
Localizing Changes in High-Dimensional Regression Models

Alessandro Rinaldo Daren Wang Qin Wen
Department of Statistics & Data Science

Carnegie Mellon University
Department of ACMS

University of Notre Dame
Department of Statistics
University of Chicago

Rebecca Willett Yi Yu
Department of Statistics

University of Chicago
Department of Statistics
University of Warwick

Abstract

This paper addresses the problem of localiz-
ing change points in high-dimensional linear
regression models with piecewise constant re-
gression coefficients. We develop a dynamic
programming approach to estimate the lo-
cations of the change points whose perfor-
mance improves upon the current state-of-
the-art, even as the dimensionality, the spar-
sity of the regression coefficients, the tempo-
ral spacing between two consecutive change
points, and the magnitude of the difference
of two consecutive regression coefficient vec-
tors are allowed to vary with the sample size.
Furthermore, we devise a computationally-
efficient refinement procedure that provably
reduces the localization error of preliminary
estimates of the change points. We demon-
strate minimax lower bounds on the localiza-
tion error that nearly match the upper bound
on the localization error of our methodol-
ogy and show that the signal-to-noise con-
dition we impose is essentially the weakest
possible based on information-theoretic argu-
ments. Extensive numerical results support
our theoretical findings, and experiments on
real air quality data reveal change points sup-
ported by historical information not used by
the algorithm.
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1 INTRODUCTION

High-dimensional linear regression modeling has been
extensively applied and studied over the last two
decades due to the technological advancements in col-
lecting and storing data from a wide range of applica-
tion areas, including biology, neuroscience, climatol-
ogy, finance, cybersecurity, to name but a few. There
exist now a host of methodologies available to prac-
titioners to fit high-dimensional sparse linear models,
and their properties have been thoroughly investigated
and are now well understood. See Bühlmann and
van de Geer (2011) for recent reviews.

In this paper, we are concerned with a non-stationary
variant of the high-dim linear regression model in
which the data are observed as a time series and the
regression coefficients are piece-wise stationary, with
changes occurring at unknown times. We formally in-
troduce our model settings next.

Model 1. Let the data {(xt, yt)}nt=1 ⊂ Rp × R satisfy
the model

yt = x>t β
∗
t + εt, t = 1, . . . , n

where {β∗t }nt=1 ⊂ Rp is the unknown coefficient
vector, {xt}nt=1 are independent and identically dis-
tributed mean-zero sub-Gaussian random vectors with
E(xtx

>
t ) = Σ, and {εt}nt=1 are independent mean-zero

sub-Gaussian random variables with sub-Gaussian pa-
rameter bounded by σ2

ε and independent of {xt}nt=1.
In addition, there exists a sequence of change points
1 = η0 < η1 < . . . < ηK+1 = n such that β∗t 6= β∗t−1, if
and only if t ∈ {ηk}Kk=1.

We consider a high-dimensional framework where the
features of the above change-point model are allowed
to change with the sample size n; see Assumption 1
below for details. Given data sampled from Model 1,
our main task is to develop computationally-efficient
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algorithms that can consistently estimate both the un-
known number K of change points and the time points
{ηk}Kk=1, at which the regression coefficients change.

That is, we seek consistent estimators {η̂k}K̂k=1, such
that, as the sample size n grows unbounded, it holds
with probability tending to 1 that

K̂ = K and ε = max
k=1,...,K

|η̂k − ηk| = o(∆),

where ∆ = mink=1,...,K1
ηk−ηk−1 is the minimal spac-

ing between consecutive change-points. We refer to the
quantity ε as the localization error rate.

The model detailed above has already been consid-
ered in the recent literature. Lee et al. (2016), Kaul
et al. (2018), Lee et al. (2018), among others, fo-
cused on the cases where there exists at most one
true change point. Leonardi and Bühlmann (2016)
and Zhang et al. (2015) considered multiple change
points and devised consistent change point estimators,
albeit with localization error rates worse than the one
we establish in Theorem 1. Wang et al. (2019) also
allowed for multiple change points in a regression set-
ting and proposed a variant of the wild binary seg-
mentation (WBS) method (Fryzlewicz, 2014), the per-
formances thereof match the one of the procedure we
study next. Recently, (Fryzlewicz, 2020) studied in-
ferences for change point regression models in low di-
mensions. More detailed comparisons are further com-
mentary can be found in Section 3.3.

