fraction of the optimal buy-
many revenue? Unfortunately, we give a negative answer to the
question through the following theorem.

THEOREM 4.8. For any additive buyer with totally ordered value
for all items, item pricing cannot achieve an approximation ratio
o(loglogn) to the optimal (deterministic) buy-many mechanism.

The proof uses a reduction from an additive buyer with un-
ordered item values, which is known to have Q(log n) revenue gap
between the optimal item pricing and the optimal deterministic
buy-many mechanism [15]. The proof is omitted due to page limit.

5 ITEM PRICING IN THE
PARTIALLY-ORDERED SETTING

In this section, we generalize the results for a unit-demand buyer in
the totally-ordered setting to a general-valued buyer in the partially-
ordered setting. We first show that item pricing gives an O(log k)-
approximation in revenue to the optimal buy-many mechanism,
where k is the width of the ordered set of items. Then we provide a
PTAS algorithm for finding a near-optimal item pricing when k is a
constant. This way, we show that the width k of the ordered set is
the key parameter in both the performance and the computational
complexity of the item pricing mechanisms.

5.1 Item Pricing Gives an O(logk)
Approximation in Revenue to the Optimal
Buy-Many Mechanism

For a general-valued buyer, [15] shows that item pricing gives

an O(logn) approximation in revenue to the optimal buy-many

mechanism. Here we improve the approximation ratio to O(log k),
which is only related to the width of the partially ordered item set.
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THEOREM 5.1. For any buyer with partially ordered values for all
items with width k, item pricing gives an O(log k) approximation in
revenue to the optimal buy-many mechanism.

Similar to the totally-ordered setting, given an optimal mecha-
nism p, we define item pricing q such that each g; is the cheapest
way to get an item that dominates i in p. We show that a scaling of q
gives O(log k)-approximation to the optimal revenue. Compared to
the totally-ordered setting, the major difference is that Lemma 4.4
no longer holds. Instead, we show that for any allocation x of items,
there exists a set T in the support of x, such that q(T) < k?p(x).
The rest of the proof mostly still goes through.

ProOF. Let S be the collection of sets that can be demanded by
the buyer, i.e. the set of antichains in the partial ordering. Given the
optimal buy-many mechanism p, define item pricing g as follows:
qi, the price of item i, is defined by the cheapest way of getting an
item that dominates it. In other words, if S; = {j € [n]|j > i} is the
set of items that dominate i,

p(x)
x€A(S) XTNS;20 XT

i = min (
U= cen(S) S xr=1!
We show that a scaling of g gives a 1/O(log k) fraction of the opti-
mal revenue obtained by buy-many mechanisms. Lemma 4.3 still
holds, while Lemma 4.4 needs to be modified as follows.

LEMMA 5.2. For any allocation x € A(S), there exists a set T in
the support of x, such that q(T) < k%p(x).

Proor. Let S be the set of items, such that for any i € S, the
probability of getting an item that dominates i is less than % In
other words,

< 1
< X
=%

S= ie[n]) >

TNnS;#0

We first observe that there exists a set T in the support of x, such
that T does not contain any item in S. We reason this as follows.
Let §” C S be an antichain such that for any element i € S, there is
an element j € S’ such that i 2 j. Intuitively, S is the “bottom” of
set S in the preference graph such that all elements in S dominate
some element in $’. Then for any i € §’, the probability that a set
drawn from x contains an element that dominates i is less than
%. Since S’ is an antichain and there are at most k elements in S’,
by union bound, the probability that a set drawn from x contains
an element that dominates some element in S’ is less than 1. Thus
there exists a set T in the support of x, such that T does not contain
any item that dominates some element in S’, thus does not contain
any item in S.
For any item i € T, by the definition of g;,

p(x)

A L PX)
NP LSO AC)
2TNS;#0 XT

<k = kp(x).
Then

() = ) qi < ) kp(x) = [Tlkp(x) < k*p(x).

ieT ieT



STOC ’22, June 20-24, 2022, Rome, Italy

Now we are ready to prove the theorem. The same as in the
proof of Theorem 4.1, we fix any buyer type v, and define the four
mechanisms as follows. Under the optimal pricing p, the buyer
purchases lottery A; under pricing fp the buyer purchases lottery
A’; under item pricing g, the buyer purchases set S; under pricing
£q the buyer purchases set S”. Here we define f§ = % and £ = #.

