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ABSTRACT To accurately simulate the inner workings of an enzyme active site with quantum mechanics (QM), not only must
the reactive species be included in the model but also important surrounding residues, solvent, or coenzymes involved in crafting
the microenvironment. Our lab has been developing the Residue Interaction Network Residue Selector (RINRUS) toolkit to uti-
lize interatomic contact network information for automated, rational residue selection and QM-cluster model generation. Starting
from an x-ray crystal structure of catechol-O-methyltransferase, RINRUS was used to construct a series of QM-cluster models.
The reactant, product, and transition state of the methyl transfer reaction were computed for a total of 550 models, and the re-
sulting free energies of activation and reaction were used to evaluate model convergence. RINRUS-designed models with only
200–300 atoms are shown to converge. RINRUS will serve as a cornerstone for improved and automated cheminformatics-
based enzyme model design.
SIGNIFICANCE The efficiency, accuracy, and replicability of enzyme simulations is often hampered by ad hoc model
design. To address this problem, we have developed the Residue Interaction Network Residue Selector (RINRUS) toolkit.
RINRUS utilizes residue contact networks to automate construction of rational quantum mechanical cluster models. This
work computes the reaction kinetics and thermodynamics for 550 RINRUS-designed models of the active site of catechol-
O-methyltransferase, an enzyme that catalyzes the methyl transfer from S-adenosyl methionine cofactor to catechol
substrates. Our results demonstrate the ability of RINRUS to rationally design small, reliable enzyme active site models
and identifies chemical information useful for further model designs.
INTRODUCTION

For nearly two centuries, the structure, function, and cata-
lytic power of enzymes have fascinated scientists, with
countless studies seeking to understand their underlying
mechanisms. Atomic-scale computer modeling of enzymes
is currently a necessary part of the global multibillion-dollar
research effort that aids the design of new pharmaceuticals,
helps to investigate and engineer protein structure and func-
tion, and advances our understanding of the molecular basis
of disease (1,2). The importance of atomic-level simulation
of enzyme-catalyzed reactions was publicly acknowledged
with the 2013 Chemistry Nobel Prize being awarded to
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Warshel, Levitt, and Karplus, who developed methods to
treat the active site of an enzyme with quantum mechanics
(QM) and the periphery with classical or molecular me-
chanics (MM) (3).

QM-only (also called QM-cluster), QM/MM, and our
own N-layered integrated molecular orbital molecular me-
chanics (ONIOM) modeling are various approaches that
have leveraged advancements in quantum mechanical the-
ory and molecular dynamics to continually increase the
ubiquity of computational enzymology (4–6). QM-cluster
modeling has been shown to be particularly useful as a
cost-effective method for studying structural and catalytic
properties of enzyme active sites, especially those of metal-
loenzymes. As with all forms of modeling, the comparative
accuracy of a model to reality is limited by the design of the
model and relevant and reliable experimental data. For
simulating the active site of enzymes, it is crucial to ensure
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that not only the amino acids directly involved with the re-
action are modeled at the QM level but also any residues,
water molecules, ions, and coenzymes sterically and/or
electrostatically crafting the active site microenvironment
(4,7–9). Although this is a simple idea in principle, it is
far harder in practice to identify rationally which residues
must be partitioned into the QM level.

Although ad hoc protocols exist for selecting residues for
inclusion in QM-level modeling, recommendations are typi-
cally ambiguous and generally inefficient (4,7). One of the
most commonpractices is to simply include all residueswithin
a certain radial distance from a point, perhaps the center of
mass of substrate(s) or an active site metal center. Although
suitable models could be constructed this way, calibration
studies have confirmed large spheres (and consequently large
models) are needed for the convergence of simulated enzyme
thermodynamics and kinetics (8,10–18). These results are
perhaps unsurprising, as nature does not enforce any geomet-
ric requirement to the design of an enzyme active site.
Published ‘‘big-QM’’ models further add distant charged res-
idues within the protein to generate 500–1000 atom models;
however, the inclusion of less important residues unnecessar-
ily increases the computational cost of any model (11,19,20).
Attempts to quantify the importance of residues have been
performed via a posteriori computations such as QM/MM
thermodynamic cycle perturbations (21,22), linear response
functions (23), or Fukui or charge shift analysis (14,24).
However, such methods essentially require computational
effort and thoroughanalysis of the constructed enzymemodels
to decide on an optimal model. Iterating an undirected residue
selection process to self-consistency via QM or QM/MM
computations is even more expensive.