In this paper, we make several theoretical and method-
ological contributions, summarized next, that improve
the existing literature.

• We provide consistent change point estimators
for Model 1. We allow for model parameters to
change with the sample size n, including the di-
mensionality of the data, the entry-wise sparsity
of the coefficient vectors, the number of change
points, the smallest distance between two consec-
utive change points, and the smallest difference
between two consecutive different regression coef-
ficients. To the best of our knowledge, the the-
oretical results we provide in this paper are the
sharpest in the existing literature. Furthermore,
the proposed algorithms, based on the general
framework described in (1), can be implemented
using dynamic programming approaches and are
computationally efficient.

• We devise a additional second step (Algorithm 1),
called local refinement, that is guaranteed to de-
liver an even better localization error rate, even
though directly optimizing (1) already provides
the sharpest rates among the ones existing in the
literature.

• We present information-theoretic lower bounds on
both detection and localization, establishing the
fundamental limits of localizing change points in
Model 1. To the best of our knowledge, this is the
first time such results are developed for Model 1.
The lower bounds on the localisation and detec-
tion nearly match the upper bounds we obtained
under mild conditions.

• We present extensive experimental results includ-
ing simulated data and real data analysis, sup-
porting our theoretical findings, and confirming
the practicality of our procedures.

Throughout this paper, we adopt the following nota-
tion. For any set S, |S| denotes its cardinality. For any
vector v, let ‖v‖2, ‖v‖1, ‖v‖0 and ‖v‖∞ be its `2-, `1-,
`0- and entry-wise maximum norms, respectively; and
let v(j) be the jth coordinate of v. For any square ma-
trix A ∈ Rn×n, let Λmin(A) and Λmax(A) be the small-
est and largest eigenvalues of matrix A, respectively.
For any pair of integers s, e ∈ {0, 1, . . . , n} with s < e,
we let (s, e] = {s + 1, . . . , e} and [s, e] = {s, . . . , e} be
the corresponding integer intervals.

2 METHODS

2.1 A Dynamic Programming Approach

To achieve the goal of obtaining consistent change
point estimators, we adopt a dynamic programming
approach, whiuch we summarize next. Let P be an
integer interval partition of {1, . . . , n} into KP inter-
vals, i.e.

P =
{
{1, . . . , i1 − 1}, {i1, . . . , i2 − 1}, . . . , {iKP−1,

. . . , iKP − 1}
}
,

for some integers 1 < i1 < · · · < iKP = n + 1, where
KP ≥ 1. For a positive tuning parameter γ > 0, let

P̂ ∈ arg min
P

{∑
I∈P
L(I) + γ|P|

}
, (1)

where L(·) is an appropriate loss function to be spec-
ified below, |P| is the cardinality of P and the mini-
mization is taken over all possible interval partitions
of {1, . . . , n}.

The change point estimator resulting from the solu-
tion to (1) is simply obtained by taking all the left

endpoints of the intervals I ∈ P̂, except 1. The op-
timization problem (1) is known as the minimal par-
tition problem and can be solved using dynamic pro-
gramming with an overall computational cost of order
O(n2T (n)), where T (n) denotes the computational
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cost of solving L(I) with |I| = n (see e.g. Algorithm 1
in Friedrich et al., 2008).

To specialize the dynamic programming algorithm to
the high-dimensional linear regression model of inter-
est by setting the loss function to be (1) with

L(I) =
∑
t∈I

(yt − x>t β̂λI )2, (2)

where

β̂λI = arg min
v∈Rp

{∑
t∈I

(yt − x>t v)2

+λ
√

max{|I|, log(n ∨ p)}‖v‖1
}
, (3)

and λ ≥ 0 is a tuning parameter. The penalty is mul-
tiplied by the quantity max{|I|, log(n∨p)} in order to
fulfill certain types of large deviation inequalities that
are needed to ensure consistency.

