Voice and Touch Based Error-tolerant Multimodal Text Editing
and Correction for Smartphones

Maozheng Zhao Wenzhe Cui LV. Ramakrishnan
Department of Computer Science, Department of Computer Science, Department of Computer Science,
Stony Brook University Stony Brook University Stony Brook University

Stony Brook, NY, USA
mazhao@cs.stonybrook.edu

Shumin Zhai
Google LLC
Mountain View, California, USA
zhai@acm.org

Editing Operation

“highlight this
sentence”

I

How could | answer
the child? | dq npt

How could | answer
the child? | do not
know what it is any
more than he.

know what Vi
more than he.

cory

(a) (b)

Stony Brook, NY, USA
wecui@cs.stonybrook.edu

Stony Brook, NY, USA
ram@cs.stonybrook.edu

Xiaojun Bi
Department of Computer Science,
Stony Brook University
Stony Brook, NY, USA
xiaojun@cs.stonybrook.edu

Correcting Operation

} "jumps over”

a quick fox$‘
alazydog™

/.-*—:Jber

a quick fox jumps over
a lazy dog

(© (d

Figure 1: Demonstration of VT. (a): To edit a sentence, the user taps the sentence and speaks the editing command. (b) is the
result of the editing operation. (c): To correct errors in a sentence, the user taps the position of the errors and speaks the new
content for correction. (d) is the outcome of correction. The phrase "jimos ober" in the original sentence is corrected to "jumps

over".

ABSTRACT

Editing operations such as cut, copy, paste, and correcting errors in
typed text are often tedious and challenging to perform on smart-
phones. In this paper, we present VT, a voice and touch-based
multi-modal text editing and correction method for smartphones.
To edit text with VT, the user glides over a text fragment with a
finger and dictates a command, such as "bold" to change the format
of the fragment, or the user can tap inside a text area and speak a
command such as "highlight this paragraph" to edit the text. For text
correcting, the user taps approximately at the area of erroneous text
fragment and dictates the new content for substitution or insertion.
VT combines touch and voice inputs with language context such

This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike International 4.0 License.

UIST ’21, October 10-14, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8635-7/21/10.
https://doi.org/10.1145/3472749.3474742

162

as language model and phrase similarity to infer a user’s editing
intention, which can handle ambiguities and noisy input signals. It
is a great advantage over the existing error correction methods (e.g.,
i0S’s Voice Control) which require precise cursor control or text
selection. Our evaluation shows that VT significantly improves the
efficiency of text editing and text correcting on smartphones over
the touch-only method and the i0S’s Voice Control method. Our
user studies showed that VT reduced the text editing time by 30.80%,
and text correcting time by 29.97% over the touch-only method. VT
reduced the text editing time by 30.81%, and text correcting time
by 47.96% over the iOS’s Voice Control method.

CCS CONCEPTS

+ Human-centered computing — Human computer interac-
tion (HCI); Interaction techniques.

KEYWORDS

Multimodal interaction; text editing; text correction; touch input;
smartphones.

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3472749.3474742

UIST 21, October 10-14, 2021, Virtual Event, USA

ACM Reference Format:

Maozheng Zhao, Wenzhe Cui, LV. Ramakrishnan, Shumin Zhai, and Xiaojun
Bi. 2021. Voice and Touch Based Error-tolerant Multimodal Text Editing and
Correction for Smartphones. In The 34th Annual ACM Symposium on User
Interface Software and Technology (UIST °21), October 10-14, 2021, Virtual
Event, USA. ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/
3472749.3474742

1 INTRODUCTION

Changing text input such as correcting errors and editing text is a
core activity we perform daily on smartphones. Although such an
activity is essential for messaging, emailing, searching, and social
networking applications, it however is difficult to perform. The bot-
tleneck lies in the need for precise and repetitive manual control.
For example, the de facto cursor-based text correction technique re-
quires accurately positioning the cursor at the error text, repeatedly
pressing backspace to delete errors, and re-positioning the cursor
back at its original location. Besides finger touch, voice input is
another input modality we can leverage for editing text. However,
voice input is prone to speech recognition errors, especially in noisy
environments. It also is cumbersome to use voice for correcting
errors in spoken text, mainly because voice input is unsuitable for
specifying the location of the error [26, 42].

Both touch and voice input modalities have their respective
strengths and weaknesses. The current text editing techniques
fail to synergistically combine the strengths of both modalities to
overcome the limitations of each modality. For example, although
i0S’s Voice Control [21] allows a user to use voice and touch to
correct an erroneous word in a text, the process is laborious: the
user needs to precisely select the word with touch, and speak out
the exact content for correction. There is little room for human
imprecision, which makes it difficult for the error-prone voice and
touch input. Potentially, the performance and experience of text
editing can be improved by coordinated use of speech and touch
together with an underlying intelligent inference model that can
predict the user’s interaction intent. For example, if a user uses
finger touch to point at the approximate location of an erroneous
word and simultaneously speaks out the replacement word; the
inference model should be able to determine the exact location of
the erroneous word and replace it with the spoken word, thereby
significantly reducing the user’s overall interaction effort.

In this paper we research and develop voice and touch input
based multimodal text editing technique, called VT. To edit the text,
the user glides the finger over the text on the touchscreen, and
speaks out the editing command (e.g., “cut”, “copy”, or “bold”), or
the user can just tap the target text then speaks a command such
as "bold the paragraph" to edit the text. VT combines the input
signals from both voice and touch input to infer a user’s editing
intention, and then form and execute the corresponding editing
operation. To correct errors such as inserting missing words or
correcting words, the user points to the text to be corrected and
speaks out the new text content. We developed a set of methods
and algorithms in VT that can infer a user’s intention of correction
by combing the voice input, touch input, and text context, and
then directly execute the most likely correction operation. Our
evaluation showed that VT significantly improved the efficiency
of text editing and text correcting over the touch-only method

163

Zhao et al.

and the i0S’s Voice Control method: VT reduced the text editing
time by 30.80%, and text correcting time by 29.97% over the touch-
only method, and reduced the text editing time by 30.81%, and text
correcting time by 47.96% over i0S’s Voice Control. Overall, VT
mitigates the weaknesses of touch and voice input AND leverage
their strengths, hence improving the efficiency of text editing on
mobile devices.

2 RELATED WORK

As background of the current work, we review previous techniques
for text editing, text correction, and multi-modal interactions.

2.1 Techniques for Editing and Correcting Text
on Mobile Devices.

Text editing and correction is an essential part of the heavy process
of text entry on mobile devices [28, 43]. The cursor-based method
was widely studied in previous research. iPhone Keyboard [3] sup-
ports magnifying lens and hard-press cursor touchpad. Hackerskey-
board [52] allows users to control the cursor with arrow keys. Pre-
vious work also adapted gestural methods for cursor positioning.
For example, previous research explored cursor moving by hori-
zontal gestures [15], “scroll ring” with four-direction gesture with
swipe [55], swiping left or right from “space” [22], including both
taps and gestures to be drawn on the top of the soft keyboard to
move the cursor, select text, and use the clipboard [16].

Along with the cursor-based method, researchers have explored
a number of facilitative methods for text selection. On Android de-
vices, users could select a word with multiple different operations,
including sliding finger, double-tap or long-press. Gestural meth-
ods such as clock-wise gesture [22] and two-finger gesture [15]
have also been implemented in text selection. Gaze’N Touch [44]
explored gaze-based interaction on text selection.

For editing operations on selected text, current keyboards such
as iPhone keyboard [3] and google keyboard generally work with
a pop-up widget(menu) providing possible editing actions. There
are also gesture-based command [2, 8, 16, 30] have been explored
on the selected text.

Challenges of cursor-based editing and correction on mobile
devices often come from small screen sizes and the fat finger prob-
lem [5, 20, 51]. Intelligent interaction techniques such as auto-
correction were introduced to address these challenges. In modern
input methods on smartphones, auto-correction is wildly imple-
mented. It automatically corrects the word currently being en-
tered [6, 17, 50]. However, the limitation of auto-correction tech-
niques lies in the current input word which indicates that it is not
suitable for editing the text that has already been entered. Arif
et al. added intelligent sliding functions to the backspace in the
Smart-Restorable Backspace [4]. This technique can predict cor-
rection position and restore the previously deleted text. It helps
to reduce the operations on deleting and positioning operations
in word correction. WiseType [1] introduced novel visualization
to highlight errors to assist error correction. Besides, grammar
checking methods on entered text such as Gboard [33] and Gram-
marly [23] support correcting words and revising text by providing
possible text on the suggestion bar. However, these approaches of-
fer operations without considering the user’s correction intention.

https://doi.org/10.1145/3472749.3474742
https://doi.org/10.1145/3472749.3474742

Voice and Touch Based Error-tolerant Multimodal Text Editing and Correction for Smartphones

Thus the results can be irrelevant. VT adopts a user-guided ap-
proach to perform more goal-oriented operations. Users can point
at a location for error correction or dictate more context words
around the error words for better correction.

The "Type, then Correct" technique [54] and "JustCorrect" [9]
are recent techniques on reducing cursor operations by injecting in-
telligence into the post hoc text correction process. Those methods
are only for correcting a single word at a time, while VT is able to
correct a whole phrase at once. And those methods are mainly for
the scenario where there is only one input sentence, or correcting
the last input sentence by typing on a keyboard. VT can be applied
to anywhere the user points to in arbitrary text without any typing.

There are also voice-based editing method, such as Dragon Nat-
uallySpeaking and Voice Typing in Google Docs [19, 37]. Targeted
at accessibility applications, these methods transcribe the user’s
dictated words into input texts or editing commands and allow
users to dictate instead of typing on the text areas. However, these
approaches do not support the multimodal interaction to combine
the voice input with touch gesture operations. VT also has a larger
scope than previous research systems such as WiseType [1], Ges-
tures and Widgets [15], TouchTap [16], Gaze’N’Touch [44] and
Gedit [55]. VT focuses on both text formatting and error correction,
while those systems focus on only one aspect of text editing: Ges-
tures and Widgets [15], TouchTap [16] and Gedit [55] were about
text formatting only; Gaze’N’'Touch [44] was about improving text
selection; WiseType [1] introduced novel visualization to highlight
errors to assist error correction. Additionally WiseType [1], Ges-
tures and Widgets [15], TouchTap [16], and Gedit [55] involve only
touch input, while VT integrates two modalities (touch and voice).

2.2 Multimodal Interaction Technologies on
Smartphones

Prior research has shown benefits with multimodal interaction,
such as being natural and and more error tolerant [29, 39, 40], flex-
ible [41], i.e., letting users pick any input mode as needed, and
accommodating people with different input capabilities [13]. Pre-
vious research has also shown improved performance using pen
marks and handwriting to correct speech recognition errors[49].
The presented research is particularly inspired by previous work on
leveraging multiple input modalities to improve text entry perfor-
mance. Modern soft keyboards (e.g., Gboard [33]) support entering
text via touch and voice input. However, these two modalities are
often used in isolation.

