
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. MATH. DATA SCI. © 2022 Society for Industrial and Applied Mathematics
Vol. 4, No. 2, pp. 801–833

Autodifferentiable Ensemble Kalman Filters∗

Yuming Chen† , Daniel Sanz-Alonso† , and Rebecca Willett†

Abstract. Data assimilation is concerned with sequentially estimating a temporally evolving state. This task,
which arises in a wide range of scientific and engineering applications, is particularly challenging
when the state is high-dimensional and the state-space dynamics are unknown. This paper intro-
duces a machine learning framework for learning dynamical systems in data assimilation. Our auto-
differentiable ensemble Kalman filters (AD-EnKFs) blend ensemble Kalman filters for state recovery
with machine learning tools for learning the dynamics. In doing so, AD-EnKFs leverage the ability of
ensemble Kalman filters to scale to high-dimensional states and the power of automatic differentiation
to train high-dimensional surrogate models for the dynamics. Numerical results using the Lorenz-
96 model show that AD-EnKFs outperform existing methods that use expectation-maximization or
particle filters to merge data assimilation and machine learning. In addition, AD-EnKFs are easy to
implement and require minimal tuning.
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1. Introduction. Time series of data arising across geophysical sciences, remote sensing,
automatic control, and a variety of other scientific and engineering applications often reflect
observations of an underlying dynamical system operating in a latent state-space. Estimating
the evolution of this latent state from data is the central challenge of data assimilation (DA)
[44, 30, 82, 54, 75]. However, in these and other applications, we often lack an accurate
model of the underlying dynamics, and the dynamical model needs to be learned from the
observations to perform DA. This paper introduces autodifferentiable ensemble Kalman filters
(AD-EnKFs), a machine learning (ML) framework for the principled co-learning of states and
dynamics. This framework enables learning in three core categories of unknown dynamics: (a)
parametric dynamical models with unknown parameter values; (b) fully unknown dynamics
captured using neural network (NN) surrogate models; and (c) inaccurate or partially known
dynamical models that can be improved using NN corrections. AD-EnKFs are designed to
scale to high-dimensional states, observations, and NN surrogate models.
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802 YUMING CHEN, DANIEL SANZ-ALONSO, AND REBECCA WILLETT

In order to describe the main idea behind the AD-EnKF framework, let us introduce briefly
the problem of interest. Our setting will be formalized in section 2 below. Let x0:T := {xt}Tt=0

be a time-homogeneous state process with transition kernel pθ(xt|xt−1) parameterized by a
vector θ. For instance, θ may contain unknown parameters of a parametric dynamical model
or the parameters of an NN surrogate model for the dynamics. Our aim is to learn θ from
partial and noisy observations y1:T := {yt}Tt=1 of the state, and thereby learn the unknown
dynamics and estimate the state process. The AD-EnKF framework learns θ iteratively. Each
iteration consists of three steps: (i) use EnKF to compute an estimate LEnKF(θ) of the data
log-likelihood L(θ) := log pθ(y1:T ); (ii) use autodifferentiation (“autodiff”) to compute the
gradient ∇θLEnKF(θ); and (ii′) take a gradient ascent step. Filtered estimates of the state are
obtained using the learned dynamics.

The EnKF, reviewed in section 3, estimates the data log-likelihood using an ensemble
of particles. Precisely, given a transition kernel pθ(xt|xt−1), the EnKF generates particles
x1:N0:T := {xnt } t=0,...T

n=1,...,N
; here xnt represents a generic particle that approximates the state xt at

discrete time t ∈ {0, . . . , T}, and N denotes the ensemble size. The log-likelihood estimate
LEnKF(θ) depends on θ through these particles and also through the given transition kernel.
Differentiating the map θ 7→ LEnKF(θ) in step (ii) of AD-EnKF involves differentiating both
the map θ 7→ x1:N0:T from parameter to EnKF particles and the map (θ, x1:N0:T ) 7→ LEnKF(θ) from
parameters and EnKF particles to EnKF log-likelihood estimate. A key feature of our approach
is that θ 7→ LEnKF(θ) can be autodifferentiated using the reparameterization trick ([48] and
section 4.1) and autodiff capabilities of NN software libraries such as PyTorch [70], JAX [11],
and Tensorflow [1]. Automatic differentiation is different from numerical differentiation in
that derivatives are computed exactly through compositions of elementary functions whose
derivatives are known, as opposed to finite difference approximations that cause discretization
errors.

The AD-EnKF framework represents a significant conceptual and methodological depar-
ture from existing approaches to blend DA and ML based on the expectation-maximization
(EM) framework; see Figure 1. Specifically, at each iteration, EM methods that build on the
EnKF [71, 12, 9] employ a surrogate likelihood LEM-EnKF

(
θ ;x1:N0:T

)
where the particles x1:N0:T

are generated by EnKF and fixed. Importantly, EM methods compute gradients used to learn
dynamics by differentiating only through the θ-dependence in LEM-EnKF that does not involve
the particles. In particular, in contrast to AD-EnKF, the map θ 7→ x1:N0:T from parameter to
EnKF particles is not differentiated. Moreover, the performance of EM methods is sensitive
to the specific choice of EnKF algorithm in use, and the tuning of algorithmic parameters of
EM can be challenging [12, 9]. Our numerical experiments suggest that, even when optimally
tuned, EM methods underperform AD-EnKF in high-dimensional regimes. The better per-
formance of AD-EnKF may be explained by the additional gradient information obtained by
differentiating the map θ 7→ x1:N0:T .

The AD-EnKF framework also represents a methodological shift from existing differen-
tiable particle filters (PFs) [65, 61, 56]. Similar to AD-EnKF, these methods rely on autodiff of
a map θ 7→ LPF(θ), where the log-likelihood estimate LPF(θ) depends on θ through weighted
particles (w1:N

0:T , x1:N0:T ) obtained by running a PF with transition kernel pθ(xt|xt−1). However,
the use of PF suffers from two caveats. First, it is not possible to autodifferentiate directly
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θ y1:T

x1:N0:T

LEnKF

(a) AD-EnKF

θ y1:T

x1:N0:T

LEM-EnKF

(b) EM-EnKF

With AD-EnKF, parameters θ and obser-
vations y1:T are used to generate EnKF
particles x1:N

0:T ; the particles together with
θ and y1:T are used to compute the like-
lihood LEnKF, and the gradient ∇θLEnKF

explicitly accounts for the map from θ to
the particles x1:N

0:T . In contrast, with EM-
EnKF, the likelihood LEM-EnKF is a func-
tion of θ and fixed particles x1:N

0:T generated
by EnKF, so that computing the gradient
∇θLEM-EnKF does not account for the map
from θ to the particles x1:N

0:T .

Figure 1. Computational graph of AD-EnKF and EM-EnKF. Dashed squares represent computations
performed by the EnKF. Gray arrows in (b) indicate that the construction of LEM-EnKF is performed in two
steps: (1) obtain x1:N

0:T from θ and y1:T (gray arrows), and (2) use θ and x1:N
0:T (no longer seen as a function of

θ) to define LEM-EnKF. In contrast, those lines are black in (a), indicating that in AD-EnKF the particles x1:N
0:T

in LEnKF are seen as varying with θ.

through the PF resampling steps [65, 61, 56]. Second, while the PF log-likelihood estimates
are consistent, their variance can be large, especially in high-dimensional systems. More-
over, their gradient, which is the quantity used to perform gradient ascent to learn θ, is not
consistent [18].

1.1. Contributions. This paper seeks to set the foundations and illustrate the capabilities
of the AD-EnKF framework through rigorous theory and systematic numerical experiments.
Our main contributions are as follows:

• We develop new theoretical convergence guarantees for the large sample EnKF esti-
mation of log-likelihood gradients in linear-Gaussian settings (Theorem 3.2).
• We combine ideas from online training of recurrent networks (specifically, truncated
backpropagation through time—TBPTT) with the learning of AD-EnKF when the
data sequence is long, i.e., T is large.

• We provide numerical evidence of the superior estimation accuracies of log-likelihoods
and gradients afforded by EnKF relative to PF methods in high-dimensional settings.
In particular, we illustrate the importance of using localization techniques, developed
in the DA literature, for EnKF log-likelihood and gradient estimation, and the corre-
sponding performance boost within AD-EnKF.
• We conduct a numerical case study of AD-EnKF on the Lorenz-96 model [60], consider-
ing parameterized dynamics, fully unknown dynamics, and correction of an inaccurate
model. The importance of the Lorenz-96 model in geophysical applications and for
testing the efficacy of filtering algorithms is highlighted, for instance, in [62, 53, 52, 12].
Our results show that AD-EnKF outperforms existing methods based on EM or differ-
entiable PFs. The improvements are most significant in challenging high-dimensional
and partially observed settings.
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804 YUMING CHEN, DANIEL SANZ-ALONSO, AND REBECCA WILLETT

1.2. Related work. The EnKF algorithm was developed as a state estimation tool for
DA [29] and is now widely used in numerical weather prediction and geophysical applications
[91, 96]. Recent reviews include [42, 46, 77]. The idea behind the EnKF is to propagate
N equally weighted particles through the dynamics and assimilate new observations using
Kalman-type updates computed with empirical moments. When the state dimension dx is
high and the ensemble size N is moderate, traditional Kalman-type methods require O(d2x)
memory to store full covariance matrices, while storing empirical covariances in EnKFs only
requires O(Ndx) memory. The use of EnKF for joint learning of state and model parameters
by state augmentation was introduced in [3], where EnKF is run on an augmented state-space
that includes the state and parameters. However, this approach requires one to design a
pseudodynamic for the parameters which needs careful tuning and can be problematic when
certain types of parameters (e.g., error covariance matrices) are involved [86, 23] or if the
dimension of the parameters is high. In this paper, we employ EnKFs to approximate the data
log-likelihood. The use of EnKF to perform derivative-free maximum likelihood estimation
(MLE) is studied in [88, 71]. An empirical comparison of the likelihood computed using the
EnKF and other filtering algorithms is made in [14]; see also [38, 64]. The paper [28] uses EnKF
likelihood estimates to design a pseudomarginal Markov chain Monte Carlo (MCMC) method
for Bayesian inference of model parameters. The works [86, 87] propose online Bayesian
parameter estimation using the likelihood computed from the EnKF under a certain family
of conjugate distributions. However, to the best of our knowledge, there is no prior work on
state and parameter estimation that utilizes gradient information of the EnKF likelihood.