Algorithms based on dynamic programming are widely
used in the change point detection literature. Friedrich
et al. (2008), Killick et al. (2012), Rigaill (2010), Maid-
stone et al. (2017), Wang et al. (2018b), among others,
studied dynamic programming approaches for change
point analysis involving a univariate time series with
piecewise-constant means. Leonardi and Bühlmann
(2016) examined high-dimensional linear regression
change point detection problems by using a version
of dynamic programming approach.

2.2 Local Refinement

We will show later in Theorem 1 that the localization
error afforded by the dynamic programming approach
in (1), (2), and (3) is linear in K, the number of change
points. Although the corresponding localization rate
is already sharper than any other rates previously es-
tablished in the literature (see Section 3.3), it is pos-
sible to improve it by removing the dependence on K
through an additional step, which we refer to as local
refinement, detailed in Algorithm 1.

Algorithm 1 takes a sequence of preliminary change

point estimators {η̃k}K̃k=1, and refines each of the es-
timator η̃k within the interval (sk, ek), which is a
shrunken version of (η̃k−1, η̃k+1) (the constants 2/3
and 1/3 specifying the shrinking factor in the defi-
nition of (η̃k−1, η̃k+1) are not special and can be re-
placed by other values without affecting the rates).
The shrinkage is applied to eliminate false positives,
which are more likely to occur in the immediate prox-
imity of a preliminary estimate of a change point.
Since the refinement is done locally within each dis-
joint interval, the procedure is parallelizable. A group
Lasso penalty is deployed in (4), and this is key to the

Algorithm 1 Local Refinement.

INPUT: Data {(xt, yt)}nt=1, {η̃k}K̃k=1 , ζ > 0.
(η̃0, η̃K̃+1)← (0, n)

for k = 1, . . . , K̃ do
(sk, ek)← (2η̃k−1/3 + η̃k/3, η̃k/3 + 2η̃k+1/3)

(
β̂1, β̂2, η̂k

)
← arg min

η∈{sk+1,...,ek−1}
β1,β2∈Rp, β1 6=β2

{
η∑

t=sk+1

∥∥yt − β>1 xt∥∥2

2

+

ek∑
t=η+1

∥∥yt − β2xt
∥∥2

2

+ ζ

p∑
i=1

√
(η − sk)(β1)2

i + (ek − η)(β2)2
i

}
(4)

end for
OUTPUT: {η̂k}K̃k=1.

success of the refinement. Intuitively, the group Lasso
penalty integrates the information that the regression
coefficients are piecewise-constant within each coordi-
nate. Previously, Wang et al. (2019) also proposed a
similar local screening algorithm based on the group
Lasso estimators to refine the estimates of the regres-
sion change points. While Wang et al. (2019) assumed
all the covariates to be uniformly bounded, we show
that Algorithm 1 can achieve optimal localization er-
ror rates in a more general setting.

3 MAIN RESULTS

In this section, we derive high-probability bounds on
the localization errors of our main procedure based
on the dynamic programming algorithm as detailed
in equations 1, 2, and 3, and of the local refinement
procedure of Algorithm 1.

3.1 Assumptions

We begin by stating the assumptions we require in
order to derive localization error bounds.

Assumption 1. Consider the model defined in
Model 1. We assume that, for some fixed positive con-
stants Cβ, cx, Cx, ξ, and CSNR the following holds:

a. (Sparsity). Let d0 = |S|. There exists a subset
S ⊂ {1, . . . , p} such that

β∗t (j) = 0, t = 1, . . . , n, j ∈ Sc = {1, . . . , p} \ S.

b. (Boundedness). For some absolute constant Cβ >
0, maxt=1,...,n ‖β∗t ‖∞ ≤ Cβ.
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c. (Minimal eigenvalue). We have that Λmin(Σ) =
c2x > 0 and maxj=1,...,p(Σ)jj = C2

x > 0.

d. (Signal-to-noise ratio). Let κ =
mink=1,...,K+1 ‖β∗ηk − β∗ηk−1

‖2 and ∆ =
mink=1,...,K+1(ηk − ηk−1) be the minimal jump size
and minimal spacing defined as follows, respectively.
Then,

