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Figure 1: Demonstration of VT. (a): To edit a sentence, the user taps the sentence and speaks the editing command. (b) is the
result of the editing operation. (c): To correct errors in a sentence, the user taps the position of the errors and speaks the new
content for correction. (d) is the outcome of correction. The phrase "jimos ober" in the original sentence is corrected to "jumps
over".

ABSTRACT
Editing operations such as cut, copy, paste, and correcting errors in

typed text are often tedious and challenging to perform on smart-

phones. In this paper, we present VT, a voice and touch-based

multi-modal text editing and correction method for smartphones.

To edit text with VT, the user glides over a text fragment with a

finger and dictates a command, such as "bold" to change the format

of the fragment, or the user can tap inside a text area and speak a

command such as "highlight this paragraph" to edit the text. For text

correcting, the user taps approximately at the area of erroneous text

fragment and dictates the new content for substitution or insertion.

VT combines touch and voice inputs with language context such
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as language model and phrase similarity to infer a user’s editing

intention, which can handle ambiguities and noisy input signals. It

is a great advantage over the existing error correction methods (e.g.,

iOS’s Voice Control) which require precise cursor control or text

selection. Our evaluation shows that VT significantly improves the

efficiency of text editing and text correcting on smartphones over

the touch-only method and the iOS’s Voice Control method. Our

user studies showed that VT reduced the text editing time by 30.80%,

and text correcting time by 29.97% over the touch-only method. VT

reduced the text editing time by 30.81%, and text correcting time

by 47.96% over the iOS’s Voice Control method.

CCS CONCEPTS
• Human-centered computing→ Human computer interac-
tion (HCI); Interaction techniques.

KEYWORDS
Multimodal interaction; text editing; text correction; touch input;

smartphones.
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1 INTRODUCTION
Changing text input such as correcting errors and editing text is a

core activity we perform daily on smartphones. Although such an

activity is essential for messaging, emailing, searching, and social

networking applications, it however is difficult to perform. The bot-

tleneck lies in the need for precise and repetitive manual control.
For example, the de facto cursor-based text correction technique re-

quires accurately positioning the cursor at the error text, repeatedly

pressing backspace to delete errors, and re-positioning the cursor

back at its original location. Besides finger touch, voice input is

another input modality we can leverage for editing text. However,

voice input is prone to speech recognition errors, especially in noisy

environments. It also is cumbersome to use voice for correcting

errors in spoken text, mainly because voice input is unsuitable for

specifying the location of the error [26, 42].

Both touch and voice input modalities have their respective

strengths and weaknesses. The current text editing techniques

fail to synergistically combine the strengths of both modalities to

overcome the limitations of each modality. For example, although

iOS’s Voice Control [21] allows a user to use voice and touch to

correct an erroneous word in a text, the process is laborious: the

user needs to precisely select the word with touch, and speak out

the exact content for correction. There is little room for human

imprecision, which makes it difficult for the error-prone voice and

touch input. Potentially, the performance and experience of text

editing can be improved by coordinated use of speech and touch

together with an underlying intelligent inference model that can

predict the user’s interaction intent. For example, if a user uses

finger touch to point at the approximate location of an erroneous

word and simultaneously speaks out the replacement word; the

inference model should be able to determine the exact location of

the erroneous word and replace it with the spoken word, thereby

significantly reducing the user’s overall interaction effort.

In this paper we research and develop voice and touch input

based multimodal text editing technique, called VT. To edit the text,

the user glides the finger over the text on the touchscreen, and

speaks out the editing command (e.g., “cut”, “copy”, or “bold”), or

the user can just tap the target text then speaks a command such

as "bold the paragraph" to edit the text. VT combines the input

signals from both voice and touch input to infer a user’s editing

intention, and then form and execute the corresponding editing

operation. To correct errors such as inserting missing words or

correcting words, the user points to the text to be corrected and

speaks out the new text content. We developed a set of methods

and algorithms in VT that can infer a user’s intention of correction

by combing the voice input, touch input, and text context, and

then directly execute the most likely correction operation. Our

evaluation showed that VT significantly improved the efficiency

of text editing and text correcting over the touch-only method

and the iOS’s Voice Control method: VT reduced the text editing

time by 30.80%, and text correcting time by 29.97% over the touch-

only method, and reduced the text editing time by 30.81%, and text

correcting time by 47.96% over iOS’s Voice Control. Overall, VT

mitigates the weaknesses of touch and voice input AND leverage

their strengths, hence improving the efficiency of text editing on

mobile devices.

2 RELATEDWORK
As background of the current work, we review previous techniques

for text editing, text correction, and multi-modal interactions.

2.1 Techniques for Editing and Correcting Text
on Mobile Devices.

Text editing and correction is an essential part of the heavy process

of text entry on mobile devices [28, 43]. The cursor-based method

was widely studied in previous research. iPhone Keyboard [3] sup-

ports magnifying lens and hard-press cursor touchpad. Hackerskey-

board [52] allows users to control the cursor with arrow keys. Pre-

vious work also adapted gestural methods for cursor positioning.

For example, previous research explored cursor moving by hori-

zontal gestures [15], “scroll ring” with four-direction gesture with

swipe [55], swiping left or right from “space” [22], including both

taps and gestures to be drawn on the top of the soft keyboard to

move the cursor, select text, and use the clipboard [16].

Along with the cursor-based method, researchers have explored

a number of facilitative methods for text selection. On Android de-

vices, users could select a word with multiple different operations,

including sliding finger, double-tap or long-press. Gestural meth-

ods such as clock-wise gesture [22] and two-finger gesture [15]

have also been implemented in text selection. Gaze’N’Touch [44]

explored gaze-based interaction on text selection.

For editing operations on selected text, current keyboards such

as iPhone keyboard [3] and google keyboard generally work with

a pop-up widget(menu) providing possible editing actions. There

are also gesture-based command [2, 8, 16, 30] have been explored

on the selected text.

Challenges of cursor-based editing and correction on mobile

devices often come from small screen sizes and the fat finger prob-

lem [5, 20, 51]. Intelligent interaction techniques such as auto-

correction were introduced to address these challenges. In modern

input methods on smartphones, auto-correction is wildly imple-

mented. It automatically corrects the word currently being en-

tered [6, 17, 50]. However, the limitation of auto-correction tech-

niques lies in the current input word which indicates that it is not

suitable for editing the text that has already been entered. Arif

et al. added intelligent sliding functions to the backspace in the

Smart-Restorable Backspace [4]. This technique can predict cor-

rection position and restore the previously deleted text. It helps

to reduce the operations on deleting and positioning operations

in word correction. WiseType [1] introduced novel visualization

to highlight errors to assist error correction. Besides, grammar

checking methods on entered text such as Gboard [33] and Gram-

marly [23] support correcting words and revising text by providing

possible text on the suggestion bar. However, these approaches of-

fer operations without considering the user’s correction intention.
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Thus the results can be irrelevant. VT adopts a user-guided ap-

proach to perform more goal-oriented operations. Users can point

at a location for error correction or dictate more context words

around the error words for better correction.

The "Type, then Correct" technique [54] and "JustCorrect" [9]

are recent techniques on reducing cursor operations by injecting in-

telligence into the post hoc text correction process. Those methods

are only for correcting a single word at a time, while VT is able to

correct a whole phrase at once. And those methods are mainly for

the scenario where there is only one input sentence, or correcting

the last input sentence by typing on a keyboard. VT can be applied

to anywhere the user points to in arbitrary text without any typing.