Researchers have also explored fusing information from multi-
ple modalities to reduce text entry ambiguity, such as combining
speech and gesture typing [38, 47], using finger touch to specify
the word boundaries to improve speech recognition accuracy [46],
or using unistrokes together with key landings [24] to improve
input efficiency. In desktop computing, combining eye gaze with
keyboard typing has been shown to be an effective approach to text
editing [48].

Previous research also explored the performance of multi-
modal interaction both on single-app tasks [14, 25] and cross-app
tasks [53]. The combination of voice and touch enhanced the ex-
perience on the mobile devices. Besides, multimodal method were

164

UIST 21, October 10-14, 2021, Virtual Event, USA

also implemented to enhance the performance on disambiguation
interfaces [32, 35, 45].

Although iOS’s Voice Control [21] and Android Voice Access
[18] enable users to edit and correct text with voice and touch input,
these two methods are not error-tolerant as they require precise
text selection, cursor manipulation, and precise text content for
error correction. For example, in both i0S’s Voice Control [21] and
Android Voice Access [18], substituting a text segment with touch
and voice requires the user to first precisely select the text segment
with touch, and speak the exact new content to replace the selected
text. In contrast VT is error-tolerant: VT can infer a user’s error
correction intention by combining language model, Word2Vec, and
Levenshtein distance between input text and existing content to
resolve ambiguity in input. A user only needs to approximately
indicate the location of error, and speak the content which may
or may not include words that already exist in the content. Addi-
tionally VT supports flexibly blending voice and touch input for
text formatting: the touch input (e.g., gliding over the text) could
occur before, during, or after the voice input. In contrast, iOS’s
Voice Control requires a user to select the text first and then issue
the command. Touch and voice input must follow a strict order in
i0S’s Voice Control.

3 USE SCENARIO

The following use scenario illustrates the goal of this project.

Bob often writes and edit text on smartphones. However he is
unsatisfied with the interaction experience. Touch input is ineffi-
cient for editing text as it requires precise control over the cursor
positions. Speech input is difficult to specify the editing location.
Neither of these two modalities meets his interaction needs. Exist-
ing voice and touch based multi-modal systems such as iOS’s Voice
Control is still not efficient enough because it still requires precise
text selection before edit or correct the text. He had heard through
the grapevine that VT combines voice and touch input modalities
which could avoid the tedious and precise text selection process
and is intelligent enough to infer the text span he intends to correct
or edit. Bob got it installed on his smartphone. The scenario below
illustrates how Bob utilizes the functionalities offered by VT.

It is a sunny Sunday afternoon and Bob is walking in the neigh-
borhood. During his walk, Bob remembers that he should not forget
to reply to the email his friend Jane had sent him yesterday. Bob
opens the email apps and dictates “I will talk to you on Monday at
9 am.” Bob, on a second thought, wishes to reschedule the meeting
to Tuesday. Bob taps the word “Monday” and speaks “Tuesday”. VT
infers that Bob intends to change “Monday” to “Tuesday” given the
language context, the caret location, and the spoken utterance. It
then changes “Monday” to “Tuesday” in the email. Bob also wants
to make “Tuesday at 9 am” bold as this meeting time is different
from their usual meeting time. Bob then taps “Tueday” and speaks
“bold four words”. VT then change the sentence to “I will talk to you
on Tuesday at 9 am.” Note that in this illustration, Bob combined
voice and touch input to correct an error and edit text in email,
without any precise text selection. VT has considerably simplified
Bob’s interaction with smartphone. He feels it has made him far
more productive than before.

UIST 21, October 10-14, 2021, Virtual Event, USA

Next, we describe how VT supports multimodal text editing and
correcting techniques.

4 MULTIMODAL TEXT EDITING AND
CORRECTION TECHNIQUES

As shown in Figure 1, VT allows a user to combine voice and touch
input to edit text such as highlighting, cutting, copying, and pasting
text, or correcting errors such as correcting "jimos" to "jumps". It
supports editing actions at word, sentence, and paragraph levels,
and correction action at phrase level.

VT supported common touch input actions provided by the
Android EditText view [11], such as tapping to reposition the caret
position, or gliding the finger over a text segment to select it. The
outcome of an touch input action is the new position of the caret,
or the start and end positions of a selected text span.

VT supports voice input that starts before, during, and after those
touch input actions. The user can signal the start of voice input by
tapping or long clicking the text or tapping the microphone button.

Figure 2 shows the workflow of VT. A multimodal input event
is represented as X =< t,s >, where t represents the outcome of
a touch input, which could be the new caret position specified by
tapping, or start and end positions of a text span specified by finger
gliding, and s is the voice input.

After receiving X =< t,s >, VT first determines whether it
is an editing or correcting operation as follows. It obtains top N
(e.g., N = 20) voice recognition results Ty, Tz, ..., Ty by feeding
the voice input s into a speech recognizer (e.g., Android built-in
voice recognizer). If the first word in any of T; is one of the six
reserved editing commands (copy, cut, paste, highlight, underline,
and bold), VT considers it as an editing command. Otherwise, the
voice inputs will be viewed as content for error correction. This
limitation prevents VT to correct content starting with the six
reserved word, which is common for current voice-based editing
systems. For example, i0S’s Voice Control reserves "copy that, cut
that, bold that, etc" for command input. The editing and correction
operations are supported separately, described in Section 4.1 Editing
Text and Section 4.2 Correcting Text, respectively.

4.1 Editing Text

VT supports six classes of common editing operations: copy, cut,

paste, highlight, underline, and bold.

4.1.1 Representation of an Editing Operation. VT first represents
a text editing operation as a 2-tuple: ¢ =< r,w >, where r is the
operation name specified as a character string (“highlight”, “bold”,
“underline”, “cut”, “copy”, or “paste”), w is the location parameter
specifying the text segment which the named operation will be
applied to.

Here are two examples showing how an editing operation is
defined by a 2-tuple: ¢ =< r,w >. For example, to highlight the
words “tomorrow at noon” in the sentence “The event will take

place tomorrow at noon”, the operation name r is “highlight”, the

location information w is the text segment “tomorrow at noon”.

Another example of operation is to cut the entire sentence “The
event will take place tomorrow at noon.”. For such an operation,
the operation name r is “cut”, the location w is the sentence.

165

Zhao et al.

Under this representation, the key of supporting multimodal text
editing is to infer the intended text editing operation ¢* =< r,w >
from the multimodal input X =< t,s >.

4.1.2 Creating and Executing Editing Operation. VT integrates the
touch input ¢ and voice input s in X to create and execute the
intended text editing operation ¢* =< r, w > in the following steps,
as specified in procedure GetEditingOperation (Algorithm 1).

One input to the algorithm is the touch input ¢, which could
be the new caret position specified by tapping, or start and end
positions of a text span specified by finger gliding.

The other input to the algorithm is T which is the voice recog-
nition result that includes the command name command. T is de-
termined as follows. VT examines the first word of T;, which is
one of the top N voice recognition results from the voice input
s. If an editing command name command is found, we set T = T;.
If multiple voice recognition results include a command name of
the first word, the one with the highest recognition score will be
chosenas T.

The algorithm first set r = command, which is the operation
name parameter of ¢*. VT then integrates the touch input ¢ and the
voice recognition result T to form the location parameter w for c*.
VT supports two modes of forming w, namely Single Command
and Compound Command mode:

¢ Single Command Mode: The user dictates a single editing
command (e.g. bold), and selects the text with finger touch.
The editing command will then be applied to the selected
text. For example (Figure 3 left), to bold the phrase “tomor-
row at noon”, the user selects the phrase by pressing and
gliding the finger from “tomorrow” to “noon”, and dictates
the command “bold” during the touch input. VT supports
all the text selection action supported by Android EditText
view, including double tapping or long pressing to select a
word, or pressing and gliding to select a text segment.

e Compound Command Mode: A user combines voice and
touch input to specify the text on which the spoken com-
mand will be applied. For example (Figure 3 right), a user
taps to place the caret within a paragraph and says “bold
this paragraph”, to bold the entire paragraph where the caret
resides, or places the caret to a sentence and says “highlight
this sentence”, to highlight the entire sentence.

Whether an editing operation is in single or compound command
mode depends on whether the voice recognition result T includes
the words specifying the scope of the operation including numbers
and scoping word which is one of the words in the set <“word(s)”,
“sentence(s)”, “paragraph(s)”>. If no such a word is found, the edit-
ing is in the single command mode, otherwise in the compound
command mode.

In the single command mode, the selected texts by touch input ¢
is the location parameter w. In the compound command mode, w
is determined by combining the location information specified by
touch and scope information specified by voice input. For example,
if the voice input includes “two paragraphs” and the finger touch
lands on a specific paragraph, the w will include the paragraph
that the finger points to and the following paragraph. After ¢* is
created from X =< t,s >, VT will execute it. This algorithm to

Voice and Touch Based Error-tolerant Multimodal Text Editing and Correction for Smartphones

Single Command

UIST 21, October 10-14, 2021, Virtual Event, USA

Integrating t and s to

Single or
Compound
Command

Editing text
Algorithm 1

Compound command

form the single command —— Execute c*
operation c*

Integrating t and s to

Editing or
Correcting
text

Touch and voice
input X(t,s)

form the compound — Execute c*

command operation ¢*

Correcting text Step-1: Forming

Algorithm 2 correcting candidates

Execute the
— top suggestion
and show alternatives

Step-2: Computing
scores for correcting
candidates

Step-3: Generating
suggestions

—»|

Figure 2: The workflow of VT. The multimodal input from a user is represented as X =< t,s > where t is the touch input, and
s is the voice input. The algorithms and components in this figure are explained later in this section.

Single Command Mode

} AN\ “bold”

The event will start
tomorrow at noo
—>

The event will start
tomorrow at noon.

(@) ' ')

Compound Command Mode

“bold this
paragraph”

i

How could | answer the
child? 1 LY /¢ know
what it iz=a Y more
than he.

How could | answer
the child? | do not
know what it is any
more than he.

| guess it
flag of my di

| guess it must be the
flag of my disposition,

© " @

Figure 3: Examples for Single Command (left) and Compound Command (right) modes. (a): in the Single Command example,
the user is selecting the text "tomorrow at noon" by gliding the finger and dictating "bold" at the same time. (b): the selected
text becomes bold. (c) in the Compound Command example, a user taps the first paragraph and dictates "bold this paragraph".

(d): the paragraph becomes bold.

get the editing operation ¢* =< r, w > is formally summarized in
Algorithm 1.

Our techniques support a user to speak the editing command
before, during or after the finger touch interaction, to accommodate
different collaboration patterns between voice and touch input. The
speech recognition is turned on as soon as a touch event occurs.
Should a user want to speak a command before landing the finger
on the text, she can click the voice input button on the screen. The
speech recognition will wait for 5 seconds for the user to start the
dictation, the duration of the dictation is up to 2 minutes.

4.2 Correcting Text

If a multimodal input event X is determined as a correction opera-
tion (i.e., none of the voice recognition result includes an editing

166

command as the first word), VT will follow the procedure described
in this section to correct text.