∆κ2 ≥ CSNRd
2
0Kσ

2
ε log1+ξ(n ∨ p). (5)

Assumption 1(a) and (c) are standard conditions re-
quired for consistency of Lasso-based estimators. As-
sumption 1(d) specifies a minimal signal-to-noise ra-
tio condition that allows to detect the presence of a
change point. Interestingly, if K = d0 = 1, (5) reduces
to ∆κ2σ−2

ε & log1+ξ(n∨ p), matching the information
theoretic lower bound (up to constants and logarithmic
terms) for the univariate mean change point detection
problem (see e.g. Chan and Walther, 2013; Frick et al.,
2014; Wang et al., 2018b).

In addition, we have

∆ ≥ CSNRd
2
0Kσ

2
ε log1+ξ(n ∨ p)
κ2

≥ CSNRd
2
0Kσ

2
ε log1+ξ(n ∨ p)

4C2
βd0

≥ CSNR

4C2
β

d0Kσ
2
ε log1+ξ(n ∨ p), (6)

where the second inequality follows from the bound

κ2 = min
k=1,...,K+1

‖β∗ηk − β
∗
ηk−1
‖22 ≤ d0(2Cβ)2 = 4C2

βd0.

If ∆ = Θ(n) and K = O(1), then (6) becomes
n & d0 log1+ξ(n ∨ p), which resembles the effective
sample size condition needed in the Lasso estimation
literature.

Another way to interpret the signal-to-noise ratio As-
sumption 1(d) is to introduce a normalized jump size
κ0 = κ/

√
d0, which leads to the equivalent condition

∆κ2
0 ≥ CSNRd0Kσ

2
ε log1+ξ(n ∨ p).

Analogous constraints on the model parameters are
required in other change point detection problems, in-
cluding high-dimensional mean change point detection
(Wang and Samworth, 2018), high-dimensional covari-
ance change point detection (Wang et al., 2017), sparse
dynamic network change point detection (Wang et al.,
2018a), high-dimensional regression change point de-
tection (Wang et al., 2019), to name but a few. Note
that in these aforementioned papers, when variants of
wild binary segmentation (Fryzlewicz, 2014) were de-
ployed, additional knowledge is needed to get rid of

K in the lower bound of the signal-to-noise ratio. We
refer the reader to Wang et al. (2018a) for more dis-
cussions regarding this point.

The constant ξ is needed to guarantee consistency
when ∆ is of the same irder as n but can be set to
zero if ∆ = o(n). We may instead replace it with a
weaker condition of the form

∆κ2 & CSNRd
2
0K{log(n ∨ p) + an},

where an → ∞ arbitrarily slow as n → ∞. We stick
with the signal-to-noise ratio condition (5) for simplic-
ity.

3.2 Localization Rates

We are now ready to state one of the main results of
the paper.

Theorem 1. Assume Model 1 and the conditions in
Assumption 1. Then, the change point estimators

{η̃k}K̂k=1 obtained as a solution to the dynamic pro-
gramming optimization problem given in (1), (2), and
(3) with tuning parameters

λ = Cλσε
√
d0 log(n ∨ p)

and
γ = Cγσ

2
ε (K + 1)d2

0 log(n ∨ p),

are such that

P
{
K̂ = K, max

k=1,...,K
|η̃k − ηk| ≤

KCεd
2
0σ

2
ε log(n ∨ p)
κ2

}
≥ 1− C(n ∨ p)−c, (7)

where Cλ, Cγ , Cε, C, c > 0 are absolute constants de-
pending only on Cβ , Cx, and cx.

The above result implies that, with probability tending
to 1 as n grows,

max
k=1,...,K

|η̂k − ηk|
∆

≤ KCεd
2
0σ

2
ε log(n ∨ p)
κ2∆

≤ Cε

CSNR logξ(n ∨ p)
→ 0,

where in the second inequality we have used Assump-
tion 1(c). Thus, the localization error converges to
zero in probability.

It is worth emphasizing that the bound in (7) along
with Model 1 provide a family of rates, depending on
how the model parameters (p, d0, κ, ∆, K ands σε)
scale with n.