The embedding of EnKF and ensemble Kalman smoothers (EnKS) into the EM algorithm
for MLE [24, 7] has been studied in [92, 93, ?, 71], with a special focus on estimation of error
covariance matrices. The expectation step (E-step) is approximated with EnKS under the
Monte Carlo EM framework [95]. In addition, [12, 66] incorporate deep learning techniques
in the maximization step (M-step) to train NN surrogate models. The paper [9] proposes
Bayesian estimation of model error statistics, in addition to an NN emulator for the dynamics.
On the other hand, [94, 17] consider online EM methods for error covariance estimation with
EnKF. Although gradient information is used during the M-step to train the surrogate model
[12, 66, 9], these methods do not autodifferentiate through the EnKF (see Figure 1), and
accurate approximation of the E-step is hard to achieve with EnKF or EnKS.

Another popular approach for state and parameter estimation is PFs [35, 26] that approxi-
mate the filtering step by propagating samples with a kernel, reweighing them with importance
sampling, and resampling to avoid weight degeneracy. PFs give an unbiased estimate of the
data likelihood [21, 5]. Based upon this likelihood estimate, a particle MCMC Bayesian pa-
rameter estimation method is designed in [5]. Although PF likelihood estimates are unbiased,
they suffer from two important caveats. First, their variance can be large, as they inherit
the weight degeneracy of importance sampling in high dimensions [85, 10, 2, 80, 83]. Second,
while the propagation and reweighing steps of PFs can be auto-differentiated, the resampling
steps involve discrete distributions that cannot be handled by the reparameterization trick.
For this reason, previous differentiable PFs omit autodiff of the resampling step [65, 61, 56],
introducing a bias. To address this issue, the resampling step can be replaced with a dif-
ferentiable optimal transport map [18], but construction of this map can be computationally
expensive.D

ow
nl

oa
de

d 
07

/0
4/

22
 to

 2
05

.2
08

.1
16

.2
4 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

AUTODIFFERENTIABLE ENSEMBLE KALMAN FILTERS 805

An alternative to MLE methods is to optimize a lower bound of the data log-likelihood
with variational inference (VI) [7, 48, 73]. The posterior distribution over the latent states is
approximated with a parametric distribution and is jointly optimized with model parameters
defining the underlying state-space model (SSM). In this direction, variational sequential
Monte Carlo (VSMC) methods [65, 61, 56] construct the lower bound using a PF algorithm.
Moreover, the proposal distribution of the PF is parameterized and jointly optimized with
model parameters defining the SSM. Although VSMC methods provide consistent data log-
likelihood estimates, they suffer from the same two caveats as likelihood-based PF methods.
A recent work [43] proposes blending VSMC and EnKF with an importance sampling-type
lower bound estimate, which is effective if the state dimension is small. Other works that
build on the VI framework include [50, 74, 31]. An important challenge is to obtain suitable
parameterizations of the posterior, especially when the state dimension is high. For this
reason, a restrictive Gaussian parameterization with a diagonal covariance matrix is often
used in practice [50, 31].

More broadly, the development of data-driven ML frameworks for learning dynamical
systems is a very active research area and we refer to [13, 36, 39, 72] for recent references that
illustrate a range of techniques that do not rely on the EM algorithm, autodiff of filtering
methods, or VI.

Outline. This paper is organized as follows. Section 2 formalizes our framework and
reviews a characterization of the likelihood in terms of normalizing constants arising in se-
quential filtering. Section 3 overviews EnKF algorithms for filtering and log-likelihood es-
timation. Section 4 contains our main methodological contributions. Numerical experi-
ments on linear-Gaussian and Lorenz-96 models are described in section 5. We close in
section 6.

Notation. We denote by t ∈ {0, 1, . . . , T} a discrete time index and by n ∈ {1, . . . , N} a
particle index. Time indices will be denoted with subscripts and particles with superscripts,
so that xnt represents a generic particle at time t. We denote xt0:t1 := {xt}t1t=t0

and xn1:n2 :=
{xn}n1

n=n0
. The collection xn0:n1

t0:t1
is defined similarly. The Gaussian density with mean m

and covariance C evaluated at x is denoted by N (x;m,C). The corresponding Gaussian
distribution is denoted by N (m,C). For square matrices A and B, we write A ≻ B if A−B
is positive definite, and A ⪰ B if A − B is positive semidefinite. For A ⪰ 0, we denote by
A1/2 the unique matrix B ⪰ 0 such that B2 = A. We denote by |v| the 2-norm of a vector v
and by |A| the Frobenius norm of a matrix A.

2. Problem formulation. Let x0:T be a time-homogeneous Markov chain of hidden states
xt ∈ Rdx with transition kernel pθ(xt|xt−1) parameterized by θ ∈ Rdθ . Let y1:T be obser-
vations of the state. We seek to learn the parameter θ and recover the state process x0:T
from the observations y1:T . In subsection 2.1, we formalize our problem setting, emphasiz-
ing our main goal of learning unknown dynamical systems for improved DA. Subsection 2.2
describes how the log-likelihood L(θ) = log pθ(y1:T ) can be written in terms of normalizing
constants arising from sequential filtering. This idea will be used in section 3 to obtain EnKF
estimates for L(θ) and ∇θL(θ), which are then employed in section 4 to learn θ by gradient
ascent.D
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2.1. Setting and motivation. We consider the following SSM:

(transition) xt = Fα(xt−1) + ξt, ξt ∼ N (0, Qβ), 1 ≤ t ≤ T,(2.1)

(observation) yt = Hxt + ηt, ηt ∼ N (0, R), 1 ≤ t ≤ T,(2.2)

(initialization) x0 ∼ p0(x0).(2.3)

The initial distribution p0 and the matrices H ∈ Rdy×dx and R ≻ 0 are assumed to be
known. Nonlinear observations can be dealt with by augmenting the state. We further
assume independence of all random variables x0, ξ1:T , and η1:T . Finally, the transition kernel
pθ(xt|xt−1) = N (xt;Fα(xt−1), Qβ), parameterized by θ := {α, β}, is defined in terms of a
deterministic map Fα and Gaussian additive noise. This kernel approximates an unknown
state transition of the form

xt = F ∗(xt−1) + ξt, ξt ∼ N (0, Q∗), 1 ≤ t ≤ T,(2.4)

where Q∗ = 0 if the true evolution of the state is deterministic. The parameter β allows us to
estimate the possibly unknown Q∗. We consider three categories of unknown state transition
F ∗, leading to three types of learning problems:

(a) Parameterized dynamics : F ∗ = Fα∗ is parameterized, but the true parameter α∗ is
unknown and needs to be estimated.

(b) Fully unknown dynamics : F ∗ is fully unknown and α represents the parameters of
an NN surrogate model FNN

α for F ∗. The goal is to find an accurate surrogate model
FNN
α .

(c) Model correction: F ∗ is unknown, but an inaccurate model Fapprox ≈ F ∗ is available.
Here α represents the parameters of an NN GNN

α used to correct the inaccurate model.
The goal is to learn α so that Fα := Fapprox +GNN

α approximates F ∗ accurately.
In some applications, the map F ∗ may represent the flow between observations of an autono-
mous differential equation driving the state, i.e.,

dx

ds
= f∗(x), F ∗ : x(s) 7→ x(s+∆s),(2.5)

where f∗ is an unknown vector field and ∆s is the time between observations. Then, the map
Fα in (2.1) (resp., FNN

α , Fapprox, G
NN
α ) will be similarly defined as the ∆s-flow of a differential

equation with vector field fα (resp., fNN
α , fapprox, g

NN
α ). Once θ = {α, β} is learned, the state

x0:T can be recovered with a filtering algorithm using the transition kernel pθ(xt|xt−1). We
will illustrate the implementation and performance of AD-EnKF in these three categories of
unknown dynamics in section 5 using the Lorenz-96 model to define the vector field f∗. We
remark that learning NN surrogate models for the dynamics may be useful even when the
true state transition F ∗ is known, since FNN

α may be cheaper to evaluate than F ∗.
Our problem setting does not require having access to a prior distribution on the parameter

θ. If prior information is available, the AD-EnKF framework can seamlessly incorporate it
replacing the log-likelihood with the log-posterior density in our subsequent developments.
A Bayesian treatment can be appealing for unknown parameterized dynamics, where it is
natural to have a priori information on the parameter. However, prior specification can be
challenging for NN surrogate models.D
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2.2. Sequential filtering and data log-likelihood. Suppose that θ = {α, β} is known. We
recall that, for 1 ≤ t ≤ T, the filtering distributions pθ(xt|y1:t) of the SSM (2.1)–(2.2)–(2.3)
can be obtained sequentially, alternating between forecast and analysis steps:

(forecast) pθ(xt|y1:t−1) =

∫
N (xt;Fα(xt−1), Qβ)pθ(xt−1|y1:t−1)dxt−1,(2.6)

(analysis) pθ(xt|y1:t) =
1

Zt(θ)
N (yt;Hxt, R)pθ(xt|y1:t−1),(2.7)

with the convention pθ(·|y1:0) := pθ(·). Here Zt(θ) is a normalizing constant which does not
depend on xt. It can be easily shown that

Zt(θ) = pθ(yt|y1:t−1) =

∫
N (yt;Hxt, R)pθ(xt|y1:t−1)dxt,(2.8)

and therefore the data log-likelihood admits the characterization

L(θ) := log pθ(y1:T ) =
T∑
t=1

log pθ(yt|y1:t−1) =
T∑
t=1

logZt(θ).(2.9)

Analytical expressions of the filtering distributions pθ(xt|y1:t) and the data log-likelihood L(θ)
are available only for a small class of SSMs, which includes linear-Gaussian and discrete SSMs
[45, 68]. Outside these special cases, filtering algorithms need to be employed to approximate
the filtering distributions, and these algorithms can be leveraged to estimate the log-likelihood.

3. Ensemble Kalman filter estimation of the log-likelihood and its gradient. In this
section, we briefly review EnKFs and how they can be used to obtain an estimate LEnKF(θ)
of the log-likelihood L(θ). As will be detailed in section 4, the map θ 7→ LEnKF(θ) can be
readily autodifferentiated to compute ∇θLEnKF(θ), and this gradient can be used to learn the
parameter θ. Subsection 3.1 gives background on EnKFs, subsection 3.2 shows how EnKFs
can be used to estimate L(θ), and subsection 3.3 contains novel convergence guarantees for
the EnKF estimation of L(θ) and ∇θL(θ).

3.1. Ensemble Kalman filters. Given θ = {α, β}, the EnKF algorithm [29, 30] sequen-
tially approximates the filtering distributions pθ(xt|y1:t) using N equally weighted particles
x1:Nt . At forecast steps, each particle xnt is propagated using the state transition equation
(2.1), while at analysis steps a Kalman-type update is performed for each particle:

(forecast step) x̂n
t = Fα(x

n
t−1) + ξnt , ξnt

i.i.d.∼ N (0, Qβ),(3.1)

(analysis step) xnt = x̂n
t + K̂t(yt + γnt −Hx̂n

t ), γnt
i.i.d.∼ N (0, R).(3.2)

Note that the particles x1:N0:T depend on θ, and (3.1)–(3.2) implicitly define a map θ 7→ x1:N0:T .