There are also voice-based editing method, such as Dragon Nat-

uallySpeaking and Voice Typing in Google Docs [19, 37]. Targeted

at accessibility applications, these methods transcribe the user’s

dictated words into input texts or editing commands and allow

users to dictate instead of typing on the text areas. However, these

approaches do not support the multimodal interaction to combine

the voice input with touch gesture operations. VT also has a larger

scope than previous research systems such as WiseType [1], Ges-

tures and Widgets [15], TouchTap [16], Gaze’N’Touch [44] and

Gedit [55]. VT focuses on both text formatting and error correction,

while those systems focus on only one aspect of text editing: Ges-

tures and Widgets [15], TouchTap [16] and Gedit [55] were about

text formatting only; Gaze’N’Touch [44] was about improving text

selection; WiseType [1] introduced novel visualization to highlight

errors to assist error correction. Additionally WiseType [1], Ges-

tures and Widgets [15], TouchTap [16], and Gedit [55] involve only

touch input, while VT integrates two modalities (touch and voice).

2.2 Multimodal Interaction Technologies on
Smartphones

Prior research has shown benefits with multimodal interaction,

such as being natural and and more error tolerant [29, 39, 40], flex-

ible [41], i.e., letting users pick any input mode as needed, and

accommodating people with different input capabilities [13]. Pre-

vious research has also shown improved performance using pen

marks and handwriting to correct speech recognition errors[49].

The presented research is particularly inspired by previous work on

leveraging multiple input modalities to improve text entry perfor-

mance. Modern soft keyboards (e.g., Gboard [33]) support entering

text via touch and voice input. However, these two modalities are

often used in isolation.

Researchers have also explored fusing information from multi-

ple modalities to reduce text entry ambiguity, such as combining

speech and gesture typing [38, 47], using finger touch to specify

the word boundaries to improve speech recognition accuracy [46],

or using unistrokes together with key landings [24] to improve

input efficiency. In desktop computing, combining eye gaze with

keyboard typing has been shown to be an effective approach to text

editing [48].

Previous research also explored the performance of multi-

modal interaction both on single-app tasks [14, 25] and cross-app

tasks [53]. The combination of voice and touch enhanced the ex-

perience on the mobile devices. Besides, multimodal method were

also implemented to enhance the performance on disambiguation

interfaces [32, 35, 45].

Although iOS’s Voice Control [21] and Android Voice Access

[18] enable users to edit and correct text with voice and touch input,

these two methods are not error-tolerant as they require precise

text selection, cursor manipulation, and precise text content for

error correction. For example, in both iOS’s Voice Control [21] and

Android Voice Access [18], substituting a text segment with touch

and voice requires the user to first precisely select the text segment

with touch, and speak the exact new content to replace the selected

text. In contrast VT is error-tolerant: VT can infer a user’s error

correction intention by combining language model, Word2Vec, and

Levenshtein distance between input text and existing content to

resolve ambiguity in input. A user only needs to approximately

indicate the location of error, and speak the content which may

or may not include words that already exist in the content. Addi-

tionally VT supports flexibly blending voice and touch input for

text formatting: the touch input (e.g., gliding over the text) could

occur before, during, or after the voice input. In contrast, iOS’s

Voice Control requires a user to select the text first and then issue

the command. Touch and voice input must follow a strict order in

iOS’s Voice Control.

3 USE SCENARIO
The following use scenario illustrates the goal of this project.

Bob often writes and edit text on smartphones. However he is

unsatisfied with the interaction experience. Touch input is ineffi-

cient for editing text as it requires precise control over the cursor

positions. Speech input is difficult to specify the editing location.

Neither of these two modalities meets his interaction needs. Exist-

ing voice and touch based multi-modal systems such as iOS’s Voice

Control is still not efficient enough because it still requires precise

text selection before edit or correct the text. He had heard through

the grapevine that VT combines voice and touch input modalities

which could avoid the tedious and precise text selection process

and is intelligent enough to infer the text span he intends to correct

or edit. Bob got it installed on his smartphone. The scenario below

illustrates how Bob utilizes the functionalities offered by VT.

It is a sunny Sunday afternoon and Bob is walking in the neigh-

borhood. During his walk, Bob remembers that he should not forget

to reply to the email his friend Jane had sent him yesterday. Bob

opens the email apps and dictates “I will talk to you on Monday at

9 am.” Bob, on a second thought, wishes to reschedule the meeting

to Tuesday. Bob taps the word “Monday” and speaks “Tuesday”. VT

infers that Bob intends to change “Monday” to “Tuesday” given the

language context, the caret location, and the spoken utterance. It

then changes “Monday” to “Tuesday” in the email. Bob also wants

to make “Tuesday at 9 am” bold as this meeting time is different

from their usual meeting time. Bob then taps “Tueday” and speaks

“bold four words”. VT then change the sentence to “I will talk to you

on Tuesday at 9 am.” Note that in this illustration, Bob combined

voice and touch input to correct an error and edit text in email,

without any precise text selection. VT has considerably simplified

Bob’s interaction with smartphone. He feels it has made him far

more productive than before.
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Next, we describe how VT supports multimodal text editing and

correcting techniques.

4 MULTIMODAL TEXT EDITING AND
CORRECTION TECHNIQUES

As shown in Figure 1, VT allows a user to combine voice and touch

input to edit text such as highlighting, cutting, copying, and pasting

text, or correcting errors such as correcting "jimos" to "jumps". It

supports editing actions at word, sentence, and paragraph levels,

and correction action at phrase level.

VT supported common touch input actions provided by the

Android EditText view [11], such as tapping to reposition the caret

position, or gliding the finger over a text segment to select it. The

outcome of an touch input action is the new position of the caret,

or the start and end positions of a selected text span.

VT supports voice input that starts before, during, and after those

touch input actions. The user can signal the start of voice input by

tapping or long clicking the text or tapping the microphone button.

Figure 2 shows the workflow of VT. A multimodal input event

is represented as X =< t , s >, where t represents the outcome of

a touch input, which could be the new caret position specified by

tapping, or start and end positions of a text span specified by finger

gliding, and s is the voice input.
After receiving X =< t , s >, VT first determines whether it

is an editing or correcting operation as follows. It obtains top N
(e.g., N = 20) voice recognition results T1,T2, ...,TN by feeding

the voice input s into a speech recognizer (e.g., Android built-in

voice recognizer). If the first word in any of Ti is one of the six

reserved editing commands ( copy, cut, paste, highlight, underline,

and bold), VT considers it as an editing command. Otherwise, the

voice inputs will be viewed as content for error correction. This

limitation prevents VT to correct content starting with the six

reserved word, which is common for current voice-based editing

systems. For example, iOS’s Voice Control reserves "copy that, cut

that, bold that, etc." for command input. The editing and correction

operations are supported separately, described in Section 4.1 Editing

Text and Section 4.2 Correcting Text, respectively.

4.1 Editing Text
VT supports six classes of common editing operations: copy, cut,

paste, highlight, underline, and bold.

4.1.1 Representation of an Editing Operation. VT first represents

a text editing operation as a 2-tuple: c =< r ,w >, where r is the
operation name specified as a character string (“highlight”, “bold”,

“underline”, “cut”, “copy”, or “paste”),w is the location parameter

specifying the text segment which the named operation will be

applied to.

Here are two examples showing how an editing operation is

defined by a 2-tuple: c =< r ,w >. For example, to highlight the

words “tomorrow at noon” in the sentence “The event will take

place tomorrow at noon”, the operation name r is “highlight”, the
location information w is the text segment “tomorrow at noon”.

