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Key Points (maximum 140 characters per line):
e Space and ground-based observations reveal dramatic equatorial electrojet variations
caused by the Tonga volcanic eruption
e Strong eastward turning of atmospheric zonal winds in the E-region is responsible for the
directional reversal of the equatorial electrojet
e The observed complex spatiotemporal variations can be explained by a large-scale

disturbance propagating eastward from the eruption site
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Abstract

We present space and ground-based multi-instrument observations demonstrating the impact
of the 2022 Tonga volcanic eruption on dayside equatorial electrodynamics. A strong counter
electrojet (CEJ) was observed by Swarm and ground-based magnetometers on 15 January after
the Tonga eruption and during the recovery phase of a moderate geomagnetic storm. Swarm also
observed an enhanced equatorial electrojet (EEJ) preceding the CEJ in the previous orbit. The
observed EEJ and CEJ exhibited complex spatiotemporal variations. We combine them with the
Ionospheric Connection Explorer (ICON) neutral wind measurements to disentangle the potential
mechanisms. Our analysis indicates that the geomagnetic storm had minimal impact; instead, a
large-scale atmospheric disturbance propagating eastward from the Tonga eruption site was the
most likely driver for the observed intensification and directional reversal of the equatorial
electrojet. The CEJ was associated with strong eastward zonal winds in the E-region ionosphere,

as a direct response to the lower atmosphere forcing.

Key Words

Tonga Volcanic Eruption, Equatorial Electrojet, Counter Electrojet, Equatorial Electrodynamics,

Equatorial Electric Field, Atmospheric Neutral Winds
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Plain Language Summary

The Earth's E-region ionosphere (~100-150 km altitude) consists of both ionized and neutral
gasses, and the two components are coupled through ion-neutral collisions. The state of this
region is closely influenced by neutral atmospheric activities from the bottom and Sun’s
variability from the top. On 15 January 2022, the Tonga volcano had a massive eruption and
injected enormous mass and energy into the atmosphere causing disturbances in the E-region
ionosphere or even higher. There was also a moderate geomagnetic storm that started one day
before the eruption and ended days after. These conditions offer a unique opportunity to
understand the different roles they play in controlling the ionosphere. Coordinated observations
including the atmosphere, ionosphere and magnetosphere were made from both space and on the
ground during this event. We analyzed the magnetic field and neutral wind data and found that a
large-scale atmospheric disturbance generated by the volcano eruption was responsible for the

observed directional reversal of the dayside equatorial electric field and electric current.
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1. Introduction

The equatorial electrojet (EEJ) is an intense band of ionospheric electric current flowing
eastward along the dayside magnetic equator within a narrow latitudinal extent. The peak of the
EEJ occurs near the noon of the E-region ionosphere (~ 110 km altitudes), where a local maxima
of the plasma density and conductivity is produced by the balanced acts between the
photoionization from solar radiation and chemical losses (e.g., Heelis and Maute, 2020). The EEJ
is a result of distinctive E-region electrodynamic processes involving both atmospheric neutrals
and collisional plasma in a geometry with a horizontally northward geomagnetic field at the
magnetic equator. During solar and geomagnetically quiet times, an eastward zonal electric field
is generated in the dayside E-region by collisional interactions between neutrals and plasma as
atmospheric tidal winds move ionospheric plasma across the magnetic field lines (known as E-
region neutral wind dynamo) (Richmond, 1973; Heelis, 2004). The current density of the EEJ
can be readily measured in the magnetic field data both on the ground (Anderson et al., 2004;
Yizengaw et al., 2014) or by the low-Earth orbit spacecraft (Liihr et al., 2004; Alken et al.,

2015).

Observations show that the EEJ exhibits much variability with longitude as well as in
multiple temporal scales, from rapid large changes to diurnal, day-to-day, and seasonal variations
e.g., Lihr et al., 2004; Yizengaw and Groves, 2018). Sometimes the EEJ can even experience
directional reversals, known as counter electrojets (CEJ) (e.g., Forbes, 1981). The main causes of
the EEJ variations are attributed to perturbations in the eastward electric field, which can be
driven either from the top through enhanced solar wind-magnetosphere-ionosphere coupling
(e.g., Yizengaw et al., 2016), or from the bottom side by neutral wind perturbations arising from

the lower atmosphere wave forcing (e.g., Yamazaki et al., 2014). Variations of the EEJ have
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been used as an indirect measure of the electric field perturbation in the dayside equatorial E-
region as well as at the F-region.