The Kalman gain K̂t := ĈtH
⊤(HĈtH

⊤ + R)−1 is defined using the empirical covariance Ĉt

of the forecast ensemble x̂1:Nt , namely

Ĉt =
1

N − 1

N∑
n=1

(x̂n
t − m̂t)(x̂

n
t − m̂t)

⊤, where m̂t =
1

N

N∑
n=1

x̂n
t .(3.3)

D
ow

nl
oa

de
d 

07
/0

4/
22

 to
 2

05
.2

08
.1

16
.2

4 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

808 YUMING CHEN, DANIEL SANZ-ALONSO, AND REBECCA WILLETT

These empirical moments provide a Gaussian approximation to the forecast distribution

pθ(xt|y1:t−1) ≈ N (m̂t, Ĉt).(3.4)

Several implementations of EnKF are available, but for concreteness we consider only the
“perturbed observation” EnKF defined in (3.1)–(3.2). In the analysis step (3.2), the observa-
tion yt is perturbed to form yt+γnt . This perturbation ensures that in linear-Gaussian models
the empirical mean and covariance of x1:Nt converge as N → ∞ to the mean and covariance
of the filtering distribution [58, 55].

3.2. Estimation of the log-likelihood and its gradient. Note from (2.9) that in order to
approximate L(θ) = log pθ(y1:T ), it suffices to approximate pθ(yt|y1:t−1) for 1 ≤ t ≤ T . Now,
using (2.8) and the EnKF approximation (3.4) to the forecast distribution, we obtain

pθ(yt|y1:t−1) ≈
∫
N (yt;Hxt, R)N (xt; m̂t, Ĉt)dxt = N

(
yt;Hm̂t, HĈtH

⊤ +R
)
.(3.5)

Therefore, we have the following estimate of the data log-likelihood:

LEnKF(θ) :=

T∑
t=1

logN
(
yt;Hm̂t, HĈtH

⊤ +R
)
≈ L(θ).(3.6)

Notice that the forecast empirical moments {m̂t, Ĉt}Tt=1, and hence LEnKF(θ), depend on θ in
two distinct ways. First, each forecast particle x̂n

t in (3.1) depends on a particle xnt , which
indirectly depends on θ. Second, each forecast particle depends on θ = {α, β} directly through
Fα and Qβ . The estimate LEnKF(θ) can be computed online with EnKF and is stochastic as
it depends on the randomness used to propagate the particles, e.g., the choice of random seed.
The whole procedure is summarized in Algorithm 3.1, which implicitly defines a stochastic
map θ 7→ LEnKF(θ). Before discussing the autodiff of this map and learning of the parameter θ
in section 4, we establish the large ensemble convergence of LEnKF(θ) and ∇θLEnKF(θ) toward
L(θ) and ∇θL(θ) in a linear setting.

Algorithm 3.1. Ensemble Kalman filter and log-likelihood estimation

Input: θ = {α, β}, y1:T , x1:N0 . (If x1:N0 is not specified, draw xn0
i.i.d.∼ p0(x0).)

1: Initialize LEnKF(θ) = 0.
2: for t = 1, . . . , T do

3: Set x̂n
t = Fα(x

n
t−1) + ξnt , where ξnt

i.i.d.∼ N (0, Qβ). ▷ Forecast step

4: Compute m̂t, Ĉt by (3.3) and set K̂t = ĈtH
⊤(HĈtH

⊤ +R)−1.

5: Set xnt = x̂n
t + K̂t(yt + γnt −Hx̂n

t ), where γnt
i.i.d.∼ N (0, R). ▷ Analysis step

6: Set LEnKF(θ)← LEnKF(θ) + logN
(
yt;Hm̂t, HĈtH

⊤ +R
)
.

7: end for
Output: EnKF particles x1:N0:T . Log-likelihood estimate LEnKF(θ).
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3.3. Large sample convergence: Linear setting. In this section we consider a linear
setting and provide large N convergence results for the log-likelihood estimate LEnKF(θ) and
its gradient ∇θLEnKF(θ) toward L(θ) and ∇θL(θ) for any given θ, for a fixed data sequence
y1:T . The mappings L and LEnKF are defined in (2.9) and (3.6), respectively. For notation
convenience, we drop θ in the function argument, since the main dependence will be on N in
this section. Similar to [58, 51], we study Lp convergence for any p ≥ 1.

Theorem 3.1. Assume that the state transition (2.1) is linear, i.e.,

xt = Aαxt−1 + ξt, ξt ∼ N (0, Qβ), Aα ∈ Rdx×dx ,(3.7)

and that the initial distribution p0 is Gaussian. Then, for any θ = {α, β} and for any p ≥ 1,
LEnKF converges to L in Lp with rate 1/

√
N , i.e.,(

E
∣∣LEnKF − L

∣∣p)1/p ≤ cN−1/2,(3.8)

where c does not depend on N but may depend on θ, dx, and dy.

The linearity of the flow Fα(·) is equivalent to the linearity of the vector field fα(·).
Although the convergence of the EnKF to the KF in linear settings has been studied in
DA [58, 55, 51, 22] and in filtering approaches to inverse problems [84, 15], there are no
existing convergence results for EnKF log-likelihood estimation. Two related works are [47],
which provides a heuristic argument for convergence in the case T = 1, and [19], where a
continuous-time version of EnKF is considered.

Most of the theoretical analysis of EnKF is based on the propagation of chaos statement
[63, 90]: EnKF defines an interacting particle system, where the interaction is through the
empirical mean m̂t and covariance matrix Ĉt of the forecast ensemble x̂1:Nt . As N →∞, one
hopes that these empirical moments can be replaced by their deterministic limits, and that
the particles will hence evolve independently. The large N limits of m̂t, Ĉt turn out to be the
mean and covariance matrix of the KF forecast distribution. We will leave the construction
of the propagation of chaos statement as well as the proof of Theorem 3.1 to Appendix A.

Since this paper focuses on gradient based approaches to the learning of θ = {α, β}, it is
thus interesting to compare the gradient ∇θLEnKF to the true gradient ∇θL, as N → ∞, if
both of them exist. The intuition is that if ∇θLEnKF is an accurate estimate of ∇θL, then one
can perform gradient-based optimization over LEnKF as if one were directly optimizing over

the true log-likelihood L. For the gradient w.r.t. β to be well defined, we write Sβ = Q
1/2
β in

the following statement, so that β does not appear in the stochasticity of the algorithm. This
is also known as the “reparameterization trick,” which will be discussed later in subsection 4.1.

Theorem 3.2. Assume that the state transition (2.1) is linear, i.e.,

xt = Aαxt−1 + Sβξt, ξt ∼ N (0, Idx), Aα ∈ Rdx×dx ,(3.9)

and that the initial distribution p0 is Gaussian. Assume the parameterizations α 7→ Aα and
β 7→ Sβ are differentiable. Then, for any θ = {α, β}, both ∇θLEnKF and ∇θL exist and, for
any p ≥ 1, ∇θLEnKF converges to ∇θL in Lp with rate 1/

√
N , i.e.,(

E
∣∣∇θLEnKF −∇θL

∣∣p)1/p ≤ cN−1/2,(3.10)

where c does not depend on N but may depend on θ, dx, and dy.
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An important observation is that θ only enters the objective function LEnKF through the
empirical mean m̂t and covariance matrix Ĉt of the forecast ensemble. As N →∞, one hopes
that these empirical moments can be replaced by their deterministic limits, and gradients
based on these empirical moments can be replaced by gradients based on their deterministic
limits. The gradients taken in the limits turn out to be those of the true log-likelihood L.
Again, the proof relies on the propagation of chaos statement and is left to Appendix B.

Theorem 3.2 should be compared with log-likelihood gradient estimation with PFs. The
paper [18] shows that the gradient ∇θLPF of PF log-likelihood estimate is biased, even in the
linear setting, if one ignores the gradient from resampling steps, which is the method used in
practice [65, 61, 56].

4. Autodifferentiable ensemble Kalman filters. This section contains our main method-
ological contributions. We introduce our AD-EnKF framework in subsection 4.1. We then
describe in subsection 4.2 how to handle long observation data, i.e., large T , using TBPTT.
In subsection 4.3, we highlight how various techniques introduced for EnKF in the DA com-
munity, e.g., localization and covariance inflation, can be incorporated into our framework.
Finally, subsection 4.4 discusses the computational and memory costs.

4.1. Main algorithm. Our core method is shown in Algorithm 4.1, and our PyTorch im-
plementation is at https://github.com/ymchen0/torchEnKF. The gradient of the stochastic
map θk 7→ LEnKF(θ

k) can be evaluated using autodiff libraries [70, 11, 1]. More specifically,
reverse-mode autodiff can be performed for common matrix operations like matrix multiplica-
tion, inverse, and determinant [34]. We use the “reparameterization trick” [48, 76] to autod-
ifferentiate through the stochasticity in the EnKF algorithm. Specifically, in Algorithm 3.1,
line 3, we draw ξnt from a distribution N (0, Qβ) that involves a parameter β with respect to
which we would like to compute the gradient. For this operation to be compatible with the
autodiff, we reparameterize

x̂nt = Fα(x
n
t ) + ξnt ξnt

i.i.d.∼ N (0, Qβ) ⇐⇒ x̂nt = Fα(x
n
t ) +Q

1/2
β ξnt ξnt

i.i.d.∼ N (0, Idx),

(4.1)

so that the gradient with respect to β admits an unbiased estimate. In contrast to the EnKF,
the resampling step of PFs cannot be readily autodifferentiated [65, 61, 56]. The algorithm can
be stopped when certain convergence criteria have been met, e.g., when the relative change

Algorithm 4.1. Autodifferentiable ensemble Kalman filter (AD-EnKF)

Input: Observations y1:T . Learning rate η.
1: Initialize SSM parameter θ0 and set k = 0.
2: while not converging do
3: x1:N0:T ,LEnKF(θ

k) = EnsembleKalmanFilter(θk, y1:T ). ▷ Alg. 3.1
4: Compute ∇θLEnKF(θ

k) by autodifferentiating the map θk 7→ LEnKF(θ
k).

5: Set θk+1 = θk + η∇θLEnKF(θ
k) and k ← k + 1.

6: end while
Output: Learned SSM parameter θk and EnKF particles x1:N0:T .
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in the 10-step moving average of the EnKF log-likelihood LEnKF(θ
k) does not exceed a pre-

specified threshold of 10−2. In our numerical experiments in section 5, we run the algorithm
for at least 50 additional iterations past convergence to demonstrate its long-time performance
and stability.