Another example of operation is to cut the entire sentence “The

event will take place tomorrow at noon.”. For such an operation,

the operation name r is “cut”, the locationw is the sentence.

Under this representation, the key of supporting multimodal text

editing is to infer the intended text editing operation c∗ =< r ,w >
from the multimodal input X =< t , s >.

4.1.2 Creating and Executing Editing Operation. VT integrates the

touch input t and voice input s in X to create and execute the

intended text editing operation c∗ =< r ,w > in the following steps,

as specified in procedure GetEditingOperation (Algorithm 1).

One input to the algorithm is the touch input t , which could

be the new caret position specified by tapping, or start and end

positions of a text span specified by finger gliding.

The other input to the algorithm is T which is the voice recog-

nition result that includes the command name command . T is de-

termined as follows. VT examines the first word of Ti , which is

one of the top N voice recognition results from the voice input

s . If an editing command name command is found, we set T = Ti .
If multiple voice recognition results include a command name of

the first word, the one with the highest recognition score will be

chosen as T .
The algorithm first set r = command , which is the operation

name parameter of c∗. VT then integrates the touch input t and the
voice recognition result T to form the location parameterw for c∗.
VT supports two modes of forming w , namely Single Command

and Compound Command mode:

• Single Command Mode: The user dictates a single editing

command (e.g. bold), and selects the text with finger touch.

The editing command will then be applied to the selected

text. For example (Figure 3 left), to bold the phrase “tomor-

row at noon”, the user selects the phrase by pressing and

gliding the finger from “tomorrow” to “noon”, and dictates

the command “bold” during the touch input. VT supports

all the text selection action supported by Android EditText

view, including double tapping or long pressing to select a

word, or pressing and gliding to select a text segment.

• Compound Command Mode: A user combines voice and

touch input to specify the text on which the spoken com-

mand will be applied. For example (Figure 3 right), a user

taps to place the caret within a paragraph and says “bold

this paragraph”, to bold the entire paragraph where the caret

resides, or places the caret to a sentence and says “highlight

this sentence”, to highlight the entire sentence.

Whether an editing operation is in single or compound command

mode depends on whether the voice recognition result T includes

the words specifying the scope of the operation including numbers

and scoping word which is one of the words in the set <“word(s)”,

“sentence(s)”, “paragraph(s)”>. If no such a word is found, the edit-

ing is in the single command mode, otherwise in the compound

command mode.

In the single command mode, the selected texts by touch input t
is the location parameterw . In the compound command mode,w
is determined by combining the location information specified by

touch and scope information specified by voice input. For example,

if the voice input includes “two paragraphs” and the finger touch

lands on a specific paragraph, the w will include the paragraph

that the finger points to and the following paragraph. After c∗ is
created from X =< t , s >, VT will execute it. This algorithm to
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Touch and voice
input 𝑋(𝑡, 𝑠)

Editing or
Correcting 

text

Editing text Single or
Compound
Command

Single Command

Compound command

Integrating 𝑡 and 𝑠 to 
form the single command

operation 𝑐∗

Integrating 𝑡 and 𝑠 to 
form the compound

command operation 𝑐∗

Correcting text Step-1: Forming
correcting candidates

Step-2: Computing
scores for correcting 

candidates

Execute 𝑐∗

Execute 𝑐∗

Step-3: Generating
suggestions

Execute the
top suggestion
and show alternatives

Algorithm 1

Algorithm 2

Figure 2: The workflow of VT. The multimodal input from a user is represented as X =< t , s > where t is the touch input, and
s is the voice input. The algorithms and components in this figure are explained later in this section.

Figure 3: Examples for Single Command (left) and Compound Command (right) modes. (a): in the Single Command example,
the user is selecting the text "tomorrow at noon" by gliding the finger and dictating "bold" at the same time. (b): the selected
text becomes bold. (c) in the Compound Command example, a user taps the first paragraph and dictates "bold this paragraph".
(d): the paragraph becomes bold.

get the editing operation c∗ =< r ,w > is formally summarized in

Algorithm 1.

Our techniques support a user to speak the editing command

before, during or after the finger touch interaction, to accommodate

different collaboration patterns between voice and touch input. The

speech recognition is turned on as soon as a touch event occurs.

Should a user want to speak a command before landing the finger

on the text, she can click the voice input button on the screen. The

speech recognition will wait for 5 seconds for the user to start the

dictation, the duration of the dictation is up to 2 minutes.

4.2 Correcting Text
If a multimodal input event X is determined as a correction opera-

tion (i.e., none of the voice recognition result includes an editing

command as the first word), VT will follow the procedure described

in this section to correct text.

VT supports correcting existing text with touch and voice input,

such as insertingmissingwords or replacingwrong or inappropriate

words with new content. The user first specifies the location where

correction will occur with the input finger by either tapping the

error location, or selecting the erroneous text, and then dictates

the new text content to be inserted, or to substitute the erroneous

text. As shown in the use scenario (Section 3), Bob taps the word

"Monday” and says "Tuesday” to correct "Monday” to "Tuesday”.

The user can also speak some context around the text to be

corrected. For example, to correct the sentence "it waspada very

nice" to "it was very nice", the user can touch "waspada" and say

"was". But since "was" is a short word, without any context the

speech recognition model may recognize it as "were". Instead of

saying "was", the user can say "it was" or "it was very" or "was very
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Algorithm 1 VT Editing Algorithm

1:
∗procedure Get Editing Operation c =< r ,w >

2: input:
3: t ← touch input

4: T ← text recognized from voice input s
5: process:
6: w : location parameters of the text to edit

7: r : operation name

8: a : scope of operation specified by speech

9: r← search the operation name from T
10: a← search the operation scope from T
11: if operation scope a is found then
12: w ← get the location parameters by combining t

and a
13: else
14: w ← get the location parameters from t

15: end if
16: output:
17:

∗c =< r ,w >
18: end procedure

nice", etc. Adding context can help the speech recognition model

to better recognize the speaking content, and VT would utilize the

context to better locate the text to be corrected. Without adding

context, VT would still infer user’s correction intention.

VT enables text correction in three steps. In step-1, it takes the

multimodal input X =< t , s > and the sentence to be corrected L as

input to generates 3 types of text correction candidates: insertion-

only candidates I , substitution-only candidates S and insertion-

and-substitution candidates IS . In step-2, it assigns sentence score

SenScore or substitution score SubScore to each candidate based

on the speech recognition confidence score, an n-gram language

model, and the similarity between the new and existing text. The

SenScore or SubScore indicates how likely a candidate is the in-

tended correction operation the user will perform. In step-3, it

generates top 3 suggestions based on SenScore and SubScore of

correction candidates. The top suggestion is executed by default,

and the second and third candidates are provided as alternatives to

user.

In the rest of this section we give more algorithmic details of

each of the three steps.

4.2.1 Step-1: Forming Correction Candidates. The objective of this
step is to form correction candidates based on the multimodal input

X =< t , s > and the sentence to be corrected L.
Given multimodal input X =< t , s > and the language context L,

VT first obtains top N voice recognition resultsT1,T2, ...,TN from a

voice recognizer, where N is the total number of voice recognition

results. We chose N = 20 in the current implementation.

VT then uses each of the recognition resultsTi to generate three
types of correction candidates: insertion-only, substitution-only,

and insertion-and-substitution correction candidates. The three

types of correction candidates are described as follows.

