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Deep Equilibrium Architectures for Inverse
Problems in Imaging

Davis Gilton, Gregory Ongie, and Rebecca Willett

Abstract—Recent efforts on solving inverse problems in imag-
ing via deep neural networks use architectures inspired by
a fixed number of iterations of an optimization method. The
number of iterations is typically quite small due to difficulties in
training networks corresponding to more iterations; the resulting
solvers cannot be run for more iterations at test time without
incurring significant errors. This paper describes an alternative
approach corresponding to an infinite number of iterations,
yielding a consistent improvement in reconstruction accuracy
above state-of-the-art alternatives and where the computational
budget can be selected at test time to optimize context-dependent
trade-offs between accuracy and computation. The proposed
approach leverages ideas from Deep Equilibrium Models, where
the fixed-point iteration is constructed to incorporate a known
forward model and insights from classical optimization-based
reconstruction methods.

I. INTRODUCTION

A collection of recent efforts surveyed in [1] consider the
problem of using training data to solve inverse problems in
imaging. Specifically, imagine we observe a corrupted set of
measurements y of an image x? under a linear measurement
operator A with some noise ε according to

y = Ax? + ε. (1)

Our task is to compute an estimate of x? given measurements
y and knowledge of A. This task is particularly challenging
when the inverse problem is ill-posed, i.e., when the system
is underdetermined or ill-conditioned, in which case simple
methods such as least squares estimation may not have a unique
solution or may produce estimates that are highly sensitive to
noise.

Decades of research has explored geometric models of image
structure that can be used to regularize solutions to this inverse
problem, including [2], [3], [4] and many others. More recent
efforts have focused instead on using large collections of
training images, {x∗i }ni=1, to learn effective regularizers.

One particularly popular and effective approach involves
augmenting standard iterative inverse problem solvers with
learned deep networks. This approach, which we refer to as
deep unrolling (DU), is reviewed in §II-A. The basic idea is to
build an architecture that mimics a small number of iterations
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of an iterative algorithm. In practice, the number of iterations
is quite small (typically 5-10) because of memory constraints
and numerical precision issues arising in backpropagation.
This paper sidesteps this key limitation of deep unrolling
methods with a novel approach based on deep equilibrium
models (DEMs) [5], which are designed for training arbitrarily
deep networks. The result is a novel approach to training
networks to solve inverse problems in imaging that yields a
consistent improvement in performance above state-of-the-
art alternatives and where the computational budget can be
selected at test time to optimize context-dependent trade-offs
between accuracy and computation. The key empirical findings,
which are detailed in §VI-D, are illustrated in Fig. 1.

A. Contributions

This paper presents a novel approach to machine learning-
based methods for solving linear inverse problems in imaging.
Unlike most state-of-the-art methods, which are based on
unrolling a small number of iterations of an iterative reconstruc-
tion scheme (“deep unrolling”), our method is based on deep
equilibrium models that correspond to a potentially infinite
number of iterations. This framework yields more accurate
reconstructions than the current state-of-the-art across a range
of inverse problems, and gives users the ability to navigate a
trade-off between reconstruction computation time and accuracy
during inference. In addition, our approach inherits provable
convergence guarantees depending on the “base” algorithm
used to select a fixed point equation for the deep equilibrium
framework. Experimental results also indicate that our proposed
initialization for Deep Equilibrium Models based on pre-
training is superior to random initialization, and the proposed
approach is more robust to noise than past methods. Overall,
the proposed DEM approach is a unique bridge between
conventional fixed-point methods in numerical analysis and
learning-based techniques for inverse problems in imaging.

II. RELATIONSHIP TO PRIOR WORK

A. Review of Deep Unrolling Methods

Deep unrolling methods for solving inverse problems in
imaging consist of a fixed number of architecturally identical
“blocks,” which are often inspired by a particular optimization
algorithm. These methods represent the current state-of-the-
art in MRI reconstruction, with most top submissions to the
fastMRI challenge [6] being some sort of unrolled net. Deep
unrolling architectures have also been successfully applied to
other inverse problems in imaging, such as low-dose CT [7],
light-field photography [8], and emission tomography [9].



2

K=1 K=10 K=20 K=30 K=40

DE-PROX
(ours)

DU-PROX

Fig. 1. Deep Unrolling (DU) methods are state-of-the-art deep networks for image reconstruction that unroll iterative optimization algorithms for a fixed number
of iterations K. As illustrated above in an example with Deep Unrolled Proximal Gradient Descent (DU-PROX), these methods do not allow flexible operation
at inference: unrolling for K iterations where K was not used at training results in severe artifacts. By utilizing Deep Equilibrium networks (DE-PROX
above), our method trains inverse solvers to return good reconstructions at convergence, instead of at an arbitrary number of iterations, resulting in a flexible,
higher-performing image reconstruction technique.
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Fig. 2. Standard unrolled deep optimization networks typically require choosing
some fixed number of iterates during training. Deviating from this fixed number
at inference incurs a significant penalty in PSNR. The forward model here is
8x accelerated single-coil MRI reconstruction, and the unrolled algorithm is
unrolled proximal gradient descent with K iterates, labeled PROX-K (Fig. 4).
For further experimental details see §VI-D.