Ideally, there would be a computationally inexpensive, a
priori approach to enzyme model construction that utilizes
structural and chemical data to rationally select residues
(or parts of residues) for QM-cluster modeling. As a poten-
tial solution for this model creation problem, our lab has
been developing the software Residue Interaction Network
Residue Selector (RINRUS), which computes a contact-
based residue interaction network (25,26) and uses the
data to identify and rank residues for modeling. Further,
RINRUS automatically trims and caps the residues via a
rules-based criterion to form appropriate models and gener-
ates formatted input files for several popular electronic
structure theory packages (see Materials and methods and
Supporting materials and methods for details). The success
of incorporating interaction and rules-based rationale into
model design has been reported for QM-only models (27)
and recently implemented into a QM/MM modeling
application programming interface (28); however, there
continues to be no definitive protocol for generalized QM-
cluster enzyme model creation. Through establishing an
automated and rigorous workflow, we envision solutions
to several community-wide problems including standardiza-
tion of enzyme QM-model creation, reducing learning
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curves for new users, and minimizing trial and error using
poorly or incorrectly designed models. Implementing the
RINRUS toolkit may also facilitate improving reproduc-
ibility of workflows and published results, a scientific com-
munity-wide need that has been most recently emphasized
by the 2019 consensus study report Reproducibility and
Replicability in Science released by The National Acade-
mies of Sciences, Engineering, and Medicine (29). To infor-
mally highlight the reproducibility problem within the QM/
MM and QM-cluster modeling communities, we surveyed
58 QM/MM or QM-cluster model studies published within
Jan 1–Mar 31 of 2015 and Jan 1–Mar 31, 2019, evaluating
whether the models could be directly reproduced via report-
ing of Cartesian coordinates (see Supporting materials and
methods for details). Only 20 studies (34%) reported
Cartesian coordinates to the extent that reproduction is
possible. Given the absence of consistent community report-
ing, embedding reproducibility via a systematic model
design workflow would be a large step toward research stan-
dards in computational enzymology.

Ideally, the RINRUS workflow would be capable of iden-
tifying a singular or handful of models that best capture the
balance between maximizing the number of key residues
included to simulate the active site while minimizing the
size of the QM region for computational efficiency. This
leads to questions such as what makes the enzyme model
‘‘good’’? What easily obtainable metrics might be universal
in computational biochemistry for ranking the importance
of interatomic and inter-residue interactions? We begin to
answer these questions within the context of contact-based
residue interaction networks (25,26).

The protein of interest for this case study is catechol-O-
methyltransferase (COMT), a target enzyme of numerous
QM-cluster and QM/MM studies (8,18,21,22,30–45). The
mechanism catalyzed by COMT is rather simple, involving
only an SN2 methyl transfer from an S-adenosylmethionine
(SAM) coenzyme to theoxygen of anMg2þ-bound catecholate
substrate (Fig. 1A).Kinetic experiments onhumanCOMTpro-
vide a free energy of activation (DGz) of 18–19 kcal/mol at 310
K (46,47), and computational studies report themethyl transfer
reaction to be exergonic (8,34,35,43).

Previous computational studies have shown substantial
variation in both DGz and free energies of reaction (DGrxn)
with respect to QM-cluster or QM/MM model size. Recent
results from QM/MM calibration studies using radial dis-
tance-based QM regions suggest that asymptotic conver-
gence of thermodynamics and kinetics requires radial QM
regions of 400–600 atoms (8,18,34). Unfortunately, conven-
tional density functional theory (DFT) calculations of 400–
600 atom models are prohibitively expensive for many
research groups. The large QM region size required to study
the COMT mechanism also defies conventional wisdom that
kinetic and thermodynamic properties should converge
quickly as the size of the QM region grows in a QM/MM
partition. The slow convergence behavior of COMT has



FIGURE 1 (A) COMT catalyzes the methyl

transfer reaction from SAM to the oxygen of a

Mg2þ-bound catecholate substrate, forming S-ad-

enosylhomocysteine (SAH) and guaiacol. (B) The

RINRUS workflow begins by processing a protein

structure (x-ray, NMR, or computational simulation

in PDB file format) before computing inter-residue

contacts to form a contact network. Residues (green)

and solvent (blue) interacting with the species of in-

terest (the ‘‘seed,’’ orange and red) are identified.

Systematic classification or ranking schemes are

used to construct appropriate cluster models.

RINRUS then writes these models into an input file

format appropriate for simulation in a variety of

quantum chemistry software packages. (C) The

base model from which all COMT models were

built up. It is composed of the seed (SAM, CAT,

Mg2þ), three residues, and one coordinating water

completing the coordination of Mg2þ (D141,

D169, N170, HOH411).

Cheminformatic QM modeling of COMT
been attributed to the nonspherical active site, requiring an
accurate description of both the Mg2þ-catechol coordination
chemistry and the electrostatic stabilization of the large
SAM cofactor (34).