VT supports correcting existing text with touch and voice input,
such as inserting missing words or replacing wrong or inappropriate
words with new content. The user first specifies the location where
correction will occur with the input finger by either tapping the
error location, or selecting the erroneous text, and then dictates
the new text content to be inserted, or to substitute the erroneous
text. As shown in the use scenario (Section 3), Bob taps the word
"Monday” and says "Tuesday” to correct "Monday” to "Tuesday”.

The user can also speak some context around the text to be
corrected. For example, to correct the sentence "it waspada very
nice" to "it was very nice", the user can touch "waspada" and say
"was". But since "was" is a short word, without any context the
speech recognition model may recognize it as "were". Instead of
saying "was", the user can say "it was" or "it was very" or "was very

UIST 21, October 10-14, 2021, Virtual Event, USA

Algorithm 1 VT Editing Algorithm

1: procedure GET EDITING OPERATION ¢* =< r,w >
2: input:

3 t « touch input

4 T « text recognized from voice input s

5. process:

6 w : location parameters of the text to edit

7 r: operation name

8 a : scope of operation specified by speech

9 r « search the operation name from T

10: a < search the operation scope from T

1 if operation scope a is found then

12: w «— get the location parameters by combining ¢
and a

13: else

14: w « get the location parameters from t

15: end if

16: output:

17: cF=<r,w>

18: end procedure

nice", etc. Adding context can help the speech recognition model
to better recognize the speaking content, and VT would utilize the
context to better locate the text to be corrected. Without adding
context, VT would still infer user’s correction intention.

VT enables text correction in three steps. In step-1, it takes the
multimodal input X =< t,s > and the sentence to be corrected L as
input to generates 3 types of text correction candidates: insertion-
only candidates I, substitution-only candidates S and insertion-
and-substitution candidates IS. In step-2, it assigns sentence score
SenScore or substitution score SubScore to each candidate based
on the speech recognition confidence score, an n-gram language
model, and the similarity between the new and existing text. The
SenScore or SubScore indicates how likely a candidate is the in-
tended correction operation the user will perform. In step-3, it
generates top 3 suggestions based on SenScore and SubScore of
correction candidates. The top suggestion is executed by default,
and the second and third candidates are provided as alternatives to
user.

In the rest of this section we give more algorithmic details of
each of the three steps.

4.2.1 Step-1: Forming Correction Candidates. The objective of this
step is to form correction candidates based on the multimodal input
X =< t,s > and the sentence to be corrected L.

Given multimodal input X =< t, s > and the language context L,
VT first obtains top N voice recognition results Ty, To, ..., Ty from a
voice recognizer, where N is the total number of voice recognition
results. We chose N = 20 in the current implementation.

VT then uses each of the recognition results T; to generate three
types of correction candidates: insertion-only, substitution-only,
and insertion-and-substitution correction candidates. The three
types of correction candidates are described as follows.

Insertion-Only candidates. An insertion-only operation is an
operation that inserts the voice recognition result T; into a sentence.
The location of the insertion depends on the the touch location t. To

167

Zhao et al.

accommodate the imprecise touch operation, T; could be inserted
to the white space the t points to, or the space before and after the
touched word. The jth insertion-only candidate of the ith speech
recognition alternative T; is defined as I;;.

For example, assuming a user selects the word "yoybgade” in
the sentence "when do yoybgade to be there", and says "do you
have", the ith recognition result T; is "do you have", although this
example cannot be fixed by insertion-only candidates, VT would
still generate two insertion-only candidates for T; by inserting
T; in two possible locations indicated by the underlines: "when
do_yoybgade_to be there" (also illustrated in Table 1).

Substitution-only Candidates. A substitution-only correction
is an operation that substitutes existing words in a sentence with
the voice recognition results T;. Assuming T; includes n words:
T; =< w1, wa, ..., wy >, the touch input ¢ selects the phrase PH in
the sentence, PH includes m words. VT would use T; to replace
n consecutive words in the sentence, under the constraint that in
the replaced words at least one word is adjacent to or overlaps
with words in PH. Such a constraint ensures that the substitution
happens at or adjacent to the location specified by finger. If the
finger just taps on a word, the PH only includes the single word
tapped by the finger. The jth substitution-only candidate of the ith
speech recognition alternative T; is defined as S;;.

For example, assuming that a user selects the word "yoybgade”
in the sentence "when do yoybgade to be there”, the ith speech
recognition result T; is "do you have”, VT would create substitution-
only correction candidates for T; as shown in Table 1.

Insertion-and-Substitution Candidates. An insertion-and-
substitution correction is an operation that performs both insertion
and substitution operations at the location specified by the touch
input ¢t. It works similar to the substitution-only operation. The
only difference is that the number of words that are substituted
in the original sentence is less than the number of words in voice
recognition result T;. The jth insertion-and-substitution candidate
of the ith speech recognition alternative T; is defined as IS;;.

In the same example where the user selects the word "yoyb-
gade” in the sentence "when do yoybgade to be there”, the ith
speech recognition result T; was "do you have”, VT would generate
insertion-and-substitutin candidates for T; as shown in Table 1.
In Table 1, the candidates IS;; to IS;4 are generated by replacing
2 words in the original sentence with "do you have", the candi-
dates IS;5 to IS;7 are generated by replacing 1 word in the original
sentence with "do you have".

4.2.2 Step-2: Computing Scores for Correcting Candidates. The ob-
jective of this step is to compute scores of correction candidates,
which are I;;, S;j and IS;; generated from Step 1 (examples are il-
lustrated in Table 1). The score of a correction candidate represents
how likely the candidate is the intended correction operation.

For each insertion-only candidate I;j, VT computes the sentence
score SenScore;; as follows:

SenScore(ij) = SC; * LSjj, (1)

which is the product of speech recognition score SC; for the ith
speech recognition alternative T; and language score LS;j.

Voice and Touch Based Error-tolerant Multimodal Text Editing and Correction for Smartphones

UIST 21, October 10-14, 2021, Virtual Event, USA

Table 1: Examples of correction candidates. This example assumes that the original sentence is "when do yoybgade to be
there", and the user taps the word "yoybgade" and says "do you have". It also assumes that the speech recognition result T; is
"do you have". This table shows all the candidates generated for T;. I;; is the jth insertion-only candidate for T;. S;; is the jth
substitution-only candidate T;. IS;; is the jth insertion-and-substitution candidate for T;. The scores SubScore;j, SenScore;j, SCi,
PS;j and LS;; are defined in Section 4.2.2. IS;> candidate is the intended correction result, its scores are bold.

Candidate Type ‘ Correction Candidates SubScore;; SenScore;; SC; LS;j PS;j
Insertion- I;1 when do do you have yoybgade to be there N/A 0.192 0.969 0.198 N/A
only Ii» when do yoybgade do you have to be there N/A 0.353 0.969 0364 N/A
Substitution- Si1 do you have to be there 0.139 0.969 0.969 1.000 0.144
only Si2 when do you have be there 0.229 0.687 0.969 0.709 0.333
Si3 when do do you have there 0.121 0.652 0.969 0.673 0.186
Si4 when do yoybgade do you have 0.106 0.490 0.969 0.505 0.217
Insertion- IS;1 do you have yoybgade to be there 0.000 0.529 0.969 0.546 0.000
and- IS;5: when do you have to be there 0.300 0.847 0.969 0.354 0.874
substitution IS;3 when do do you have be there 0.010 0.472 0.969 0.487 0.021
IS;4 when do yoybgade do you have there 0.121 0.652 0.969 0385 0.213
IS;5 when do you have yoybgade to be there 0.136 0.407 0.969 0.420 0.333
IS;s when do do you have to be there 0.026 0.632 0.969 0.652 0.042
ISi7 when do yoybgade do you have be there 0.020 0.192 0.969 0.199 0.105

VT computes the SubScore;; for each substitution-only candidate
Sjj or insertion-and-substitution candidate IS;; as follows:

SubScore(ij) = SenScore(ij) * PS;;

=5Ci *LS,-j *PS,'J', (2)

which is the product of speech recognition score SC;, language
score LS;j, and phrase similarity score PS;;.

The speech recognition score SC;, language score LS;;, and
phrase similarity score PS;; in Equations 1 and 2 are computed
as follows.

Speech Recognition Score. The term SC; is the speech recogni-
tion confidence of the spoken text T;. In our current implementation,
it is between 0 and 1 and generated by the Android built-in speech
recognizer [12].

Language score. The language score LS;; reflects how likely a
candidate C;; is a valid sentence. This score was computed similar
to the "Sentence Channel” score described in the previous work [9].
More specifically, we trained a 3-gram language model using the
KenLM Language Model over the Corpus of Contemporary Ameri-
can English (COCA) [10] (2012 to 2017), which contains over 500
million words. The fitted language model file was compiled into a
binary file to accelerate processing.

This language model will take a candidate sentence C;; as input,
and outputs its estimated log probability P(C;;). By normalizing
P(Cjj) in the range of 0 to 1, we get the language score LS;;:

P(C,’j) - min(P(Cij))

LSij = max(P(Cij)) — min(P(Cy;))

®)

where min(C;;) and max(C;j;) are the minimum and maximum lan-
guage scores among all the correction candidates.

Phrase similarity. The phrase similarity score PS;; is defined
for substitution-only, and insertion-and-substitution corrections
candidates. It reflects how similar the substituted n-word phrase in
the original sentence (denoted by Pj, which refers to the substituted

168

n-word phrase of the j-th possible substitution candidate) is to the
new m-word phrase, which is the voice recognition result T;. The
higher PS;j, the more similar P; is to T;.

The phrase similarity score is computed as follows. For a word
wiin Pj (i = 1,2,...,n), we first find a matching word wlf in T; that
has the highest similarity score. The similarity score of between
two words w; and wl{, denoted by Score(w;, w;), is computed as:
ES(wi, w)) + WS(wi, w))

. @

The term ES(w;, w}) is obtained by dividing the Levenshtein [31]
edit distance between w; and w; with max(L(w;), L(w})), where
L(w;) and L(w}) are the length of w; and w] in characters. This
term ES(w;, w}) has a value between 0 and 1, reflecting how similar
wi is to w] in spelling. The term WS(w;, w}) is the cosine similarity
between the word embeddings of w; and wlf , reflecting the semantic
similarity between w; and w}. Our word embedding model was
learned over the “Text8” dataset [34] using the Word2Vec skip-gram
approach [36].

The phrase similarity PS;; is computed as the weighted average
of word similarity score over all the words in the substituted phrase
Pj:

Score(w;, wj) =

n
PS = Z a; * Score(wj, wlf),

i=1

®)

where w; is a word in Pj, wlf is the word in T; that has the highest
similarity score with w;, namely w; is the matching word for w; in
T;, and «; is a weight which reflects whether the position of w; in
the substituted phrase P; is close to the position of w/ in the new
text content Tj.

The «; is calculated as follows. We first use a range [PStart(w;),
PEnd(w;)] to represent the relative position of w; in P;. Both
PStart(w;) and PEnd(w;) are numbers between 0 and 1. Assuming
P; has n words, the index of its words are from 0 to n — 1, and

UIST 21, October 10-14, 2021, Virtual Event, USA

k is the index of the word w; in P;, we define PStart(w;) = k/n
and PEnd(w;) = (k + 1)/n. Following the same method, we repre-
sent the position of w] in T; which has m words as [TStart(w]),
TEnd(w})]. Assuming the length of the overlapped range between
[PStart(w;), PEnd(w;)] and [TStart(w]), TEnd(w})] is 7, we de-
fined a; as ; = 7 - Max(n, m), where Max(n, m) is the maximum
value of n and m.