The tuning parameter λ affects the performance of the
Lasso estimator. The second tuning parameter γ pre-
vents overfitting while searching the optimal partition
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as a solution to the problem (1). In particular, γ is de-
termined by the squared `2-loss of the Lasso estimator
and is of order λ2d0. We will elaborate more on this
point in the supplementary materials.

We now turn to the analysis of the local refinement
algorithm, which takes as input a preliminary col-
lection of change point estimators {η̃k}Kk=1 such that
maxk=1,...,K |η̃k − ηk|, such as the ones returned by
our estimator based on the dynamic programming ap-
proach. The only assumption required for local refine-
ment is that the localization error of the preliminary
estimators be a small enough fraction of the minimal
spacing ∆ (see (8) below). Then local refinement re-
turns an improved collection of change point estima-
tors {η̂k}Kk=1 with a vanishing localization error rate of

order O
(
d0 log(n∨p)

nκ2

)
. Interestingly, the initial estima-

tors need not be consistent in order for local refinement
to work: all that is required is essentially that the each
of the working intervals in Algorithm 1 contains one
and only one true change point. This fact allows us
to refine the search within each working intervals sep-
arately, yielding better rates.

In particular, if we use the outputs of (1), (2), and (3)
as the inputs of Algorithm 1, then it follows from (7)
and (5) that, for any k ∈ {1, . . . ,K},

sk − ηk−1 >
2

3
η̃k−1 +

1

3
η̃k − η̃k−1 − ε

=
1

3
(η̃k − η̃k−1)− ε > ∆/3− 5ε/3 > 0

and

sk − ηk <
2

3
η̃k−1 +

1

3
η̃k − η̃k + ε

= −2

3
(η̃k−1 − η̃k) + ε < −2∆/3 + 5ε/3 < 0.

Corollary 2. Assume the same conditions of Theo-
rem 1. Let {η̃k}Kk=1 be a set of time points satisfying

max
k=1,...,K

|η̃k − ηk| ≤ ∆/7. (8)

Let {η̂k}K̂k=1 be the change point estimators generated
from Algorithm 1 with {η̃k}Kk=1 and

ζ = Cζ
√

log(n ∨ p)

as inputs. Then,

P
{
K̂ = K, max

k=1,...,K
|η̂k − ηk| ≤

Cεd0 log(n ∨ p)
κ2

}
≥ 1− Cn−c,

where Cζ , Cε, C, c > 0 are absolute constants depend-
ing only on Cβ ,M and cx.

Compared to the localization error given in Theorem 1,
the improved localization error guaranteed by the lo-
cal refinement algorithm does not have a direct de-
pendence on K, the number of change points. The
intuition for this is as follows. First, due to the na-
ture of the change point detection problem, there is a
natural group structure. This justifies the use of the
group Lasso-type penalty, which reduces the localiza-
tion error by bringing down d2

0 to d0. Second, using
condition (8), there is one and only one true change
point in every working interval used by the local re-
finement algorithm. The true change points can then
be estimated separately using K independent searches,
in such a way that the final localization rate that does
not depend on the number of searches, namely K.

3.3 Comparisons

We now discuss how our contributions compared with
the results of Wang et al. (2019) and of Leonardi and
Bühlmann (2016), which investigate the same high-
dimensional change-point linear regression model.

Wang et al. (2019) proposed different algorithms, all
of which are variants of wild binary segmentation,
with or without additional Lasso estimation proce-
dures. Those methods inherit both the advantages and
the disadvantages of WBS. Compared with dynamic
programming, WBS-based methods require additional
tuning parameters such as randomly selected intervals
as inputs. With these additional tuning parameters,
Theorem 1 in Wang et al. (2019) achieved the same
statistical accuracy in terms of the localization error
rate as Theorem 1 above. In terms of computational
cost, the methods in Wang et al. (2019) are of or-
der O(K2n · Lasso(n)), where K, n and Lasso(n) de-
note the number of change points, the sample size and
the computational cost of Lasso algorithm with sample
size n, respectively, while the dynamic programming
approach of this paper is of order O(n2 · Lasso(n)).
Thus, when K .

√
n, the algorithm in Wang et al.

(2019) is computationally more efficient, but when
K &

√
n, the method in this paper has smaller com-

plexity.