Although the paradigm of calibrating expanding QM re-
gions in a radial-distance-based fashion has been established
to provide poor convergence for COMT, there is a surprising
dearth of exploring alternatives to distance-based active site
models in the literature. In this work, we present the reaction
thermodynamics and free energies of activation for hundreds
of QM-cluster models of COMT constructed by RINRUS us-
ing several possible workflows. By tracing the final results
back to how the models were constructed, we seek to identify
a construction protocol that consistently constructs accurate
and efficient QM-cluster models of COMT. Though this
work will only involve one case study, the findings from
surveying an immense range of models of the same enzyme
will allow future studies to invert the focus toward assessing
the benefits of a particular approach on enzymes with more
diverse structure and function. This cheminformatics perspec-
tive will be a rigorous step toward establishing a translatable,
generalized computational enzymology protocol.
MATERIALS AND METHODS

The various structures and functions of proteins arise from the noncovalent

interaction networks of their amino acid subunits. To highlight these net-

works, the complex three-dimensional structure of proteins may be simpli-

fied into a two-dimensional adjacency matrix or a graph mapping the

residues to points (nodes) interconnected by lines (edges). Conventionally,

each node represents an individual amino acid of the protein, and each edge

represents a noncovalent interaction occurring between two amino acids.

For more information on inter-residue contact networks and their design,

properties, and applications within chemistry, the reader is directed to re-

views by Giuliani (25) and Shen (48).

In this work, the construction of inter-residue contact networks begins by

following a procedure similar to that of the software RINerator (26). First,

hydrogens are added to the protein crystal structure (Protein Data Bank
(PDB): 3BWM) using the program Reduce (49,50). As the 3BWM crystal

structure has the inhibitor 3,5-dinitrocatechol coordinated to the active site

metal, the two nitro groups were replaced with hydrogens to form the CAT

substrate. An additional hydrogen was also added to the 2-amino functional

group of the SAM substrate to bring it to a þ1 charge, its expected proton-

ation state. This modified crystal structure is the structure used for all sub-

sequent network generation and model construction. The program Probe

(51) is then used to identify noncovalent interactions throughout this struc-

ture. The program does this by rolling a small (0.25 Å radius) spherical

probe over the van der Waals surface of the atoms and identifying both

where the probe comes in contact with other noncovalently bound atoms

and where van der Waals surfaces are clashing. The Probe output file details

the contact or overlap ‘‘dots’’ for all of the atoms reflecting the distance of

contacts or volume of overlaps. Wide contacts have an interatomic gap dis-

tance R0.25 Å, close contacts have an interatomic gap distance <0.25 Å,

big overlaps have overlapping van der Waals radii R0.4 Å, small overlaps

have overlapping van der Waals radii <0.4 Å, and hydrogen bonding is

overlapping van der Waals radii between donor hydrogen and electronega-

tive acceptor atoms (51). All of the reported contact dots (places where an

interatomic contact or overlap occurs) are then collated for each residue to

indicate which residues are interacting. The network illustrating all Probe-

predicted contact interactions within 3BWM is shown in Fig. S1.

The chemically reactive species for this enzyme include the two sub-

strates SAM and CAT along with the Mg2þ that CAT binds. One rationale

for building up models of the active site would be to first focus on including

residues immediately interacting with these reactive species. The network

indicates this list includes 27 amino acids and four crystallographic waters.

The specific parts of the residues having contact interactions with the reac-

tive species (main chain or side chain) and the number of each contact type

are provided in Table S1.

The base for building up all models described in this work is composed of

the substrates SAM and CAT, Mg2þ, and the four species completing the

coordination of Mg2þ (D141, D169, N170, and HOH411; Fig. 1). Residues

are added to this base model by either assigning each residue an ordered

rank or by adding groups of residues classified by a common feature.

Models were automatically generated using the RINRUS software, trim-

ming the models based upon a residue amino, carboxyl, or side chain having

interatomic contacts with the seed. Places where covalent bonds are broken

in trimming the model have hydrogens added to satisfy valency via the pro-

gram PyMol v2.3.a0 (52). To maintain the general shape and semirigid

character of the protein tertiary structure, all Ca atoms, along with the Cb

atoms of Arg, Lys, Glu, Gln, Met, Trp, Tyr, and Phe side chains, were frozen

to their crystallographic positions; research examining alternative ways of
Biophysical Journal 120, 3577–3587, September 7, 2021 3579
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treating these rigid atoms is underway (53,54). Further details about residue

selection and model trimming are provided in the Supporting materials and

methods. Although other research groups who employ QM-cluster models

may have developed internal research protocols for trimming residues and

fragments and freezing backbone atoms, we intend RINRUS to be the first,

to our knowledge, enzyme model design toolkit to publicly codify these

reproducible workflows (and also encourage hypothesis-driven testing of

variations to our model-building decision trees).