The main driving mechanism for the EEJ variability is the modulation of the E-region wind
dynamo, through which the ionosphere strongly couples with the lower atmosphere forcing.
Simultaneous spacecraft observations show that during the normal eastward EEJ the zonal winds
across E-region altitudes are mostly in the westward direction whereas the winds reverse to be
eastward at ~110 km altitude during the westward CEJ (Yamazaki et al., 2014). Vertically
propagating atmospheric tidal waves can achieve sufficient amplitudes in the E-region at order of
tens of m/s (e.g., Hagan and Forbes, 2002). These tidal winds directly produce the longitudinal
and daily variations of EEJ (e.g., Forbes, 1981; Liihr et al., 2021). Large amplitude planetary
waves such as 3-day waves have also been observed in the thermospheric wind field, and they
could modulate the wind dynamo and thereby drive the multi-day periodic variations in the F-
region ionosphere (e.g., Forbes et al., 2018; Liu et al., 2021). In addition, smaller-scale waves,
such as gravity waves triggered by geological hazards of earthquake and tsunami etc., could
induce short-period fluctuations in the EEJ and the electric fields (e.g., Aveiro et al., 2009;
Hysell et al., 1997).

Prompt penetration electric field (PPEF) during geomagnetically active times is an additional
source of electric field variations in the low-latitude E-region ionosphere (e.g., Fejer et al., 1979;
Wolf et al., 2007). During geomagnetic storms, extreme changes of the EEJ, both enhancement
and directional reversals (CEJ), have been observed nearly instantaneously following the IMF

changes and rapid variations of the Region-1 field-aligned currents (FACs) that lead to

undershielding and overshielding conditions, respectively (Kelley et al., 1979; Kikuchi et al.,

Approved for public release. OTR 2022-00609.



108  2000; Sastri, 2002; Simi et al., 2012; Yizengaw et al., 2016; Astafyeva et al., 2019). High-
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latitude ionosphere can also couple with the middle- and low-latitudes through disturbance winds

during geomagnetic storms, known as disturbance dynamo (Fejer et al., 1983). Unlike the PPEF,

disturbance dynamo electric fields have delayed responses to the high latitude heating events

(Richmond and Matsushita, 1975).

On 15 January 2022, Swarm spacecraft observed a much enhanced EEJ and then a strong

CEJ in two consecutive dayside equator passes (~ 1.5 hr apart). On the same day, a ground-based

magnetometer pair near the magnetic equator in Peru, Jicamarca and Tarapoto, observed an

intense CEJ first but then only the normal EEJ. The observed EEJ and CEJ in space and on the

ground exhibited complex spatiotemporal variations. The event occurred during a period when

both the magnetospheric forcing from the top and atmospheric forcing from the bottom

coexisted: a moderate geomagnetic storm and the Tonga volcanic eruption, respectively. In this

paper, we present a detailed analysis of the observations from multiple sources, including the

IMF and solar wind, ground-based and spacecraft magnetic fields, and atmospheric neutral winds

to determine the role of these potential sources on perturbing the equatorial E-region electric

field. The goal is to disentangle the mechanisms responsible for the observed intensification and

directional reversal of the equatorial electrojet.

2. Dataset Description
Approved for public release. OTR 2022-00609.
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Swarm is a three-spacecraft mission launched into a high-inclination (87.5°) low-Earth orbit

on 22 November 2013 (Friis-Christensen et al., 2006). Swarm-A/C fly side by side at the same

altitude (~430 km at the start of 2022) with a longitudinal separation of 1.4° and Swarm-B in a

slightly higher altitude orbit (~500 km). With an orbit period of ~90 min, the spacecraft crosses

the polar cap every ~45 mins and the EEJ region every ~1.5 hrs. Highly accurate magnetic field
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data from Swarm’s Vector Field Magnetometer (VFM) provide high cadence in situ

measurements of FACs in the auroral zone (Liihr et al., 2015; 2016). The magnetic field strength

from the Absolute Scalar Magnetometer (ASM) measurements have been used to obtain the

amplitude and direction of the EEJ (Alken et al., 2015; Liihr et al., 2021).