4.2. Truncated gradients for long sequences. If the sequence length T is large, although
LEnKF(θ) and its gradient ∇θLEnKF(θ) can be evaluated using the aforementioned techniques,
the practical value of Algorithm 4.1 is limited for two reasons. First, computing these quanti-
ties requires a full filtering pass of the data, which may be computationally costly. Moreover,
for the gradient ascent methods to achieve a good convergence rate, multiple evaluations of
gradients are often needed, requiring an equally large number of filtering passes. The second
reason is that, like recurrent networks, Algorithm 4.1 may suffer from exploding or vanishing
gradients [69] as the derivatives are multiplied together using chain rules in the backpropaga-
tion.

Our proposed technique can address both of these issues by borrowing the ideas of TBPTT
from the recurrent NN literature [97, 89] and the recursive maximum likelihood method from
the hidden Markov models literature [57]. The idea is to divide the sequence into subse-
quences of length L. Instead of computing the log-likelihood of the whole sequence and then
backpropagating, one computes the log-likelihood of each subsequence and backpropagates
within that subsequence. The subsequences are processed sequentially, and the EnKF output
of the previous subsequence (i.e., the location of particles) are used as the input to the next
subsequence. In this way, one performs ⌈T/L⌉ gradient updates in a single filtering pass,
and since the gradients are backpropagated across a time span of length at most L, gradient
explosion/vanishing is more unlikely to happen. This approach is detailed in Algorithm 4.2.

4.3. Localization for high state dimensions. In practice, the state often represents a
physical quantity that is discretized in spatial coordinates (e.g., numerical solution to a time-
evolving PDE), which leads to a high state dimension dx. In order to reduce the computational
and memory complexity, EnKF is often run with N < dx. A small ensemble size N causes
rank deficiency of the forecast sample covariance Ĉt, which may cause spurious correlations
between spatial coordinates that are far apart. In other words, for (i, j) such that |i − j|

Algorithm 4.2. AD-EnKF with truncated backprop (AD-EnKF-T)

Input: Observations y1:T . Learning rate η. Subsequence length L.
1: Initialize SSM parameter θ0 and set k = 0.
2: while not converging do

3: Set xn0
i.i.d.∼ p0(x0).

4: for j = 0, . . . , T/L− 1 do
5: Set t0 = jL, t1 = min{(j + 1)L, T}.
6: x1:Nt0:t1 ,LEnKF(θ

k) = EnsembleKalmanFilter(θk, y(t0+1):t1 , x
1:N
t0 ). ▷ Alg. 3.1

7: Set θk+1 = θk + η∇θLEnKF(θ
k) and k ← k + 1.

8: end for
9: end while

Output: Learned SSM parameter θk and EnKF particles x1:N0:T .D
ow
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is large, the (i, j)th coordinate of Ĉt may not be close to 0, although one would expect it
to be small since it represents the correlation between spatial locations that are far apart.
This problem can be addressed using localization techniques, and we shall focus on covariance
tapering [40]. The idea is to “taper” the forecast sample covariance matrix Ĉt so that the
nonzero spurious correlations are zeroed out. This method is implemented defining a dx × dx
matrix ρ with 1’s on the diagonal and entries smoothly decaying to 0 off the diagonal, and
replacing the forecast sample covariance matrix Ĉt in Algorithm 3.1 by ρ◦ Ĉt, where ◦ denotes
the elementwise matrix product. Common choices of ρ were introduced in [33]. Covariance
tapering can be easily adopted within our AD-EnKF framework. We find that covariance
tapering not only stabilizes the filtering procedure, which had been noted before, e.g., [41, 37],
but also helps to obtain low-variance estimates of the log-likelihood and its gradient—see the
discussion in subsubsection 5.1.2. Localization techniques relying on local serial updating of
the state [41, 67, 79] could also be considered.

Another useful tool for EnKF with N < dx is covariance inflation [4], which prevents
the ensemble from collapsing toward its mean after the analysis update [32]. In practice, this
can be performed by replacing the forecast sample covariance matrix Ĉt in Algorithm 3.1 by
(1 + ζ)Ĉt, where ζ > 0 is a small constant that needs to be tuned. Although not considered
in our experiments, covariance inflation can also be easily adopted within our AD-EnKF
framework.

4.4. Computation and memory costs. Autodifferentiation of the map θk 7→ LEnKF(θ
k)

in Algorithm 4.1 does not introduce an extra order of computational cost compared to the
evaluation of this map alone. Thus, the computational cost of AD-EnKF is at the same
order as that of a standard EnKF. The computation cost of EnKF can be found in, e.g., [77].
Moreover, AD-EnKF can be parallelized and speeded up with a GPU.

Like a standard EnKF, when no covariance tapering is applied, AD-EnKF has O(Ndx)
memory cost since it does not explicitly compute the sample covariance matrix Ĉt

1. With
covariance tapering, the memory cost is at most O(max{N, r}dx), where r is the tapering
radius, if the tapering matrix ρ is sparse with O(rdx) nonzero entries. This sparsity condition
is satisfied when using common tapering matrices [33]. In terms of the time dimension, the
memory cost of AD-EnKF can be reduced from O(T ) to O(L) with the TBPTT in subsec-
tion 4.2. Unlike previous work on EM-based approaches [12, 9, 71], where the locations of all
particles x1:Nt across the whole time span of T need to be stored, AD-EnKF-T only requires
storing the particles within a time span of L to perform a gradient step.

If the transition map Fα is defined by the flow map of an ODE with vector field fα, we
can use adjoint methods to differentiate efficiently through Fα in the forecast step (3.1). Use
of the adjoint method is facilitated by NeuralODE autodiff libraries [16] that have become
an important tool for learning continuous-time dynamical systems [6, 78, 20]. Instead of
discretizing Fα with a numerical solver applied to fα and differentiating through the solver’s
steps as in [12, 9], we directly differentiate through Fα by solving an adjoint differential
equation, which does not require us to store all intermediate steps from the numerical solver,
reducing the memory cost. More details can be found in [16], and the PyTorch package

1Note that ĈtH
⊤ = 1

N−1

∑N
n=1(x̂

n
t − m̂t)(Hx̂n

t −Hm̂t)
⊤ and HĈtH

⊤ = 1
N−1

∑N
n=1(Hx̂n

t −Hm̂t)(Hx̂n
t −

Hm̂t)
⊤, which require O(dx max{N, dy}) and O(dy max{N, dy}) memory, respectively. Both of them are less

than O(d2x) if dy ≪ dx and N ≪ dx.
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provided by the authors can be incorporated within our AD-EnKF framework with minimal
effort.

5. Numerical experiments.

5.1. Linear-Gaussian model. In this section, we focus on parameter estimation in a linear-
Gaussian model with a banded structure on model dynamic and model error covariance matrix.
This experiment falls into the category of “parameterized dynamics” in subsection 2.1. We first
illustrate the convergence results of the log-likelihood estimate LEnKF and gradient estimate
∇θLEnKF presented in subsection 3.3, since the true values L and ∇θL are available in closed
form. We also show that the localization techniques described in subsection 4.3 lead to a
more accurate estimate when the ensemble size is small. Finally, we show that having a more
accurate estimate, especially for the gradient, improves the parameter estimation.

We compare the EnKF to PF methods. Similar to the EnKF, the PF also provides an
estimate of the log-likelihood and its gradient. Different from [65, 61, 56], we adopt the PF
with optimal proposal [26] as it is implementable for the family of SSMs considered in this
paper [25, 82], and we find it to be more stable than separately training a variational proposal.
To compute the log-likelihood gradient for the PF, we follow the same strategy as in [65, 61, 56]
and do not differentiate through the resampling step. The full algorithm, which we abbreviate
as AD-PF, is presented in section SM2.

We consider the following SSM, similar to [98, 87]:

xt = Aαxt−1 + ξt, ξt ∼ N (0, Qβ), 1 ≤ t ≤ T,(5.1a)

yt = Hxt + ηt, ηt ∼ N (0, 0.5Idy), 1 ≤ t ≤ T,(5.1b)

x0 ∼ N (0, 4Idx),(5.1c)

where

Aα =


α1 α2 0

α3 α1
. . .

. . .
. . . α2

0 α3 α1

 , [Qβ ]i,j = β1 exp(−β2|i− j|).(5.1d)

Here [Qβ ]i,j denotes the (i, j)th entry of Qβ . Intuitively, β1 controls the scale of error, while
β2 controls how error is correlated across spatial coordinates. We set α = (α1, α2, α3), β =
(β1, β2), and θ = {α, β}.

5.1.1. Estimation accuracy of LEnKF and ∇θLEnKF. As detailed above, a key idea pro-
posed in this paper is to estimate L(θ), ∇αL(θ), and ∇βL(θ) with quantities LEnKF(θ),
∇αLEnKF(θ) and ∇βLEnKF(θ) obtained by running an EnKF and differentiating through
its computations using autodiff. Since these estimates will be used by AD-EnKF to perform
gradient ascent, it is critical to assess their accuracy. We do so in this section for a range of
values of θ.

We first simulate observation data y1:T from the true model with dx = dy ∈ {20, 40, 80},
T = 10, H = Idx , α

∗ = (0.3, 0.6, 0.1), and β∗ = (0.5, 1). Given data y1:T , the true data
log-likelihood L(θ) = pθ(y1:T ) and gradient ∇θL(θ), which can be decomposed into ∇αL(θ),D
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Figure 2. Relative L2 estimation errors of the log-likelihood (left) and its gradient w.r.t. α (middle) and
β (right), computed using EnKF and PF, as a function of N , for the linear-Gaussian model (5.1). State
dimension dx ∈ {20, 40, 80}. θ is evaluated at the true parameters {α∗, β∗} (subsubsection 5.1.1).

∇βL(θ), can be computed analytically. We perform P = 50 EnKF runs, and report a Monte
Carlo estimate of the relative L2 errors of the log-likelihood and gradient estimates (see sec-
tion SM4 for their definition) as the ensemble size N increases. Figure 2 shows the results
when θ is evaluated at the true parameters {α∗, β∗}. Intuitively, this θ is close to optimal since
it is the one that generates the data. We also show in Figure SM1 in section SM1 the results
when θ is evaluated at a parameter that is not close to optimal: α = (0.5, 0.5, 0.5), β = (1, 0.1).
Both figures illustrate that the relative L2 estimation errors of the log-likelihood and its gra-
dient computed using EnKF converge to zero at a rate of approximately N−1/2. Moreover,
the state dimension dx has a small empirical effect on the convergence rate. On the other
hand, those computed using PF have a slower convergence rate or barely converge, especially
for the gradient (see the third plot in Figure SM1). We recall that the resampling parts are
discarded from the autodiff of PFs, which introduces a bias. Moreover, the empirical con-
vergence rate is slightly slower in higher state dimensions. Comparing the estimation error
of EnKF and PF under the same dx choice, we find that when the number of particles is
large (>500), EnKF gives a more accurate estimate than PF. However, when the number of
particles is small, EnKF is less accurate, but we will show in the next section how the EnKF
results can be significantly improved using localization techniques. Unreported experimental
results suggest that the relative L2 error in the EnKF estimation of the log-likelihood and its
gradient increase linearly with T for a fixed ensemble size N .