Under this definition of a;, if P; and T; has the same number of
words (i.e., n = m), and the position of w; in P; is the same with
the position of wlf in T;, we have a; = 1. If ¢ = 0, which means the
range [PStart(w;), PEnd(w;)] and [TStart(w]), TEnd(w;)] have no
overlap, we have a; = 0. Such an «; value (a; = 0) reflects the
condition where the position of w; is far different from the position
of wi.

With the above equations (Equations 1-5), we can compute a
SenScore;j or SubScore;j for each correction candidate. Table 1
show scores for some examples.

4.2.3 Step-3: Generating suggestions. The objective of this step is
to order correction candidates by their scores and output top three
candidates. VT orders the correction candidates as follows. It first
merges the list S which contains all substitution-only candidates
with the list IS which contains all insertion-and-substitution can-
didates to a merged list denoted by M, and sort the merged list M
by SubScore in descending order. Second, VT sorts the list I which
contains all insertion-only candidates by SenScore in descending
order. Third, it compares the top elements in both the merged list
M and sorted list I by candidates’ SenScore, and pick the one with
higher SenScore as the top 1 suggestion. It then removes the picked
correction candidate from the corresponding sorted list and per-
forms the comparison again to obtain 2nd, and 3rd suggestions. We
used the SenScore to compare candidates between I and M because
SenScore is common score between all three types candidates while
insertion-only candidates do not have Subscore, so using SenScore
can compare candidates in M and I with the same metric.

The outcome of this step is the top 3 suggestions for correcting
operation. The top candidate is the default outcome and the 2nd and
3rd candidates are suggested as alternatives which can be selected
by tapping it with finger touch.

The algorithm for VT text correcting is summarized in Algo-
rithm 2.

5 EXPERIMENT 1: COMPARING VT WITH
TOUCH-ONLY METHOD

In this experiment, we compared VT with the state-of-the-art touch-
only method for text editing and text correction tasks. We imple-
mented the multimodal text editing and correcting techniques on an
Android smartphone (Google Pixel with Android 9) and conducted
a user study to evaluate its performance. We used the Android
built-in SpeechRecognizer class [12] for voice recognition.

5.1 Participants

We recruited 16 participants (five females) from 22 to 32 years old
(Mean = 26.8, Std = 3.1). The self reported median familiarity (1:
not familiar, 5: very familiar) with the existing touch-only text
editing technique was 5. The participants were instructed to use
their preferred hand posture throughout the study.

169

Zhao et al.

Algorithm 2 VT correcting Algorithm

1: procedure GET CORRECTING SUGGESTIONS

2: input:

3 t < touch input

4: s < voice input

5 L « sentence to be corrected

6: process:

7: I « generating insertion-only candidates by ¢, s and

L (e.g., Table 1)

8: S < generating substitution-only candidates by ¢, s
and L (e.g., Table 1)
9: IS « generating insertion-and-substitution candidates

by t, s and L (e.g., Table 1)

10: compute sentence scores SenScore for each candidate
in I, S and IS (Equation (1))

11 compute substitution scores SubScore for each
candidate in S and IS (Equation (2))

12: SortedM <« merge Sand IS, and sort the merged
candidates by SubScore in descending order

13: Sortedl « sort I by SenScore in descending order

14: fori < 0to2do

15: if SortedM[0]’s SenScore > SortedI[0]’s SenScore then

16: Suggestions|i] « SortedM[0]

17: Remove SortedM|[0] from SortedM

18: else

19: Suggestions|i] « SortedI[0]

20: Remove SortedI[0] from SortedI

21 end if

22: end for

23: output:

24: Suggestions[0], Suggestions[1], Suggestions[2]

25: end procedure

5.2 Apparatus

A Google Pixel device (Android version: 9, Processor: Qualcomm
Snapdragon 821, GPU: Qualcomm Adreno 530, RAM: 4GB LPDDR4,
Internal storage: 32GB) with a 5.0" display (AMOLED with 1080 X
1920 pixel resolution) was used for the experiment.

5.3 Design

The study was a within-subjects design. The independent variable
was the text editing and correcting method, which has two levels:
touch-only condition and VT condition.

e Touch-Only condition. The user used the existing touch-
based method in Android OS to complete the task. More
specifically, the user could manipulate the caret, and select
text using the default touch gestures supported by Android
Text View, such as tapping to reposition caret, double tapping
to select a word, and pressing and gliding to select multiple
words. After a text segment was selected, a floating menu
with common text editing operations was displayed near
the text as shown in Figure 4 and the user could execute
an editing command via the menu. The floating menu de-
sign followed the design in Android text editing application
such as Google Keep. The top-level menu includes common

Voice and Touch Based Error-tolerant Multimodal Text Editing and Correction for Smartphones

Paste Cut Copy

My name is Iris Mack. Currently | work on
Enron's Power Optiol. Trading c_ k.

(@

é
My name is Iris Mack. Currel yigpjight N
Enron's Power Optiol. Tradir

Bold

Underline

(b)

Figure 4: The floating menu for text editing task in the
touch-only condition. (a) The menu is displayed after some
text are selected. The "paste”, "cut" and "copy" are displayed
as default, extra menu items will be displayed after clicking
the three dots at the end of the menu. (b) Extra menu items
are shown after clicking the three dots in (a). Clicking the

back arrow in the menu will go back to the menu in (a).

» o«

operations such as “cut”, “copy”, and “paste”; tapping the
three dot icon will reveal more operations including “high-
light”, “bold”, and “underline”. In this condition a user used
the Google’s Gboard to correct errors and type corrected
content.

e VT condition. The participant used VT to edit text and cor-
rect errors. The touch-only method was kept as a fallback
method. The user may choose to use touch-only method
to finish the task if she failed on using VT. We kept touch-
only method as a fallback method because VT is proposed to
augment rather than replace the existing touch-only method.

The study included two tasks: Text editing task and text correc-
tion task, which are described in the next section. In the experiment,
the order of the two tasks and the two conditions were counterbal-
anced across 16 users.

5.4 Tasks

5.4.1 Text Editing Task. There were 5 classes of editing tasks in
total: cut & paste, copy & paste, highlight, bold, underline. The
editing tasks were applied to 3 levels of texts: words, sentences,
and paragraphs. In the experiment, there was one trial for a editing
class X level combination, so there were 1 X3 x5 = 15 trials in total.
The orders of the 15 trials were randomized for each condition and
each user. We created editing tasks on text chosen from the Enron
Email Dataset [27], which contained a total of about 0.5M emails
from about 150 users. Some editing tasks are shown in Figure 5 as
examples.

170

UIST 21, October 10-14, 2021, Virtual Event, USA

My name is Iris Mack. Currently | work on
Enron's Power Options Trading desk.

(2)

| am primarily responsible for building our
business in long-term, derivatives structures/
trades on multiple commodities and
financials. For example, we are exploring
potential structures and trades which involve
power, gas, crude oil, weather derivatives,
metals, etc. Some of the building blocks for
these multi-commodity derivatives products
may be found in the attached document.

(b)

Let me know when you get the quotes from
Pauline. | am expecting to pay something in
the $3,000 to $5,000 range. | would like to
see the quotes and a description of the work
to be done. It is my understanding that some
rock will be removed and replaced with
siding. If they are getting quotes to put up
new rock then we will need to clarify.

Jacques is ready to drop in a dollar amount
on the release. If the negotiations stall, it
seems like | need to go ahead and cut off the
utilities. Hopefully things will go smoothly.

(©

Figure 5: Examples of the editing tasks on different levels
of text. Figure 5a is a task to highlight 4 words (word-level
task). Figure 5b is a task to make a sentence bold (sentence-
level task). Figure 5c is a task to cut and paste a paragraph,
the paragraph in the box needs to be cut and pasted at the
location pointed by the arrow.

In total, the experiment included 16 participants X 2 methods X
15 trials = 480 trials.

5.4.2 Text Correction task. Participants corrected text errors in
this task. The sentences with errors were selected from Palin et al’s
mobile typing dataset [43]. This data set had entered text and their
correct versions by 37,370 users on mobile phones. We focused
on omission and substitution errors since the editing operation of
VT was designed to handle these two types of errors. There were
28 testing sentences for this task, 5 have omission errors, 23 have
substitution errors.

The difficulty of a correcting task was defined by the character-
level edit distance between the target sentence and the sentence
with errors. For the edit distance ranged from 1 to 6, we created
at least three correcting trials for each edit distance. We also cre-
ated 3 trials with edit distance larger than 6. Table 2 shows some
example sentences used in the experiment. We excluded sentences
with errors on numbers, names and acronyms due to the difficulty
of recognizing these words with voice input. Each participant cor-
rected the same set of sentences for each condition. The order of
the sentences were randomized for different conditions and users.

In total, the experiment included 16 participants X 2 methods X
28 trails = 896 trials.

UIST 21, October 10-14, 2021, Virtual Event, USA

Zhao et al.

Table 2: Examples of correcting tasks in the experiment. The first sentence contains an omission error. The rest sentences
contain substitution errors. The different words between the text to edit and the target text are underlined.

Text to edit

Target text

1. If not can call you
2. What so you thinl
3. Itu waspada very nice

4. The matter address tomorrow with Stan

If not can I call you
What do you think
It was very nice

We will address tomorrow with Stan

5.5 Procedure

In each trial, a presentation page was first displayed to explain
the editing/correcting task. For example Figure 6(a) and Figure 6(c)
show the presentation pages for an editing and correcting trial
respectively. Clicking the “start” button started the trial. Once the
task is accomplished, a “Success!” would show on the top right of
the screen as shown in Figure 6(d), then clicking the “Next” button
would start the next trial.

During an editing trial, a user could click the “Back” button
located at the bottom-left of the screen to return to the presentation
page to check the editing instruction, and then press the start button
again to restart the trial. The “Undo” button on the bottom right
would undo the last editing operation. In the VT condition, there
would be a “microphone” button to start the speech recognition, in
case a user wanted to start voice input before touch input.

Before the experiment, participants completed a warm up ses-
sion to get familiar with VT condition and touch-only condition.
They used VT and touch-only conditions to complete 10 warm-
up correction trials separately, and used touch-only condition, VT
single command mode, and VT compound command mode to com-
plete 8 editing trials separately. In the experiment, participants
were instructed to complete each trial (from the moment “Start”
button being clicked to the moment “Success!” was shown) as fast
as possible.

5.6 Results

5.6.1 Error Rate. Because participants were required to success-
fully complete a trial to move to next trial, there was no erroneous
(or incomplete) trial left. The error rate was 0 for both VT and
touch-only method in both editing and correction tasks.

5.6.2 Completion Time for Editing tasks. The task completion time
was the main metric for evaluating the performance of each method.
We referred to task completion time as “editing time” for an editing
trial, which was defined as the duration from the moment the “start”
button was clicked on the task presentation page to the moment that
"Success!" was shown on the editing page. This metric measures
users’ operation time to accomplish the editing task.