We describe here a specific deep unrolling method based on
the gradient descent algorithm, although many other variants
exist based on alternative optimization or fixed point iteration
schemes [1]. Suppose we have a known regularization function
r that could be applied to an image x; e.g., in Tikhonov
regularization, r(x) = λ

2 ‖x‖
2
2 for some scalar λ > 0. Then we

could compute an image estimate x̂ by solving the optimization
problem

x̂ = argmin
x

1

2
‖y −Ax‖22 + r(x). (2)

If r is differentiable, this can be accomplished via gradient
descent. That is, we start with an initial estimate x(0) such
as x(0) = A>y and choose a step size η > 0, such that for

iteration k = 1, 2, 3, . . ., we set

x(k+1) = x(k) + ηA>(y −Ax(k))− η∇r(x(k)),

where ∇r is the gradient of the regularizer.
The basic idea behind deep unrolled methods is to fix some

number of iterations K (typically K ranges from 5 to 10),
declare that x(K) will be our estimate x̂, and model ∇r with
a neural network, denoted Rθ(x), whose weights θ can be
learned from training data. For example, we may define the
unrolled gradient descent estimate to be x̂(K)(y; θ) := x(K)

where x(0) = A>y and for k = 0, . . . ,K − 1 we have the
recursive update

x(k+1) = x(k) + ηA>(y −Ax(k))− ηRθ(x(k)). (3)

Training attempts to minimize the cost function∑n
i=1 ‖x̂(K)(yi; θ) − x∗i ‖22 with respect to the network

weights θ. This form of training is often called “end-to-end”;
that is, we do not train the network Rθ that replaces ∇r in
isolation, but rather on the quality of the resulting estimate
x̂(K), which depends on the forward model A. Above we
assume that all instances of Rθ have identical weights θ,
although other works explore variants where the Rθ has
iteration dependent weights [10].

The number of iterations in deep unrolling methods is kept
small for two reasons. First, at deployment, these systems are
optimized to compute image estimates quickly – a desirable
property we wish to retain in developing new methods. Second,
it is challenging to train deep unrolled networks for many
iterations due to memory limitations of GPUs because the
memory required to calculate the backpropagation updates
scales linearly with the number of unrolled iterations. Recent
work shows it is possible to train for a large number of iterates
using a “checkpointing” technique which trades memory for
computational cost at training time [11]. However, this approach
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is only practical for a limited class of network architectures
with fully invertible layers.

As one potential workaround, suppose we train a deep
unrolled method for a small number of iterations K (e.g.,
K = 5), then extract the learned regularizer gradient Rθ and at
inference time run the iterative scheme (3) until convergence
(i.e., for more iterations K than used in training). Our numerical
results highlight how poorly this approach performs in practice
(§VI-D). Choosing a sufficiently large number of iterations
K (and hence the computational budget for inference) at
training time is essential. As we illustrate in Fig. I, one cannot
deviate from the choice of K used in training and expect good
performance.

B. Review of Deep Equilibrium Models

In [5], the authors propose a method for training arbitrarily-
deep networks given by the repeated application of a single
layer. More precisely, consider an L-layer network with input
y and weights θ. Letting x(k) denote the output of the kth

hidden layer, we may write

x(k+1) = f
(k)
θ (x(k); y) for k = 0, . . . , L− 1

where k is the layer index and f (k)θ is a nonlinear transformation
such as inner products followed by the application of a
nonlinear activation function. Recent prior work explored
forcing this transformation at each layer to be the same
(i.e. weight tying), so that f (k)θ = fθ for all k and found
evidence suggesting that such networks still yield competitive
performance [12], [13]. Under weight tying, we have the
recursion

x(k+1) = fθ(x
(k); y). (4)

The limit of x(K) as K →∞, provided it exists, is a fixed point
of the operator fθ(·, y). In [5] the authors learn network weights
θ with constant memory costs using implicit differentiation,
bypassing computation and numerical stability issues associated
with related techniques on large-scale problems [14], [15]. This
past work focused on sequence models and time-series tasks,
assuming that each fθ was a single layer of a neural network,
and did not explore the image reconstruction task that is the
focus of this paper.

Following the posting of a preprint of this paper, [16]
proposed “fixed-point networks” using a strategy similar to
ours, independently verifying the potential of this framework in
image reconstruction. The key differences of the present work
with [16] are: (1) we give convergence guarantees for three
commonly-used unrolled algorithms (i.e., choices of fθ) and
identify specific parameter settings that ensure convergence,
(2) we investigate acceleration schemes for the fixed-point
iterations, and (3) we demonstrate the approach empirically for
a different set of inverse problems, namely undersampled MRI
and deblurring, whereas [16] focused on CT reconstruction.

C. Plug-and-Play and Regularization by Denoising Methods

Initiated by [17], a collection of methods based on the
plug-and-play (PNP) framework have been proposed, allowing
denoising algorithms to be used as priors for model-based

image reconstruction (see, e.g., [18], [19]). The starting point
of PNP is to write the reconstructed image as the minimizer
of a cost function given by a sum of a data-fit term and a
regularizer as in (2). Applying alternating directions method of
multipliers (ADMM, [20]) to this minimization problem gives
a collection of update equations, one of which has the form

argmin
x

1

2σ
‖z − x‖22 + r(x),

where r(x) is the regularizer and σ > 0 is a parameter; this
update can be considered as a “denoising” of the image z.
PNP methods replace this explicit optimization step with a
“plugged-in” denoising method. Notably, some state-of-the-art
denoisers (e.g., BM3D [4] and U-nets [21]) do not have an
explicit r associated with them, but nevertheless empirically
work well within the PNP framework. Convergence of PNP
is studied in [22]. A related framework called Regularization
by Denoising (RED) [23] is based on a similar philosophy as
PNP, but instead considers an explicit regularizer of the form

r(x) = x>(x− ρ(x)),

where ρ(x) corresponds to an image denoising function. Con-
vergence of RED is studied in [24]. Recent work has found
that both PNP and RED can be understood as part of a more
general framework called Consensus Equilibrium [25].