5.1.2. Effect of localization. In practice, for computational and memory concerns, the
number of particles used for EnKF is typically small (<100), and hence it is necessary to get
an accurate estimate of log-likelihood and its gradients using a small number of particles. We
use the covariance tapering techniques discussed in subsection 4.3, where Ĉt is replaced by
ρ◦ Ĉt in Algorithm 3.1, and ρ is defined using the fifth-order piecewise polynomial correlation
function of Gasperi and Cohn [33]. The detailed construction of ρ is left to section SM4, with
a hyperparameter r that controls the tapering radius.

Figure 3 shows the estimation results when the state dimension is set to be dx = 80 and θ
is evaluated at (α∗, β∗), while different tapering radii r are applied. The plots of EnKF withD
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Figure 3. Relative L2 estimation errors of log-likelihood (left) and its gradient w.r.t. α (middle) and
β (right), computed using EnKF and PF, with different covariance tapering radius applied to EnKF for the
linear-Gaussian model (5.1). State dimension dx = 80. θ is evaluated at the true parameters {α∗, β∗} (subsub-
section 5.1.2).

no tapering and the plots of PF are the same as in Figure 2. We find that covariance tapering
can reduce the estimation error of the log-likelihood and its gradient when the number of
particles is small. Moreover, having a smaller tapering radius leads to a better estimation
when the number of particles is small. As the number of particles grows larger, covariance
tapering may worsen the estimation of both log-likelihood and its gradient. This is because
the sampling error and spurious correlation that occurs in the sample covariance matrix in
EnKF will be overcome by a large number of particles, and hence covariance tapering will
only act as a modification to the objective function LEnKF, leading to inconsistent estimates.
However, there is no reason for using localization when one can afford a large number of
particles. When computational constraints require fewer particles than state dimension, we
find that covariance tapering not only is beneficial to the parameter estimation problems but
is also beneficial to learning of the dynamics in high dimensions, as we will show in later
sections. Results when θ is evaluated at parameters that are not optimal (α = (0.5, 0.5, 0.5),
β = (1, 0.1)) are shown in Figure SM2 in section SM1, where the beneficial effect of tapering
is evident.

5.1.3. Parameter learning. Here we illustrate how the estimation accuracy of the log-
likelihood and its gradient, especially the latter, affect the parameter learning with AD-EnKF.
Since our framework relies on gradient-based learning of parameters, intuitively, the less biased
the gradient estimate is, the closer our learned parameter will be to the true MLE solution.

We first consider the setting where the state dimension is set to be dx = 80. We run AD-
EnKF for 1000 iterations with gradient ascent under the following choices of ensemble size
and tapering radius: (1) N = 1000 with no tapering; (2) N = 50 with no tapering; and (3)
N = 50 with tapering radius 5. We also run AD-PF with N = 1000 particles. Throughout,
one “training iteration” corresponds to processing the whole data sequence once. Additional
implementation details are available in the appendices. Figures 4 and 5 show a single run
of parameter learning under each setting, where we include for reference the MLE obtained
by running gradient ascent until convergence with the true gradient ∇θL (denoted with the
red dashed line). The objective function, i.e., the likelihood estimates LEnKF and LPF, areD
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Figure 4. Learned parameter α as a function of training iterations for the linear-Gaussian model (5.1).
State dimension dx = 80. Red dashed lines are the MLE solutions to the true data log-likelihood L. Our
proposed AD-EnKF method with covariance tapering achieves a lower estimation error with N = 50 particles
than AD-PF with N = 1000 (subsubsection 5.1.3).
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Figure 5. Learned parameter β, and training objective LEnKF, LPF as a function of training iterations
for the linear-Gaussian model (5.1). Red dashed lines are the MLE solutions to the true data log-likelihood
L (left and middle), and the maximum value attained by L (right). Our proposed AD-EnKF method with
covariance tapering achieves a lower estimation error with N = 50 particles than AD-PF with N = 1000
(subsubsection 5.1.3).

also plotted as a function of training iterations. Results with other choices of state dimension
dx are summarized in Table 5.1, where we take the values of α at the final iteration and
compute their distance to the true MLE solution. The procedure is repeated 10 times, and
the mean and standard deviations are reported. The results all show a similar trend: AD-
EnKF with N = 1000 particles performs the best (small errors and small fluctuations) for
all settings, while AD-EnKF with N = 50 particles and covariance tapering performs second
best. AD-EnKF with N = 50 without covariance tapering comes in at third place, and the
AD-PF method performs the worst, indicating the superiority of the AD-EnKF method to
the AD-PF method for high-dimensional linear-Gaussian models of the form (5.1) and the
utility of localization techniques. Importantly, the findings here are consistent with the plots
in Figure 3. This behavior is in agreement with the intuition that the estimation accuracy of
the log-likelihood gradient determines the parameter learning performance.D
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Table 5.1
Euclidean distance (×10−2) from the learned parameter α at the final iteration to the true MLE solution,

under varying dimensional settings for the linear-Gaussian model (5.1). The parameter values recovered by our
proposed AD-EnKF method with covariance tapering and N = 50 are closer to the MLE solution than the ones
recovered by AD-PF with N = 1000 (subsubsection 5.1.3).

dx = 20
N = 50

dx = 20
N = 1000

dx = 40
N = 50

dx = 40
N = 1000

dx = 80
N = 50

dx = 80
N = 1000

AD-EnKF (no taper) 1.65 ±0.30 0.07 ±0.06 4.12±0.73 0.17±0.09 4.14±0.67 0.20±0.14

AD-EnKF (taper=5) 0.53±0.18 − 0.35±0.27 − 1.05±0.38 −
AD-PF 7.75±0.37 3.51±0.35 8.58±0.25 5.59±0.31 9.28±0.49 6.77±0.24

5.2. Lorenz-96. In this section, we illustrate our AD-EnKF framework in the three types
of learning problems mentioned in subsection 2.1: parameterized dynamics, fully unknown
dynamics, and model correction. We will compare our method to AD-PF, as in subsection 5.1.
We will also compare our method to the EM-EnKF method implemented in [9, 12], which
we abbreviate as EM and which is detailed in section SM3. We emphasize that the gradients
computed in the EM are different from the ones computed in AD-EnKF and in particular do
not auto-differentiate through the EnKF.

The reference Lorenz-96 model [60] is defined by (2.5) with vector field

f∗(i)(x) = −x(i−1)(x(i−2) − x(i+1))− x(i) + 8, 0 ≤ i ≤ dx − 1,(5.2)

where x(i) and f∗(i) are the ith coordinate of x and component of f∗. By convention
x(−1) := x(dx−1), x(−2) := x(dx−2), and x(dx) := x(0). We assume there is no noise in the
reference state transition model, i.e., Q∗ = 0. The goal is to recover the reference state tran-
sition model with pθ(xt|xt−1) = N (xt;Fα

(
xt−1), Qβ

)
from the data y1:T , where Fα is the flow

map of a vector field fα, and then recover the states x1:T . The parameterized error covariance
Qβ in the transition model is assumed to be diagonal, i.e., Qβ = diag(β) with β ∈ Rdx . The pa-
rameterized vector field fα is defined differently for the three types of learning problems, as we
lay out below. We quantify performance using the forecast error (RMSE-f), the analysis/filter
error (RMSE-a), and the test log-likelihood. These metrics are defined in section SM4.

5.2.1. Parameterized dynamics. We consider the same setting as in [8], where

f (i)
α (x) =

[
1, x(i−2), x(i−1), x(i), x(i+1), x(i+2),(
x(i−2)

)2
,
(
x(i−1)

)2
,
(
x(i)

)2
,
(
x(i+1)

)2
,
(
x(i+2)

)2
,

x(i−2)x(i−1), x(i−1)x(i), x(i)x(i+1), x(i+1)x(i+2),

x(i−2)x(i), x(i−1)x(i+1), x(i)x(i+2)
]⊤

α, 0 ≤ i ≤ dx − 1,

(5.3)

and α ∈ R18 is interpreted as the coefficients of some “basis polynomials” representing the
governing equation of the underlying system. The parameterized governing equation of the ith
coordinate depends on its N1 = 5 neighboring coordinates, and the second-order polynomials
involve only interactions between coordinates that are at most N2 = 2 indices apart. The
reference ODE (5.2) satisfies f∗ = fα∗ , where α∗ ∈ R18 has nonzero entries

α∗
0 = 8, α∗

3 = −1, α∗
11 = −1, α∗

16 = 1,(5.4)

and zero entries otherwise. Here the dimension of θ = {α, β} is dθ = 18 + dx.D
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818 YUMING CHEN, DANIEL SANZ-ALONSO, AND REBECCA WILLETT

We first consider the specific case with dx = dy = 40, H = I40. We set R = I40 and
x0 ∼ N (0, 50I40). We generate four sequences of training data with the reference model for
T = 300 with time between consecutive observations ∆s = 0.05. Both flow maps F ∗ and Fα

are integrated using a fourth-order Runge–Kutta (RK4) method with step size ∆int
s = 0.01,

with adjoint methods implemented for backpropagation through the ODE solver [16].
We use AD-EnKF-T (Algorithm 4.2) with L = 20 and covariance tapering (SM4.3) with

radius r = 5. We compare with AD-PF-T (see section SM2) with L = 20 and EM (see
section SM3). L is chosen from the set {1, 5, 10, 20, 50, 100} with the lowest forecast RMSE on
the test set at the final training iteration. The implementation details, including the choice
of learning rates and other hyperparameters, are discussed in section SM4.