By Lemma 5.2, there exists a set T in the support of A’, such that
p(X) = q(T). Then

B

Rev, (0) = fp(X') = 54(T). (10)

Inequality (2) still holds (by replacing item j in (2) with set T):
o(T) 2 up(v) + (1 = B)REV,(v). (11)

Since the buyer has a larger utility purchasing item S’ than T under
pricing ¢g, we have

upq(v) 2 o(T) — £q(T). (12)

Since the buyer has a larger utility purchasing lottery A than buying
the collection of lottery A; for every i € S that defines g; in p (which
has price g;), and A; allocates the buyer an item that dominates i,
we have

up(0) 2 0(U2i) = Y p(Ai) 2 0(S) = ¥ gs = 0(S) = q(S) = ug(0).

ieS ieS ( )
13
By %(10) +(11) + (12) + (13), and apply S = % and £ = 8—,12,
k2
urg(®) —ug(0) = (1- PReV(0) - %Rmﬁp(v)
= %REVP(Z)) - iREVﬂp(U)' (14)

By applying Lemma 4.2 to (14), there exists a random scaling
factor «, such that

u(q(”) - uq(v)
In(1/¢)
1 1 1
In(sk?) (EREVP(U) - ZREVﬂp(U)) . (16)
Since p is the optimal buy-many mechanism, it achieves higher
revenue than £p, which means E,.p [REv, (9)] 2 Eyp[REVsp (0)].

Taking the expectation over v on both sides of (15), the same as (6)
we have

REV44(0) (15)

1 1 1 1
—— | =R — —-R = —R .
In(8Kk%) (z p Ty Evﬁf’) 4ln(sk?) P

Thus there exists an item pricing which gives a O(logk) fraction of

REVgg 2

the revenue obtained by the optimal buy-many mechanism.
m]

5.2 A PTAS Algorithm for Computing a
Near-Optimal Item Pricing in
Partially-Ordered Setting

In this section, we generalize the approximation algorithm for the

totally-ordered setting to the partially ordered setting, where the

width of the entire set of items is k. When k is a constant, the
algorithm is a PTAS.
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THEOREM 5.3. For a general-valued buyer with partially ordered
values, if the partially ordered set containing all items has width k,
then there exists an algorithm running in poly(m, nP°ly(61/€) 1og R)
time that computes an item pricing that is (1 + €)-approximation in
revenue to the optimal item pricing.

Proor SKETCH. The algorithm is similar to the totally-ordered
setting, but we need to define the generalized multi-dimensional
prefixes and intervals. We also define slightly different interval prefix
pricing and additive buyer.

e Prefix: For any set T € S, the prefix parameterized by T is
a set of items Pr 2 T such that item j € [n] is in P if and
only if there exists i € T such that j < i. Such a definition
ensures that for Ty, T, € S, T} < Ty, Pr; C Pr,.

o Interval: For two sets T,T’ € S with T C T, interval I 1+
Prs \ Pr is a set of items with contiguous item types between
T and T’ in the ordering graph.

e Interval prefix pricing: Let I = (I, 1,, I, 15, - , IT,_,,T,) be
a partition of the n items into ¢ intervals, with Ty = 0, and
T; be a set of items that dominates all other items (with
Py, [n]). An interval prefix pricing ¢ is a mechanism
defined by a vector of item prices (q1,92, - - - , gn): For any
set S¢ C Iy of items, there is a menu allocating a set of items
P;, = Ui<j<r-1Tj U Sp, with price q(PS*[) = Ziepgf qi-In

other words, to purchase any set of items in S, the buyer also
needs to purchase all sets of items T3, - - - , Ty—1 that define
the previous intervals.

o Additive-over-intervals buyer: Given an interval partition
I'= (I, 1,111+ »I,_,,1,), for an arbitrary value function
vand any set S = S; USy U---US; of items with Sy C I, for
every ¢ € [t], define

t

0P (S) = Z (0(S¢ U Tp-1) = 0(Tp-1)).