All QM computations were performed using the Gaussian16 software

package (55). The models were geometrically optimized using DFT

with the hybrid B3LYP exchange-correlation functional (56,57). The

computations used the 6-31G(d0) basis set for N, O, and S (58); the 6-

31G basis set for C and H atoms (59); and the LANL2DZ effective core

potential and basis set combination for Mg (60). The Grimme D3

(Becke-Johnson) dispersion correction was also included (61), along

with a conductor-like polarizable continuum model using United Atom

Topological Model sets of atomic radii, a nondefault electronic scaling

factor of 1.2, and a dielectric constant of ε ¼ 4 (62,63). Unscaled har-

monic vibrational frequency calculations were used to confirm all station-

ary points as either minima or transition states. Stationary points were

found by first preoptimizing the model to the reactant structure. This pre-

optimized structure was then used to construct an approximate transition

state structure by translating the methyl midway between the sulfur of

SAM and the oxygen of CAT and flattening the methyl to a planar

configuration. The transition state was optimized, and intrinsic reaction

coordinate computations were used to confirm the formal reactant and

product minima and calculate reaction free energies. Whether this proced-

ure biases the simulated active site to more strongly stabilize the reactant

structure (and whether such a bias would be of any significance) is

unknown and an uninvestigated facet of computational enzymology.

The k-means clustering analysis (64) was run through RStudio v.3.6.3

(65) using seed 3163 for replication purposes. Elbow and gap statistics

(Fig. S6) were run using the factoextra package (66). For the gap statistic,

the number of ‘‘bootstrap’’ Monte Carlo samples used was 50. Both elbow

and gap statistics suggest using a k near k ¼ 6 for the cluster analysis

(Fig. S6). A k¼ 6 was ultimately used for further analysis because the clus-

ters with k ¼ 6 are reasonably partitioned into distinct groupings in which

the range of free energies predicted by models within a cluster are not too

broad (would happen with small k-clusters) and the interpretation of the

clusters are not so narrow as to fail to be generalizable (would happen

with large k-clusters). To identify the appropriate clusters, the Hartigan

and Wong k-means clustering algorithm was used starting from a total of

50 different random starts (67).
RESULTS AND DISCUSSION

We began by computing a contact-based residue interaction
network (Fig. 1 B) for an x-ray crystal structure of human
COMT (PDB: 3BWM), in which residues, substrates, and
solvent are illustrated as circles (termed ‘‘nodes’’ in standard
graph theory nomenclature) interconnected by lines (termed
‘‘edges’’) when there are interatomic contacts between two
residues or fragments. Although the construction and anal-
ysis of these graphs are already known to provide insight
into allosteric regulation, protein folding and stability, and
structure-function relationships (25,48), we repurpose the
networks toward QM-cluster model design. The network
indicated 27 protein residues and four crystallographic
waters had contact interactions with any fragments central
to the catalytic reaction (termed the ‘‘seed’’: SAM, CAT,
or Mg2þ). The residue contacts with the seed were classified
into five different types: wide contacts, close contacts, small
3580 Biophysical Journal 120, 3577–3587, September 7, 2021
overlaps, big overlaps, and hydrogen bonding. All QM-clus-
ter models of COMT were constructed using the crystallo-
graphic coordinates of these residues and, unless
otherwise indicated, trimmed according to the RINRUS
workflow (refer to Supporting materials and methods).
Models were expanded from the seed by one of two general
ways: residues were incrementally added based upon a
ranking criterion (e.g., distance from the seed or number
of contacts with the seed) or groups of residues were added
to the seed based upon similar residue features (e.g., type of
interatomic contacts). The models constructed solely from
the RINRUS contact information expand to a 485-atom
model representing a ‘‘first interaction shell’’ maximal
model that includes all residues with quantified contacts
with any of the seed fragments. This maximal model is ellip-
soidal in shape (Fig. 4 B), reflective of the nonspherical ge-
ometry of the COMT active site. Further details on the
model-building schemes beyond what will be outlined in
the discussion are provided in the Supporting materials
and methods. In total, the methyl transfer transition state
and connecting reactants and products for 550 unique
QM-cluster models were computed. 1650 DFT-optimized
stationary points were analyzed in this work.
Expansion of QM-cluster models by ranking of
residues