Insertion-Only candidates. An insertion-only operation is an

operation that inserts the voice recognition resultTi into a sentence.
The location of the insertion depends on the the touch location t . To

accommodate the imprecise touch operation, Ti could be inserted

to the white space the t points to, or the space before and after the

touched word. The jth insertion-only candidate of the ith speech

recognition alternative Ti is defined as Ii j .
For example, assuming a user selects the word "yoybgade” in

the sentence "when do yoybgade to be there", and says "do you

have", the ith recognition result Ti is "do you have", although this

example cannot be fixed by insertion-only candidates, VT would

still generate two insertion-only candidates for Ti by inserting

Ti in two possible locations indicated by the underlines: "when

do_yoybgade_to be there" (also illustrated in Table 1).

Substitution-only Candidates.A substitution-only correction

is an operation that substitutes existing words in a sentence with

the voice recognition results Ti . Assuming Ti includes n words:

Ti =< w1,w2, ...,wn >, the touch input t selects the phrase PH in

the sentence, PH includes m words. VT would use Ti to replace

n consecutive words in the sentence, under the constraint that in

the replaced words at least one word is adjacent to or overlaps

with words in PH . Such a constraint ensures that the substitution

happens at or adjacent to the location specified by finger. If the

finger just taps on a word, the PH only includes the single word

tapped by the finger. The jth substitution-only candidate of the ith
speech recognition alternative Ti is defined as Si j .

For example, assuming that a user selects the word "yoybgade”

in the sentence "when do yoybgade to be there”, the ith speech

recognition resultTi is "do you have”, VT would create substitution-

only correction candidates for Ti as shown in Table 1.

Insertion-and-Substitution Candidates. An insertion-and-

substitution correction is an operation that performs both insertion

and substitution operations at the location specified by the touch

input t . It works similar to the substitution-only operation. The

only difference is that the number of words that are substituted

in the original sentence is less than the number of words in voice

recognition result Ti . The jth insertion-and-substitution candidate

of the ith speech recognition alternative Ti is defined as ISi j .
In the same example where the user selects the word "yoyb-

gade” in the sentence "when do yoybgade to be there”, the ith
speech recognition resultTi was "do you have”, VT would generate

insertion-and-substitutin candidates for Ti as shown in Table 1.

In Table 1, the candidates ISi1 to ISi4 are generated by replacing

2 words in the original sentence with "do you have", the candi-

dates ISi5 to ISi7 are generated by replacing 1 word in the original

sentence with "do you have".

4.2.2 Step-2: Computing Scores for Correcting Candidates. The ob-
jective of this step is to compute scores of correction candidates,

which are Ii j , Si j and ISi j generated from Step 1 (examples are il-

lustrated in Table 1). The score of a correction candidate represents

how likely the candidate is the intended correction operation.

For each insertion-only candidate Ii j , VT computes the sentence

score SenScorei j as follows:

SenScore(ij) = SCi ∗ LSi j , (1)

which is the product of speech recognition score SCi for the ith
speech recognition alternative Ti and language score LSi j .
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Table 1: Examples of correction candidates. This example assumes that the original sentence is "when do yoybgade to be
there", and the user taps the word "yoybgade" and says "do you have". It also assumes that the speech recognition result Ti is
"do you have". This table shows all the candidates generated for Ti . Ii j is the jth insertion-only candidate for Ti . Si j is the jth
substitution-only candidate Ti . ISi j is the jth insertion-and-substitution candidate for Ti . The scores SubScorei j , SenScorei j , SCi ,
PSi j and LSi j are defined in Section 4.2.2. ISi2 candidate is the intended correction result, its scores are bold.

Candidate Type Correction Candidates SubScorei j SenScorei j SCi LSi j PSi j

Insertion- Ii1 when do do you have yoybgade to be there N/A 0.192 0.969 0.198 N/A

only Ii2 when do yoybgade do you have to be there N/A 0.353 0.969 0.364 N/A

Si1 do you have to be there 0.139 0.969 0.969 1.000 0.144

Substitution-

Si2 when do you have be there 0.229 0.687 0.969 0.709 0.333

only

Si3 when do do you have there 0.121 0.652 0.969 0.673 0.186

Si4 when do yoybgade do you have 0.106 0.490 0.969 0.505 0.217

Insertion- ISi1 do you have yoybgade to be there 0.000 0.529 0.969 0.546 0.000

and- ISi2: when do you have to be there 0.300 0.847 0.969 0.354 0.874
substitution ISi3 when do do you have be there 0.010 0.472 0.969 0.487 0.021

ISi4 when do yoybgade do you have there 0.121 0.652 0.969 0.385 0.213

ISi5 when do you have yoybgade to be there 0.136 0.407 0.969 0.420 0.333

ISi6 when do do you have to be there 0.026 0.632 0.969 0.652 0.042

ISi7 when do yoybgade do you have be there 0.020 0.192 0.969 0.199 0.105

VT computes the SubScorei j for each substitution-only candidate
Si j or insertion-and-substitution candidate ISi j as follows:

SubScore(ij) = SenScore(ij) ∗ PSi j

= SCi ∗ LSi j ∗ PSi j ,
(2)

which is the product of speech recognition score SCi , language
score LSi j , and phrase similarity score PSi j .

The speech recognition score SCi , language score LSi j , and
phrase similarity score PSi j in Equations 1 and 2 are computed

as follows.

SpeechRecognition Score. The term SCi is the speech recogni-
tion confidence of the spoken textTi . In our current implementation,

it is between 0 and 1 and generated by the Android built-in speech

recognizer [12].

Language score. The language score LSi j reflects how likely a

candidate Ci j is a valid sentence. This score was computed similar

to the "Sentence Channel” score described in the previous work [9].

More specifically, we trained a 3-gram language model using the

KenLM Language Model over the Corpus of Contemporary Ameri-

can English (COCA) [10] (2012 to 2017), which contains over 500

million words. The fitted language model file was compiled into a

binary file to accelerate processing.

This language model will take a candidate sentence Ci j as input,
and outputs its estimated log probability P(Ci j ). By normalizing

P(Ci j ) in the range of 0 to 1, we get the language score LSi j :

LSi j =
P(Ci j ) −min(P(Ci j ))

max(P(Ci j )) −min(P(Ci j ))
(3)

wheremin(Ci j ) andmax(Ci j ) are the minimum and maximum lan-

guage scores among all the correction candidates.

Phrase similarity. The phrase similarity score PSi j is defined
for substitution-only, and insertion-and-substitution corrections

candidates. It reflects how similar the substituted n-word phrase in

the original sentence (denoted by Pj , which refers to the substituted

n-word phrase of the j-th possible substitution candidate) is to the

newm-word phrase, which is the voice recognition result Ti . The
higher PSi j , the more similar Pj is to Ti .

The phrase similarity score is computed as follows. For a word

wi in Pj (i = 1, 2, ...,n), we first find a matching wordw ′ in Ti i that

has the highest similarity score. The similarity score of between

two wordswi andw
′
, denoted by Score(wi i ,w

′), is computed as:i

Score(wi ,w
′
i ) =

ES(wi ,w
′
i ) +WS(wi ,w

′
i ) . (4)

2

The term ES(wi ,w
′) is obtained by dividing the Levenshtein [31]i

edit distance between w ′
i and w with max(L(wi i ),L(w

′)), wherei
L(w ′ ′

i ) and L(w ) are the length of wi i and w in characters. Thisi
term ES(wi ,w

′) has a value between 0 and 1, reflecting how similari
wi is tow

′
in spelling. The termWS ′(wi i ,w ) is the cosine similarityi

between the word embeddings ofwi andw
′
, reflecting the semantici

similarity between wi and w ′. Our word embedding model wasi
learned over the “Text8” dataset [34] using theWord2Vec skip-gram

approach [36].