Comparison of the three algorithms is shown in Figure 6. Our AD-EnKF-T recovers α∗

better than the other two approaches. The EM approach converges faster, but has a larger
error. Moreover, EM tends to converge to a higher level of learned model error σβ (defined
in (SM4.4)), while our AD-EnKF-T shows a consistent drop of learned error level. Note
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Figure 6. Learning parameterized dynamics of Lorenz-96 (5.3), with dx = 40 and H = I40. Learned value
of the 18 coefficients of α (upper left for nonzero entries and upper right for zero entries, where the truth
α∗ is plotted in red dashed lines), averaged diagnosed error level σβ (SM4.4) (lower left), and log-likelihood
LEnKF/LPF during training (lower right), as a function of training iterations. Throughout, the shaded area
corresponds to ±2 std over five repeated runs. (subsubsection 5.2.1).
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that Qβ in the learned transition kernel acts like covariance inflation, which is discussed in
subsection 4.3, but is “learned” to be adaptive to the training data rather than manually
tuned; therefore, having a nonzero error level σβ may still be helpful. The plot of the log-
likelihood estimate during training indicates that AD-EnKF-T searches for parameters with a
higher log-likelihood than the EM approach, which is not surprising as AD-EnKF-T directly
optimizes LEnKF, while EM does so by alternatively optimizing a surrogate objective. Also,
the large discrepancy between the optimized LEnKF and LPF objective may be due to LPF
being a worse estimate for the true log-likelihood L than that of LEnKF. Note that PFs may
not be suitable for high-dimensional systems like the Lorenz-96 model. Even with knowledge
of the true reference model and a large number of particles, the PF is not able to capture the
filtering distribution well due to the high dimensionality—see, e.g., Figure 5 of [10]. The plots
of forecast error, filter error, and test log-likelihood are presented in Figure 7.

We also consider varying the state dimension dx and observation model H. (The parame-
terization in (5.3) is valid for any choice of dx.) We measure the Euclidean distance between
the value of learned α at the final training iteration (at convergence) to α∗. The training proce-
dure is repeated five times and the results are shown in Table 5.2. We vary dx ∈ {10, 20, 40, 80}
and consider two settings for H: fully observed at all coordinates, i.e., H = Idx , and partially
observed at every two out of three coordinates [81], i.e., H = [e1, e2, e4, e5, e7, . . .]

⊤, where
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Figure 7. Learning parameterized dynamics of Lorenz-96 (5.3), with dx = 40 and H = I40. All performance
metrics are evaluated after each training iteration. Red dashed lines correspond to metric values obtained with
the reference model f∗ and Q∗. Our proposed AD-EnKF-T performs the best in all metrics, with a performance
similar to the reference model.

Table 5.2
Lorenz-96, learning parameterized dynamics with varying dx and observation models. The table shows

recovery of learned α∗ for each algorithm at the final training iteration, in terms of its distance to the truth
α∗ (5.4). “Full” corresponds to full observations, i.e., H = Idx . “Partial” corresponds to observing two out of
three coordinates, i.e., H = [e1, e2, e4, e5, e7, . . .]

⊤. The “-” indicates that training cannot be completed due to
filter divergence (subsubsection 5.2.1).

dx = 10
(full)

dx = 20
(full)

dx = 20
(partial)

dx = 40
(full)

dx = 40
(partial)

dx = 80
(full)

dx = 80
(partial)

EM 0.308± 0.026 0.289± 0.0114 2.28± 4.92 0.268± 0.0103 7.754± 8.057 0.231± 0.0209 7.382± 4.812

AD-PF-T 0.262± 0.020 0.711± 0.0291 − 1.557± 0.0422 − 2.079± 0.0275 −
AD-EnKF-T 0.217± 0.027 0.0325± 0.0128 0.0835± 0.0189 0.0283± 0.0022 0.0930± 0.0098 0.0540± 0.0065 0.0813± 0.0083
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{ei}dxi=1 is the standard basis for Rdx . The number of particles used for all algorithms is fixed
at N = 50, and covariance tapering (SM4.3) with radius r = 5 is applied to the EnKF. For
both AD-EnKF-T and AD-PF-T, L = 20. We find that AD-EnKF-T is able to consistently
recover α∗ regardless of the choice of dx and H and is able to perform well in the important
case where N < dx, with an accuracy that is orders of magnitude better than the other two
approaches. The EM approach is able to recover α∗ consistently in fully observed settings,
but with a lower accuracy. In partially observed settings, EM does not converge to the same
value in repeated runs, possibly due to the existence of multiple local maxima. AD-PF-T is
able to converge consistently in fully observed settings but with the lowest accuracy, and runs
into filter divergence issues in partially observed settings, so that the training process is not
able to complete. Moreover, we observe that the error of AD-PF-T tends to grow with the
state dimension dx, while the two approaches based on EnKF do not deteriorate when increas-
ing the state dimension. This is further evidence that EnKF is superior in high-dimensional
settings.

5.2.2. Fully unknown dynamics. We assume no knowledge of the reference vector field
f∗, and we approximate it by an NN surrogate, fNN

α : Rdx → Rdx , where α represents the
NN weights. The structure of the NN is similar to the one in [12] and is detailed in sec-
tion SM4. The number of parameters combined for α and β is dθ = 9317. The experi-
mental results are compared to the model correction results, and hence are postponed to
subsubsection 5.2.3.

5.2.3. Model correction. We assume f∗ is unknown but that an inaccurate model fapprox
is available. We make use of the parametric form (5.3) and define fapprox via a perturbation
α̃ of the true parameter α∗:

fapprox := fα̃, where α̃i ∼


N (α∗

i , 1) if i = 0,

N (α∗
i , 0.1) if i ∈ {1, . . . , 5},

N (α∗
i , 0.01) if i ∈ {6, . . . , 17}.

(5.5)

The coefficients of a higher-order polynomial have a smaller amount of perturbation. α̃ is
fixed throughout the learning procedure. We approximate the residual f∗− fapprox by an NN
gNN
α , where α represents the weights, and gNN

α has the same structure and the same number of
parameters as in the fully unknown setting. The goal is to learn α so that fα := fapprox+ gNN

α

approximates f∗.
We set dx = 40 and consider two settings for H: fully observed with H = I40, dy = 40, and

partially observed at every two out of three coordinates with dy = 27 (see subsubsection 5.2.1).
Eight data sequences are generated with the reference model for training and four for testing,
each with length T = 1200. Other experimental settings are the same as in subsubsection 5.2.1.

For the setting where training data is fully observed, we compare AD-EnKF-T with AD-
PF-T and the EM approach. The results are plotted in Figure 8. The number of particles
used for all algorithms is fixed at N = 50, and covariance tapering (SM4.3) with radius r = 5
is applied to EnKF. The subsequence length for both AD-EnKF-T and AD-PF-T is chosen
to be L = 20. We find that, whether f∗ is fully known or an inaccurate model is available,
AD-EnKF-T is able to learn the reference vector field f∗ well, with the smallest forecastD
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Figure 8. Learning the Lorenz-96 model from fully unknown dynamics (subsubsection 5.2.2) versus model
correction (subsubsection 5.2.3), with full observations (H = Idx). All performance metrics are evaluated after
each training iteration. Red dashed lines correspond to metric values obtained with the reference model f∗ and
Q∗. Our proposed AD-EnKF-T performs the best in all metrics, with a performance similar to the reference
model.

RMSE among all methods. Applying a filtering algorithm to the learned model, we find
that the states recovered by the AD-EnKF-T algorithm at the final iteration have the lowest
error (filter RMSE) among all methods, indicating that AD-EnKF-T also has the ability to
learn unknown states well. Moreover, the filter RMSE of AD-EnKF-T is close to the one
computed using a filtering algorithm with known f∗ and Q∗. The test log-likelihood LEnKF of
the model learned by AD-EnKF-T is close to the one evaluated with the reference model. We
also find that having an inaccurate model fapprox is beneficial to the learning of AD-EnKF-T.
The performance metrics are boosted compared to the ones with a fully unknown model, in
agreement with [59]. EM has worse results, where we find that the forecast RMSE does not
consistently drop in the training procedure and the states are not accurately recovered. This
might be because the smoothing distribution used by EM cannot be approximated accurately.
AD-PF-T has the worst performance, possibly because PF fails in high dimensions.

We repeat the learning procedure in the setting where training data is partially observed
at every two out of three coordinates. The results are shown in Figure 9. Those for AD-
PF-T are not shown since training cannot be completed due to filter divergence. We find
that AD-EnKF-T is still able to recover f∗ consistently as well as the unknown states for
all coordinates, including the ones that are not observed, and has a filter RMSE close to the
one computed with knowledge of f∗. However, the performance metrics of the EM algorithm
in the model correction experiment deteriorate as training proceeds, indicating that it may
overfit the training data. In addition, we find that the EM algorithm does not converge to the
same point in repeated trials, particularly so in the setting of fully unknown dynamics. All of
these results indicate that AD-EnKF is advantageous when learning from partial observations
in high dimensions.

The ability to recover the underlying dynamics and states even with incomplete observa-
tions and fully unknown dynamics is most likely due to the convolutional-type architecture of
the NN fNN

α , which implicitly assumes that each coordinate only interacts with its neighbors,
and that this interaction is spatially invariant.D
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Figure 9. Learning Lorenz-96 from fully unknown dynamics (subsubsection 5.2.2) versus model correction
(subsubsection 5.2.3) with partial observations (H = [e1, e2, e4, e5, e7, . . .]

⊤). All performance metrics are eval-
uated after each training iteration. Red dashed lines correspond to metric values obtained with the reference
model f∗ and Q∗. The absence of lines for EM in the fully unknown setting is due to its low and unstable
performance. When compared to the EM method, our proposed AD-EnKF-T is more stable during training and
performs better in all metrics, and its performance is closer to the one achieved by the reference model.

6. Conclusions and future directions. This paper introduced AD-EnKFs for the prin-
cipled learning of states and dynamics in DA. We have shown that AD-EnKFs can be suc-
cessfully integrated with DA localization techniques for recovery of high-dimensional states,
and with TBPTT techniques to handle large observation data and high-dimensional surrogate
models. Numerical results on the Lorenz-96 model show that AD-EnKFs outperform existing
EM and PF methods to merge DA and ML.

Several research directions stem from this work. First, gradient and Hessian information
of LEnKF obtained by autodiff can be utilized to design optimization schemes beyond the
first-order approach we consider. Second, the convergence analysis of EnKF estimation of
the log-likelihood and its gradient may be generalized to nonlinear settings. It would also be
interesting to derive a dimension-dependent bound for the Lp estimation error and the bias∣∣ELEnKF − L

∣∣. Third, the idea of AD-EnKF could be applied to autodifferentiate through
other filtering algorithms, e.g., unscented Kalman filters, and in Bayesian inverse problems
using iterative ensemble Kalman methods. The paper [49] is an important first step in this
direction. Replacing EnKF analysis steps with differentiable optimal transport maps [18] is
also a promising future direction. Finally, the encouraging numerical results obtained on the
Lorenz-96 model motivate the deployment and further investigation of AD-EnKFs in scien-
tific and engineering applications where latent states need to be estimated with incomplete
knowledge of their dynamics.