We will first detail several ways COMT QM-cluster models
were incrementally built up by ranking residues. The first
metric is the current paradigm of ranking residues based
on their distance to the active site. Though a simple distance
metric may seem straightforward, this method can be
ambiguous and tricky to replicate without reporting very
precise definitions of the radial origin and the thresholds
for adding residue fragments or entire residues. Subtle var-
iances in definitions might qualitatively affect which resi-
dues or atoms are captured within varying radially
expanding models. For this work, 25 models were con-
structed with RINRUS by incrementally adding residues
ranked by the shortest distance from the position of any
atom (including hydrogens) of the seed to the position of
any atom of the surrounding residues. The models were
expanded until all residues predicted by the contact network
were incorporated, encompassing a 3.10 Å expansion from
any atom of the seed. Two residues (K46 and N92) with no
RINRUS-predicted contact interactions with the seed but
that fall within the 3.10 Å distance threshold were neces-
sarily included in these distance-based models.

Computed values of DGz and DGrxn are plotted against
the distance-based expansion from the seed (Fig. 2 A). As
the size of the model increases, the predicted DGz converges
(the DGz is within 52 kcal/mol of the largest distance-
based model) with QM-cluster models containing >342
atoms, but the predicted DGrxn does not similarly converge
even with the largest distance-based models. Some of the



FIGURE 2 Computed methyl transfer DGz

(circle) and DGrxn (triangle) free energies as

models are systematically built up through

different methods of ranking residues including

distance from the seed (A), total number of contacts

with the seed (B), frequency of residue in combina-

toric scheme 2 sets (C), and a by-hand reconstruc-

tion of models by frequency of residue in

combinatoric scheme 2 sets (D). Red lines indicate

the charge for each model (right axis). Gray lines

indicate the reference convergence values.

Cheminformatic QM modeling of COMT
largest distance-based models computed in this work
(containing 444 and 447 atoms) incorrectly predict an
endergonic reaction.

The surprising appearance of qualitatively incorrect reac-
tion free energies in the largest distance-based models
brings up some crucial pitfalls in designing QM-cluster
models but also ways that RINRUS can be used by the
QM-cluster modeling community to circumvent these pit-
falls. The convergence of the reaction free energy is disrup-
ted by addition of the charged residue K46, which, as
previously noted, does not have direct contact interactions
with the seed. Such a qualitative shift in thermodynamic
properties contradicts intuition that a larger QM-cluster
model will always be ‘‘better’’ than a smaller model. At
best, the addition of peripheral residues with no quantifiable
interaction with seed residues or fragments adds unneces-
sary time to the DFT simulations, as observed with the
addition of the uncharged N92 residue (not present in
RINRUS-constructed models) changing DGz and DGrxn by
<0.2 kcal/mol in the 486-atom distance-based model. It is
known that balancing charged residues in models is impor-
tant in COMT and other enzyme systems (4,8,11,20), but
this COMT case study provides evidence that an undirected
distance-based model-building scheme does not address this
problem in a physically meaningful way. It may be fortu-
itous that the maximal COMT model generated by RINRUS
(Fig. 4 B) does not include any boundary residues that are
part of an unrequited charged pair, but even if it is coinci-
dental, the RINRUS methodology provides a means for an
automated solution to balancing charges. If the maximal
model is thought of as a ‘‘first interaction shell’’ that encap-
sulates all residues that influence the active site chemistry,
regardless of distance from the seed fragments, then the
RINRUS source code can be easily adapted to include resi-
dues in the ‘‘second shell’’ that are necessary for charge
balancing of larger-sized models. Testing of this procedure
is currently underway by our lab.

As a step toward identifying a chemically directed way to
expand models, we next considered the convergence of QM-
cluster models constructed by ranking based on the number
of contacts each residue has with the seed and incrementally
building models from residues with the most contacts to
fewest contacts with the seed. We define ‘‘convergence’’
in this study as being within 52 kcal/mol of the conver-
gence reference values and remaining so as the model size
is increased one residue at a time. The convergence refer-
ence values are defined as average relative free energies of
the five largest models designed solely using RINRUS con-
tact interactions: 12.3 kcal/mol for DGz and �4.9 kcal/mol
for DGrxn. The converged reference value for DGrxn is in
agreement with other computational works reporting an
exergonic reaction (8,34,35,43); DGz is lower than the
experimentally derived value, but this is expected consid-
ering the marginal level of theory used in this case study.
The accuracy of RINRUS-derived models will be a subject
of several future studies in our groups by varying level of
theory, treatment of solvation, and approaches for freezing
atoms, but for now, the consistency of the largest RINRUS
Biophysical Journal 120, 3577–3587, September 7, 2021 3581
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models provides a suitable reference point for convergence.
With an improved ranking scheme using the number of res-
idue-seed contacts, DGz and DGrxn both converge by the
302-atom model (Fig. 2 B). Although an interaction-based
ranking fares better at prioritizing residues than distance-
based expansion, there are some inherent limitations.
Namely, larger residues with more surface area (e.g., lysine
or tryptophan) are more likely to have more contacts with
the seed and may bias the ranking compared to smaller res-
idues. Ranking by number of contacts with the seed also
does not weight or quantify the magnitude of electrostatic
influences (e.g., charge, hydrogen bonding, and polarity).
Nevertheless, even with this nonoptimal metric, construct-
ing models by contact count still yields impressively small
converged models.