The phrase similarity PSi j is computed as the weighted average

of word similarity score over all the words in the substituted phrase

Pj :

PS =
n∑
i=1

αi ∗ Score(wi ,w
′
i ), (5)

wherewi is a word in Pj ,w
′
is the word inTi that has the highesti

similarity score withwi , namelyw ′ is the matching word forwi i in

Ti , and αi is a weight which reflects whether the position ofwi in

the substituted phrase Pj is close to the position ofw ′ in the newi
text content Ti .

The αi is calculated as follows. We first use a range [PStart(wi ),

PEnd(wi )] to represent the relative position of wi in Pj . Both
PStart(wi ) and PEnd(wi ) are numbers between 0 and 1. Assuming

Pj has n words, the index of its words are from 0 to n − 1, and
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k is the index of the word wi in Pj , we define PStart(wi ) = k/n
and PEnd(wi ) = (k + 1)/n. Following the same method, we repre-

sent the position of w ′ in Ti which has m words as [TStart(w ′),i i
TEnd w ′( )]. Assuming the length of the overlapped range betweeni
[PStart w , PEnd w ] and TStart w ′ ,TEnd w ′( i ) ( i ) [ ( ) ( )] is τ , we de-i i
fined αi as αi = τ ·Max(n,m), where Max(n,m) is the maximum

value of n andm.

Under this definition of αi , if Pj and Ti has the same number of

words (i.e., n = m), and the position of wi in Pj is the same with

the position ofw ′ in Ti , we have αi = 1. If τ = 0, which means thei
range [PStart(wi ), PEnd(w

′ ′
i )] and [TStart(w ),TEnd(w )] have noi i

overlap, we have αi = 0. Such an αi value (αi = 0) reflects the

condition where the position ofwi is far different from the position

ofw ′.i
With the above equations (Equations 1-5), we can compute a

SenScorei j or SubScorei j for each correction candidate. Table 1

show scores for some examples.

4.2.3 Step-3: Generating suggestions. The objective of this step is

to order correction candidates by their scores and output top three

candidates. VT orders the correction candidates as follows. It first

merges the list S which contains all substitution-only candidates

with the list IS which contains all insertion-and-substitution can-

didates to a merged list denoted byM , and sort the merged list M
by SubScore in descending order. Second, VT sorts the list I which
contains all insertion-only candidates by SenScore in descending

order. Third, it compares the top elements in both the merged list

M and sorted list I by candidates’ SenScore , and pick the one with

higher SenScore as the top 1 suggestion. It then removes the picked

correction candidate from the corresponding sorted list and per-

forms the comparison again to obtain 2nd, and 3rd suggestions. We

used the SenScore to compare candidates between I andM because

SenScore is common score between all three types candidates while

insertion-only candidates do not have Subscore , so using SenScore
can compare candidates inM and I with the same metric.

The outcome of this step is the top 3 suggestions for correcting

operation. The top candidate is the default outcome and the 2nd and

3rd candidates are suggested as alternatives which can be selected

by tapping it with finger touch.

The algorithm for VT text correcting is summarized in Algo-

rithm 2.

5 EXPERIMENT 1: COMPARING VT WITH
TOUCH-ONLY METHOD

In this experiment, we compared VTwith the state-of-the-art touch-

only method for text editing and text correction tasks. We imple-

mented the multimodal text editing and correcting techniques on an

Android smartphone (Google Pixel with Android 9) and conducted

a user study to evaluate its performance. We used the Android

built-in SpeechRecognizer class [12] for voice recognition.

5.1 Participants
We recruited 16 participants (five females) from 22 to 32 years old

(Mean = 26.8, Std = 3.1). The self reported median familiarity (1:

not familiar, 5: very familiar) with the existing touch-only text

editing technique was 5. The participants were instructed to use

their preferred hand posture throughout the study.

Algorithm 2 VT correcting Algorithm

1: procedure Get Correcting Suggestions

2: input:
3: t ← touch input

4: s ← voice input

5: L← sentence to be corrected

6: process:
7: I← generating insertion-only candidates by t, s and

L (e.g., Table 1)

8: S← generating substitution-only candidates by t, s
and L (e.g., Table 1)

9: IS← generating insertion-and-substitution candidates

by t, s and L (e.g., Table 1)

10: compute sentence scores SenScore for each candidate

in I, S and IS (Equation (1))

11: compute substitution scores SubScore for each
candidate in S and IS (Equation (2))

12: SortedM ← merge S and IS , and sort the merged

candidates by SubScore in descending order

13: SortedI ← sort I by SenScore in descending order

14: for i ← 0 to 2 do
15: if SortedM[0]’s SenScore > SortedI[0]’s SenScore then
16:

17:

18:

Suддestions[i] ← SortedM[0]
Remove SortedM[0] from SortedM

else
19:

20:

21:

Suддestions[i] ← SortedI [0]
Remove SortedI [0] from SortedI

end if
22: end for
23: output:
24:

25:

Suддestions[0], Suддestions[1], Suддestions[2]
end procedure

5.2 Apparatus
A Google Pixel device (Android version: 9, Processor: Qualcomm

Snapdragon 821, GPU: Qualcomm Adreno 530, RAM: 4GB LPDDR4,

Internal storage: 32GB) with a 5.0" display (AMOLED with 1080 ×

1920 pixel resolution) was used for the experiment.

5.3 Design
The study was a within-subjects design. The independent variable

was the text editing and correcting method, which has two levels:

touch-only condition and VT condition.

• Touch-Only condition. The user used the existing touch-

based method in Android OS to complete the task. More

specifically, the user could manipulate the caret, and select

text using the default touch gestures supported by Android

Text View, such as tapping to reposition caret, double tapping

to select a word, and pressing and gliding to select multiple

words. After a text segment was selected, a floating menu

with common text editing operations was displayed near

the text as shown in Figure 4 and the user could execute

an editing command via the menu. The floating menu de-

sign followed the design in Android text editing application

such as Google Keep. The top-level menu includes common
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(a)

(b)

Figure 4: The floating menu for text editing task in the
touch-only condition. (a) The menu is displayed after some
text are selected. The "paste", "cut" and "copy" are displayed
as default, extra menu items will be displayed after clicking
the three dots at the end of the menu. (b) Extra menu items
are shown after clicking the three dots in (a). Clicking the
back arrow in the menu will go back to the menu in (a).

operations such as “cut”, “copy”, and “paste”; tapping the

three dot icon will reveal more operations including “high-

light”, “bold”, and “underline”. In this condition a user used

the Google’s Gboard to correct errors and type corrected

content.

• VT condition. The participant used VT to edit text and cor-

rect errors. The touch-only method was kept as a fallback

method. The user may choose to use touch-only method

to finish the task if she failed on using VT. We kept touch-

only method as a fallback method because VT is proposed to

augment rather than replace the existing touch-only method.

The study included two tasks: Text editing task and text correc-

tion task, which are described in the next section. In the experiment,

the order of the two tasks and the two conditions were counterbal-

anced across 16 users.