=1

In other words, U?(S[) is the value gain of getting set Sy,
when the buyer v has a set of items Ty—; at hand. v and
v?a has the same behavior under an interval prefix pricing
defined by interval partition I.
The proof for the totally-ordered setting can be generalized to the
partially ordered setting, if we use the above generalized definitions
of the terms. The key steps are shown as follows.

(1) There exists a near optimal item pricing where all prices are
powers of (1+€?). Let I = {(1+€%)"|r € Z} U {0}. Then
for all item pricings p, there exists q(l) € I1", such that for
all value functions v,

Rqu(l) (v) 2 (1-0(e))REVp(0).

Furthermore, without loss of generality, we can assume that
for the item pricing ¢(!) we consider, set {i|q§1) <vy}isa
prefix for any y € R.

At a small loss in revenue, we can restrict prices to lie in
a small set. In particular, for all value distributions O with
value range R, there exists an efficiently computable set
IT* c II with |IT*| = poly(1/e, k,log n,log R) such that for
all item pricings q(l) € II", there exists an item pricing
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G

~

q'? € IT*" satisfying
REV () (D) 2 (1 - 0(e))ReV 1) (D).

Given a partition of the n items into ¢ intervals,
I= (IR,Tl’ It g ’ITt—let) with Tp = 0, and T; be a set of
items that dominates all other items (with Pr, = [n]). We
furthermore say that for any interval partition I, an item
pricing q satisfies price gap (y, ) if (1) items corresponding
to different intervals are priced multiplicatively apart: for
alli, j,and ¢ withi € Pr, and j ¢ Pr,, q; = (1+ ) q;, (2)
and, menu options corresponding to any single interval are
priced multiplicatively close to each other: for all i, j, and ¢
withi,j € I, ¢j < (1+€2)%g;

We show that for value distribution O and item pricing
q® e II*" there exists an item pricing q(3) with q(3> e IT*
k

foralli € [n] and price gap (y, 5) = ( Lnk 25 —) such

that
ReV (5 (D) 2 (1= 0(e))ReV ) (D).

(4) We define a new kind of pricing that we will call an in-

terval prefix pricing. Given a partition of the n items into
t intervals I = (I, 1, I, 13, - - » I1,_,,7,), an interval prefix
pricing q is a mechanism defined by a vector of item prices
(91,92, -+ . qn): For any set Sy C I of items, there is a menu
allocating a set of items P;f =Ui<j<¢-1Tj U Sy, with price
q(Pg,)
items in Sp, the buyer also needs to purchase all sets of items
Ti,- -+, Tp—1 that define the previous intervals.

We show that for every value function v and item pricing

(3) . pen 1 k. k

q"” € II*" with price gap (y,6) = (& In % 25 In% ), there
exists an efficiently computable set H W1th |H | = |IT*| and

= Ziep;, qi- In other words, to purchase any set of

an interval prefix pricing q'¥ with q(4) e Il’ foralli € [n]
k 1n —) such that

62’ 63

ReV (4 (0) 2 (1 - O(€))REV (3 (0).

and price gap (5 Link

The converse is also true: for every value function v and
k k In _2),

2 &3
we can efficiently compute an item pricing q(s) such that

interval prefix pricing q with price gap (5 Link

Rqu(s) (v) 2 (1-0(e))REVg4(v).

(5) We define for each arbitrary-valued buyer v and interval

partitioning I an additive-over-intervals value function that

closely mimics it. For an arbitrary value function v, for any

set S =51 USyU---US; of items with S, C I, for every
€ [t], define

t

0P (S) = Z (0(Se U Tp-1) = 0(Ty-1)).