Appendix A. Proof of Theorem 3.1.
Notation. We denote by c a constant that does not depend on N and may change from line

to line. We denote by ∥U∥p the Lp norm of a random vector/matrix U : ∥U∥p :=
(
E |U |p

)1/p
,

where |·| is the underlying vector/matrix norm. (Here we use 2-norm for vectors and Frobenius
norm for matrices.) For a sequence of random vectors/matrices UN , we write

UN
1/2−−→ UD
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if, for any p ≥ 1, there exists a constant c such that

∥UN − U∥p ≤ cN−1/2 ∀N ≥ 1.

For a scalar valued function f(U) that takes a vector/matrix U as input, we denote by ∂Uf the
derivative of f w.r.t. U , which collects the derivative of f w.r.t. each entry of the vector/matrix
U . When U is a vector, the notations ∂Uf and∇Uf are equivalent. For a vector/matrix valued
function U(a) that takes a scalar a as input, we denote by ∂aU the derivative of U w.r.t. a,
which collects the derivative of each entry of the vector/matrix U w.r.t. a.

We first recall the propagation of chaos statement. Notice that in the EnKF algorithm,
Algorithm 3.1, we compute x1:Nt sequentially, based on the forecast ensemble x̂1:Nt and its
empirical mean and covariance m̂t, Ĉt. We build “substitute particles” x1:N

t in a similar
fashion, except that at each step the population mean and covariance m̂t, Ĉt are used instead
of their empirical versions. Starting from x1:N

0 = x1:N0 , the update rules of substitute particles
are listed below, with a side-by-side comparison to the EnKF update rules:

EnKF particles Substitute particles

x̂n
t = Fα(x

n
t−1) + ξnt x̂n

t = Fα(x
n
t−1) + ξnt

m̂t = 1
N

∑N
n=1 x̂

n
t m̂t = E

[
x̂n
t

]
Ĉt = 1

N−1

∑N
n=1(x̂

n
t − m̂t)(x̂

n
t − m̂t)

⊤ Ĉt = E
[
(x̂n

t − m̂t)(x̂
n
t − m̂t)

⊤]
K̂t = ĈtH

⊤(HĈtH
⊤ +R)−1 K̂t = ĈtH

⊤(HĈtH
⊤ +R)−1

xnt = x̂n
t + K̂t(yt + γnt −Hx̂n

t ) xn
t = x̂n

t + K̂t(yt + γnt −Hx̂n
t )

(A.1)

Notice that the substitute particles use the same realization of random variables as the EnKF
particles, including initialization of particles x1:N0 , forecast simulation error ξnt , and noise
perturbation γnt . As N → ∞, one can show that the EnKF particles x1:Nt (resp., x̂1:Nt )
are close to the substitute particles x1:N

t (resp., x̂1:N
t ), and hence the law of large numbers

guarantees that m̂t, Ĉt are close to m̂t, Ĉt. We summarize the main results from [58] (see also
[51]).

Lemma A.1. Under the same assumption of Theorem 3.1, we have the following:
(1) For each t ≥ 1, the substitute particles x1:N

t are i.i.d., and each of them has the same law
as the true filtering distribution p(xt|y1:t). Similarly, x̂ 1:N

t are i.i.d., and each of them has the
same law as the true forecast distribution p(xt|y1:t−1). In particular,

p(xt|y1:t−1) = N (xt; m̂t, Ĉt).(A.2)

(2) For each t, n, p ≥ 1, the EnKF particle xnt converges to the substitute particle xn
t in Lp

with convergence rate N−1/2, and the substitute particle xn
t has finite moments of any order.

The same holds for forecast particles x̂n
t :

xnt
1/2−−→ xn

t , x̂n
t

1/2−−→ x̂n
t , ∥xn

t ∥p ≤ c, ∥x̂n
t ∥p ≤ c.(A.3)

In particular, m̂t, Ĉt converge to m̂t, Ĉt in Lp with convergence rate N−1/2:

m̂t
1/2−−→ m̂t, Ĉt

1/2−−→ Ĉt.(A.4)D
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Proof. (A.2) corresponds to Lemma 2.1 of [58]. (A.3) corresponds to Proposition 4.4 of
[58]. (A.4) is a direct corollary of Theorem 5.2 of [58].

Proof of Theorem 3.1. By (A.2), using the Gaussian observation assumption (2.2),

L(θ) =
T∑
t=1

log p(yt|y1:t−1) =
T∑
t=1

logN (yt;Hm̂t, HĈtH
⊤ +R).(A.5)

By (3.6),

LEnKF(θ) =

T∑
t=1

logN (yt;Hm̂t, HĈtH
⊤ +R).(A.6)

Define

ht(m,C) := logN (yt;Hm,HCH⊤ +R)

= −1

2
log det(HCH⊤ +R)− 1

2
(yt −Hm)⊤(HCH⊤ +R)−1(yt −Hm) + const.

(A.7)

It suffices to show that, for each t ≥ 1,

ht(m̂t, Ĉt)
1/2−−→ ht(m̂t, Ĉt).(A.8)

We denote by Sdx+ ⊂ Rdx×dx the space of all positive semidefinite matrices equipped with

Frobenius norm. Notice that ht is a continuous function on Rdx × Sdx+ , since HCH⊤ + R ⪰
R ≻ 0. To show convergence in Lp, intuitively one would expect a Lipschitz-type continuity
to hold for ht, in a suitable sense. We inspect the derivatives of ht w.r.t. m and C, which will
also be useful for later developments:

∂mht(m,C) = −H⊤(HCH⊤ +R)−1(yt −Hm),

∂Cht(m,C) = −1

2
H⊤(HCH⊤ +R)−1H

+
1

2
H⊤(HCH⊤ +R)−1(yt −Hm)(yt −Hm)⊤(HCH⊤ +R)−1H.

(A.9)

Since Rdx × Sdx+ is convex, by the mean value theorem, triangle inequality, and Cauchy–

Schwarz, and define m(χ) := χm̂t + (1− χ)m̂t, C(χ) := χĈt + (1− χ)Ĉt,∣∣ht(m̂t, Ĉt)− ht(m̂t, Ĉt)
∣∣ ≤ sup

χ∈[0,1]

∣∣∂mht
(
m(χ), C(χ)

)∣∣|m̂t − m̂t|

+ sup
χ∈[0,1]

∣∣∂Cht(m(χ), C(χ)
)∣∣|Ĉt − Ĉt|.

(A.10)

Taking Lp norm on both sides,∥∥ht(m̂t, Ĉt)− ht(m̂t, Ĉt)
∥∥
p
≤ sup

χ∈[0,1]

∥∥∂mht
(
m(χ), C(χ)

)∥∥
2p
∥m̂t − m̂t∥2p

+ sup
χ∈[0,1]

∥∥∂Cht(m(χ), C(χ)
)∥∥

2p
∥Ĉt − Ĉt∥2p,

(A.11)
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where we have used the triangle inequality and the Lp Cauchy–Schwarz inequality ∥|U ||V |∥p ≤
∥U∥2p∥V ∥2p; see, e.g., Lemma 2.1 of [51]. Also, by plugging in (A.9), for each χ ∈ [0, 1],∥∥∂mht

(
m(χ), C(χ)

)∥∥
2p
≤

∥∥|H||(HC(χ)H⊤ +R)−1|(|yt − χHm̂t − (1− χ)Hm̂t|)
∥∥
2p

≤ |H||R−1|
(
|yt|+ |H||m̂t|+ |H|∥m̂t∥2p

)
≤ c,

(A.12)

where we have used that |(HC(χ)H⊤ +R)−1| ≤ |R−1|, that m̂t is deterministic, and that all
moments of m̂t are finite, by (A.4). Similarly,

∥∥∂Cht(m(χ), C(χ)
)∥∥

2p
≤ 1

2
|H|2|R−1|+ 1

2
|H|2|R−1|2∥yt − χHm̂t − (1− χ)Hm̂t∥24p

≤ 1

2
|H|2|R−1|+ 1

2
|H|2|R−1|2(|yt|+ |H||m̂t|+ |H|∥m̂t∥4p)2 ≤ c,

(A.13)

where we have used that |vv⊤| = |v|2 for vector v. Thus, combining (A.4) and (A.11)–(A.13)
gives

∥ht(m̂t, Ĉt)− ht(m̂t, Ĉt)∥p ≤ cN−1/2,(A.14)

which concludes the proof.

Appendix B. Proof of Theorem 3.2. Without loss of generality, we assume that θ ∈ R
is a scalar parameter, since in general the gradient w.r.t. θ is a collection of derivatives w.r.t.
each element of θ. We will use the following lemma repeatedly.

Lemma B.1. For sequences of random vectors/matrices UN , VN ,

(1) If UN − VN
1/2−−→ 0 and VN

1/2−−→ V, then

UN
1/2−−→ V.(B.1)

(2) If UN
1/2−−→ U , VN

1/2−−→ V , and U, V have finite moments of any order, then

UNVN
1/2−−→ UV.(B.2)

More generally, the result holds for multiplication of more than two variables.

Proof. (1) Using UN − V = (UN − VN ) + (VN − V ), the proof follows from the triangle
inequality.
(2) Applying the triangle inequality and the Lp Cauchy–Schwarz inequality,

∥UNVN − UV ∥p ≤ ∥(UN − U)VN∥p + ∥U(VN − V )∥p
≤ ∥UN − U∥2p∥VN∥2p + ∥U∥2p∥VN − V ∥2p
≤ cN−1/2

(
∥V ∥2p + cN−1/2

)
+ ∥U∥2pcN−1/2

≤ cN−1/2.

(B.3)

The following result, which we will use repeatedly, is an immediate corollary of Lemma A.1.
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Lemma B.2. Under the same assumption as Theorem 3.1,

(HĈtH
⊤ +R)−1 1/2−−→ (HĈtH

⊤ +R)−1.(B.4)

Proof. Using the identity A−1 −B−1 = A−1(B −A)B−1 for invertible matrices A, B,

∥(HĈtH
⊤ +R)−1 − (HĈtH

⊤ +R)−1∥p
= ∥(HĈtH

⊤ +R)−1H(Ĉt − Ĉt)H
⊤(HĈtH

⊤ +R)−1∥p
≤ |R−1|2|H|2∥Ĉt − Ĉt∥p
≤ cN−1/2,

(B.5)

where we have used the Lp convergence of Ĉt to Ĉt (A.4) and the fact that |(HCHT +R)−1| ≤
|R−1| for C ⪰ 0.

Lemma B.3. Under the same assumption as Theorem 3.2, for each t ≥ 1, both ∂θx̂
n
t and

∂θx̂
n
t exist, and ∂θx̂

n
t converges to ∂θx̂

n
t in Lp for any p ≥ 1 with convergence rate N−1/2.