The EEJ signals are also obtained from a pair of ground magnetometer stations located near
the magnetic equator on the same meridian, one at the magnetic equator (within 3.5°) and the

other one just off the EEJ region (6° to 9° degree from the magnetic equator) (Anderson et al.,

2004; Yizengaw et al., 2014). The EEJ currents are determined from 6€@€H, the difference of
the

magnetic field H-components between the two magnetometers. A detailed description of how to

extract the EEJ from ground magnetometer observations can be found in Anderson et al. (2004)

and Yizengaw et al. (2014). The pair of the ground stations we used in this study are located at
Jicamarca (JICA, 11.95°N/76.87°W GEO, MLat=0.6°) and Tarapoto (TARA, 6.59°N/76.36°W

GEO, Mlat= 6°) in Peru.

The neutral wind measurements are provided by the Michelson Interferometer for Global

High-Resolution Thermospheric Imaging (MIGHTTI) (Englert et al., 2017) on the 27° low-

inclination Ionospheric Connection Explorer (ICON) mission (Immel et al., 2018). Using
Doppler shifts, atmospheric wind velocities are derived from the O('S) (557.7 nm, green line)
and O('D) (630.0 nm, red line) airglow emissions at ~3 and 10 km altitude bins, respectively
across the range from ~90 to 300 km. The MIGHTI winds have been validated with the ground-

Approved for public release. OTR 2022-00609.



151

152

153

154

based measurements showing a correlation of ~0.8 (Harding et al., 2021; Makela et al., 2021).

The MIGHTI winds cover low-to-mid latitudes from ~13°S to 42°N, and for each day the data

are available from ~15 orbits with two local times sampled at the same latitude per orbit.
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3. Observations

On 14 January 2022, a moderate geomagnetic storm (minimum Dst ~ -91 nT) was triggered

by the arrival of the coronal hole high-speed solar wind stream. Figure 1 shows the 5-min

resolution OMNI data with IMF/solar wind conditions and SYM-H index for 13-16 January. The

start times for the storm main and recovery phases are indicated by the two black arrows on the

top, respectively. The storm's main phase was caused by a gradual southward turning of the IMF

Bz component which lasted for ~ 7 hours (~16-23 UT on 14 January). The recovery phase started

when the IMF Bz suddenly turned strongly northward associated with a minor shock and then

fluctuated between northward and southward directions. It took about 5 days for the

magnetosphere to fully recover. On 15 January, coincident with the early stage of the storm’s

recovery phase, a powerful, quasi-continuous eruption of Hunga Tonga-Hunga Ha’apai Volcano

occurred about 65 km north of Tonga’s main island, starting at ~0402 UT for about 12 hours,

which is indicated as the magenta bar on the top of Figure 1. Atmospheric waves produced by

the eruption were observed globally in the first few hours and circled the Earth multiple times

subsequently (Yuen et al., 2022; Zhang et al., 2022). These are the background conditions under

which the 15 January EEJ and CEJ events were observed.

Figure 2 presents an overview of the observations. Figure 2a displays 5 days of the magnetic

Approved for public release. OTR 2022-00609.



172

173

174

175

176

177

field perturbations (13-17 January) from Swarm A. The red traces are the azimuthal component

of the perturbations over the polar cap from Swarm A’s VFM. The magnetic field perturbations

in high latitudes are mainly caused by FACs, and the azimuthal component (6B_FAC, positive

for westward deflection) is expected to bear the largest FAC signatures (Le et al., 2016). The

black traces in Figure 2a are the perturbations of the field strength during the equatorial crossing

over the EEJ region (within 10° latitude from the dayside magnetic equator) from Swarm A’s
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ASM. The eastward EEJ would cause a magnetic field depression (5€p€pB<0) and the westward
CEJ

a field enhancement (5€€B>0).

