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Abstract 
 The correlations in multi-modal microscopy data can be systematically reduced by the distinct probe-
sample interactions and signal collection geometry for each modality. Extracting scientific insights from correlative 
datasets thus requires careful consideration of the mode-specific, and often non-overlapping, sampling volume used 
in the correlative microscopy. Here we describe a pencil-beam, ray-tracing method that accounts for the finite extent 
and roughness of thin films and nanomaterials in synchrotron-based X-ray microscopy measurements, creating a 
first approximation of the probe-sample interaction for each modality that tightens correlations in multi-modal X-ray 
nanoprobe characterization. As a demonstrative example we analyze structure-function correlations in sequential 
microscopy data acquired for a Eu:CsPbBr3 halide perovskite thin film crystal across three distinct measurement 
modes. Our ray-traced corrections account for local fluorescence matrix effects and sampling volume discrepancies 
and unveil structural, compositional, and optoelectronic relationships hidden in the raw data. 
 
1. Introduction 

 
Drawing correlations such as structure-property relationships is integral to the study of materials. To this end, 

studies that combine spatially-resolved characterization by multiple modalities can offer strong explanatory power, 
correlating physical or functional properties at the local level. In particular, the growth in capabilities of and access 
to synchrotron facilities around the world has enabled novel multi-modal studies on materials ranging from 
biological samples[1–3] to next-generation photovoltaic materials.[4–10] Extracting scientific insights from these 
correlative datasets requires careful consideration of the mode-specific, and often non-overlapping, sampling 
volume used in the correlative microscopy. Here we describe a ray-tracing method that accounts for the finite extent 
and roughness of thin films and nanomaterials, creating a first approximation of the probe-sample interaction for 
each modality that tightens correlations in multi-modal nanoprobe characterization.  

The correlations in multimodal microscopy data, e.g. generated by synchrotrons, can be systematically reduced 
by geometric factors and local probe-sample interactions. For example, matrix effects can alter X-ray fluorescence 
(XRF) measurements, where the path length of both incident and fluoresced photons within the sample can 
selectively attenuate a given element’s signal recorded at the detector [11–13]. Geometric factors can be significant 
in the study of samples anisotropic in either morphology or composition, such as porous battery electrodes[14, 15], 
catalysts [16, 17], standalone single-crystals [5], biological cells [18], or patterned semiconductor devices[19]. 
Furthermore, these factors compound when relating multiple measurements of a sample.  Whether acquired in a 
synchronous correlative microscopy approach or via sequential measurements, each mode of data is subject to 
unique geometric effects determined by instrument geometry and sample properties. 

 A variety of modeling tools are available for simulating the beam propagation to the sample plane in 
synchrotron experiments built on top of ray-tracing solvers, of which SHADOW (currently SHADOW3) is most 
widely used.[20]–[21, 22] Though these tools give an accurate estimate of the beam profile at the sample plane, a 
critical missing component for the experimentalist is simulating the propagation of this beam through a 
heterogeneous sample and subsequent signal generation. No available tools to our knowledge address the issue of 
spatially-variant probe-sample interactions. 

 To address this challenge, we present a morphology-informed ray tracing approach to simulate probe-
sample interactions in raster scanning measurements, allowing for a first approximation of matrix effects and spatial 
correlation of the data acquired across scanning synchrotron-based and optical microscopy setups. As a 
demonstrative example we analyze structure-function correlations in sequential microscopy data acquired for a 
Eu:CsPbBr3 halide perovskite thin film crystal [23] in three distinct measurement modes, each with its own 
measurement geometry: nanoprobe X-ray diffraction (nXRD), nanoprobe X-ray fluorescence (nXRF), and normal-
incidence confocal micro-photoluminescence (µPL) [5]. First, we establish a three-dimensional (3D) model of our 



sample with nanoscopic accuracy using 3D optical profilometry. Next, each measurement geometry is defined for 
simulation by the orientation of the incident photon probe, sample, and involved detectors. We then perform ray 
tracing of the X-ray beam propagation within our sample, accounting for attenuation of incident and detected 
photons within the sample. Ray tracing generates a “sample point-spread function” (sPSF) that encodes the weighted 
contribution of sample volume to the signal recorded at the detector during each mode of measurement (i.e., 

scattering and fluorescence). By accounting for local geometric effects in our measurements, we correct the nXRF 
and nXRD data for attenuation and improve the precision of the spatial correlation across our three modalities. Such 
precise assessment of sampling volume and matrix effects in correlative measurements will be increasingly 
necessary as the volume and complexity of multimodal studies increases at upgraded and next-generation 
synchrotron facilities. 