Leonardi and Bühlmann (2016) analysed two algo-
rithms, one based on a dynamic programming ap-
proach, and the other on binary segmentation, and
claimed that they both yield the same localization,
which is, in our notation,

K∑
k=1

|η̂k − ηk| .
d2

0

√
n log(np)

κ2
. (9)

Note that, the error bound in Leonardi and Bühlmann
(2016) is originally of the form

∑K
k=1 |η̂k − ηk| .
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d0
√
n log(np)

κ2 under a slightly stronger assumption than
ours. In the more general settings of Assumption 1, the
localization error bound of Leonardi and Bühlmann
(2016) is of the form (9), based on personal communi-
cation with the authors.

It is not immediate to directly compare the sum of all
localization errors, used by Leonardi and Bühlmann
(2016), with the maximum localization error, which
is the target in this paper. Using a worst-case upper
bound, Theorem 1 yields that

K∑
k=1

|η̂k − ηk| .
K2d2

0σ
2
ε log(n ∨ p)
κ2

.

In light of Corollary 2, this error bound can be sharp-
ened, using the local refinement Algorithm 1 to

K∑
k=1

|η̂k − ηk| .
Kd0σ

2
ε log(n ∨ p)
κ2

.

As long as K2 .
√

n
log(np) , or, using the local refine-

ment algorithm, K .
√

n
log(np) , our localization rates

are better than the one implied by (9). It is not im-
mediate to compare directly the assumptions used in
Leonardi and Bühlmann (2016) with the ones we for-
mulate here due to the different ways we use to present
them. For instance, the conditions in Theorem 3.1 of
Leonardi and Bühlmann (2016) imply, in our notation,
that condition

∆ &
√
n log(p)

is needed for consistency, even if the sparsity param-
eter d0 = Θ(1). However in our case, in view of (5),
if we assume d0 = κ = Θ(1), then we only require
∆ & log1+ξ(n ∨ p) for consistency.

3.4 Lower Bounds

In Section 3.2, we show that as long as

κ2∆ & d2
0Kσ

2
ε log1+ξ(n ∨ p),

we demonstrate provide change point estimators with
localization errors upper bounded by

d0σ
2
εκ
−2 log(n ∨ p).

In this section, we show that no algorithm is guaran-
teed to be consistent in the regime

κ2∆ . d0σ
2
ε ,

and otherwise, a minimax lower bound on the local-
ization errors is

d0σ
2
εκ
−2.

These findings are formally stated next, in Lemmas 3
and 4, respectively.

Lemma 3. Let {(xt, yt)}Tt=1 ⊂ Rp×R satisfy Model 1
and Assumption 1, with K = 1. In addition, assume

that {xt}nt=1
iid∼ N (0, Ip) and {εt}nt=1

iid∼ N (0, σ2
ε). Let

PTκ,∆,σε,d
be the corresponding joint distribution. For

any 0 < c < 2
8e+1 , consider the class of distributions

P =
{
PTκ,∆,σε,d : ∆ = min

{
bcd0σ

2
εκ
−2c, bT/4c

}
,

2cd0 max{d0, 2} ≤ ∆
}
.

There exists a T (c), which depends on c, such that for
all T ≥ T (c),

inf
η̂

sup
P∈P

EP (|η̂ − η(P )|) ≥ ∆,

where η(P ) is the location of the change point of dis-
tribution P and the infimum is over all estimators of
the change point.

Lemma 3 shows that if κ2∆ . d0σ
2
ε , then

inf η̂ supP∈P EP (|η̂ − η(P )|)
∆

≥ 1,

which implies that the localization error is not a van-
ishing fraction of ∆ as the sample size grows un-
bounded.

Lemma 4. Let {(xt, yt)}Tt=1 ⊂ Rp×R satisfy Model 1
and Assumption 1, with K = 1. In addition, assume

{xt}nt=1
iid∼ N (0, Ip) and {εt}nt=1

iid∼ N (0, σ2
ε). Let

PTκ,∆,σε,d
be the corresponding joint distribution. For

any diverging sequence ζT , consider the class of distri-
butions

P =
{
PTκ,∆,σε,d : ∆ = min

{
bζT d0σ

2
εκ
−2c, bT/4c

}}
.