=1

In other words, 0% (S;) is the value gain of getting set Sy,
when the buyer v has set of items Ty at hand. We write
Z);B as the distribution of U;B corresponding to v ~ D. v and
0® have the same behavior under an interval prefix pricing
defined by interval partition I. When the interval partition
is clear from the context, we will omit I and write v® = U;B.
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We show that for every additive-over-intervals value func-
@ ¢
( Link = k31n —) there ex-
|IT*| and
an item q(6) with q(ﬁ) € II° for all i € [n] and price gap
( Lnk In —2) such that

tion v® and interval prefix pricing q(4) with q;

and with price gap (y,9) =
ists an efficiently computable set e w1th |H°| =

2’ 63
REV,(6) (%) > (1- O(€))REV (4 (0v).

The converse also holds: for every value function v and

item pricing q with price gap (% p Ink, Xin 2) we can

23
efficiently compute an interval prefix pricing q(7) with price

gap ( link 3 K 1n 7) such that
REV,(7) (0) 2 (1~ 0(€))REvy(0®).

—~
=)
=

Finally, we show that for any distribution D over arbitrary

values and any set II° of values, an optimal item pricing

q for value distribution Z);B and the corresponding inter-

val partition I, with q; € TI° for all i € [n] and price gap

( Link 5 k 1n Z) can be found in time polynomial in |IT°],
k paly(l/e), and m.

The complete reasoning is similar to the proof of Theorem 4.6
and is omitted.
m}

We further notice that for a unit-demand buyer, the dependency
on log R can be removed. This is enabled via the following lemma.

LEMMA 5.4. Let V be a set of non-negative real numbers. Then we
can efficiently find a set of power-of-(1 + €2) prices V! with |V’| =
o(|v|? Elz In 6—12) satisfying the following: For any buyer that is unit-
demand over n items such that for any buyer type v and item i the
buyer has value v; € V, the optimal power-of-(1 + €) item pricing p
satisfy p; € V' for anyi € [n].

Given the lemma, since there are at most mn different item values
in the input, we have |V| = mn in the lemma. The lemma can replace
Step 2 in the proof of Theorem 4.6 to remove the running time’s
dependency on log R. It can also be applied to Theorem 5.3 for a
unit-demand buyer. The proof of Lemma 5.4 is omitted.
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A OMITTED PROOFS FOR THE FEDEX
SETTING

LEMMA 3.4. There exists an optimal item pricing such that p; € Iy,
and p; € IT* for eachi > 2.

Proor. We start with an arbitrary optimal item pricing p with
monotone item prices. Notice that a buyer v will either purchase
item 1 or item i; due to the monotonicity of item prices.

If p1 ¢ I, and p1 = p2 - = pp < pe+1, suppose that we
raise the price of item 1,2, - - - , £ by a small enough €. For a buyer
of type v, if the buyer prefers to purchase item 1 previously, then
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v1 > pi. Since p; ¢ I, and v € II}, we know that v; > pq, thus
v1 > p1 + € for a small enough e. Thus after the perturbation, she
either still prefers to purchase item 1 and pay € more, or she will
switch to purchase a more expensive item, which means that her
payment increases. For any buyer that does not prefer to purchase
item 1 before perturbation, her preferred item does not change after
the price changes. Therefore, after the operation, the total revenue
does not decrease. The value € can be chosen so as to enforce either
p1+€ €Il or p1 + € = ppy1. By repeating this operation, we will
have py = ps = --- = p; € I for some j € [n], while maintaining
the optimality of p.

If ¢ is the smallest index such that py ¢ IT1*, and py = pp41 =+ -+ =
Pj < pj+1, suppose that we raise the price of items £, £ +1,-- -, j
by a small enough €. For a buyer of type v, if i, ¢ [£, j], the buyer’s
incentive does not change after the perturbation. Otherwise when
t < iy < j, if the buyer prefers to purchase item i, before the
perturbation, then v;, — p;, > v — p1, and v;, > p;, . Since py € Iy,
vj, — 01 + p1 and v;, are both in IT*. By p; = p, ¢ II*, v;, — pi, >
v1 — p1 and v;, > p;,. Therefore after the perturbation, for small
enough e, she still prefers to purchase item i, and pay € more.
Therefore, after the operation, the total revenue does not decrease.
The value € can be as large as making py + € € II*, or making
pe +€ = pji1. By repeating this operation, we will have p; € IT* for
each i > 2, while maintaining the optimality of p. This finishes the
proof of the lemma. O
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