 
2. Methods 

2.1 Synchrotron X-Ray Fluorescence and X-Ray Diffraction:  

 Nano-XRF and nano-XRD were both acquired at the 26-ID-C beamline at the Center for Nanoscale 
Materials and the Advanced Photon Source at Argonne National Laboratory, using a focused 10 keV x-ray beam 
(beam waist <200 nm). Fluorescence maps (500 nm step size) were acquired with the sample oriented such that the 
sample substrate normal is 20˚ off the incident beam axis.  The fluorescence detector, oriented 90˚ off the incident 
beam axis, was calibrated using NIST XRF standards (NBS1832, NBS1833). Local d-spacing of the (066) plane was 
determined by performing a spatially-resolved rocking curve (500 nm step size) in the Bragg condition, where the 
incident and detector angles were held constant while the sample theta was rotated in 0.25˚ increments. The 2D 
scattering detector was calibrated by measurement of a powder silicon reference sample. This procedure enables 
complete reconstruction of the 3D scattering vector at each point. 
 
2.2 Defining the Simulation Volume 

The topography of the crystals was measured with a Filmetrics Profilm3D in White Light Interferometry 
mode with 50x magnification at lateral resolution of 100 nm and a vertical resolution of 0.1 nm. We construct a 3D 
model of our sample from this profilometry data (Figure S1, detailed procedure given in the Supporting 
Information). The instrument geometry is defined by the Euler angles of the incident beam and the detector axis with 
respect to the sample. Our synchrotron measurements utilize a nanoprobe with a beam waist of <200 nm. As such, 
we treat both the incident probe and signal photons as pencil beams propagating in the directions defined by the 
Euler angles. 

The simulation mesh is generated by interpolation of the sample model onto a mesh scaled to match the 
highest resolution dimension (in our case, the !-dimension), generating more points along the coarse lateral 
dimensions. The mesh is then extended in the "#-plane to accommodate the lateral projection of the incident beam 
trajectory.  

 

2.3 Ray Tracing 

For each lateral coordinate (", #), a single ray is simulated starting from the top of the simulation mesh 
(", #, !!"#	). As this ray propagates along the incident direction with a step size ($%&', two events occur for each 
step where the ray intersects the sample: the intersection is recorded, and a signal ray is spawned. The signal ray 
similarly propagates towards the detector until ! = !!"#	, and the total number of steps where the sample is 
intersected is recorded. A schematic of one ray simulation is shown in Figure 1g. The full algorithm is detailed in 
the Supporting Information. 

 
2.4 Estimating Self Absorption 

We approximate the X-ray attenuation coefficient µ within our sample for relevant photon energies by the 
material’s density and nominal average elemental composition.[24] The attenuation coefficient is applied to the 



intersection points tabulated during ray tracing, with each incident ray starting with unit intensity and each signal ray 
starting with the intensity lost from the incident beam in one step (Algorithm 3 in Supplemental Information). The 
fraction of the “true” fluorescence signal as measured for each lateral coordinate is taken to be the sum of all final 
signal ray intensities at that coordinate. Measured fluorescence values are then divided by this fraction to remove 
self-absorption effects. By separating the expensive ray tracing from the attenuation calculations for each element’s 
signal, we quickly apply the ray tracing results to fluorescence data for elements with different emission energies. 

 
 
3. Results and Discussion 
 
3.1 Correcting Fluorescence Data for Self-Absorption 

 

Figure 1: Instrument geometries where nano X-ray fluorescence was collected: (a) a correlative Bragg scattering 
configuration (a) and a geometry optimized for only nano X-ray fluorescence signal, with respective simulated 
(c,d) and measured (e,f) cesium fluorescence maps of the Eu:CsPbBr3 thin film crystal. (g) Single-ray example 
of the ray tracing process showing the incident ray and all collected signal rays. (h) Distribution of raw, thin-

film corrected[13], and ray-trace corrected molar ratios measured in the fluorescence-optimized geometry. The 
dashed vertical line shows the nominal composition ratio.  