On 14 January, the magnitude of 6B FAC was enhanced to ~500 nT after the storm onset at

~ 16 UT. But the EEJ did not change markedly compared with the previous EEJ passes,

indicating the lack of the penetration electric field. This is most likely due to the rather gradual

southward turning of the IMF, under which conditions the shielding of the convection electric

field in middle and low latitudes was still effective. The intensity of the EEJ remained relatively

stable until around ~ 14 UT on 15 January, when a much enhanced EEJ was observed by Swarm,

denoted by 1 in Figure 2a and the blue arrow on top of Figure 1. A very strong CEJ was

observed subsequently by Swarm in the next dayside equatorial pass at around 15.5 UT, denoted

by 2 in Figure 2a and the red arrow on top of Figure 1. Figure 2¢c shows an expanded view of the

Swarm observation for 1200-1725 UT on 15 January, containing the observations from both

Swarm A and B. Similar to Swarm A, Swarm B also observed the much enhanced EEJ and then

the strong CEJ, but its 6B magnitudes were smaller because of its higher altitude. The

geographic locations of Swarm A and B for the dayside equatorial passes are shown in Figure 2d

as the line segments in black and gray, respectively. The CEJ region at ~ 15.5 UT was observed

to the west of the EEJ region observed at ~ 14 UT although Swarm’s local time remained to be
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the same, near the local noon.

Figure 2b shows the ground-based observations near the magnetic equator for 13-17 January.

The solid black traces are for 5€p€H, the differences between the H-components recorded at the

geomagnetic equator (JICA) and off the equator (TARA). The red traces are the estimated ExB

drift in the F-region based on 5€€H using the technique described in Anderson et al. (2004).
Note

that the data from JICA and TARA were not recorded on 16 January, and we used the data from
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Huancayo (HUA, 12.05°S/75.33°W GEO, Mlat=-0.63°) and San Juan (SJG, 18.11°N/66.15°W

GEO, Mlat=28.79°) to obtain 6@€H (dotted line). Since the location of SJG is not ideal for EEJ

estimation, these 6@ H data are used only for obtaining general information about EEJ
behaviors,

but not for quantitative comparison with the other days. The start times for the Tonga eruption

and the storm main and recovery phases are indicated by the arrows in the 14 January panel. We

note that the ground stations did not measure significantly different EEJ strengths between 13

and 14 January. In addition, no significant changes, instantaneous or delayed, were observed at

the storm onset and recovery on 14 January. These observations indicate that the storm’s impact

on the equatorial electric field was minimal in this case, consistent with the Swarm observations.

On 15 January, JICA immediately entered a CEJ period with the strong magnetic field

depression (6@ €@H<0) at ~12 UT (~ 7 local time), which is about the same time as it entered the

normal EEJ region in previous days. This means the CEJ was probably already present before

~12 UT. After ~ 4 hr, JICA transitioned into an EEJ region (6@€H>0) at ~15.5 UT (~10.5 local

time). The peak magnitude of 5€€@H in the EEJ region was only slightly larger than the
previous

two days, so it appeared to be a nominal EEJ. During the following two days (16 and 17

January), only normal EEJ was observed. In Figure 2d, the geographic location of JICA is

marked as a red triangle. The CEJ was also observed on the ground to the west of the Swarm
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We now focus on how neutral wind perturbations caused the electric field perturbations. On

15 January, ICON spacecraft observed neutral winds for the same regions and times as Swarm

and JICA. Figure 2d marks the locations (blue dots) and timings of the daytime low-latitude

zonal winds (from green-line emission, <90° Solar Zenith Angle, < 25° latitude) measured by

MIGHTI. Due to the low-inclination, MIGHTI samples a relatively wide range of longitudes
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during each orbit pass. The zonal winds observed along 7 orbits (each ~1.5 hr apart and during

<10 minutes time interval) are presented in Figure 3. The brown curve passing through JICA (red

triangle) is a part of the circle centered at the Tonga eruption site, showing locations of equal

distance from the eruption site. At ~14 UT, the ICON observations were located across the

brown curve, MIGHTI and JICA would thus concurrently detect the wind perturbations

propagating from the eruption site. The observations for a few hours before and after 14 UT are

also shown.

Figures 3a and 3b display the zonal wind sequences and averaged profiles, respectively,

observed at the given times and locations. The wind components have been transformed into the

local magnetic coordinates assuming zero vertical winds. At ~14 UT, eastward winds dominated

across the E-region altitudes from ~95-120 km, and the largest winds reached ~200 m/s with the

averaged peak values of ~150 m/s. Strong eastward winds are thus observed in the E-region in

coincident with the strong CEJ at JICA. Following this, the winds were weaker (<100 m/s) and

tended to gradually turn westward at ~15.5 and 17 UT. The winds were also almost all westward

throughout the altitude region at ~7.5 UT. From ~9 to 11 UT, the winds remained westward at

most altitudes with few values barely being eastward around 105 km. Near 12 UT, both eastward

and westward winds occurred around 67.5°W longitudes, showing the winds changed from

strongly eastward to westward especially below ~110 km. This indicates the transition from the
Approved for public release. OTR 2022-00609.
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CEJ to EEJ. Figure 3c presents the sequence of zonal wind observations at ~103 km altitude

versus longitude. Compared to the day before (in black), the dayside zonal winds on 15 January

(blue) exhibited a large variation having strong eastward winds over ~60- - 120- W longitude.