Recent PNP and RED efforts focuses on using training data
to learn denoisers [26], [27], [28], [29], [30]. In contrast to
the unrolling methods described in §II-A, these methods are
not trained end-to-end; rather, the denoising module is trained
independent of the inverse problem at hand (i.e., independent
of the forward model A). As described by [1], decoupling
the training of the learned component from A results in a
reconstruction system that is flexible and does not need to be
re-trained for each new A, but can require substantially more
training samples to achieve the reconstruction accuracy of a
method trained end-to-end for a specific A.

III. PROPOSED APPROACH

Our approach is to design an iteration map fθ(· ; y) so that
a fixed-point x(∞) satisfying

x(∞) = fθ(x
(∞); y) (5)

is a good estimate of the image x? given its measurements y.
Here we describe choices of fθ (and hence of the implicit

infinite-depth neural network architecture) that explicitly ac-
count for the forward model A and generally for the inverse
problem at hand. Specifically, we propose choosing fθ based
on different optimization algorithms applied to regularized
least squares problem (2). This approach is similar to a DU
approach (see II-A), but where the number of iterations is
effectively infinite – a paradigm that has been beyond the
reach of all previous deep unrolling architectures for solving
inverse problems in imaging. Below we consider three specific
choices of fθ, but we note that many other options are possible.
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A. Deep Equilibrium Gradient Descent (DE-GRAD)

Connecting the unrolled gradient descent iterations in (3)
with the deep equilibrium model in (4), we let

fθ(x; y) = x+ ηA>(y −Ax)− ηRθ(x). (6)

Recall that in this setting Rθ is a trainable network that replaces
the gradient of the regularizer. See Figure 3 for a block diagram
illustrating this choice of fθ.

x + ηA⊤(y − Ax)

ηRθ( ⋅ ) =
+x fθ(x; y)

Fig. 3. Deep Equilibrium Gradient Descent (DE-GRAD)

B. Deep Equilibrium Proximal Gradient Descent (DE-PROX)

Proximal gradient methods [31] use a proximal operator
associated with a function h:

proxh(x) = argmin
u

1

2
‖u− x‖22 + h(u). (7)

Specifically, the proximal gradient descent algorithm applied
to the optimization problem in (2) yields the iterates

x(k+1) = proxηr(x
(k) + ηA>(y −Ax(k))),

where η > 0 is a step size. Similar to the deep unrolling
approach of [32], we consider replacing proxηr with a trainable
network Rθ : Rn → Rn, which gives the iteration map

fθ(x; y) = Rθ(x+ ηA>(y −Ax)). (8)

See Figure 4 for a block diagram illustrating this choice of fθ.

x + ηA⊤(y − Ax) proxηrθ( ⋅ ) =x fθ(x; y)
Fig. 4. Deep Equilibrium Proximal Gradient Descent (DE-PROX)

C. Deep Equilibrium Alternating Directions Method of Multi-
pliers (DE-ADMM)

The Alternating Directions Method of Multipliers (ADMM,
[20]) is an efficient first-order algorithm for large-scale con-
strained optimization problems. ADMM can be applied to the
uncontrained optimization problem (2) by rewriting it as the
equivalent constrained problem

min
x,z

1

2
‖y −Ax‖22 + r(z) subject to z = x.

The augmented Lagrangian (in its “scaled form” – see [20])
associated with this problem is given by

Lα(x, z, u) :=
1

2
‖y −Ax‖22 + r(z) +

1

2α
‖z − x+ u‖22

where u is an additional auxiliary variable and α > 0 is a
user-defined parameter. The ADMM iterates are then

z(k+1) =argmin
z

Lα(x
(k), z, u(k))

x(k+1) =argmin
x

Lα(x, z
(k+1), u(k))

u(k+1) =u(k) + z(k+1) − x(k+1),

(9)

Here the z- and x-updates simplify as

z(k+1) =proxαr(x
(k) − u(k))

x(k+1) =(I + αA>A)−1(αA>y + z(k+1) + u(k)).

As in the DE-PROX approach, proxαr(·) can be replaced with
a learned network, denoted Rθ. Making this replacement, and
substituting z(k+1) directly into the expressions for x(k+1) and
u(k+1) gives:

x(k+1) =(I + αA>A)−1(αA>y +Rθ(x
(k) − u(k)) + u(k))

u(k+1) =u(k) +Rθ(x
(k) − u(k))− x(k+1). (10)

Note that the updates for x(k+1) and u(k+1) depend only on the
previous iterates x(k) and u(k). Therefore, the above updates
can be interpreted as fixed-point iterations on the joint variable
q = (x, u), where the iteration map fθ(q; y) is implicitly
defined as the map that satisfies

q(k+1) = fθ(q
(k), y) with q(k) := (z(k), u(k)). (11)

Here we take the estimated image to be x(∞), where q(∞) =
(x(∞), u(∞)) is a fixed-point of fθ(·; y). See Figure 5 for a
block diagram illustrating this choice of fθ.

(A⊤A + αI)−1(αA⊤y + u + z′ )Rθ(x − u) =

+
q fθ(q; y)x

u

x′ 

u′ −
z′ 

+

+
−

Fig. 5. Deep Equilibrium Alternating Direction Method of Multipliers (DE-
ADMM)

IV. CALCULATING FORWARD PASSES AND GRADIENT
UPDATES

Given a choice of iteration map fθ(·; y) defining a DEM,
we confronted the following obstacles. (1) Forward calculation:
given an observation y and network weights θ, we need to
be able to compute a fixed point of fθ(·; y) efficiently. (2)
Training: given a collection of training samples {x?i }ni=1, we
need to find the optimal network weights θ.

A. Calculating Fixed-Points
Both training and inference in a DEM require calculating

a fixed point of the iteration map fθ(·; y) given some initial
point y. The most straightforward approach is to use fixed-point
iterations given in (4). Convergence of this scheme for specific
fθ designs is discussed in Section V.