 
We first validate our ray tracing approach by comparing simulated and measured X-ray fluorescence signals 

acquired in two different sampling geometries. Simulated and measured cesium XRF data collected from the same 
Eu:CsPbBr3 sample in Bragg nXRD and nXRF geometries are shown in Figure 1a-f. Cesium XRF intensity is 
simulated by assuming that the cesium concentration is constant across the volume of the microcrystal, a fair 
assumption in our largely-single-crystalline sample.[5, 23] The simulations capture the crystal’s hopper 
morphology[25] and, especially, the horizontal smearing by the beam projection in the shallow Bragg geometry 
(Figure 1c,e). Sharper contrast in the simulated maps can be attributed to our pencil beam assumption. This would 
be reduced by expanding the ray tracing model to account for the angular distribution of incident photons defined by 
the zone plate numerical aperture, finite tails of the probe shape, and the solid angle of collection of the detectors. 

 Ray tracing the incident and emitted photons in the X-ray fluorescence measurement enables correction for 
self-absorption.[26, 27] The degree to which the raw fluorescence data is affected by self-absorption depends on the 
sample composition and the path length of photons within the sample (Figure S3). West et al. formalized an 
effective process for self-absorption correction in planar thin-film samples, where these path lengths are well 
defined.[13] The geometric assumptions made in their process do not apply to our rough, anisotropic crystal. By 
raytracing, we extend the analysis of West et al., accounting for varying path lengths across the sample. The molar 



ratios of the major components in our perovskite microcrystal converge to the expected stoichiometry after 
correction by our ray tracing approach (Figure 1g). The distribution tails are also reduced, as lateral variations in 
self-absorption (from the position of the fluorescence detector to the left of the sample) are corrected. We note that 
our quantification of bromine content is made using the BrLα line, the low signal of which contributes to broad 
distributions of molar ratios involving bromine. 

 
3.2 Accounting for Geometric Differences via Convolution 

Ray tracing returns not only the relative signal measured for each pixel in our spatial dataset, but the points in 
the sample from which that signal is generated. The ray-tracing simulation assembles a rank five tensor where each 
coordinate (", #) holds the local sample point-spread function *+,-(", #, !),	a sparse 3D mask encoding the 
weighted contribution of each point in the sample to the total signal recorded at the detector for coordinate (", #). As 
the nXRF, nXRD, and µ-PL data are sampled only in the two lateral dimensions in the plane of the thin film crystal 
(all signal generated in the dept of the sample is projected into 2D), we integrate the sPSF along the Z-direction. 
Examples of local sPSF’s from the nXRD geometry are shown in Figure S2. In our case, we measured our 
perovskite crystal sequentially in three mapping measurements: nXRD, nXRF, and µPL. sPSFs were determined for 
the nXRD and nXRF geometries. The µPL sPSF sPSF was set to the identity matrix, as the optical path of the 
confocal microscope used is normal to the sample and incurs no lateral projection.  

We can use the resulting rank four tensor, which describes local 2D convolution, to better analyze the 
correlations between our 2D mapping data from different modalities. Even perfectly registered maps encode 
information from different sample volumes owing to the geometry differences and the differing light-matter 
interactions at hand with the change in photon energies. The raytraced sPSF enables a more precise comparison 
across multiple measurements with varied interaction volumes.  

 
 

 

Figure 2: (a) Convolution of each of the nano X-ray diffraction (nXRD), micro photoluminescence (μPL), and 
nano X-ray fluorescence (nXRF) data by the sample point-spread functions (sPSF) from the other data 

geometries yields equivalently convolved images. (b) Pixelwise correlation of the d-spacing from nXRD and 



the μPL full-width half-maximum (FWHM) with the local europium content from nXRF along the vertical lines 
in (a). Linear fits (solid lines) and associated R-squared values are shown for each correlation both before (left) 

and after (right) convolution. The shading represents 95% prediction intervals. 

All raw measured data can be thought of as a convolution of the true sample nature by the sPSF. Deconvolution 
of the sPSF from the raw data would recover the map of the sample properties at the highest sampling resolution. In 
practice, the noise level of experimental data prohibits a deconvolution approach. This issue is further exacerbated 
by the spatially-variant nature of our PSF. Existing algorithms for spatially-variant deconvolution hinge on finding 
sections with multiple constant-PSF chunks, whether by recovering the image in sections with constant PSFs and 
stitching or by decomposing the spatially-variant PSF into eigenfunctions and continuously varying their 
eigenvalues across the image area [28–32]. These methods may be applicable for samples with periodic features and 
thus a small number of unique local PSFs, but for general cases these algorithms may not suffice.  