The average editing time for all trials using the designated meth-
ods are shown on the left part of Figure 7. The mean + 95% CI
of the editing time was 10.28 + 0.71 seconds for the touch-only
method and 7.20 + 0.44 seconds for the VT method. A paired-
samples t-test indicates that the difference was statistically signifi-
cant (¢15 = 5.36,p < 0.001). VT reduced the average editing time
by 30.80%.

171

To investigate the performance of VT on different levels of text,
the average editing time for different text levels using the designated
methods are shown in Figure 8. We can see that the editing time
of touch-only method increases with levels while the editing time
of VT method stays relative stable among levels. This is because
there are more texts to be selected for the higher levels, touch-
only method needs to select text by gliding and taps on the screen,
while VT method can automatically select texts by compound voice
commands. In the word level, the mean + 95% CI of text editing
time with touch-only method and VT method was 8.10 + 1.10 and
7.02 + 0.85 respectively. In sentence level, the mean + 95% CI of
text editing time with touch-only method and VT method was
10.80 + 0.87 and 7.21 + 0.74. In paragraph level, the mean + 95% CI
of text editing time with touch-only method and VT method was
11.94+1.48 and 7.38 £ 0.67. In each level, the VT method performed
faster than the touch-only method. Pairwise comparisons with
Bonferroni correction showed that differences were statistically
significant in sentence level and paragraph level (p < 0.001) and
not significant at word level (p = 0.2076).

To investigate how VT and touch-only method complement
each other in the VT condition, the percentage of different methods
used per level are counted, as shown in Figure 10. We can see
that for all trials (the first bar) users chose to use VT method for
more than 90% of the operations. For VT method, the compound
commands are more frequently used than single commands. For
words level editing, the touch-only method is used more frequently
than sentences level or paragraphs level, this is because VT saves
more time for higher levels.

VT’s single commands support flexibly blending voice and touch
input for text editing. The touch input (e.g., gliding over the text)
could occur before, during, or after the voice input. For all the single
commands used in this user study, 4.7% of touch inputs occur prior
to the voice input, 91.6% of touch inputs occur during the voice
input, and 3.7% of touch inputs occur after the voice input. Users
prefer issuing the voice command during the touch input.

The editing time for trials using the touch-only method and VT
method in different editing tasks are shown in Figure 9. In each task,
the editing time of the VT method was lower than the touch-only
method.

5.6.3 Method Usage Pattern in Text Editing Task. Since touch-only
method was kept as a fallback method in the VT condition, we
examined the percentage of using this method. The percentage of
using VT-single-command, VT-compound-command, and touch-
only method to edit text in the VT condition is shown in Figure 11.
We can see that for each operation VT was chosen for more than
80% of the operations. The “Paste” did not have VT compound

Voice and Touch Based Error-tolerant Multimodal Text Editing and Correction for Smartphones

Editing task

Text to edit:

My name is Iris Mack. Currently | work on
Enron's Power Options Trading desk.

Text to edit:

My name is Iris Mack. Currently | work on
Qaiioo

Target Text 1/15 Enron's Power Oa

My name is Iris Mack. Currently | work on
Enron's Power Options Trading desk

&

(a)

UIST 21, October 10-14, 2021, Virtual Event, USA

Correction task

Text to edit:

1207 B B Q @ - L]

Text to edit:
when do yoybgade to be there when do you have to be there

Target Text 1/30

when do you have be there
when do you have to be there
how do you have to be there
(c) (d)

Figure 6: The procedures of the experiment, (a) and (b) are for the text editing task, (c) and (d) are for text correction task. (a):
the presentation page for a text editing task. (b): a participant is highlighting the text by voice command and gliding. (c): the
task presentation page of a text correction task. (d): outcome of using VT method to correct the error. Two alternatives are
shown under the editing text. The user can choose a suggestion by tapping it.

10.28

Touch-only
10 VT
8 720
_ I 6.27
5
s 6- I
£
= 434
4- I
2-
0
Editing Task Correction Task

Figure 7: The mean (95% CI) of completion time by task type
x method.

14 - 11.94
Touch-only
J25= ! 10.80
_ 0 g0
L
2 g- 7.02 7.21 7.38
i L
o
£ 6-
E=
w
4-
2~
0 T T T
Words Sentences Paragraphs

Figure 8: The mean (95% CI) of completion time by text level
X method in text editing task.

commands by design, still its VT single command was chosen for
nearly all the operations.

5.6.4 Completion Time for Correction tasks. For correction tasks,
the “correcting time” for each trial was defined as the duration from

172

13.57 Touch-on
12.76 ouch-only
VT
12 - 9.83
9.6 9.34
£10- I I
o 8.02
€ 7.22
g 8- 6.21 I
£ 5.54
5 6- I 5](:)6
e

Cut&paste Copy&Paste Highlight Bold Underline

Figure 9: The mean (95% CI) of completion time by editing
task type X method.

the moment the “start” button in the task presentation page was
clicked to the moment that "Success!" was shown on the editing
page. This metric measures users’ operation time to correct the
errors.

The average correcting time for all trials using the designated
method is shown on the right part of Figure 7. The mean + 95% CI
of the correcting time was 6.27 + 0.33 seconds for the touch-only
method and 4.34+0.23 seconds for the VT method. A paired-samples
t-test indicates that the difference was statistically significant (¢15 =
7.47,p < 0.001). VT methods reduced the average correcting time
by 29.97%.

To understand the effectiveness of the methods, we grouped all
the correcting trials by edit distance between the target sentence
and the incorrect sentence. The average text correcting time for
different edit distances with the two methods are shown in Figure 12.
When the edit distance is 1, the correcting time with VT method
did not show better performance than touch-only method. The VT
method were faster than the touch-only baseline for the rest edit
distances.

UIST 21, October 10-14, 2021, Virtual Event, USA

Touch-only VT: single command VT: compound command
100 -
80~
fal 56.14
o EESE 68.10 67.83
& 60-
€
8
b
& 40-
33.33
20~ 3101 29.31 30.43
. 4.93 . 10.53 259 1.74
All Words Sentences Paragraphs

Figure 10: In the VT condition, the percentage of using VT-
single-command, VT-compound-command, and touch-only
method to edit text by words, sentences and paragraphs level
tasks in the text editing task. Note that in the VT condition,
touch-only method was a fallback method.

Touch-only VT: single command VT: compound command
100 -
__ 80-
B
2
g 60- 83.33
b1 87.76 .
§ 96.88 90.00 92.31 90.00
5}
& 40-
20 -
12.24 ’
312 — 77690 400 7.69 —104278.00 ;00

Cut Copy Highlight Bold Underline

Figure 11: In the VT condition, the percentage of using VT-
single-command, VT-compound-command, and touch-only
method to edit text by task type, in the text editing task.

5.6.5 Method Usage Pattern in Text Correction Task. Figure 13
shows the percentage of different method used per edit distance for
VT condition. We can see that VT was chosen by users for more
than 90% of all trials (the first bar). For edit distance at 1, more
users chose to use the touch-only method than other edit distances.
It is understandable as Figure 12 shows that touch-only method
was faster than VT when edit distance is 1, which means only one
character is wrong in the sentence.

5.6.6 Subjective feedback. At the end of the experiment , we asked
participants their preferred method (VT, touch-only method or No
preference) for the two kinds of tasks. For the editing tasks, 16 out
of 16 participants preferred VT method. For the correcting tasks, 15
out of 16 participants preferred VT, 1 participant prefer touch-only
method.

We also asked the participants to provide a numerical rating
(1: least demanding, 10: most demanding) on mental and physical
demand for each method and each kind of tasks. Mental demand
describes how much mental effort is required. Physical demand

173

Zhao et al.
7.85
Touch-only VT
8- 202 661
6.67 g1 660
5.83

—]: I 5.55
)
2® [I
£ 4.42
=
- 3.79 3.98
2 3.84
g 4 - I 3.51
= I
S 2.]4:11

2 -

0 T T T T T T T

1 2 3 4 5 6 7 orlarger

Edit Distance between the target sentence and the incorrect sentence

Figure 12: The mean (95% CI) of completion time by edit dis-
tance X method.

Touch-only
100 -

80 -

70.83
60 -

97.92 96.88 98.44 98.96 95.83 97.92

Percentage (%)

40 -

20- _ 2917

_ 208

1.04 417
— T

i
All 1 2 3 4 5 6 7 orlarger

Figure 13: In the VT condition, the percentage of using VT
and touch-only method to correct errors by edit distance in
the text correction task.

describes how much physical effort is required. The medians of
subjective ratings are shown in Figure 14. For the editing tasks,
the subjective ratings were in favor of VT for both mental and
physical demands. Wilcoxon Signed-Ranks Tests indicated that the
subjective mental (p < 0.001) and physical (p < 0.001) demands of
the VT method were significantly lower than those of the touch-
only method. In correction tasks, the subjective ratings were also
in favor of VT for both demands. Wilcoxon Signed-Ranks Tests
indicated that the subjective mental (p < 0.001) and physical (p <
0.001) demands of the VT method were significantly lower than
those of the touch-only method.

6 EXPERIMENT 2: COMPARING VT WITH
I0S’S VOICE CONTROL

In this experiment, we compared VT with i0S’s Voice Control for
voice and touch based multimodal text editing and correction.

Voice and Touch Based Error-tolerant Multimodal Text Editing and Correction for Smartphones

10
editing Touch-only correction
VT
8
o
=
=]
g 6
v
2
©
2 4
L
3
w
2
0
Mental Physical Mental Physical
Demand Demand Demand Demand

Figure 14: Median of subjective ratings. Lower rating means
lower mental or physical demand.

6.1 Participants

We recruited 14 participants (two females) from 23 to 32 years
old (Mean = 26.4, Std = 2.5). 10 of them were Android phones
users and 4 of them were iPhone users. Although none of them
had experience of using iOS’s Voice Control for text editing and
correction, each of them went through a 25-minute long training
about iOS’s Voice Control prior to the experiment, as explained in
Section 6.5 Procedure.

6.2 Apparatus

We used an iPhone SE device (2nd generation, i0S version: 14.6,
Processor: A13 Bionic chip, RAM: 3GB, Internal storage: 64GB) with
a 4.7" display (LCD with 1334 X 750 pixel resolution), and a Google
Pixel phone which was the same as the phone used in Section 5.

6.3 Design

The study was a within-subjects design. The independent variable
was the text editing and correcting method, which has two levels:
VT and iOS’s Voice Control conditions.

e VT condition. The participants used VT to correct and edit
text on an Android phone.

e i0S’s Voice Control condition. Users used iOS’s Voice Control
to edit text and correct errors on an iPhone.

Because the objective of this experiment is to compare the voice
and touch based multimodal methods, participants were not allowed
to use keyboards to enter text and the floating menus for editing,
in either VT or iOS’s Voice Control.

The study included two tasks: Text editing task and text correc-
tion task. In the experiment, the order of the two tasks and the two
conditions were counterbalanced across 14 users.