However, fixed-point iterations may not converge quickly. By
viewing unrolled deep networks as fixed-point iterations, we
inherit the ability to accelerate inference with standard fixed-
point accelerators. To our knowledge, this work is the first
time iterative inversion methods incorporating deep networks
have been accelerated using fixed-point accelerators.
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a) Anderson Acceleration: Anderson acceleration [33]1

utilizes past iterates to identify promising directions to move
during the iterations. This takes the form of identifying a vector
α(k) ∈ Rm and setting, for β > 0

x(k+1) = (1− β)
m−1∑
i=0

α
(k)
i x(k−i) + β

m−1∑
i=0

α
(k)
i fθ(x

(k−i); y).

The vector α(k) is the solution to the optimization problem:

argmin
α

||Gα||22, s.t. 1>α = 1 (12)

where G is a matrix whose ith column is the (vectorized)
residual fθ(x(k−i); y) − x(k−i), with i = 0, ...,m − 1. The
optimization problem in (12) admits a least-squares solution,
adding negligible computational overhead when m is small
(e.g., m = 5).

In Section VI-D we compare the performance and time
characteristics of solving using Anderson acceleration with
standard fixed-point iterations, as well as a technique which
uses Broyden’s method (a quasi-Newton algorithm) to find
fixed points, as proposed in [5].

An important practical consideration is that accelerating
fixed-point iterations arising from optimization algorithms
with auxiliary variables (like ADMM) is non-trivial. Our
implementation of DE-ADMM accelerates ADMM using the
results of [35]. However, in general acceleration is not required
to learn to solve inverse problems, and for other algorithms
or settings standard fixed-point iterations may be attractive for
their simplicity of implementation.

B. Gradient Calculation

In this section, we provide a brief overview of the train-
ing procedure used to train all networks in Section VI-D.
We use stochastic gradient descent to find network param-
eters θ that (locally) minimize a cost function of the form
1
n

∑n
i=1 `(x

(∞)(yi; θ), x
∗
i ) where `(·, ·) is a given loss function,

x∗i is the ith training image with paired measurements yi, and
x(∞)(yi; θ) denotes the reconstructed image given as the fixed-
point of fθ(· ; yi). For our image reconstruction experiments,
we use the mean-squared error (MSE) loss:

`(x, x?) =
1

2
||x− x?||22. (13)

However, the use of the MSE loss is not essential; any
differentiable loss function is compatible with the approach
presented below.

To simplify the calculations below, we consider gradients
of the cost function with respect to a single training mea-
surement/image pair, which we denote (y, x∗). Following [5],
we leverage the fact that x(∞) := x(∞)(y; θ) is a fixed-point
of fθ(·; y) to find the gradient of the loss with respect to
the network parameters θ without backpropagating through an
arbitrarily-large number of fixed-point iterations. We summarize
this approach below.

1Anderson acceleration for Deep Equilibrium models was introduced in a
NeurIPS tutorial by [34].

First, abbreviating `(x(∞), x?) by `, then by the chain rule
the gradient of ` with respect to the network parameters is
given by

∂`

∂θ
=
∂x(∞)

∂θ

>
∂`

∂x(∞)
. (14)

where ∂x(∞)

∂θ is the Jacobian of x(∞) with respect to θ, and
∂`

∂x(∞) is the gradient of ` with respect to its first argument
evaluated at x(∞). Since we assume ` is the MSE loss, the
gradient ∂`

∂x(∞) is simply the residual between x? and the
equilibrium point: ∂`

∂x(∞) = x(∞) − x?.
Now, in order to compute the Jacobian ∂x(∞)

∂θ we start with
the fixed point equation: x(∞) = fθ(x

(∞); y). Differentiating
both sides of this equation, and solving for ∂x(∞)

∂θ gives

∂x(∞)

∂θ
=

(
I − ∂fθ(x; y)

∂x

∣∣∣∣
x=x(∞)

)−1
∂fθ(x

(∞); y)

∂θ
. (15)

Plugging this expression into (14) gives

∂`

∂θ
=
∂fθ(x

(∞); y)

∂θ

>(
I − ∂fθ(x; y)

∂x

∣∣∣∣
x=x(∞)

)−>
(x(∞)−x?)

This converts the memory-intensive task of backpropagating
through many iterations of fθ(· ; y) to the problem of calcu-
lating an inverse Jacobian-vector product. To approximate the
inverse Jacobian-vector product, first we define the vector β(∞)

by

β(∞) =

(
I − ∂fθ(x; y)

∂x

∣∣∣∣
x=x(∞)

)−>
(x(∞) − x?).

Following [34], we note that β = β(∞) is a fixed point of the
equation

β =

(
∂fθ(x; y)

∂x

∣∣∣∣
x=x(∞)

)>
β + (x(∞) − x?), (16)

and the same machinery used to calculate the fixed point x(∞)

may be used to calculate β(∞). For analysis purposes, we note
that the limit of fixed-point iterations for solving (16) with
initial iterate β(0) = 0 is equivalent to the Neumann series:

β(∞) =
∞∑
n=0

[(
∂fθ(x; y)

∂x

∣∣∣∣
x=x(∞)

)>]n
(x(∞) − x?). (17)

Convergence of the above Neumann series is discussed in
Section V.

Conventional autodifferentiation tools permit quickly com-
puting the vector-Jacobian products in (16) and (17). Once an
accurate approximation to β(∞) is calculated, the gradient in
(14) is given by

∂`

∂θ
=
∂f(x(∞); y)

∂θ

>

β(∞). (18)

The gradient calculation process is summarized in the following
steps, assuming a fixed point x(∞) of fθ(· ; y) is known:
1) Compute the residual r = x(∞) − x∗.
2) Compute an approximate fixed-point β(∞) of the equation

β =
(
∂fθ(x;y)
∂x

∣∣
x=x(∞)

)>
β + r.