A simpler (albeit less satisfying) approach to reconcile sampling volume differences across datasets is to 
convolve each dataset by the sPSF of the others (Figure 2a). Though the spatial resolution of each individual image 
is reduced, the total data is now equivalently convolved and can be compared pixelwise. Applied to our nXRF, 
nXRD, and μPL datasets, this forward convolution treatment reveals local correlation of composition, 
microstructure, and optoelectronic quality across a microstrain gradient observed in the nXRD (Figure 2b). Note 
that, applied to 2D data like ours, the sample information is implicitly compressed into the two lateral dimensions 
despite rays being traced in three dimensions. This shortcoming continues to wane as advanced techniques and 
dedicated hardware capable of resolving material structure [33–40] and composition [1, 18, 41–47] in three 
dimensions proliferate across upgraded synchrotron facilities. These 3D techniques also carry unique interaction 
volumes that must be considered in comparison across modalities, for which our approach can be employed to 
mutually convolve the data modalities in 3D. Still, these techniques are not always feasible as they require specific 
hardware, often incur large photon doses that prohibit sensitive samples, and, in the case of tomography, may be 
difficult to apply to extended thin samples such as ours. [48, 49] Regardless of the raw data dimensionality, the 
forward-convolution approach allows for a morphologically informed comparison across modalities. 

 
3.2 Caveats and Further Considerations 

Our ray tracing approach does not take any secondary photon interactions into account. The validity of this 
simplification depends on the sample under study. For large, highly crystalline samples measured in a Bragg 
condition, dynamical scattering may significantly alter the transmission of x-rays through the sample. [24, 50] 
Samples of high-Z compositions may also be subject to secondary fluorescence. [51, 52] Each of these phenomena 
will modify the sPSF and the resulting convolutions of the data. 

Self-absorption correction adjusts estimates of local composition, which in turn adjusts the expected degree of 
self-absorption. This suggests that an iterative solver with alternating updates to the composition and self-absorption 
factors could be employed to converge towards the true local composition. In our specific case this approach is not 
required. We have high confidence that in our high-quality crystalline sample (not a polycrystal), the local content of 
all elements other than lead and europium (the dopant species) are constant, and self-absorption differences between 
compositions at the extreme ends of our measured Pb and Eu stoichiometry only generate a 1-4% difference in our 
molar ratios of interest (Figure S4). Development of iterative composition solvers will be important for the study of 
samples with poorly constrained composition, especially in dense correlative datasets as generated in diffraction-
limited and/or tomographic experiments at next-generation synchrotron facilities. 

 
4. Conclusion 

 To realize the full power of multimodal correlative microscopy studies, the nuances of each individual 
mode must be accounted for. Even in a simultaneous measurement with multiple detectors, the data acquired at each 
detector is subject to different geometric effects within the sample. We have shown that even a simple ray-tracing 
approach employing pencil beams and Beer-Lambert attenuation can correct for self-absorption effects in X-ray 
fluorescence measurements, allowing quantitative compositions to be extracted from highly anisotropic samples. 
Ray tracing also generates a sample point-spread function encoding the local probe-sample interaction volume for 
each pixel in spatially-resolved mapping or imaging measurements, which can be used to reconcile the sampling 



volume differences across datasets. We show that jointly convolving the multimodal datasets with the sample point-
spread function of each is a simple yet effective way of bringing spatial data into the same frame for comparison. 
Future development in flexible and noise-tolerant deconvolution algorithms, especially recent efforts leveraging 
machine learning[53–55], may make deconvolution more tractable. The ray-tracing approach described here can be 
improved in many ways, such as accounting for the shape and angular range of the incident probe, the collection 
angle of the detector, and second-order effects in modeling probe-sample interaction (e.g. secondary fluorescence). 
We envision future tools for rigorous simulation of probe-sample interactions to be built on standard ray-tracing 
engines like SHADOW [21, 22] and incorporated into simulation platforms like OASYS [20] to enable end-to-end 
simulation of multi-modal experiments from probe to detector that maximizes the ability to make scientific inference 
from correlative microscopy data. The promising results from our preliminary efforts prove that these tools will 
bring practical benefits to multimodal studies, particularly when techniques involve long path lengths such as in X-
ray and neutron experiments. 
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Sample preparation and Characterization 
The full details on Eu:CsPbBr3 sample fabrication and characterization procedures can be found in Quinn et al [1]. 
   
Ray-Tracing Detailed Methods 

 
Constructing a 3D Model of Sample Morphology 

Ray tracing of probe-sample interactions requires a 3D model of the sample. We generate this model of our 
microcrystal by extrusion of measured profilometry data (Figure S1a-b). First, we mask the raw profile to isolate the 
crystal data from the background data. Next, we fit a plane to the background signal and subtract this from the raw 
profile. Finally, we construct a 3D binary array with dimensions matching that of the crystal profile, where indices at 
or below the z value measured at that (x,y) coordinate in the profile are set to True. This approach assumes that there 
are no voids or overhangs below the measured profile - for samples where this assumption is not valid, a different 
approach can be employed. The goal of this step is to build a 3D mask of the sample extent, and the ray tracing itself 
is agnostic to how this mask is constructed.  
 