This is again consistent with the directional turning from the EEJ to CEJ.
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4. Discussion

The observations presented in the previous section showed complex spatiotemporal

variations of the CEJ and EEJ, which can be explained by a large-scale disturbance propagating

eastward from the Tonga eruption site. As illustrated in Figure 4a, the light green and blue areas

represent the leading and trailing fronts of the disturbance, respectively. The leading front is

associated with a westward neutral wind perturbation, which reinforces the background

westward wind in the dayside and causes an increase in the eastward electric field. This front is

expected to result in an enhanced EEJ region that has been observed by Swarm. On the west, a

strong eastward wind perturbation by the trailing front is opposite to the background wind and

thus reverses the eastward electric field causing the directional reversal of the EEJ (i.e., CEJ) and

downward vertical drift inferred by JICA. This explanation is further illustrated in Figure 4b and

the timelines of the observed features are summarized as follows.

e At~12.5 UT (Figure 4b — top panel): The wind disturbance fronts had moved to cross the

day-night terminator and reached the ICON measurement locations, but yet to reach

Swarm so that a nominal EEJ was observed by Swarm (see Figure 2¢). However, JICA

just emerged from the nightside and entered directly into the trailing front to start

detecting the CEJ, but completely missed the leading front for the enhanced EEJ (Figure

Approved for public release. OTR 2022-00609.



264 2b). Because the ICON measurements were near the center of the disturbance moving

265 from trailing to leading fronts, eastward and then westward zonal winds were observed
266 (Figure 3a). Given that JICA observed the CEJ at the time ~8 hrs after the volcanic

267 eruption and the great circle distance is ~10,000 km from JICA to Tonga, the speed of the
268 propagating disturbance was estimated to be at least ~350 m/s. Because the CEJ may
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have arrived before JICA turned into sunlit conditions, the disturbance could be

propagating faster.

At ~14 UT (Figure 4b, 2" panel from the top): The disturbance fronts continued its

eastward propagation. Swarm’s next equatorial crossing cut through the leading front so

that a much enhanced EEJ was observed (see Figure 2c). Based on Swarm A’s timing

(~10 hr) and the great circle distance from the eruption site (~14,000 km), the speed of

the leading front was estimated to be ~400 m/s. JICA remained within the trailing front

and thus still observed the CEJ (Figure 2b). At this time, ICON measurements were

within the trailing front (and at the same distance to Tonga as JICA) and strong eastward

zonal winds were observed (Figure 3), which is consistent with the CEJ observation at

JICA. This convincingly demonstrated that the CEJ was caused by the Tonga eruption

associated wind perturbation that changed the dayside zonal wind to eastward in the E-

region.

At ~15.5 UT (Figure 4b — 3" panel from the top): Swarm crossed the equatorial region

inside the trailing front and was able to detect the strong CEJ (see Figure 2¢). However,

the front almost moved away from JICA as the JICA meridian was exiting from the CEJ

region into the normal EEJ region (Figure 2b). Based on these timings, the CEJ

observations by JICA lasted for ~ 3 hr and the scale size of the disturbance should be in

Approved for public release. OTR 2022-00609.
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the order of ~5,000 km. On the other hand, the location of the ICON measurements was

far to the west of the disturbance, near the terminator, and weaker winds were observed.

e At ~17 UT (Figure 4b — bottom panel): The disturbance had propagated further east.

Both Swarm and JICA were completely outside the disturbance region to the west and
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observed regular EEJ current (see Figures 2b and 2¢). ICON was even further away from

the disturbance and also near the terminator and thus observed weaker winds.