6.4 Tasks

6.4.1 Text Editing task. The text editing tasks in this study were
the same as Section 5, except that 3 tasks using the "highlight"
command were not included. Because iOS’s Voice Control does not
have a voice command to highlight text.

6.4.2 Text Correction task. The text correction tasks in this study
are the same as Section 5.

174

UIST 21, October 10-14, 2021, Virtual Event, USA

6.5 Procedure

The procedures for VT condition are the same as Section 5. The
experiment APP for the VT condition was in Android system. For
i0S’s Voice Control condition, we made an experiment APP in
i0OS system to replicate the same experiment procedure as the VT
condition. The procedures are the same as the VT condition, ex-
cept that there is no microphone button in the iOS APP because
iOS’s Voice Control keeps recognising speech all the time.

Before the experiment, participants are thoroughly instructed
about how to correct and edit text under each condition. For the
i0S’s Voice Control condition, participants were demonstrated
about the touch gestures in i0S for text selection, such as dou-
ble tap to select a word, triple tap to select a paragraph, etc. And
they were demonstrated about the voice commands in iOS’s Voice
Control, such as "replace {phrase} with {phrase}", "insert {phrase}
before/after {phrase}", etc. Then participants completed a warm
up session to get familiar with VT and i0S’s Voice Control. They
used each method to complete 10 warm-up correction trials and 8
warm-up editing trials.

6.6 Results

6.6.1 Error Rate. Similar to Section 5, the error rate was 0 for both
VT and i0S’s Voice Control in both editing and correction tasks,
because participants must successfully complete a trial to advance
to the next one.

6.6.2 Completion Time for Editing tasks. The average completion
times for editing trials using iOS’s Voice Control and VT are shown
in Figure 15. The mean =+ 95% CI of the editing time was 13.13+1.17
seconds for the i0S’s Voice Control and 9.09 + 0.83 seconds for the
VT method. A paired-samples t-test indicated that the difference
was statistically significant (t;3 = 7.05,p < 0.001). VT reduced the
average editing time by 30.81%.

16 mm Text-selecting time Text-changing time

14

13.13

12

10

Editting Time (s)
©

5.64
2 3.83

iOS Voice Control

Figure 15: Mean (95% CI) of completion times for edit-
ing tasks for iOS’s Voice Control and VT. The mean text-
selecting time and mean text-changing time are shown in
different colors.

To investigate where the improvement of VT came from, we
divided the task completion time into two parts, text-selecting time
and text-changing time. The text-selecting time is the time to select
text or move the caret. The text-changing time is the time to change

UIST 21, October 10-14, 2021, Virtual Event, USA

the text after the text was selected or the caret was moved. The
text-selecting time and text-changing time for iOS’s Voice Control
and VT are shown in Figure 15.

VT significantly reduced text-selecting time over iOS’s Voice
Control for editing tasks. The mean + 95% CI of the text-selecting
time was 9.30 + 1.00 seconds for the iOS’s Voice Control method
and 3.45 + 0.50 seconds for the VT method. A paired-samples -
test indicated that the difference was statistically significant (t13 =
8.86,p < 0.001). VT methods reduced the average text-selecting
time by 62.90%.

The mean =+ 95% CI of the text-changing time was 3.83 + 0.29
seconds for the iOS’s Voice Control method and 5.64 + 0.46 sec-
onds for the VT method. A paired-samples t-test indicated that the
difference was statistically significant (t;3 = 3.88,p < 0.002).

6.6.3 Completion Time for Correction tasks. The average comple-
tion times for correction trials using i0S’s Voice Control and VT
are shown in Figure 16. The mean + 95% CI of the correcting time
was 9.80 + 1.52 seconds for the iOS’s Voice Control and 5.10 + 0.44
seconds for the VT method. A paired-samples t-test indicated that
the difference was statistically significant (t;3 = 4.62,p < 0.001).
VT methods reduced the average correcting time by 47.96%.

14

mm Text-selecting time Text-changing time

= =
S} N

[«

Correction Time (s)

5.10
. B

3.47

iOS Voice Control

Figure 16: Mean (95% CI) of completion times for correc-
tion tasks for iOS’s Voice Control and VT. The mean text-
selecting time and mean text-changing time are shown in
different colors.

The text-selecting time and text-changing time for iOS’s Voice
Control and VT for the text correcting tasks are shown in Figure 16.
VT significantly reduced the text-selecting time over iOS’s Voice
Control for correcting tasks. The mean + 95% CI of the text-selecting
time was 6.00 + 1.32 seconds for the iOS’s Voice Control method
and 1.63 + 0.27 seconds for the VT method. A paired-samples -
test indicated that the difference was statistically significant (t;3 =
5.75,p < 0.001). VT methods reduced the average text-selecting
time by 72.83%. The difference between the two methods’ text-
changing times were not significant for correcting tasks. The mean
+ 95% CI of the text-changing time was 3.80 + 0.40 seconds for the
i0S’s Voice Control method and 3.47 + 0.25 seconds for the VT
method. A paired-samples t-test indicated that the difference was
not statistically significant (t;3 = 1.07, p = 0.30).

175

Zhao et al.

6.6.4 Subjective feedback. At the end of the experiment, we asked
participants to rate each method on a scale of 1 to 5 (1: least pre-
ferred, 5: most preferred) for each task. The medians of subjective
ratings are shown in Figure 17. For editing tasks, the median rat-
ing for VT and iOS’s Voice Control were 5 and 3. A Wilcoxon
Signed-Ranks Test indicated that the subjective ratings of VT was
significantly higher than that of iOS’s Voice Control (Z = 2.4809,
p = 0.01314). For correction tasks, the median rating for VT and
i0S’s Voice Control were 5 and 3. A Wilcoxon Signed-Ranks Test
indicated that the subjective ratings of VT was significantly higher
than that of i0S’s Voice Control (Z = 3.0594, p = 0.0022).

10 iOS voice control VT
editing correction
o 8
£
=
&
v 6
2
5
o
(9
g 4
=3
(2]
2
0
1.Mental 2.Physical 3.Overall 4.Mental 5.Physical 6.Overall
Demand Demand Preference Demand Demand Preference

Figure 17: Median of subjective ratings for text editing and
correction using VT and iOS’s Voice Control. For measure
1, 2, 4 and 5, a lower rating means lower mental and physi-
cal demand. For measure 3 and 6 (1: least, 5: most preferred),
a higher score means the method is more preferred. VT re-
ceived favorable ratings in all categories.

We also asked the participants to provide a numerical rating
(1: least demanding, 10: most demanding) on mental and physical
demand for each method and each task. The medians of subjective
ratings are shown in Figure 17. For each task, the subjective ratings
were in favor of VT for both mental and physical demands.

7 GENERAL DISCUSSION

VT as a research project developed and studied novel text editing
methods that synergistically combine touch and voice. Touch, being
intuitive and direct at expressing spatial information, has been cen-
tral to modern mobile computing but suffers from weaknesses such
as imprecision. Speech is fundamentally fast (typical broadcasting
speed is around 200 words per minute) but suffers from weaknesses
such as expressing precise spatial information. Progress in deep
learning has made speech recognition increasingly accurate and
practical [7]. Our insight guiding the design of VT was to leverage
the respective strength of touch and voice and avoid their respective
weakness. In particular VT uses touch gestures to approximately
indicate the editing or correction scope and uses voice to articulate
the corresponding command or replacement text. Furthermore, by
using the speech recognition APIs pre-installed on Android Pixel
Phones and developing a set of relatively simple algorithms against
the text editing task space, VT were able to infer the user’s intents

Voice and Touch Based Error-tolerant Multimodal Text Editing and Correction for Smartphones

from natural speech and touch input that is imprecise in timing
(in relation to the voice utterance) and space (the text selection
boundary can be fuzzy).

In our studies involving a set of common editing tasks and an
error correction task, VT demonstrated marked improvements over
the state-of-the-art touch-only baseline and the iOS’s Voice Control
baseline. In the study comparing VT with the touch-only method,
VT reduced the time for editing tasks by 30.80% and the time for
error correcting tasks by 29.96%. The users’ subjective preference
was also overwhelmingly favorable toward VT than the conven-
tional touch-only method. For editing tasks, the improved efficiency
was mainly attributed to automatic text selection by VT. For error
correcting tasks, the improved efficiency was mainly attributed to
reduction of typing actions and moving the cursor by touch.

In the study comparing VT with the iOS’s Voice Control method,
VT reduced the time for editing tasks by 30.81% and the time for er-
ror correcting tasks by 47.96%. For both editing and correcting tasks,
the improvements of VT came from reducing the text-selecting time.
For the editing tasks, the compound command of VT does not need
precise selection of the text before issuing the editing command.
For the correction tasks, VT could inference the location to replace
or insert the new phrase while iOS’s Voice Control requires precise
selection of the erroneous phrase. Although iOS’s Voice Control
has voice commands to correct text without touch input, such as
"replace {phrase} with {phrase}" and "insert {phrase} before/after
{phrase}", those voice commands are not usable for mistyped phrases
that do not have recognizable pronunciations. There are 53.6% cor-
rection trials in the study have this kind of mistyped phrases. When
using i0S’s Voice Control, those trials require precisely selecting
the erroneous phrases before correcting them by speech.

While the improvements were quite significant and clear cut,
there are many limitations of the study and further improvements
to be made for VT. VT could use a customized speech recognition
model. The editing tasks tested were representative of, but nonethe-
less not literately, naturally occurring tasks in real world writing
activities. Depending on the app context, there may be a need to
extend the command set. How well the current set of simple algo-
rithms can scale to the extended set remains to be explored. More
complex algorithms could be proven necessary.

8 CONCLUSION

We researched and developed VT, a voice and touch based mul-
timodal text editing and correcting method for smartphones. It
allows a user to combine voice and touch input to edit text and
correct errors. For text editing, the user can tap a text area then
speak a compound command such as "bold the paragraph" to edit
text, or the user can glide the finger over a text segment and speak
out an editing command (e.g., “cut”, “copy”, or “bold”) to edit text.
For text correction, the user can point to the approximate loca-
tion of errors and speak the new word or phrase to correct them.
VT can work without precise text selection because it can infer a
user’s editing or correcting intention by combining the voice in-
put, touch input, and text context. Our user study showed that VT
greatly improves the text editing and correcting performance over
the existing touch-only method and iOS’s Voice Control method.
Compared to touch-only method, VT reduced the task completion

176

UIST 21, October 10-14, 2021, Virtual Event, USA

time of text editing tasks by 30.80%, and the time for text correcting
by 29.97%. Compared to iOS’s Voice Control method, VT reduced
the task completion time of text editing tasks by 30.81%, and the
time for text correcting by 47.96%. VT is also strongly preferred by
participants. Overall, VT mitigates the weaknesses of touch and
voice input by leveraging the strengths of the other, improving the
efficiency of text editing and correcting on mobile devices.

ACKNOWLEDGMENTS

We thank anonymous reviewers for their insightful comments, and
our user study participants. This work was supported by NIH award
RO1EY030085 and NSF awards 1805076, 1936027, 2113485, 1815514.
This work was done as part of the Ph.D. dissertation of Maozheng
Zhao, a Stony Brook Ph.D. student supervised by Dr. Xiaojun Bi.