3) Compute ∂`
∂θ = ∂fθ(x

(∞);y)
∂θ

>
β(∞).
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V. CONVERGENCE THEORY

Here we study convergence of the proposed deep equilibrium
models to a fixed-point at inference time, i.e., given the iteration
map fθ(· ; y) : Rd → Rd we give conditions that guarantee
the convergence of the iterates x(k+1) = fθ(x

(k); y) to a fixed-
point x(∞) as k →∞.

Classical fixed-point theory [36] ensures that the iterates
converge to a unique fixed-point if the iteration map fθ(·; y) is
contractive, i.e., if there exists a constant 0 ≤ c < 1 such that
‖fθ(x; y)−fθ(x′; y)‖ ≤ c‖x−x′‖ for all x, x′ ∈ Rd. Below we
give conditions on the regularization network Rθ : Rd → Rd
(replacing the gradient or proximal mapping of a regularizer)
used in the DE-GRAD, DE-PROX and DE-ADMM models
that that ensure the resulting iteration map is contractive and
thus the fixed-point iterations for these models converge.

In particular, following [27], we assume that the regulariza-
tion network Rθ satisfies the following condition: there exists
an ε > 0 such that for all x, x′ ∈ Rd we have

‖(Rθ − I)(x)− (Rθ − I)(x′)‖ ≤ ε‖x− x′‖ (19)

where (Rθ − I)(x) := Rθ(x)− x. In other words, we assume
the map Rθ − I is ε-Lipschitz.

If we interpret Rθ as a denoising or de-artifacting network,
then Rθ−I is the map that outputs the noise or artifacts present
in a degraded image. In practice, often Rθ is implemented with
a residual “skip-connection”, such that Rθ = I+Nθ, where Nθ
is, e.g., a deep U-net. Therefore, in this case, (19) is equivalent
to assuming the trained network Nθ is ε-Lipschitz.

First, we have the following convergence result for DE-
GRAD:

Theorem 1 (Convergence of DE-GRAD). Assume that Rθ− I
is ε-Lipschitz (19), and let L = λmax(A

>A) and µ =
λmin(A

>A), where λmax(·) and λmin(·) denote the maximum
and minimum eigenvalue, respectively. If the step-size param-
eter η > 0 is such that η < 1/(L + 1), then the DE-GRAD
iteration map fθ(·; y) defined in (6) satisfies

‖fθ(x; y)− fθ(x′; y)‖ ≤ (1− η(1 + µ) + ηε)︸ ︷︷ ︸
=:γ

‖x− x′‖

for all x, x′ ∈ Rd. The coefficient γ is less than 1 if ε < 1+µ,
in which case the the iterates of DE-GRAD converge.

Proof. Let fθ(x; y) be the iteration map for DE-GRAD. The
Jacobian of fθ(x; y) with respect to x ∈ Rd, denoted by
∂xfθ(x; y), is given by

∂xfθ(x; y) = (I − ηA>A)− η∂xRθ(x) ∈ Rd×d

where ∂xRθ(x) ∈ Rd×d is the Jacobian of Rθ : Rd → Rd with
respect to x ∈ Rd. To prove fθ(· ; y) is contractive it suffices
to show ‖∂xfθ(x; y)‖ < 1 for all x ∈ Rd where ‖ · ‖ denotes
the spectral norm. Towards this end, we have

‖∂xfθ(x; y)‖ = ‖(I − ηA>A)− η∂xRθ(x)‖
= ‖ηI + (1− η)I − ηA>A− η∂xRθ(x)‖
= ‖(1− η)I − ηA>A− η(∂xRθ(x)− I)‖
≤ ‖(1− η)I − ηA>A‖+ η‖∂xRθ(x)− I‖
≤ max

i
|(1− η)− ηλi|+ ηε (20)

where λi denotes the ith eigenvalue of A>A, and in the final
inequality (20) we used our assumption that the map (Rθ −
I)(x) := Rθ(x)− x is ε-Lipschitz, and therefore the spectral
norm of its Jacobian ∂xRθ(x)− I is bounded by ε.

Finally, by our assumption η < 1
1+L where L := maxi λi,

we have η < 1
1+λi

for all i, which implies (1− η)− ηλi > 0
for all i. Therefore, the maximum in (20) is obtained at µ :=
mini λi, which gives

‖∂xfθ(x; y)‖ ≤ 1− η(1 + µ) + ηε.

This shows fθ is γ-Lipschitz with γ = 1 − η(1 + µ) + ηε,
proving the claim.

Convergence of PNP approaches PNP-PROX and PNP-
ADMM is studied in [27]. At inference time, the proposed
DE-PROX and DE-ADMM methods are equivalent to the
corresponding PNP method but with a retrained denoising
network Rθ. Therefore, the convergence results in [27] apply
directly to DE-PROX and DE-ADMM. To keep the paper
self-contained, we restate these results below, specialized to
the case of the quadratic data-fidelity term assumed in (2).

Theorem 2 (Convergence of DE-PROX). Assume that Rθ − I
is ε-Lipschitz (19), and let L = λmax(A

>A) and µ =
λmin(A

>A) > 0, where λmax(·) and λmin(·) denote the
maximum and minimum eigenvalue, respectively. Then the
DE-PROX iteraion map fθ(·, y) defined in (8) is contractive if
the step-size parameter η satisfies

1

µ(1 + 1/ε)
< η <

2

L
− 1

L(1 + 1/ε)
.

Such an η exists if ε < 2µ/(L− µ).

See Theorem 1 of [27].