The disturbance responsible for the observed EEJ and CEJ signatures is most likely related to

atmospheric gravity wave activities that were produced by the Tonga volcanic eruption and

detected globally within the first few hours of the eruption (Yuen et al., 2022). This volcanic

eruption generated a broad spectrum of atmospheric waves, such as gravity waves, that

propagated into the upper atmosphere and even affected the F-region ionosphere (Zhang et al.,

2022; Themens et al., 2022). By combining space and ground-based observations, our analysis

shows that this disturbance propagated eastward from the volcano eruption site with a

propagation speed in the order of ~350-400 m/s. We also found that the disturbance has a spatial

scale size of ~5,000 km in which the zonal wind perturbation reached up to ~200 m/s. These fall

within the features of gravity waves that have been identified before for driving F-region

ionospheric irregularities (e.g. Yizengaw and Groves, 2020), as well as those reported for the

Tonga volcanic eruption (Yuen et al., 2022; Zhang et al., 2022; Themens et al., 2022). Such a

large wind disturbance should be able to significantly modify the E-region dynamo and cause the

dramatic variations on equatorial electric field and current as the observations we present
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5. Summary and Conclusions

We present multi-instrument observations demonstrating the impact of the 15 January 2022

Tonga volcanic eruption on dayside equatorial electrodynamics using magnetic field and neutral

wind data from Swarm, ground-based magnetometers, and ICON. The Tonga eruption coincided
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with the early recovery phase of the 14-17 January 2022 geomagnetic storm. A strong CEJ was

observed by both the Swarm satellites and JICA ground-based magnetometers on 15 January

after the Tonga eruption and during the storm recovery phase. The CEJ observed by Swarm was

preceded by a much enhanced EEJ in the previous orbit about 1.5 hr earlier. But JICA observed a

normal EEJ after leaving the CEJ region. The EEJ and CEJ, observed both in space and on the

ground, exhibited complex spatiotemporal variations. We linked the magnetic field observations

in coincidence with atmospheric neutral wind observations from ICON to disentangle the

potential mechanisms. Our analysis indicates that the moderate geomagnetic storm had minimal

(almost no) impact on the equatorial electric field for this case. Instead, large-scale atmospheric

disturbances propagating outward/eastward from the Tonga eruption site were the most likely

driver for the observed intensification and directional reversal of the equatorial electrojet. We

propose that the reversal of the equatorial electrojet is attributed to the strong eastward turning of

atmospheric zonal winds in the E-region. While the leading wave front appeared to enhance the

westward zonal winds responsible for the observed EEJ intensification, the trailing wave front

caused strong eastward zonal winds resulting in the strong CEJ in the E-region ionosphere.

Data Availability Statement

The IMF and solar wind data, as well as geomagnetic indices are available at the OMNIWeb at
Approved for public release. OTR 2022-00609.



332 NASA Goddard Space Flight Center (GSFC) Space Physics Data Facility (SPDF),

333  https://omniweb.gsfc.nasa.gov. Swarm data are freely accessible to all users through ESA’s
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336 NASA/GSFC SPDF’s Coordinated Data Analysis Web (CDAWeb) at
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https://cdaweb.gsfc.nasa.gov/pub/data. The ground magnetometer data from JICA and TARA,

operated by LISN network, are publicly available at http://doi.org/10.5281/zenodo.6412518.

The ground magnetometer data from HUA and SJG are publicly available at INTERMAGNET

website at https://intermagnet.github.io.
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Figure 1. The 5-min resolution OMNI data with IMF/solar wind conditions and SYM-H index
for 13-16 January 2022.
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Figure 2. An overview of the observations on 13-17 January 2022. (a) The magnetic field
perturbations from Swarm A. (b) The magnetic field perturbations from the ground stations near
the magnetic equator and the estimated ExB drift in the F-region. (¢) Expanded view of the
magnetic field perturbations from Swarm A and B on 15 January. (d) Geographic locations of the

observations on 15 January.
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510 Figure 3. Daytime zonal winds observed by MIGHTTI along 7 ICON orbits on 15 January 2022.
511 (a) Altitude profiles of zonal wind sequences (blue color represents eastward winds and green
512 color corresponds to westward winds). (b) Averaged zonal wind profiles. (c) The sequences of
513 zonal wind observations at ~103 km altitude versus longitude from two days.
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516  Figure 4. (a) Schematic illustration of the E- and F-region ionosphere responses to a large-scale
517  disturbance propagating eastward from the Tonga eruption site. (b) Summary of the timelines of
518 the observed features by the propagating disturbance.
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