Below, we will detail two combinatoric workflows for
building models in which residues are classified into sets
by common contact type. The third method for ranking res-
idues involves ordering residues by the number of times
each residue appears in a unique model from the combina-
toric scheme 2 model sets (see below and Supporting mate-
rials and methods for details). This ranking inherently favors
residues with more than one type of contact interaction. In
using this residue ordering, DGz and DGrxn are converged
when the QM-cluster model size is greater than�300 atoms
(Fig. 2 C), similar to the models designed through ranking
residues by total contacts with the seed. The model with
the greatest overestimation of DGz and endergonic DGrxn

(236 atoms) corresponds to the addition of the positively
charged residue, K144. The subsequent inclusion of the
negatively charged E199 residue places the predicted free
energies within qualitative accuracy, re-emphasizing the
point that particular care in model design must be given to-
ward charged residues and nearby residues that counter their
effective charges.
Automation versus constructing QM-cluster
models manually

The RINRUS package is still undergoing rapid development
and needs further testing to address broader QM-cluster
model design issues such as residue and substrate proton-
ation states, the orientation of explicit solvent molecules,
and conformational sampling (7,9). Although these factors
may be manually addressed by the user, doing so places a
potential bottleneck in the throughput of QM-cluster model
applications.

In consideration of possible differences between manual
and automated model building, models built by ranking res-
idues via their frequency of appearance in combinatoric
scheme 2 models (Fig. 2 C) were reconstructed by hand
by the corresponding author (N.J.D.). The models were de-
signed without any guidance from RINRUS beyond the iden-
tity of the specific residues in contact with the seed and their
ranked order, and special attention was given toward residue
3582 Biophysical Journal 120, 3577–3587, September 7, 2021
protonation and sampling different conformations. The re-
sults of these ‘‘bespoke’’ models are presented in Fig. 2 D
and are shown to be comparable to the models built by
RINRUS (Fig. 2 C). There is reduced fluctuation in the
DGz for the smaller bespoke models versus comparably
sized RINRUS-generated models, likely attributable to
manual sampling of residue orientations, a treatment not
done for any of the RINRUS-derived models. However, for
the models greater than 300 atoms, there is no qualitative
difference between the automated and the ‘‘by-hand’’
approach. These results demonstrate how RINRUS, even
without carefully attending to residue protonation and
conformational sampling, can construct QM-cluster models
in a way similar to that by an experienced scientist but that is
founded on a traceable cheminformatic basis and a repro-
ducible, rational workflow. This automated efficiency will
be important for future studies that may require constructing
large numbers of models such as when sampling molecular
dynamics simulations or exploring multistep chemical
mechanisms.
Expansion of QM-cluster models by residue
interaction features

The remaining models were built up from the seed by
combining residues with common features, specifically by
inter-residue contact type. The contact types contain two
pieces of information used in QM-cluster model construc-
tion: the section of the residue contacting the seed (classified
as residue main chain, residue side chain, or explicit water
molecule) and the contact type (wide contact, close contact,
small overlap, big overlap, or hydrogen bonding). Models
were constructed by taking all combinations of the contact
types and, for each combination, building a QM-cluster
model using all residues with the specific contact types of
that combination. These models represent a combinatoric
approach to building up models by adding groups of resi-
dues by common features to the seed (combinatoric scheme
1; see Supporting materials and methods for details). To
further increase the number of models and data set size,
the sets of residues classified by contact types were reparti-
tioned into a second combinatoric approach (combinatoric
scheme 2; see Supporting materials and methods for de-
tails), although the generation of these sets is not rigorous
or necessarily applicable to other biosystems. Given the lim-
itations of time and resources, 114 (of 204 possible) models
of combinatoric scheme 1 and 357 (of 736 possible) models
of combinatoric scheme 2 have been simulated, representing
all unique combination-based models up to at least 320
atoms (Fig. S5). As the goal is identifying small yet accurate
QM-cluster models, the cost of expanding the data set to
include hundreds of additional large models is not expected
to lead to substantial improvements in analysis.