Theorem 3 (Convergence of DE-ADMM). Assume that
Rθ − I is ε-Lipschitz (19), and let L = λmax(A

>A) and
µ = λmin(A

>A) > 0, where λmax(·) and λmin(·) denote
the maximum and minimum eigenvalue, respectively. Then
the iteration map fθ(·; y) for DE-ADMM defined in (11) is
contractive if the ADMM step-size parameter α parameter
satisfies

ε

(1 + ε− 2ε2)µ
< α.

See Corollary 1 of [27].
Unlike the convergence result for DE-GRAD given in

Theorem 1, the convergence results for DE-PROX and DE-
ADMM in Theorem 2 and Theorem 3 make the assumption that
λmin(A

>A) > 0, i.e., A has a trivial nullspace. This condition
is satisfied for certain inverse problems, such as denoising or
deblurring, but violated in many others, including compressed
sensing and undersampled MRI. However, in practice we
observe that the iterates of DE-PROX and DE-ADMM still
appear to converge even in situations where A has a nontrivial
nullspace, indicating this assumption may be stronger than
necessary.

Finally, an important practical concern when training deep
equilibrium models is whether the fixed-point iterates used to
compute gradients (as detailed in Section IV-B) will converge.
Specifically, the gradient of the loss at the training pair (y, x∗)
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Fig. 6. While Deep Unrolled methods output high-quality reconstructions at the iteration they were trained for (here 10), running for more iterations results in
severe artifacts. By contrast, Deep Equilibrium produces comparable images early on, while permitting improved reconstructions at further iterations if desired
at inference time. Forward model here is 8× MRI reconstruction. For further details see Section VI-A.

involves computing the truncated Neumann series in (17). This
series converges if the Jacobian ∂xfθ(x; y) has spectral norm
strictly less than 1 when evaluated at any x ∈ Rd, which is
true if and only if the iteration map fθ(· ; y) is contractive.
Therefore, the same conditions in Theorems 1-3 that ensure
the iteration map is contractive also ensure that the Neumann
series in (17) used to compute gradients converges.

VI. EXPERIMENTAL RESULTS

A. Comparison Methods and Inverse Problems

Our numerical experiments include comparisons with a
variety of models and methods. Total-variation Regularized
Least Squares (TV) is an important baseline that does not use
any training data but rather leverages geometric models of
image structure [3], [37], [38]. The PNP and RED methods
are described in §II-C; we consider both the original ADMM
variant of [17] PNP-ADMM and a proximal gradient PNP-
PROX method as described in [27]. We utilize the ADMM
formulation of RED. Deep Unrolled methods (DU) are
described in §II-A; we consider DU using gradient descent,
proximal gradient, and ADMM. The preconditioned Neumann
network [39] does not have simple Deep Equilibrium or Plug-
and-Play analogues, and is included as an alternative deep
unrolled method.

All deep unrolled methods have tied weights, i.e. the network
used at each iteration is the same. This is done to ensure that the
number of parameters in the deep unrolled, deep equilibrium,
and Plug-and-Play/RED methods are the same. Moreover, on
modestly-sized datasets recent work has suggested that tied
weights result in better reconstructions [40]. We do note that
many recent winners of the 2020 fastMRI challenge have untied
weights, suggesting that for larger datasets a higher number of
parameters may be desirable [6].

We compare the above approaches across three inverse
problems: Image deblurring (Deblur), compressed sensing
(CS), and accelerated MRI reconstruction (MRI). In the Deblur
setting we simulate blurry images using 9× 9 pixel Gaussian
blur kernel with variance 5 and consider two noise levels:
Deblur (1) refers to the setting of additive white Gaussian noise
with variance σ = 0.01 (high noise), and Deblur (2) refers

the setting of additive white Gaussian noise with standard
deviation σ = 0.0001 (low noise). In the CS setting, we take
linear measurements of the image by forming inner products
with random Gaussian vectors whose entries i.i.d. standard
normals, and use an undersampling factor of 4×, i.e., the
corresponding forward model A is a random Gaussian matrix
with 4× fewer rows than columns. The measurements are then
corrupted with additive white Gaussian noise with standard
deviation σ = 0.01. In the MRI setting, we investigate recovery
at 4× and 8× acceleration, where “ρ× acceleration” indicates
an undersampling factor of ρ in k-space (not to be confused
with the acceleration techniques used in finding fixed points).
Our MRI experiments focus on the case of (virtual) single-
coil MR data acquired on a Cartesian grid in k-space, where
corresponding forward model A is a 2-D Fourier transform with
subsampling in the phase encoding dimension. We additionally
add complex white Gaussian noise to the undersampled k-space
measurements with standard deviation σ = 0.01.

For the Deblur and CS problems, we utilize a subset of the
Celebrity Faces with Attributes (CelebA) dataset [41], which
consists of centered human faces. We train on a subset of 10000
of the training images. All images are resized to 128×128. For
the MRI problem, we use a random subset of size 2000 of the
fastMRI single-coil knee dataset [42] for training. We trim the
ground truth MR images to a 320×320 pixel region-of-interest.

B. Architecture Specifics

For our learned network, we utilize a DnCNN architec-
ture as in [27]. We also experimented with U-Nets, but
found that DnCNN yielded superior performance for both
our proposed deep equilibrium methods and the comparison
methods. For both the CelebA and fastMRI datasets, we
train six DnCNN denoisers with noise variances σ2 =
0.1, 0.05, 0.02, 0.01, 0.005, 0.001 on the training split. Training
follows the methodology of [27]. Specifically, to ensure contrac-
tivity of the learned component, we add spectral normalization
to all layers, ensuring that each layer has a Lipschitz constant
bounded above by 1. This normalization is enforced during
pretraining as well as during the Deep Equilibrium training
phrase.
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TABLE I
MEAN PSNR AND SSIM OVER TEST SET; THE HIGHEST PSNRS AND SSIMS FOR EACH SETTING ARE IN BOLD.