Then

inf
η̂

sup
P∈P

EP (|η̂ − η(P )|) ≥ cd0σ
2
ε

κ2
,

where η(P ) is the location of the change point of dis-
tribution P , the infimum is over all estimators of the
change point and c > 0 is an absolute constant.

Recalling all the results we have obtained, the
change point localization task is either impossible
when κ2∆ . d0σ

2
ε (in the sense that no algorithm

is guaranteed to be consistent) or, when κ2∆ &
d2

0Kσ
2
ε log1+ξ(n∨p), it can be solved by our algorithms

at nearly a minimax optimal rate.

In the intermediate case

d0σ
2
ε . κ2∆ . d2

0Kσ
2
ε log1+ξ(n ∨ p)

we are unable to provide a result one way or another.
However, we remark that, if in addition, in Theorem 1,
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we assume κ ≤ C, for an absolute constant C > 0,
then we are able to weaken the condition from κ2∆ &
d2

0Kσ
2
ε log1+ξ(n∨p) to κ2∆ & d0Kσ

2
ε log1+ξ(n∨p), by

almost identical arguments. This shows that, under
the additional conditions

max{κ, K} ≤ C,

for an absolute constant C > 0, the condition is nearly
optimal, off by a logarithmic factor.

4 NUMERICAL EXPERIMENTS

In this section, we investigate the numerical perfor-
mances of our proposed methods, with efficient bi-
nary segmentation algorithm (EBSA) of Leonardi and
Bühlmann (2016) as the competitor. We compare four
methods: dynamic programming (DP, see 1, 2, and
3), EBSA, local refinement (Algorithm 1) initialized
by DP (DP.LR), and local refinement (Algorithm 1)
initialized by EBSA (EBSA.LR).

The evaluation metric considered is the scaled Haus-
dorff distance between the estimators {η̂k}K̂k=1 and the

truth {ηk}Kk=1. To be specific, we report d(Ĉ, C) =

n−1D(Ĉ, C), where

D(Ĉ, C) = max{max
η̂∈Ĉ

min
η∈C
|η̂ − η|,max

η∈C
min
η̂∈Ĉ
|η̂ − η|},

C = {ηk}Kk=1 and Ĉ = {η̂k}K̂k=1.

We consider both simulated data and a real-life
public dataset on air quality indicators in Tai-
wan. The implementations for our approaches
can be found at https://github.com/Willett-
Group/changepoint regression.

4.1 Tuning Parameter Selection

We adopt a cross-validation approach to choosing tun-
ing parameters. Let samples with odd indices be the
training set and even ones be the validation set. Re-
call that for the DP, we have two tuning parame-
ters λ and γ, which we tune using a brute-force grid
search. For each pair of tuning parameters, we con-
duct DP on the training set and obtain estimated
change points. Within each estimated segment of the
training set, we obtain β̂t by (3). On the validation

set, let ŷt = x>t β̂t and calculate the validation loss
(n/2)−1

∑
t mod 2≡0(ŷt−yt)2. The pair (λ, γ) is chosen

to be the one corresponding to the lowest validation
loss.

As for the simulated data, we use some prior knowl-
edge of the truth to save some computational cost. To
be specific, we let the odd index set be partitioned by

the true change points and estimate βt on these in-
tervals. We then plot the mean squared errors of β̂t
across a range of values of λ and obtain an “optimal”
λ. We choose the grid range of λ around the “optimal”
λ. This step is to approximately locate the range of
λ’s value but this step will not be used in the real data
experiment. The same procedure is conducted for the
tuning parameter selection in EBSA.

For the local refinement algorithm, we let the esti-
mated change points of DP or EBSA be the initializers
of the local refinement algorithm. We then regard the
initialization algorithm and local refinement as a self-
contained method and tune all three parameters λ, γ,
and ζ jointly. The tuning procedure is almost the same
as we described above, except that we use

β̂λI = arg min
v∈Rp

{∑
t∈I

(yt − x>t v)2 + ζ
√
|I|‖v‖1

}

to estimate βt.