REFERENCES

[1] Ohoud Alharbi, Ahmed Sabbir Arif, Wolfgang Stuerzlinger, Mark D. Dunlop,
and Andreas Komninos. 2019. WiseType: A Tablet Keyboard with Color-Coded
Visualization and Various Editing Options for Error Correction. In Proceedings
of the 45th Graphics Interface Conference on Proceedings of Graphics Interface
2019 (Kingston, Canada) (GI'19). Canadian Human-Computer Communications
Society, Waterloo, CAN, Article 4, 10 pages. https://doi.org/10.20380/GI2019.04
Jessalyn Alvina, Carla F. Griggio, Xiaojun Bi, and Wendy E. Mackay. 2017. Com-
mandBoard: Creating a General-Purpose Command Gesture Input Space for Soft
Keyboard. In Proceedings of the 30th Annual ACM Symposium on User Interface
Software and Technology (Québec City, QC, Canada) (UIST '17). ACM, New
York, NY, USA, 17-28. https://doi.org/10.1145/3126594.3126639

Apple. 2018. About the keyboards settings on your iPhone, iPad, and iPod touch.
https://support.apple.com/en-us/HT202178. [Online; accessed 22-August-2019].
Ahmed Sabbir Arif, Sunjun Kim, Wolfgang Stuerzlinger, Geehyuk Lee, and
Ali Mazalek. 2016. Evaluation of a Smart-Restorable Backspace Technique to
Facilitate Text Entry Error Correction. In Proceedings of the 2016 CHI Confer-
ence on Human Factors in Computing Systems (San Jose, California, USA) (CHI
’16). Association for Computing Machinery, New York, NY, USA, 5151-5162.
https://doi.org/10.1145/2858036.2858407

Xiaojun Bi, Yang Li, and Shumin Zhai. 2013. FFitts Law: Modeling Finger Touch
with Fitts’ Law. In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems (Paris, France) (CHI ’13). Association for Computing Machinery,
New York, NY, USA, 1363-1372. https://doi.org/10.1145/2470654.2466180
Xiaojun Bi, Tom Ouyang, and Shumin Zhai. 2014. Both Complete and Correct?:
Multi-objective Optimization of Touchscreen Keyboard. In Proceedings of the
32Nd Annual ACM Conference on Human Factors in Computing Systems (Toronto,
Ontario, Canada) (CHI ’14). ACM, New York, NY, USA, 2297-2306. https://doi.
org/10.1145/2556288.2557414

Chung-Cheng Chiu, Tara N Sainath, Yonghui Wu, Rohit Prabhavalkar, Patrick
Nguyen, Zhifeng Chen, Anjuli Kannan, Ron] Weiss, Kanishka Rao, Ekaterina Go-
nina, et al. 2018. State-of-the-art speech recognition with sequence-to-sequence
models. In 2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 4774-4778.

Wenzhe Cui, Jingjie Zheng, Blaine Lewis, Daniel Vogel, and Xiaojun Bi. 2019.
HotStrokes: Word-Gesture Shortcuts on a Trackpad. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk)
(CHI ’19). ACM, New York, NY, USA, Article 165, 13 pages. https://doi.org/10.
1145/3290605.3300395

Wenzhe Cui, Suwen Zhu, Mingrui Ray Zhang, H. Andrew Schwartz, Jacob O.
Wobbrock, and Xiaojun Bi. 2020. JustCorrect: Intelligent Post Hoc Text Correction
Techniques on Smartphones. In Proceedings of the 33rd Annual ACM Symposium on
User Interface Software and Technology (Virtual Event, USA) (UIST °20). Association
for Computing Machinery, New York, NY, USA, 487-499. https://doi.org/10.
1145/3379337.3415857

Mark Davies. 2018. The corpus of contemporary American English: 1990-present.
Android developers. 2021. Android EditText. https://developer.android.com/
reference/android/widget/EditText. [Online; Accessed: 2021-04-06].

Android developers. 2021. Android.Speech. https://developer.android.com/
reference/android/speech/package-summary. [Online; Accessed: 2021-04-06].
A. D. N. Edwards. 2002. Multimodal Interaction and People with Disabilities.
Springer Netherlands, Dordrecht. https://doi.org/10.1007/978-94-017-2367-1_5
Michael Fischer, Giovanni Campagna, Silei Xu, and Monica S. Lam. 2018. Brassau:
Automatic Generation of Graphical User Interfaces for Virtual Assistants. In
Proceedings of the 20th International Conference on Human-Computer Interaction
with Mobile Devices and Services (Barcelona, Spain) (MobileHCI ’18). Association

[2

B3

—_
=T

5

8

[

— =
—_ o

(13]

[14

https://doi.org/10.20380/GI2019.04
https://doi.org/10.1145/3126594.3126639
https://support.apple.com/en-us/HT202178
https://doi.org/10.1145/2858036.2858407
https://doi.org/10.1145/2470654.2466180
https://doi.org/10.1145/2556288.2557414
https://doi.org/10.1145/2556288.2557414
https://doi.org/10.1145/3290605.3300395
https://doi.org/10.1145/3290605.3300395
https://doi.org/10.1145/3379337.3415857
https://doi.org/10.1145/3379337.3415857
https://developer.android.com/reference/android/widget/EditText
https://developer.android.com/reference/android/widget/EditText
https://developer.android.com/reference/android/speech/package-summary
https://developer.android.com/reference/android/speech/package-summary
https://doi.org/10.1007/978-94-017-2367-1_5

UIST 21, October 10-14, 2021, Virtual Event, USA

[15]

[16

[17]

(18]

[19

[20]

[21

[22

[23]

[24

[25

[26

[27

[28

[29]

[30

(31

[32]

[33

for Computing Machinery, New York, NY, USA, Article 33, 12 pages.
//doi.org/10.1145/3229434.3229481

Vittorio Fuccella, Poika Isokoski, and Benoit Martin. 2013. Gestures and Wid-
gets: Performance in Text Editing on Multi-touch Capable Mobile Devices.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-
tems (Paris, France) (CHI ’13). ACM, New York, NY, USA, 2785-2794. https:
//doi.org/10.1145/2470654.2481385

Vittorio Fuccella and Benoit Martin. 2017. TouchTap: A Gestural Technique to
Edit Text on Multi-Touch Capable Mobile Devices. In Proceedings of the 12th
Biannual Conference on Italian SIGCHI Chapter (Cagliari, Italy) (CHItaly °17).
Association for Computing Machinery, New York, NY, USA, Article 21, 6 pages.
https://doi.org/10.1145/3125571.3125579

Joshua Goodman, Gina Venolia, Keith Steury, and Chauncey Parker. 2002. Lan-
guage Modeling for Soft Keyboards. In Proceedings of the 7th International Confer-
ence on Intelligent User Interfaces (San Francisco, California, USA) (IUI '02). ACM,
New York, NY, USA, 194-195. https://doi.org/10.1145/502716.502753

Google. 2021. Get started with Voice Access. https://support.google.com/
accessibility/android/answer/6151848?hl=en. [Online; Accessed: 2021-07-18].
google.com. 2021. Type with your voice. https://support.google.com/docs/
answer/4492226?hl=en#zippy=%2Cselect-text. [Online; accessed 6-April-2021].
Christian Holz and Patrick Baudisch. 2011. Understanding Touch. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (Vancouver,
BC, Canada) (CHI ’11). Association for Computing Machinery, New York, NY,
USA, 2501-2510. https://doi.org/10.1145/1978942.1979308

iMore.com. 2021. Everything you can do with Voice Control on iPhone and
iPad. https://www.imore.com/everything-you-can-do-voice-control-iphone-
and-ipad. [Online; Accessed: 2021-07-18].

ExIdeas Inc. 2018. MessagEase - The Smartest Touch Screen keyboard. https:
/Iwww.exideas.com/ME/index.php. [Online; accessed 22-August-2019].
Grammarly Inc. 2020. Grammarly Keyboard. https://en.wikipedia.org/wiki/
Grammarly [Online; accessed May-2020].

Poika Isokoski, Benoit Martin, Paul Gandouly, and Thomas Stephanov. 2010. Mo-
tor Efficiency of Text Entry in a Combination of a Soft Keyboard and Unistrokes.
In Proceedings of the 6th Nordic Conference on Human-Computer Interaction: Ex-
tending Boundaries (Reykjavik, Iceland) (NordiCHI '10). ACM, New York, NY, USA,
683-686. https://doi.org/10.1145/1868914.1869004

Michael Johnston, John Chen, Patrick Ehlen, Hyuckchul Jung, Jay Lieske, Aarthi
Reddy, Ethan Selfridge, Svetlana Stoyanchev, Brant Vasilieff, and Jay Wilpon. 2014.
MVA: The Multimodal Virtual Assistant. In Proceedings of the 15th Annual Meeting
of the Special Interest Group on Discourse and Dialogue (SIGDIAL). Association for
Computational Linguistics, Philadelphia, PA, US.A., 257-259. https://doi.org/10.
3115/v1/W14-4335

Clare-Marie Karat, Christine Halverson, Daniel Horn, and John Karat. 1999.
Patterns of Entry and Correction in Large Vocabulary Continuous Speech Recog-
nition Systems. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (Pittsburgh, Pennsylvania, USA) (CHI "99). Association for
Computing Machinery, New York, NY, USA, 568-575. https://doi.org/10.1145/
302979.303160

Bryan Klimt and Yiming Yang. 2004. The enron corpus: A new dataset for email
classification research. In European Conference on Machine Learning. Springer,
217-226.

Andreas Komninos, Mark Dunlop, Kyriakos Katsaris, and John Garofalakis. 2018.
A Glimpse of Mobile Text Entry Errors and Corrective Behaviour in the Wild. In
Proceedings of the 20th International Conference on Human-Computer Interaction
with Mobile Devices and Services Adjunct (Barcelona, Spain) (MobileHCI ’18). ACM,
New York, NY, USA, 221-228. https://doi.org/10.1145/3236112.3236143

N. Krahnstoever, S. Kettebekov, M. Yeasin, and R. Sharma. 2002. A Real-Time
Framework for Natural Multimodal Interaction with Large Screen Displays. In
Proceedings of the 4th IEEE International Conference on Multimodal Interfaces
(ICMI °02). IEEE Computer Society, USA, 349. https://doi.org/10.1109/ICMI.2002.
1167020

Per Ola Kristensson and Shumin Zhai. 2007. Command Strokes with and Without
Preview: Using Pen Gestures on Keyboard for Command Selection. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (San Jose,
California, USA) (CHI '07). ACM, New York, NY, USA, 1137-1146. https://doi.
org/10.1145/1240624.1240797

Vladimir Iosifovich Levenshtein. 1966. Binary codes capable of correcting dele-
tions, insertions and reversals. Soviet Physics Doklady 10, 8 (feb 1966), 707-710.
Doklady Akademii Nauk SSSR, V163 No4 845-848 1965.