PLUG-N-PLAY
(DNCNN

DENOISER)

RED
(DNCNN

DENOISER)

DEEP UNROLLED METHODS TRAINED
END-TO-END

DEEP EQUILIBRIUM (OURS)

TV PROX ADMM ADMM GRAD PROX ADMM NEUMANN GRAD PROX ADMM
DEBLUR (1)
PSNR 26.79 29.77 29.95 29.78 32.23 31.64 31.45 32.39 32.43 31.87 32.30
SSIM 0.86 0.88 0.89 0.89 0.93 0.93 0.93 0.94 0.94 0.93 0.94
DEBLUR (2)
PSNR 31.31 35.25 35.61 35.22 36.10 36.92 36.14 36.24 37.99 37.84 37.95
SSIM 0.90 0.96 0.96 0.96 0.97 0.97 0.97 0.97 0.98 0.97 0.98
CS (4X)
PSNR 26.04 27.79 27.85 27.80 29.32 29.65 29.09 29.59 31.46 31.51 31.64
SSIM 0.83 0.87 0.87 0.86 0.88 0.89 0.88 0.89 0.93 0.93 0.93
MRI (8X)
PSNR 26.64 28.45 28.39 29.89 31.13 30.97 31.82 31.64 32.01 31.02 31.38
SSIM 0.78 0.85 0.85 0.88 0.89 0.88 0.88 0.89 0.89 0.88 0.89
MRI (4X)
PSNR 31.22 31.56 31.92 32.37 32.44 32.49 32.56 32.62 33.41 33.66 33.72
SSIM 0.88 0.89 0.89 0.90 0.91 0.91 0.91 0.92 0.91 0.92 0.92

During training, we utilize Anderson acceleration for both the
forward and backward pass fixed-point iterations. In backward
passes, the number of fixed-point iterations was limited to 50
due to memory constraints, but fixed-point iterations in forward
passes were run until convergence was observed. We define
this to be when the relative norm difference between iterations
is less than 10−3:

||x(k+1) − x(k)||2
||x(k)||

< 10−3 (21)

Test time results were produced using the same method as the
forward pass during training, but over the test set. We compare
different fixed-point calculation methods for the forward and
backward passes in Section VI-E.

Further details on settings, parameter choices, and data may
be found in the supplementary materials and in our publicly-
available code.2

C. Parameter Tuning and Pretraining

Each of the iterative optimization algorithms we test has its
own set of hyperparameters to choose, e.g., the step size η in
DE-GRAD, plus any parameters used to calculate the initial
estimate x(0). Tuning hyperparameters requires choosing a
particular regularization network Rθ during tuning. We choose
from a collection of Rθ that have been pretrained for Gaussian
denoising at different noise levels. Pretraining can be done on
the training dataset (e.g., training on MRI images directly) or
using an independent dataset (e.g., the BSD500 image dataset
[43]). We use the former approach in our experiments. We
train a set of denoisers for each domain of our training set: a
collection is trained for CelebA, and a separate collection for
the fastMRI data.

To tune hyperparameters, we first choose parameters to
optimize the performance of PNP on a validation set via a
grid search over pretrained Rθ as well as algorithm-specific

2Available at: https://github.com/dgilton/deep_equilibrium_inverse

hyperparameters (such as the η step-size parameter in gradient
descent approaches). Then, we use the PNP hyperparameter
settings as initial hyperparameter values when training Deep
Equilibrium or Deep Unrolling methods.

Choosing η based on the theory presented in Section V is not
always possible, since common forward models have nontrivial
null space. In these cases, a good choice for η is one that ensures
that a single iteration of the underlying optimization algorithm
is contractive. For Deep Unrolled methods, contractivity is
not strictly necessary, but Deep Equilibrium methods require
contractivity to ensure a stable training process.

The η step size parameter in DU-GRAD and DU-PROX
are optimized during training, but are initialized by the hyper-
parameter search described above. We found that optimizing
over η for Deep Equilibrium approaches led to instability
during training, and so freeze η during training for all Deep
Equilibrium approaches.

D. Main Results

We present the main reconstruction accuracy comparison in
Table I. Each entry for Deep Equilibrium (DE), Regularization
by Denoising (RED), and Plug-and-Play (PNP) approaches is
the result of running fixed-point iterations until the relative
change between iterations is less than 10−3. During training, all
DE models were limited to a maximum 100 forward updates,
but terminate iterations on the relative norm difference between
iterations falling below 10−3. The DU models are tested at
the number of iterations for which they were trained and all
parameters for TV reconstructions (including number of TV
iterations) are cross-validated to maximize PSNR. Performance
as a function of iteration is shown in Figs. 7(a), 7(b),
and 7(c), with example reconstructions in Fig. 8. We provide an
additional iteration-dependent comparison between DE-PROX
and DU-PROX in Fig. 6. Further example reconstructions
are available for qualitative evaluation in the supplementary
materials.

https://github.com/dgilton/deep_equilibrium_inverse
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We observe our Deep Equilibrium-based approaches consis-
tently outperform Deep Unrolled approaches across different
choices of base algorithm (i.e., GRAD,PROX,ADMM). Among
choices of iterative reconstruction architectures for fθ, there
does not appear to be an obvious winner, suggesting the optimal
choice may be problem- or setting-dependent.

(a) 8× MRI

(b) Deblurring (2)
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PS
N
R
 (d
B)

Iterations

Deep Equilibrium Proxgrad (Ours)
Plug-and-Play Proxgrad
Deep Unrolled Proxgrad - 10

(c) CS 4×

Fig. 7. Iterations vs. reconstruction PSNR for DE-PROX and competing
methods for (a) MRI reconstruction, (b) deblurring, and (c) compressed sensing.
The deep unrolled ProxGrad was trained for 10 iterations. In all examples,
deep unrolling is only effective at the number of iterations for which it is
trained, whereas deep equilibrium achieves higher PSNR across a broad range
of iterations, allowing a user to trade off computation time and accuracy.