5.4 Tasks
5.4.1 Text Editing Task. There were 5 classes of editing tasks in

total: cut & paste, copy & paste, highlight, bold, underline. The

editing tasks were applied to 3 levels of texts: words, sentences,

and paragraphs. In the experiment, there was one trial for a editing

class × level combination, so there were 1× 3× 5 = 15 trials in total.

The orders of the 15 trials were randomized for each condition and

each user. We created editing tasks on text chosen from the Enron

Email Dataset [27], which contained a total of about 0.5M emails

from about 150 users. Some editing tasks are shown in Figure 5 as

examples.

(a)

(b)

(c)

Figure 5: Examples of the editing tasks on different levels
of text. Figure 5a is a task to highlight 4 words (word-level
task). Figure 5b is a task to make a sentence bold (sentence-
level task). Figure 5c is a task to cut and paste a paragraph,
the paragraph in the box needs to be cut and pasted at the
location pointed by the arrow.

In total, the experiment included 16 participants × 2 methods ×

15 trials = 480 trials.

5.4.2 Text Correction task. Participants corrected text errors in

this task. The sentences with errors were selected from Palin et al.’s

mobile typing dataset [43]. This data set had entered text and their

correct versions by 37,370 users on mobile phones. We focused

on omission and substitution errors since the editing operation of

VT was designed to handle these two types of errors. There were

28 testing sentences for this task, 5 have omission errors, 23 have

substitution errors.

The difficulty of a correcting task was defined by the character-

level edit distance between the target sentence and the sentence

with errors. For the edit distance ranged from 1 to 6, we created

at least three correcting trials for each edit distance. We also cre-

ated 3 trials with edit distance larger than 6. Table 2 shows some

example sentences used in the experiment. We excluded sentences

with errors on numbers, names and acronyms due to the difficulty

of recognizing these words with voice input. Each participant cor-

rected the same set of sentences for each condition. The order of

the sentences were randomized for different conditions and users.

In total, the experiment included 16 participants × 2 methods ×

28 trails = 896 trials.
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Table 2: Examples of correcting tasks in the experiment. The first sentence contains an omission error. The rest sentences
contain substitution errors. The different words between the text to edit and the target text are underlined.

Te

1.

xt to edit

If not can call you

Target text

If not can I call you

2.

3.

Wh

Itu

at so you

waspada

thinl

very nice

W

It

hat

was

do y

very

ou think

nice

4. The matter address tomorrow with Stan We will address tomorrow with Stan

5.5 Procedure
In each trial, a presentation page was first displayed to explain

the editing/correcting task. For example Figure 6(a) and Figure 6(c)

show the presentation pages for an editing and correcting trial

respectively. Clicking the “start” button started the trial. Once the

task is accomplished, a “Success!” would show on the top right of

the screen as shown in Figure 6(d), then clicking the “Next” button

would start the next trial.

During an editing trial, a user could click the “Back” button

located at the bottom-left of the screen to return to the presentation

page to check the editing instruction, and then press the start button

again to restart the trial. The “Undo” button on the bottom right

would undo the last editing operation. In the VT condition, there

would be a “microphone” button to start the speech recognition, in

case a user wanted to start voice input before touch input.

Before the experiment, participants completed a warm up ses-

sion to get familiar with VT condition and touch-only condition.

They used VT and touch-only conditions to complete 10 warm-

up correction trials separately, and used touch-only condition, VT

single command mode, and VT compound command mode to com-

plete 8 editing trials separately. In the experiment, participants

were instructed to complete each trial (from the moment “Start”

button being clicked to the moment “Success!” was shown) as fast

as possible.

5.6 Results
5.6.1 Error Rate. Because participants were required to success-

fully complete a trial to move to next trial, there was no erroneous

(or incomplete) trial left. The error rate was 0 for both VT and

touch-only method in both editing and correction tasks.

5.6.2 Completion Time for Editing tasks. The task completion time

was the main metric for evaluating the performance of each method.

We referred to task completion time as “editing time” for an editing

trial, which was defined as the duration from the moment the “start”

buttonwas clicked on the task presentation page to themoment that

"Success!" was shown on the editing page. This metric measures

users’ operation time to accomplish the editing task.

The average editing time for all trials using the designated meth-

ods are shown on the left part of Figure 7. The mean ± 95% CI

of the editing time was 10.28 ± 0.71 seconds for the touch-only

method and 7.20 ± 0.44 seconds for the VT method. A paired-

samples t-test indicates that the difference was statistically signifi-

cant (t15 = 5.36,p < 0.001). VT reduced the average editing time

by 30.80%.

To investigate the performance of VT on different levels of text,

the average editing time for different text levels using the designated

methods are shown in Figure 8. We can see that the editing time

of touch-only method increases with levels while the editing time

of VT method stays relative stable among levels. This is because

there are more texts to be selected for the higher levels, touch-

only method needs to select text by gliding and taps on the screen,

while VT method can automatically select texts by compound voice

commands. In the word level, the mean ± 95% CI of text editing

time with touch-only method and VT method was 8.10 ± 1.10 and

7.02 ± 0.85 respectively. In sentence level, the mean ± 95% CI of

text editing time with touch-only method and VT method was

10.80 ± 0.87 and 7.21 ± 0.74. In paragraph level, the mean ± 95% CI

of text editing time with touch-only method and VT method was

11.94±1.48 and 7.38±0.67. In each level, the VT method performed

faster than the touch-only method. Pairwise comparisons with

Bonferroni correction showed that differences were statistically

significant in sentence level and paragraph level (p < 0.001) and

not significant at word level (p = 0.2076).

To investigate how VT and touch-only method complement

each other in the VT condition, the percentage of different methods

used per level are counted, as shown in Figure 10. We can see

that for all trials (the first bar) users chose to use VT method for

more than 90% of the operations. For VT method, the compound

commands are more frequently used than single commands. For

words level editing, the touch-only method is used more frequently

than sentences level or paragraphs level, this is because VT saves

more time for higher levels.

VT’s single commands support flexibly blending voice and touch

input for text editing. The touch input (e.g., gliding over the text)

could occur before, during, or after the voice input. For all the single

commands used in this user study, 4.7% of touch inputs occur prior

to the voice input, 91.6% of touch inputs occur during the voice

input, and 3.7% of touch inputs occur after the voice input. Users

prefer issuing the voice command during the touch input.

The editing time for trials using the touch-only method and VT

method in different editing tasks are shown in Figure 9. In each task,

the editing time of the VT method was lower than the touch-only

method.

5.6.3 Method Usage Pattern in Text Editing Task. Since touch-only
method was kept as a fallback method in the VT condition, we

examined the percentage of using this method. The percentage of

using VT-single-command, VT-compound-command, and touch-

only method to edit text in the VT condition is shown in Figure 11.

We can see that for each operation VT was chosen for more than

80% of the operations. The “Paste” did not have VT compound
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Figure 6: The procedures of the experiment, (a) and (b) are for the text editing task, (c) and (d) are for text correction task. (a):

the presentation page for a text editing task. (b): a participant is highlighting the text by voice command and gliding. (c): the

task presentation page of a text correction task. (d): outcome of using VT method to correct the error. Two alternatives are

shown under the editing text. The user can choose a suggestion by tapping it.

Figure 7: Themean (95% CI) of completion time by task type

×method.

Figure 8: Themean (95% CI) of completion time by text level

×method in text editing task.

commands by design, still its VT single command was chosen for

nearly all the operations.