In plotting DGz and DGrxn of QM-cluster models built
through the two combinatoric schemes (Fig. 3, A and B), a



FIGURE 3 Computed methyl transfer DGz (circle) and DGrxn (triangle) as models are constructed through either the combinatoric scheme 1 (A) and com-

binatoric scheme 2 (B). (C) Scatter and density plot of DGz (blue density) and DGrxn (tan density) for all simulated models. Six clusters identified by k-means

clustering of similar DGz and DGrxn are differentially colored. Gray lines indicate the reference convergence values.

Cheminformatic QM modeling of COMT
wide range of computed kinetic and thermodynamic values
were exhibited. Variation in DGz and DGrxn originates from
differences in model composition rather than models opti-
mizing into unnatural orientations, as the root mean-square
deviation of unconstrained residue heavy atoms of the ge-
ometry optimized reactant state compared to the x-ray crys-
tal structure is, on average, only 0.53 Å for all models
(Fig. S4; standard deviation, 0.17 Å). Similar to the models
built by ranking residues, there are models with fewer than
300 atoms that yield accurate predictions, affirming that
QM-cluster model convergence for COMT does not require
>400 atom models.
Identifying important residues

A general grouping of COMT QM-cluster models that pre-
dict similar (though not necessarily accurate) free energies
is observed in Fig. 3 for both combinatoric schemes. This
leads to the question of which residues are required to
form an accurate model. To more clearly distinguish the
grouping of unique models that predict similar kinetic and
thermodynamic properties, the k-means clustering algo-
rithm was used to partition the entire data set of unique
QM-cluster models into six groups (Fig. 3 C) based upon
their predicted DGz and DGrxn (64). Though an unsuper-
vised method was used to group the models, the identified
clusters are reasonable and properly differentiate the models
with both converged DGz and DGrxn (cluster 5) from mark-
edly inaccurate models (clusters 1 and 6), as well as models
with converged values for either DGz or DGrxn, but not both
(clusters 2, 3, and 4).

The residues that differ among the clusters give insight
into which residues have a comparably strong influence on
convergence. Tabulating the percent occurrence of each res-
idue within the COMT models of each cluster (Figs. 4 and
S7; Table S2), nine residues present in >90% of the cluster
5 models are absent or have a greatly reduced presence in
other clusters. For example, in the models of cluster 6,
which systematically overestimate DGz and 65% of which
incorrectly predict an endergonic reaction, none contain
Biophysical Journal 120, 3577–3587, September 7, 2021 3583



FIGURE 4 (A) Relative frequency for each resi-

due being present in the models of a k-cluster.

Values are proportionally shaded to emphasize dif-

ferences in residue composition among k-clusters.

(B) Visualization of the maximal 485-atom model

highlighting the residues that occur in >80% of

cluster 5 models. The carbon atoms of the sub-

strates are colored magenta.
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E199 and only 11% contain M40. Without these residues,
the QM-cluster models are missing 1) the stabilizing
hydrogen bonding interactions between E199 and CAT
and 2) the hydrophobic interactions between M40 and the
SAM, resulting in consistently large deviations with respect
to the converged free energies.

Surprisingly, residues identified as particularly important
for convergence are not always localized around the atoms
directly involved in the methyl transfer. For instance, E90
(which is present in 99% of the models in cluster 5 but
only in <35% of the models in clusters 1 and 3) is �10 Å
from CAT but plays a role in stabilizing and properly orient-
ing the SAM. Other residues such as I91, A118, S119, and
H142 are present in >70% of the models in cluster 5 and
appear to play important roles in crafting the active site
microenvironment.

With residues crucial for accurate QM-cluster modeling
of COMT identified, the next step is to examine contact
and classification metrics to see whether any were particu-
larly suitable for predicting the relative importance of resi-
dues. For the contact classifications, there is unfortunately
no consistent combination of contact types among the clus-
ter 5 models for yielding converged models. Using the total
contacts between the seed and each residue (Fig. 2 B) as a
ranking system proves modestly successful, as 9 of the 13
residues present in >80% of the cluster 5 models have a
high frequency of contacts with the seed and would be
correctly prioritized. The four residues with low contacts
(N41, A67, Y71, and A118) are adjacent to high-contact res-
idues and largely have main chain interactions with the seed,
explaining the fewer contacts. The general success of using
total contacts as a ranking scheme was previously shown in
Fig. 2 B, in which converged models had 302 atoms as a
lower bound. Improvements to this ranking method are war-
ranted (and are under current investigation by our lab),
ranging from incorporating additional chemical descriptors
for the interatomic contacts (e.g., through Arpeggio (68)) to
developing a weighting system to favor certain contact
interactions (e.g., hydrogen bonding, polar, or aromatic).
In the end, RINRUS provides a computationally inexpen-
3584 Biophysical Journal 120, 3577–3587, September 7, 2021
sive, rational, and reproducible means to building enzyme
QM-cluster models.
CONCLUSIONS