As seen in Figs. 7(a), 7(b), and 7(c), the Deep Equilibrium

(a) Ground truth (b) IFFT (A>y), PSNR = 24.53 dB
dB

(c) TV-Regularized, PSNR = (d) PnP-Prox, PSNR = 29.24 dB dB

(e) DU-PROX, PSNR = 31.02 dB dB (f) DE-PROX, PSNR = 32.09 dB dB
Fig. 8. 8× accelerated MRI reconstruction example. Best viewed digitally.

approach generally outperforms Deep Unrolled solvers. The
results shown in Figs. 7(a), 7(b), and 7(c) suggest that our
approach requires no more computation than Deep Unrolled
networks to achieve the same performance level and has an
increasing advantage with further computation.

E. Effect of Acceleration
Here we explore the effect of using different fixed-point

solvers during both the training and inference procedures. Lever-
aging acceleration can decrease computational costs during both
training and inference and result in better empirical performance
at inference. Table II compares Anderson accelerated Deep
Equilibrium approaches with Deep Unrolling, Plug and Play,
Deep Equilibrium utilizing Broyden’s Method (as was used
in [5]), and non-accelerated Deep Equilibrium. All results
were determined using PyTorch 1.6.0 utilizing an Nvidia RTX
2080 Ti GPU. As mentioned previously, non-accelerated Deep
Equilibrium at inference time has identical per-iteration cost and
memory requirements as Plug and Play and Deep Unrolling.
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Total Time (s) Time/Iteration (s) PSNR (dB)
Plug & Play 1.24 0.025 31.56
DU-PROX 0.25 0.025 32.49
DE-PROX 1.22 0.025 31.86
DE-PROX (Anderson) 1.17 0.046 33.66
DE-PROX (Broyden) 1.85 0.039 33.61

TABLE II
MEAN COMPUTATION TIME REQUIRED TO REACH CONVERGENCE AND

RESULTING MEAN RECONSTRUCTION PSNR IN 4× ACCELERATED MRI
RECONSTRUCTION WITH COMPLEX IMAGE SIZE 320× 320, AS COMPUTED

OVER THE TEST SET.

We observe that while finding the fixed-points using Broy-
den’s method and Anderson acceleration requires more time
per iterate, convergence occurs faster than the standard fixed-
point iterates, so the net time spent at inference is less. Since
the Broyden solution was slightly worse in terms of PSNR,
Anderson acceleration was used for all other experiments.

For practical matters, the memory cost of each of the
compared methods may also be an important factor to consider.
At train time, Deep Unrolled methods require memory scaling
linearly with the number of iterations used, while Deep
Equilibrium methods require only the memory necessary to
compute the gradient in (16), which is what permits training
at convergence. Plug-and-Play methods are the least memory-
intensive of all to train. At inference time, each method only
needs to store at most a constant number of iterations, so all
methods are cheap in terms of memory to evaluate.
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Fig. 9. (a) Comparison of learned DE-PROX reconstruction quality across
three different inverse problems: Deblurring (Blur), compressed sensing (CS),
and undersampled MRI reconstruction (MRI). In our experiments, initializing
with a pretrained denoiser routinely offered as good or better reconstruction
quality (in terms of PSNR) than a random initialization. (b) Noise sensitivity
comparison between DU-PROX and DE-PROX. The forward model used is
8× MRI reconstruction, and σ here corresponds to the level of Gaussian noise
added to observations.

F. Effect of Pre-Training

Here we compare the effect of initializing the learned
component Rθ in our deep equilibrium models with a pretrained
denoiser versus initializing with random weights. We use the
same hyperparameter tuning scheme described in Section VI-C.

We present our results on Deep Equilibrium Proximal
Gradient Descent (DE-PROX) in Figure 9(a). We observe
an improvement in reconstruction quality when utilizing our
pretraining method compared to a random initialization. We
also note that pretraining enables a simple choice of algorithm-
specific hyperparameters, such as the initial internal step size
for DE-PROX.

G. Noise Sensitivity

We observe empirically that the Deep Equilibrium approach
to training achieves competitive reconstruction quality and
increased flexibility with respect to allocating computation
budget at inference time. Recent work in deep inversion has
questioned these methods’ robustness to noise and unexpected
inputs [44], [45], [46].

To examine whether the Deep Equilibrium approach is brittle
to simple changes in the noise distribution, we varied the level
of Gaussian noise added to the observations at test time and
observed the effect on reconstruction quality in a setting where
DE-PROX and DU-PROX perform similarly. The results shown
in Fig. 9(b) suggest that the Deep Equilibrium model DE-PROX
is more robust to variation in the noise level than the analogous
Deep Unrolled approach DU-PROX. The forward model used
in Fig. 9(b) is 8× MRI reconstruction. We note that we have
also observed a similar resiliency for unrolled Gradient Descent
and ADMM as well.

VII. CONCLUSIONS

This paper illustrates non-trivial quantitative benefits to
using implicitly-defined infinite-depth networks for solving
linear inverse problems in imaging. These empirical benefits
complement convergence guarantees that are unavailable to
widely-used deep unrolling methods. Other recent work has
focused on such implicit networks akin to the deep equilibrium
models considered here (e.g. [47]). Whether these models could
lead to additional advances in image reconstruction remains
an open question for future work. Furthermore, while the
exposition in this work focused on linear inverse problems,
nonlinear inverse problems may be solved with iterative
approaches just as well. The conditions under which deep
equilibrium methods proposed here may be used on such
iterative approaches are an active area of investigation.
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