4.2 Simulations

Throughout this section, we let n = 600, p = 200,
K = 4, Σ = I and σε = 1. The true change points are
at 121, 221, 351 and 451. Let β0 = (β0i, i = 1, . . . , p)>,

with β0i = 2−1d
−1/2
0 κ, i ∈ {1, . . . , d0}, and zero other-

wise. Let

βt =



β0, t ∈ {1, . . . , 120},
−β0, t ∈ {121, . . . , 220},
β0, t ∈ {221, . . . , 350},
−β0, t ∈ {351, . . . , 450},
β0, t ∈ {451, . . . , 600}.

We let κ ∈ {4, 5, 6} and d0 ∈ {10, 15, 20}. For each
pair of κ and d0, the experiment is repeated 100 times.
The results are reported in Figure 4.2 and in Table 1
of Appendix 3.1.

Generally speaking, DP outperforms EBSA, and LR
significantly improves upon EBSA and DP when DP
doesn’t give accurate results. LR is comparable with
DP when the initial points estimated by DP are al-
ready good enough. Note that since for EBSA.LR we
tune EBSA to optimize EBSA.LR’s performance, it
may well happen that the estimated number of change
points K from EBSA.LR is much different than from
EBSA.

4.3 Air Quality Data

In this subsection, we consider the air qual-
ity data from https://www.kaggle.com/nelsonchu/

https://github.com/Willett-Group/changepoint_regression
https://github.com/Willett-Group/changepoint_regression
https://www.kaggle.com/nelsonchu/air-quality-in-northern-taiwan
https://www.kaggle.com/nelsonchu/air-quality-in-northern-taiwan
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Figure 1: Bar plots for simulation results in Sec-
tion 4.2. Plots A-C are settings with κ = 4 and
d0 ∈ {10, 15, 20}; Plots D-F are settings with κ = 5
and d0 ∈ {10, 15, 20}; and Plots G-I are settings with
κ = 6 and d0 ∈ {10, 15, 20}.

air-quality-in-northern-taiwan. It collects envi-
ronment information and air quality data from North-
ern Taiwan in 2015. We choose the PM10 in Ban-
qiao as the response variables, with covariates being
the temperature, the CO level, the NO level, the NO2

level, the NOx level, the rainfall quantity, the humid-
ity quantity, the SO2 level, the ultraviolet index, the
wind speed, the wind direction and the PM10 levels in
Guanyin, Longtan, Taoyuan, Xindian, Tamsui, Wanli
and Keelung District. We transfer the hourly data into
daily by averaging across 24 hours. After removing all
dates containing missing values, we obtain a data set
with n = 343 days and p = 18 covariates. Our goal is
to detect potential change points of this data set and
determine if they are consistent with the historical in-
formation.

We standardize the data so that the variance of yt = 1,
for all t. We then conduct DP, DP.LR, EBSA and
EBSA.LR. DP estimates 2 change points which are
March 16th and November 1st, 2015. No change points
are detected by EBSA. DP.LR and EBSA.LR both
detect May 15th and October 25th, 2015 as the change
points.

The first change point detected by DP.LR and

EBSA.LR seems to correspond with the first strong-
enough typhoon near Northern Taiwan in 2015,
which happened during May 6th-20th (e.g. Wikipedia,
2020a). The second change points from EBSA.LR,
DP.LR and DP are relatively close and they all could
be explained by the severe air pollution at the begin-
ning of November in Taiwan, which reached the haz-
ardous purple alert on November 8th (e.g. Wikipedia,
2020b). The visualization is shown in Figure 2.
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Figure 2: Real air quality example. When we tune
EBSA for its standalone performance, we obtain zero
change points, but when we tune EBSA to optimize
the EBSA.LR’s performance, we obtain two change
points.

5 DISCUSSION

In this paper, we in fact provide a general framework
for analyzing general regression-type change point lo-
calization problems that include the linear regression
model above as a special case. The analysis in this
paper may be utilized as a blueprint for more complex
change point localization problems. In our analysis, we
develop a new and refined toolbox for the change point
detection community to study more complex data gen-
erating mechanisms above and beyond linear regres-
sion models.
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