Moreover, ∂θx̂
n
t has finite moments of any order:

∂θx̂
n
t

1/2−−→ ∂θx̂
n
t , ∥∂θx̂n

t ∥p ≤ c ∀n.(B.6)

In addition, all derivatives ∂θm̂t, ∂θm̂t, ∂θĈt, ∂θĈt, ∂θK̂t, and ∂θK̂t exist, and

∂θm̂t
1/2−−→ ∂θm̂t, ∂θĈt

1/2−−→ ∂θĈt, ∂θK̂t
1/2−−→ ∂θK̂t.(B.7)

Proof. We will prove this by induction. For t = 1, since x̂n
1 = Axn0 + Sξn0 = x̂n

1 ,

∂θx̂
n
1 = (∂θA)xn0 + (∂θS)ξ

n
0 = ∂θx̂

n
1 ,(B.8)

and both derivatives ∂θx̂
n
1 and ∂θx̂

n
1 exist. Also,

∥∂θx̂n
1∥p ≤ |∂θA|∥xn0∥p + |∂θS|∥ξn0 ∥p ≤ c,(B.9)

since xn0 and ξn0 are drawn from Gaussian distributions, which have finite moments of any
order. So (B.6) holds for t = 1.

Assume (B.6) holds for step t. Then, using the definition for m̂t,

∂θm̂t =
1

N

N∑
n=1

∂θx̂
n
t

1/2−−→
1○

1

N

N∑
n=1

∂θx̂
n
t

1/2−−→
2○

E[∂θx̂n
t ] =

3○
∂θ E[x̂n

t ] = ∂θm̂t.(B.10)

Convergence 1○ follows from induction assumption (B.6). Convergence 2○ follows from law
of large numbers in Lp, since ∂θx̂

n
t are i.i.d. and the moments of ∂θx̂

n
t are finite by induction

assumption (B.6). The swap of differentiation and expectation in 3○ is valid since the expec-
tation is taken over a distribution that is independent of θ. Both derivatives ∂θm̂t and ∂θm̂t

exist. Similarly,
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∂θĈt =
1

N − 1

N∑
n=1

∂θ(x̂
n
t (x̂

n
t )

⊤)− N

N − 1
∂θ(m̂tm̂

⊤
t )

=
1

N − 1

N∑
n=1

(
(∂θx̂

n
t )(x̂

n
t )

⊤ + x̂n
t (∂θx̂

n
t )

⊤)− N

N − 1

(
(∂θm̂t)m̂

⊤
t + m̂t(∂θm̂t)

⊤)
1/2−−→
1○

1

N − 1

N∑
n=1

(
(∂θx̂

n
t )(x̂

n
t )

⊤ + x̂n
t (∂θx̂

n
t )

⊤)− N

N − 1

(
(∂θm̂t)m̂

⊤
t + m̂t(∂θm̂t)

⊤)
1/2−−→
2○

E[∂θ
(
x̂n
t (x̂

n
t

)⊤
)]− ∂θ(m̂tm̂

⊤
t )

=
3○

∂θ(E[x̂n
t (x̂

n
t )

⊤]− m̂tm̂
⊤
t )

= ∂θĈt.

(B.11)

For 1○ we have used the Lp convergence of x̂n
t to x̂n

t , ∂θx̂
n
t to ∂θx̂

n
t , m̂t to m̂t, and ∂θm̂t

to ∂θm̂t with rate N−1/2 and the fact that x̂n
t and ∂θx̂

n
t have finite moments of any order,

followed by Lemma B.1. Convergence 2○ follows from law of large numbers in Lp since
(∂θx̂

n
t )(x̂

n
t )

⊤ are i.i.d. with finite moments, by the Cauchy–Schwarz inequality. 3○ is valid
since the expectation is taken over a distribution that is independent of θ. Both derivatives
∂θĈt and ∂θĈt exist. Similarly,

∂θK̂t = ∂θ
(
ĈtH(HĈtH

⊤ +R)−1
)

=
1○

(∂θĈt)H(HĈtH
⊤ +R)−1

− ĈtH(HĈtH
⊤ +R)−1(H(∂θĈt)H

⊤ +R)(HĈtH
⊤ +R)−1

1/2−−→
2○

(∂θĈt)H(HĈtH
⊤ +R)−1

− ĈtH(HĈtH
⊤ +R)−1(H(∂θĈt)H

⊤ +R)(HĈtH
⊤ +R)−1

=
1○

∂θ
(
ĈtH(HĈtH

⊤ +R)−1
)

= ∂θK̂t.

(B.12)

Here equalities 1○ and 3○ follow from chain rule. For 2○ we have used the Lp convergence of
Ĉt to Ĉt, ∂θĈt to ∂θĈt, and (HĈtH

⊤+R)−1 to (HĈtH
⊤+R)−1 with rate N−1/2 (by (B.4)),

followed by Lemma B.1. Both derivatives ∂θK̂t and ∂θK̂t exist since R ≻ 0.
To show (B.6) holds for step t + 1, we need to investigate the derivatives of the analysis

ensemble ∂θx
n
t , by plugging in the EnKF update formula:

∂θx
n
t = ∂θ(x̂

n
t + K̂t(yt + γnt −Hx̂n

t )

=
1○

(I − K̂tH)∂θx̂
n
t + (∂θK̂t)(yt + γnt −Hx̂n

t )

=
(
I − ĈtH

⊤(HĈtH
⊤ +R)−1H

)
∂θx̂

n
t + (∂θK̂t)(yt + γnt −Hx̂n

t )

1/2−−→
2○

(I − ĈtH
⊤(HĈtH

⊤ +R)−1H)∂θx̂
n
t + (∂θK̂t)(yt + γnt −Hx̂n

t )(B.13)
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= (I − K̂tH)∂θx̂
n
t + (∂θK̂t)(yt + γnt −Hx̂n

t )

=
3○

∂θ(x̂
n
t + K̂t(yt + γnt −Hx̂n

t )

= ∂θx
n
t .

Equalities 1○ and 3○ follow from the chain rule. For 2○ we have used the Lp convergence of
x̂n
t to x̂n

t , ∂θx̂
n
t to ∂θx̂

n
t , Ĉt to Ĉt, ∂θK̂t to ∂θK̂t, and (HĈtH

⊤ +R)−1 to (HĈtH
⊤ +R)−1,

with convergence rate N−1/2, and the fact that x̂n
t , ∂θx̂

n
t and the Gaussian random variable

γnt have finite moments of any order, followed by Lemma B.1. Both derivatives ∂θx
n
t and ∂θx

n
t

exist since R ≻ 0. We also have the moment bound on ∂θx
n
t ,

∥∂θxn
t ∥ ≤ |I − K̂tH|∥∂θx̂n

t ∥p + |∂θK̂t|(|yt|+ ∥γnt ∥p + |H|∥x̂n
t ∥p) ≤ c,(B.14)

since x̂n
t , ∂θx̂

n
t , and the Gaussian random variable γnt have finite moments of any order. Then,

∂θx̂
n
t+1 = ∂θ(Axnt + Sξnt )

=
1○

(∂θA)xnt +A(∂θx
n
t ) + (∂θS)ξ

n
t

1/2−−→
2○

(∂θA)xn
t +A(∂θx

n
t ) + (∂θS)ξ

n
t

=
3○

∂θ(Axn
t + Sξnt )

= ∂θx̂
n
t+1.

(B.15)

Here equalities 1○ and 3○ follow from chain rule. For 2○ we have used the Lp convergence
of xnt to xn

t and ∂θx
n
t to ∂θx

n
t . Both derivatives ∂θx̂

n
t+1 and ∂θx̂

n
t+1 exist since both ∂θx

n
t and

∂θx
n
t exist. We also have the moment bound

∥∂θx̂n
t+1∥p ≤ |∂θA|∥xn

t ∥p + |A|∥∂θxn
t ∥p + |∂θS|∥ξnt ∥p ≤ c,(B.16)

since xn
t , ∂θx

n
t , and Gaussian random variable ξnt have finite moments of any order. Thus

(B.6) is proved for step t+ 1 and the induction step is finished, which concludes the proof of
the lemma.

Proof of Theorem 3.2. Recall the definition of ht (A.7). It suffices to show that, for each
t ≥ 1,

∂θ

(
ht(m̂t, Ĉt)

)
1/2−−→ ∂θ

(
ht(m̂t, Ĉt)

)
.(B.17)

We first investigate the convergence of derivatives of ht w.r.t. m̂t and Ĉt. The derivatives are
computed in (A.9):

∂mht(m̂t, Ĉt) = −H⊤(HĈtH
⊤ +R)−1(yt −Hm̂t)

1/2−−→ −H⊤(HĈtH
⊤ +R)−1(yt −Hm̂t)

= ∂mht(m̂t, Ĉt),

(B.18)

D
ow

nl
oa

de
d 

07
/0

4/
22

 to
 2

05
.2

08
.1

16
.2

4 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

AUTODIFFERENTIABLE ENSEMBLE KALMAN FILTERS 829

and

∂Cht(m̂t, Ĉt) = −
1

2
H⊤(HĈtH

⊤ +R)−1H

+
1

2
H⊤(HĈtH

⊤ +R)−1(yt −Hm̂t)(yt −Hm̂t)
⊤(HĈtH

⊤ +R)−1H

1/2−−→ −1

2
H⊤(HĈtH

⊤ +R)−1H

+
1

2
H⊤(HĈtH

⊤ +R)−1(yt −Hm̂t)(yt −Hm̂t)
⊤(HĈtH

⊤ +R)−1H,

(B.19)

where we have used the Lp convergence of m̂t to m̂t and (HĈtH
⊤+R)−1 to (HĈtH

⊤+R)−1

by (B.4), followed by Lemma B.1. Then, by the chain rule,

∂θ

(
ht(m̂t, Ĉt)

)
=

(
∂mht(m̂t, Ĉt)

)⊤
∂θm̂t +Tr

((
∂Cht(m̂t, Ĉt)

)⊤
∂θĈt

)
1/2−−→

(
∂mht(m̂t, Ĉt)

)⊤
∂θm̂t +Tr

((
∂Cht(m̂t, Ĉt)

)⊤
∂θĈt

)
= ∂θ

(
ht(m̂t, Ĉt)

)
.

(B.20)

Both derivatives exist since ∂θm̂t, ∂θm̂t, ∂θĈt, and ∂θĈt exist, by Lemma B.3. We have used
(B.18) and (B.19) above, the Lp convergence of ∂θm̂t to ∂θm̂t, and ∂θĈt to ∂θĈt with rate
N−1/2 by Lemma B.3, followed by Lemma B.1.

Remark B.4. We again emphasize that all the derivatives and chain rule formulas do not
need to be computed by hand in applications, but rather through the modern autodiff libraries.
We list them out only for the purpose of proving convergence results.
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