Computational enzymology has made incredible impacts on
understanding the atomic-level intricacies of enzyme func-
tion. Although computational resources and scaling limita-
tions of quantum chemistry are among factors limiting
progress in this field, little attention has been given toward
how poor or irreproducible model designmight be hampering
scientific progress. Many publication-quality enzyme models
have been founded on rationale not necessarily suited for
modeling nonspherical active sites (e.g., radial distance crite-
rion) or via rationale prone to fallibility (a researcher’s chem-
ical intuition). Techniques addressing this problem by
identifying important residues a posteriori have been useful
but fail to meet the need for a computationally inexpensive
a priori method for designing enzyme models.

As a step toward addressing community-wide problems in
computational enzymology, we have been developing the
RINRUS toolkit to automate the residue selection and con-
struction of QM-cluster models. RINRUS utilizes the chemin-
formatics of interatomic contact networks as the rationale for
identifying active site residues and ranking and classifying
them. The catalytic methyl transfer reaction of the human
COMT enzyme was simulated with a total of 550 unique
models, illustrating how information from RINRUS was
used to buildmodels up from a base structure by either adding
residues incrementally via a ranking scheme (e.g., total con-
tacts with the seed) or by adding combinations of groups of
residues (e.g., type of contacts). Clusters of models with com-
mon predictions of reaction and transition state free energies
were compared to identify residues important for accurate
simulations of COMT. Tracing the converged models and
important residues back to how the models were constructed
revealed that ranking residues by the frequency of their con-
tacts with the seed was a particularly useful method, with
QM-cluster models with 210–300 atoms yielding converged
thermodynamic and kinetic properties. Additionally, the
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methodology employed by RINRUS to identify seed-residue
interactions and accordingly trim QM-cluster models favor-
ably compares to that of ‘‘by-hand’’ models created by an
experienced computational biochemist.

The major focus of this work has been to quickly
converge energetic properties of smaller QM-cluster
models to those of a maximally sized QM-cluster model.
Further testing of the QM-cluster modeling methodology
for accuracy to other well-defined experimentally known
quantities (e.g., NMR chemical shifts) is an obvious next
step for our lab to take. However, proper calibration of
QM-based computational enzymology is contingent upon
first developing a rational and reproducible scheme for
building QM-cluster models. Particular avenues of study
include calibration of DFT, one-electron basis set, implicit
solvation parameters, empirical dispersion corrections, and
other variables of electronic structure theory to truly
assess the accuracy of QM-cluster modeling beyond a
metric of internal consistency. Recent developments in
linear scaling coupled cluster theory suggest ways to incor-
porate more rigorous ‘‘black box’’ electronic structure the-
ories into the realm of computational enzymology.
Investigating the structural and cheminformatic variation
from constructing models using x-ray crystal structures
versus conformational sampling frames from molecular
dynamics simulations is also underway. These studies are
in concert with investigations by our lab on improving
the chemical descriptors and ranking schemes, integrating
machine learning into the workflow, and examining how
to best account for the impact that charged residues
have on modeling the active site. In the future, we also
seek to expand the functionality into automating QM/
MM modeling construction. A forthcoming publication
will describe the RINRUS software package and include
thorough tutorials. Public availability and adoption of
RINRUS will substantially reducing learning curves
for new practitioners of QM-cluster modeling and initiate
a feedback loop for improving the generalizability of
RINRUS for constructing QM models of proteins beyond
COMT and the enzymes studied within our lab.

Though model design and reproducibility questions have
been largely ignored within the greater computational enzy-
mology community, we hope this work will foster self-reflec-
tion on the underlying assumptions behind how atomic-level
enzyme simulations are derived. The current practices often
require unnecessarily large models to obtain accurate or
internally converged results, which is limiting progress and
is undoubtedly daunting to inexperienced chemists and
biochemists interested in contributing to the field. Through
the automated workflows provided by RINRUS and its
successful results demonstrated in this work, we present
the first steps, to our knowledge, toward discovering and im-
plementing a computationally inexpensive, cheminformatic-
based means for constructing reproducible, rational, and
rigorous enzyme models. Admittedly, this case study of a sin-
gle enzyme does not fully address all parameters of QM-clus-
ter enzyme model construction. Nevertheless, reproducible
workflows in computational enzymology, supported by
RINRUS development, will improve openness and data
sharing and facilitate novel cyber- and software infrastruc-
ture in biochemistry and biology.
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