5.6.4 Completion Time for Correction tasks. For correction tasks

the “correcting time” for each trial was defined as the duration from

Figure 9: The mean (95% CI) of completion time by editing

task type ×method.

the moment the “start” button in the task presentation page was

clicked to the moment that "Success!" was shown on the editing

page. This metric measures users’ operation time to correct the

errors.

The average correcting time for all trials using the designated

method is shown on the right part of Figure 7. The mean ± 95% CI

of the correcting time was 6.27 ± 0.33 seconds for the touch-only

method and 4.34±0.23 seconds for the VTmethod. A paired-samples

t-test indicates that the difference was statistically significant (t15 =
7.47,p < 0.001). VT methods reduced the average correcting time

by 29.97%.

To understand the effectiveness of the methods, we grouped all

the correcting trials by edit distance between the target sentence

and the incorrect sentence. The average text correcting time for

different edit distances with the twomethods are shown in Figure 12.

When the edit distance is 1, the correcting time with VT method

did not show better performance than touch-only method. The VT

, method were faster than the touch-only baseline for the rest edit

distances.

172



UIST ’21, October 10–14, 2021, Virtual Event, USA Zhao et al.

Figure 10: In the VT condition, the percentage of using VT-
single-command, VT-compound-command, and touch-only
method to edit text bywords, sentences andparagraphs level
tasks in the text editing task. Note that in the VT condition,
touch-only method was a fallback method.

Figure 11: In the VT condition, the percentage of using VT-
single-command, VT-compound-command, and touch-only
method to edit text by task type, in the text editing task.

5.6.5 Method Usage Pattern in Text Correction Task. Figure 13

shows the percentage of different method used per edit distance for

VT condition. We can see that VT was chosen by users for more

than 90% of all trials (the first bar). For edit distance at 1, more

users chose to use the touch-only method than other edit distances.

It is understandable as Figure 12 shows that touch-only method

was faster than VT when edit distance is 1, which means only one

character is wrong in the sentence.

5.6.6 Subjective feedback. At the end of the experiment , we asked

participants their preferred method (VT, touch-only method or No

preference) for the two kinds of tasks. For the editing tasks, 16 out

of 16 participants preferred VT method. For the correcting tasks, 15

out of 16 participants preferred VT, 1 participant prefer touch-only

method.

We also asked the participants to provide a numerical rating

(1: least demanding, 10: most demanding) on mental and physical

demand for each method and each kind of tasks. Mental demand

describes how much mental effort is required. Physical demand

Figure 12: The mean (95% CI) of completion time by edit dis-
tance ×method.

Figure 13: In the VT condition, the percentage of using VT
and touch-only method to correct errors by edit distance in
the text correction task.

describes how much physical effort is required. The medians of

subjective ratings are shown in Figure 14. For the editing tasks,

the subjective ratings were in favor of VT for both mental and

physical demands. Wilcoxon Signed-Ranks Tests indicated that the

subjective mental (p < 0.001) and physical (p < 0.001) demands of

the VT method were significantly lower than those of the touch-

only method. In correction tasks, the subjective ratings were also

in favor of VT for both demands. Wilcoxon Signed-Ranks Tests

indicated that the subjective mental (p < 0.001) and physical (p <
0.001) demands of the VT method were significantly lower than

those of the touch-only method.

6 EXPERIMENT 2: COMPARING VTWITH
IOS’S VOICE CONTROL

In this experiment, we compared VT with iOS’s Voice Control for

voice and touch based multimodal text editing and correction.
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Figure 14: Median of subjective ratings. Lower rating means

lower mental or physical demand.

6.1 Participants

We recruited 14 participants (two females) from 23 to 32 years

old (Mean = 26.4, Std = 2.5). 10 of them were Android phones

users and 4 of them were iPhone users. Although none of them

had experience of using iOS’s Voice Control for text editing and

correction, each of them went through a 25-minute long training

about iOS’s Voice Control prior to the experiment, as explained in

Section 6.5 Procedure.

6.2 Apparatus

We used an iPhone SE device (2nd generation, iOS version: 14.6,

Processor: A13 Bionic chip, RAM: 3GB, Internal storage: 64GB) with

a 4.7" display (LCD with 1334 × 750 pixel resolution), and a Google

Pixel phone which was the same as the phone used in Section 5.

6.3 Design

The study was a within-subjects design. The independent variable

was the text editing and correcting method, which has two levels:

VT and iOS’s Voice Control conditions.

• VT condition. The participants used VT to correct and edit

text on an Android phone.

• iOS’s Voice Control condition. Users used iOS’s Voice Control

to edit text and correct errors on an iPhone.

Because the objective of this experiment is to compare the voice

and touch basedmultimodal methods, participants were not allowed

to use keyboards to enter text and the floating menus for editing,

in either VT or iOS’s Voice Control.

The study included two tasks: Text editing task and text correc-

tion task. In the experiment, the order of the two tasks and the two

conditions were counterbalanced across 14 users.

6.4 Tasks

6.4.1 Text Editing task. The text editing tasks in this study were

the same as Section 5, except that 3 tasks using the "highlight"

command were not included. Because iOS’s Voice Control does not

have a voice command to highlight text.

6.4.2 Text Correction task. The text correction tasks in this study

are the same as Section 5.

6.5 Procedure

The procedures for VT condition are the same as Section 5. The

experiment APP for the VT condition was in Android system. For

iOS’s Voice Control condition, we made an experiment APP in

iOS system to replicate the same experiment procedure as the VT

condition. The procedures are the same as the VT condition, ex-

cept that there is no microphone button in the iOS APP because

iOS’s Voice Control keeps recognising speech all the time.

Before the experiment, participants are thoroughly instructed

about how to correct and edit text under each condition. For the

iOS’s Voice Control condition, participants were demonstrated

about the touch gestures in iOS for text selection, such as dou-

ble tap to select a word, triple tap to select a paragraph, etc. And

they were demonstrated about the voice commands in iOS’s Voice

Control, such as "replace {phrase} with {phrase}", "insert {phrase}

before/after {phrase}", etc. Then participants completed a warm

up session to get familiar with VT and iOS’s Voice Control. They

used each method to complete 10 warm-up correction trials and 8

warm-up editing trials.

6.6 Results

6.6.1 Error Rate. Similar to Section 5, the error rate was 0 for both

VT and iOS’s Voice Control in both editing and correction tasks,

because participants must successfully complete a trial to advance

to the next one.

6.6.2 Completion Time for Editing tasks. The average completion

times for editing trials using iOS’s Voice Control and VT are shown

in Figure 15. The mean ± 95% CI of the editing time was 13.13±1.17

seconds for the iOS’s Voice Control and 9.09 ± 0.83 seconds for the

VT method. A paired-samples t-test indicated that the difference

was statistically significant (t13 = 7.05,p < 0.001). VT reduced the

average editing time by 30.81%.

Figure 15: Mean (95% CI) of completion times for edit-

ing tasks for iOS’s Voice Control and VT. The mean text-

selecting time and mean text-changing time are shown in

different colors.

To investigate where the improvement of VT came from, we

divided the task completion time into two parts, text-selecting time

and text-changing time. The text-selecting time is the time to select

text or move the caret. The text-changing time is the time to change
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the text after the text was selected or the caret was moved. The

text-selecting time and text-changing time for iOS’s Voice Control

and VT are shown in Figure 15.

VT significantly reduced text-selecting time over iOS’s Voice

Control for editing tasks. The mean ± 95% CI of the text-selecting

time was 9.30 ± 1.00 seconds for the iOS’s Voice Control method

and 3.45 ± 0.50 seconds for the VT method. A paired-samples t-

test indicated that the difference was statistically significant (t13 =
8.86,p < 0.001). VT methods reduced the average text-selecting

time by 62.90%.