Defining the Measurement Geometry and Simulation Mesh 
 
The instrument geometry is defined with respect to sample plane by the Euler angles of the incident beam and the 
detector axis. For the sake of simplicity in our specific case, we rotated our simulation volume such that these 
directions are contained within the xz plane, allowing us to fully describe the geometry with two angles. (Figure 
S1c). Our synchrotron measurements utilized a nanoprobe with a beam waist of <200 nm. As such, we treat both the 
incident probe and signal photons as pencil beams propagating directly along the directions defined by these two 
angles. 
 
The mesh for the ray tracing simulation is defined by the 3D sample mask and the instrument geometry. We first 
interpolated the sample mask onto a mesh scaled to match the highest resolution dimension (in our case, the z-
dimension), effectively generating more points along the coarse lateral dimensions. This mesh is extended along the 
x-dimension to accommodate for the lateral projection of the beam trajectory by !!"#!$%&'$ = #()"cos	()&$*&+!$#). 

 
Approximating Attenuation Within the Sample 
 
To calculate attenuation of incident and collected photons within the sample, we must know the X-ray attenuation 
coefficient within our sample for relevant photon energies. First, we define the density and nominal elemental 
composition of our material. From this the number density (mol/cm3) of each atomic species is computed, and the 
attenuation coefficient is approximated as the weighted average of the individual elements’ atomic scattering 
factors.[2] 

 

Ray Tracing 



 
For each lateral coordinate (!, ,) a single ray is simulated starting from the top of the simulation mesh (!, ,, #()"	). 
As this ray propagates along the incident direction with a step size -%#!,, two events occur for each step where the 
ray intersects the sample: the intersection is recorded, and a signal ray is spawned. The signal ray similarly 
propagates towards the detector until # = #()"	, and the total number of steps where the sample is intersected is 
recorded. These processes, formalized in algorithms (1) and (2), repeat until the incident ray reaches # = 0, and 
repeat for each lateral coordinate (!, ,). A schematic of one ray simulation is shown in Figure 1g. 
 

Note that the simulation to this point has been purely geometric, yielding a table of intersection points for 
measurement at each lateral coordinate of the sample. Once the incident and detected photons energies 

/&$*&+!$# , /%&-$). are defined, the attenuation coefficients 0&$*&+!$# , 0%&-$). are estimated as described above. These 
coefficients are applied to the tabulated intersection points from ray tracing results. Attenuation of these photons at 
each intersection point is calculated as 1 = 1 − 4/0+!"#$ according to Beer-Lambert’s law. This overall process is 
formalized in algorithm (3). The total signal measured at each lateral coordinate (!, ,) is taken to be the sum of all 

final signal ray intensities at that coordinate. By separating the expensive ray tracing from the attenuation 
calculations, we quickly apply the ray tracing results to fluorescence data for elements with different emission 

energies.  

 

 
 
 



  



 

 
 

Figure S1: (a) Profilometry data of our isolated Eu:CsPbBr3 crystal. False coloring indicates sample (green) and 
background (red) regions. (b) The surface profile of the crystal (green) after removal of the background baseline (red). 
(c) Three-dimensional solid body model of the crystal formed by extrusion of the green points, along with the material 
properties and measurement geometry parameters required to define the ray-tracing simulation. 

 
 
 
 
 

  



 

 
Figure S2: Local sample point-spread function (sPSF) for two points on the sample, marked in (a), are shown in (b) 
and (c). 

  



 

 
Figure S3: (a) The fraction of fluorescence signal transmitted through our perovskite sample to the detector for optical 
path lengths ranging from 0.1 to 10 μm. Emission energies for the four elements of interest in our sample are indicated. 
(b) A histogram of fluorescence signal path lengths as recorded from ray tracing in the nXRF geometry. The three 
overlaying traces indicate the degree to which molar ratios between majority elemental species in our sample are 
skewed in the raw fluorescence data as a function of signal path length. 
 
  



 
Figure S4: Effect of sample composition on molar ratios after self-absorption correction for points across the sample 
area. The compositions are selected as the extreme ends of compositional variation based on measured composition. 
The distribution of values results from the variation in path lengths across the sample. 
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