Toby Jia-Jun Li, Jingya Chen, Haijun Xia, Tom M. Mitchell, and Brad A. Myers.
2020. Multi-Modal Repairs of Conversational Breakdowns in Task-Oriented
Dialogs. In Proceedings of the 33rd Annual ACM Symposium on User Interface Soft-
ware and Technology (Virtual Event, USA) (UIST °20). Association for Computing
Machinery, New York, NY, USA, 1094-1107. https://doi.org/10.1145/3379337.
3415820

Google LLC. 2020. Gboard. https://en.wikipedia.org/wiki/Gboard [Online;
accessed May-2020].

https:

177

(34]

[35

[40

[41

=
)

[43

[44

S
&

[46]

[47

S
&

[49

[50

[51

[52

[53

Zhao et al.

Matt Mahoney. 2011. About Text8 file. http://mattmahoney.net/dc/textdata.html.
[Online; accessed May-2020].

Jennifer Mankoff, Gregory D Abowd, and Scott E Hudson. 2000. OOPS: a toolkit
supporting mediation techniques for resolving ambiguity in recognition-based
interfaces. Computers & Graphics 24, 6 (2000), 819-834. https://doi.org/10.1016/
50097-8493(00)00085-6 Calligraphic Interfaces: towards a new generation of
interactive systems.

Tomas Mikolov, Kai Chen, Greg S. Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. http://arxiv.org/abs/1301.
3781

nuance.com. 2021. Dragon Speech Recognition - Get More Done by Voice: Dragon.
https://www.nuance.com/dragon.html. [Online; accessed 6-April-2021].

Per Ola Kristensson and Keith Vertanen. 2011. Asynchronous Multimodal Text
Entry Using Speech and Gesture Keyboards.. In Proceedings of the International
Conference on Spoken Language Processing (Florence, Italy). 581-584.

Sharon Oviatt and Philip Cohen. 2000. Perceptual User Interfaces: Multimodal
Interfaces That Process What Comes Naturally. Commun. ACM 43, 3 (March
2000), 45-53. https://doi.org/10.1145/330534.330538

Sharon Oviatt, Phil Cohen, Lizhong Wu, John Vergo, Lisbeth Duncan, Bernhard
Suhm, Josh Bers, Thomas Holzman, Terry Winograd, James Landay, Jim Larson,
and David Ferro. 2000. Designing the User Interface for Multimodal Speech and
Pen-Based Gesture Applications: State-of-the-Art Systems and Future Research
Directions. Hum.-Comput. Interact. 15, 4 (Dec. 2000), 263-322. https://doi.org/
10.1207/S15327051HCI1504_1

Sharon Oviatt and Philip R. Cohen. 2015. The Paradigm Shift to Multimodality in
Contemporary Computer Interfaces. Morgan & Claypool Publishers.

S. Oviatt and R. VanGent. 1996. Error resolution during multimodal human-
computer interaction. In Proceeding of Fourth International Conference on Spoken
Language Processing. ICSLP *96, Vol. 1. 204-207 vol.1. https://doi.org/10.1109/
ICSLP.1996.607077

Kseniia Palin, Anna Feit, Sunjun Kim, Per Ola Kristensson, and Antti Oulasvirta.
2019. How do People Type on Mobile Devices? Observations from a Study with
37,000 Volunteers.. In Proceedings of 21st International Conference on Human-
Computer Interaction with Mobile Devices and Services (MobileHCI'19). ACM.
Radiah Rivu, Yasmeen Abdrabou, Ken Pfeuffer, Mariam Hassib, and Florian Alt.
2020. Gaze’N’Touch: Enhancing Text Selection on Mobile Devices Using Gaze.
In Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing
Systems (Honolulu, HI, USA) (CHI EA °20). Association for Computing Machinery,
New York, NY, USA, 1-8. https://doi.org/10.1145/3334480.3382802

Ritam Jyoti Sarmah, Yunpeng Ding, Di Wang, Cheuk Yin Phipson Lee, Toby Jia-
Jun Li, and Xiang "Anthony’ Chen. 2020. Geno: A Developer Tool for Authoring
Multimodal Interaction on Existing Web Applications. In Proceedings of the 33rd
Annual ACM Symposium on User Interface Software and Technology (Virtual Event,
USA) (UIST °20). Association for Computing Machinery, New York, NY, USA,
1169-1181. https://doi.org/10.1145/3379337.3415848

Khe Chai Sim. 2010. Haptic Voice Recognition: Augmenting speech modality
with touch events for efficient speech recognition. In 2010 IEEE Spoken Language
Technology Workshop. 73-78. https://doi.org/10.1109/SLT.2010.5700825

Khe Chai Sim. 2012. Speak-as-you-swipe (SAYS): A Multimodal Interface Com-
bining Speech and Gesture Keyboard Synchronously for Continuous Mobile Text
Entry. In Proceedings of the 14th ACM International Conference on Multimodal
Interaction (Santa Monica, California, USA) (ICMI ’12). ACM, New York, NY, USA,
555-560. https://doi.org/10.1145/2388676.2388793

Shyamli Sindhwani, Christof Lutteroth, and Gerald Weber. 2019. ReType: Quick
Text Editing with Keyboard and Gaze. In Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI '19). ACM, New
York, NY, USA, Article 203, 13 pages. https://doi.org/10.1145/3290605.3300433
Bernhard Suhm, Brad Myers, and Alex Waibel. 2001. Multimodal error correction
for speech user interfaces. ACM transactions on computer-human interaction
(TOCHI) 8, 1 (2001), 60-98.

Keith Vertanen, Haythem Memmi, Justin Emge, Shyam Reyal, and Per Ola
Kristensson. 2015. VelociTap: Investigating Fast Mobile Text Entry Using
Sentence-Based Decoding of Touchscreen Keyboard Input. In Proceedings of
the 33rd Annual ACM Conference on Human Factors in Computing Systems
(Seoul, Republic of Korea) (CHI ’15). ACM, New York, NY, USA, 659-668.
https://doi.org/10.1145/2702123.2702135

Daniel Vogel and Patrick Baudisch. 2007. Shift: A Technique for Operating Pen-
Based Interfaces Using Touch. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (San Jose, California, USA) (CHI ’07). Association
for Computing Machinery, New York, NY, USA, 657-666. https://doi.org/10.
1145/1240624.1240727

Klaus Weidner. 2018. Hackers Keyboard. http://code.google.com/p/
hackerskeyboard/ [Online; accessed 22-August-2019].

Jackie (Junrui) Yang, Monica S. Lam, and James A. Landay. 2020. DoThisHere:
Multimodal Interaction to Improve Cross-Application Tasks on Mobile Devices.
In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and
Technology (Virtual Event, USA) (UIST °20). Association for Computing Machinery,
New York, NY, USA, 35-44. https://doi.org/10.1145/3379337.3415841

https://doi.org/10.1145/3229434.3229481
https://doi.org/10.1145/3229434.3229481
https://doi.org/10.1145/2470654.2481385
https://doi.org/10.1145/2470654.2481385
https://doi.org/10.1145/3125571.3125579
https://doi.org/10.1145/502716.502753
https://support.google.com/accessibility/android/answer/6151848?hl=en
https://support.google.com/accessibility/android/answer/6151848?hl=en
https://support.google.com/docs/answer/4492226?hl=en#zippy=%2Cselect-text
https://support.google.com/docs/answer/4492226?hl=en#zippy=%2Cselect-text
https://doi.org/10.1145/1978942.1979308
https://www.imore.com/everything-you-can-do-voice-control-iphone-and-ipad
https://www.imore.com/everything-you-can-do-voice-control-iphone-and-ipad
https://www.exideas.com/ME/index.php
https://www.exideas.com/ME/index.php
https://en.wikipedia.org/wiki/Grammarly
https://en.wikipedia.org/wiki/Grammarly
https://doi.org/10.1145/1868914.1869004
https://doi.org/10.3115/v1/W14-4335
https://doi.org/10.3115/v1/W14-4335
https://doi.org/10.1145/302979.303160
https://doi.org/10.1145/302979.303160
https://doi.org/10.1145/3236112.3236143
https://doi.org/10.1109/ICMI.2002.1167020
https://doi.org/10.1109/ICMI.2002.1167020
https://doi.org/10.1145/1240624.1240797
https://doi.org/10.1145/1240624.1240797
https://doi.org/10.1145/3379337.3415820
https://doi.org/10.1145/3379337.3415820
https://en.wikipedia.org/wiki/Gboard
http://mattmahoney.net/dc/textdata.html
https://doi.org/10.1016/S0097-8493(00)00085-6
https://doi.org/10.1016/S0097-8493(00)00085-6
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://www.nuance.com/dragon.html
https://doi.org/10.1145/330534.330538
https://doi.org/10.1207/S15327051HCI1504_1
https://doi.org/10.1207/S15327051HCI1504_1
https://doi.org/10.1109/ICSLP.1996.607077
https://doi.org/10.1109/ICSLP.1996.607077
https://doi.org/10.1145/3334480.3382802
https://doi.org/10.1145/3379337.3415848
https://doi.org/10.1109/SLT.2010.5700825
https://doi.org/10.1145/2388676.2388793
https://doi.org/10.1145/3290605.3300433
https://doi.org/10.1145/2702123.2702135
https://doi.org/10.1145/1240624.1240727
https://doi.org/10.1145/1240624.1240727
http://code.google.com/p/hackerskeyboard/
http://code.google.com/p/hackerskeyboard/
https://doi.org/10.1145/3379337.3415841

Voice and Touch Based Error-tolerant Multimodal Text Editing and Correction for Smartphones UIST 21, October 10-14, 2021, Virtual Event, USA

[54] Mingrui Ray Zhang, He Wen, and Jacob O. Wobbrock. 2019. Type, Then Cor- 3332165.3347924
rect: Intelligent Text Correction Techniques for Mobile Text Entry Using Neural [55] Mingrui Ray Zhang and O. Jacob Wobbrock. 2020. Gedit: Keyboard gestures for
Networks. In Proceedings of the 32nd Annual ACM Symposium on User Interface mobile text editing. In Proceedings of Graphics Interface (GI "20) (Toronto, Ontario)
Software and Technology (New Orleans, LA, USA) (UIST ’19). Association for (GI °20). Canadian Information Processing Society, Toronto, Ontario, 97-104.

Computing Machinery, New York, NY, USA, 843-855. https://doi.org/10.1145/

178

https://doi.org/10.1145/3332165.3347924
https://doi.org/10.1145/3332165.3347924

	Abstract
	1 Introduction
	2 Related Work
	2.1 Techniques for Editing and Correcting Text on Mobile Devices.
	2.2 Multimodal Interaction Technologies on Smartphones

	3 Use Scenario
	4 Multimodal Text Editing and Correction Techniques
	4.1 Editing Text
	4.2 Correcting Text

	5 Experiment 1: Comparing VT with Touch-only Method
	5.1 Participants
	5.2 Apparatus
	5.3 Design
	5.4 Tasks
	5.5 Procedure
	5.6 Results

	6 Experiment 2: Comparing VT with iOS's Voice Control
	6.1
	6.2
	6.3
	6.4
	6.5
	6.6

	7 General Discussion
	8 Conclusion
	Acknowledgments
	References