The mean ± 95% CI of the text-changing time was 3.83 ± 0.29

seconds for the iOS’s Voice Control method and 5.64 ± 0.46 sec-

onds for the VT method. A paired-samples t-test indicated that the

difference was statistically significant (t13 = 3.88,p < 0.002).

6.6.3 Completion Time for Correction tasks. The average comple-

tion times for correction trials using iOS’s Voice Control and VT

are shown in Figure 16. The mean ± 95% CI of the correcting time

was 9.80 ± 1.52 seconds for the iOS’s Voice Control and 5.10 ± 0.44

seconds for the VT method. A paired-samples t-test indicated that

the difference was statistically significant (t13 = 4.62,p < 0.001).

VT methods reduced the average correcting time by 47.96%.
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Figure 16: Mean (95% CI) of completion times for correc-

tion tasks for iOS’s Voice Control and VT. The mean text-

selecting time and mean text-changing time are shown in

different colors.

The text-selecting time and text-changing time for iOS’s Voice

Control and VT for the text correcting tasks are shown in Figure 16.

VT significantly reduced the text-selecting time over iOS’s Voice

Control for correcting tasks. Themean± 95%CI of the text-selecting

time was 6.00 ± 1.32 seconds for the iOS’s Voice Control method

and 1.63 ± 0.27 seconds for the VT method. A paired-samples t-

test indicated that the difference was statistically significant (t13 =
5.75,p < 0.001). VT methods reduced the average text-selecting

time by 72.83%. The difference between the two methods’ text-

changing times were not significant for correcting tasks. The mean

± 95% CI of the text-changing time was 3.80 ± 0.40 seconds for the

iOS’s Voice Control method and 3.47 ± 0.25 seconds for the VT

method. A paired-samples t-test indicated that the difference was

not statistically significant (t13 = 1.07,p = 0.30).

6.6.4 Subjective feedback. At the end of the experiment, we asked

participants to rate each method on a scale of 1 to 5 (1: least pre-

ferred, 5: most preferred) for each task. The medians of subjective

ratings are shown in Figure 17. For editing tasks, the median rat-

ing for VT and iOS’s Voice Control were 5 and 3. A Wilcoxon

Signed-Ranks Test indicated that the subjective ratings of VT was

significantly higher than that of iOS’s Voice Control (Z = 2.4809,

p = 0.01314). For correction tasks, the median rating for VT and

iOS’s Voice Control were 5 and 3. A Wilcoxon Signed-Ranks Test

indicated that the subjective ratings of VT was significantly higher

than that of iOS’s Voice Control (Z = 3.0594, p = 0.0022).
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Figure 17: Median of subjective ratings for text editing and

correction using VT and iOS’s Voice Control. For measure

1, 2, 4 and 5, a lower rating means lower mental and physi-

cal demand. For measure 3 and 6 (1: least, 5: most preferred),

a higher score means the method is more preferred. VT re-

ceived favorable ratings in all categories.

We also asked the participants to provide a numerical rating

(1: least demanding, 10: most demanding) on mental and physical

demand for each method and each task. The medians of subjective

ratings are shown in Figure 17. For each task, the subjective ratings

were in favor of VT for both mental and physical demands.

7 GENERAL DISCUSSION

VT as a research project developed and studied novel text editing

methods that synergistically combine touch and voice. Touch, being

intuitive and direct at expressing spatial information, has been cen-

tral to modern mobile computing but suffers from weaknesses such

as imprecision. Speech is fundamentally fast (typical broadcasting

speed is around 200 words per minute) but suffers from weaknesses

such as expressing precise spatial information. Progress in deep

learning has made speech recognition increasingly accurate and

practical [7]. Our insight guiding the design of VT was to leverage

the respective strength of touch and voice and avoid their respective

weakness. In particular VT uses touch gestures to approximately

indicate the editing or correction scope and uses voice to articulate

the corresponding command or replacement text. Furthermore, by

using the speech recognition APIs pre-installed on Android Pixel

Phones and developing a set of relatively simple algorithms against

the text editing task space, VT were able to infer the user’s intents
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from natural speech and touch input that is imprecise in timing

(in relation to the voice utterance) and space (the text selection

boundary can be fuzzy).

In our studies involving a set of common editing tasks and an

error correction task, VT demonstrated marked improvements over

the state-of-the-art touch-only baseline and the iOS’s Voice Control

baseline. In the study comparing VT with the touch-only method,

VT reduced the time for editing tasks by 30.80% and the time for

error correcting tasks by 29.96%. The users’ subjective preference

was also overwhelmingly favorable toward VT than the conven-

tional touch-only method. For editing tasks, the improved efficiency

was mainly attributed to automatic text selection by VT. For error

correcting tasks, the improved efficiency was mainly attributed to

reduction of typing actions and moving the cursor by touch.

In the study comparing VT with the iOS’s Voice Control method,

VT reduced the time for editing tasks by 30.81% and the time for er-

ror correcting tasks by 47.96%. For both editing and correcting tasks,

the improvements of VT came from reducing the text-selecting time.

For the editing tasks, the compound command of VT does not need

precise selection of the text before issuing the editing command.

For the correction tasks, VT could inference the location to replace

or insert the new phrase while iOS’s Voice Control requires precise

selection of the erroneous phrase. Although iOS’s Voice Control

has voice commands to correct text without touch input, such as

"replace {phrase} with {phrase}" and "insert {phrase} before/after

{phrase}", those voice commands are not usable for mistyped phrases

that do not have recognizable pronunciations. There are 53.6% cor-

rection trials in the study have this kind of mistyped phrases. When

using iOS’s Voice Control, those trials require precisely selecting

the erroneous phrases before correcting them by speech.

While the improvements were quite significant and clear cut,

there are many limitations of the study and further improvements

to be made for VT. VT could use a customized speech recognition

model. The editing tasks tested were representative of, but nonethe-

less not literately, naturally occurring tasks in real world writing

activities. Depending on the app context, there may be a need to

extend the command set. How well the current set of simple algo-

rithms can scale to the extended set remains to be explored. More

complex algorithms could be proven necessary.

8 CONCLUSION
We researched and developed VT, a voice and touch based mul-

timodal text editing and correcting method for smartphones. It

allows a user to combine voice and touch input to edit text and

correct errors. For text editing, the user can tap a text area then

speak a compound command such as "bold the paragraph" to edit

text, or the user can glide the finger over a text segment and speak

out an editing command (e.g., “cut”, “copy”, or “bold”) to edit text.

For text correction, the user can point to the approximate loca-

tion of errors and speak the new word or phrase to correct them.

VT can work without precise text selection because it can infer a

user’s editing or correcting intention by combining the voice in-

put, touch input, and text context. Our user study showed that VT

greatly improves the text editing and correcting performance over

the existing touch-only method and iOS’s Voice Control method.

Compared to touch-only method, VT reduced the task completion

time of text editing tasks by 30.80%, and the time for text correcting

by 29.97%. Compared to iOS’s Voice Control method, VT reduced

the task completion time of text editing tasks by 30.81%, and the

time for text correcting by 47.96%. VT is also strongly preferred by

participants. Overall, VT mitigates the weaknesses of touch and

voice input by leveraging the strengths of the other, improving the

efficiency of text editing and correcting on mobile devices.
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