
Taming User-Interface Heterogeneity with Uniform Overlays for
Blind Users

Utku Uckun
uuckun@cs.stonybrook.edu
Stony Brook University

Stony Brook, New York, USA

Rohan Tumkur Suresh
rtumkursures@cs.stonybrook.edu

Stony Brook University
Stony Brook, New York, USA

Md Javedul Ferdous
mferd002@odu.edu

Old Dominion University
Norfolk, Virginia, USA

Xiaojun Bi
xiaojun@cs.stonybrook.edu
Stony Brook University

Stony Brook, New York, USA

IV Ramakrishnan
ram@cs.stonybrook.edu
Stony Brook University

Stony Brook, New York, USA

Vikas Ashok
vganjigu@cs.odu.edu

Old Dominion University
Norfolk, Virginia, USA

ABSTRACT
For many blind users, interaction with computer applications us-
ing screen reader assistive technology is a frustrating and time-
consuming affair, mostly due to the complexity and heterogeneity of
applications’ user interfaces. An interview study revealed that many
applications do not adequately convey their interface structure and
controls to blind screen reader users, thereby placing additional
burden on these users to acquire this knowledge on their own.
This is often an arduous and tedious learning process given the
one-dimensional navigation paradigm of screen readers. Moreover,
blind users have to repeat this learning process multiple times, i.e.,
once for each application, since applications differ in their interface
designs and implementations. In this paper, we propose a novel
push-based approach to make non-visual computer interaction easy,
efficient, and uniform across different applications. The key idea
is to make screen reader interaction ‘structure-agnostic’, by auto-
matically identifying and extracting all application controls and
then instantly ‘pushing’ these controls on demand to the blind user
via a custom overlay dashboard interface. Such a custom overlay
facilitates uniform and efficient screen reader navigation across all
applications. A user study showed significant improvement in user
satisfaction and interaction efficiency with our approach compared
to a state-of-the-art screen reader.

CCS CONCEPTS
•Human-centered computing→ Accessibility technologies;
Empirical studies in accessibility.

KEYWORDS
Desktop Usability, Accessibility, Screen Reader, Visual Impairments,
Uniform Interaction

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
UMAP ’22, July 4–7, 2022, Barcelona, Spain
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9207-5/22/07. . . $15.00
https://doi.org/10.1145/3503252.3531317

ACM Reference Format:
Utku Uckun, Rohan Tumkur Suresh, Md Javedul Ferdous, Xiaojun Bi, IV
Ramakrishnan, and Vikas Ashok. 2022. Taming User-Interface Heterogene-
ity with Uniform Overlays for Blind Users . In Proceedings of the 30th
ACM Conference on User Modeling, Adaptation and Personalization (UMAP
’22), July 4–7, 2022, Barcelona, Spain. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3503252.3531317

1 INTRODUCTION
The ubiquitous use of computing applications in professional set-
tings coupled with the advancement of assistive technologies have
significantly improved the employment prospects for people with
visual disabilities [4, 42]. Many such employment opportunities
require expertise in desktop productivity tools such as the Office
suite [7]. However, interaction with these applications is frustrating
and tedious for blind users, as the graphical user interfaces (GUI)
of these applications are primarily intended for sighted interaction
[8, 37].

Blind users rely predominantly on screen reader assistive tech-
nology to interact with computing applications. A screen reader
narrates the contents of an application and also enables a blind user
to serially navigate the application content and controls (e.g., File,
Edit, View, and other Ribbon options) via an assortment of keyboard
shortcuts (e.g., TAB for next GUI element). This one-dimensional
mode of interaction supported by a screen reader does not gel with
the two dimensional GUI of most desktop applications which are
typically designed to facilitate convenient ‘point-and-click’ interac-
tion with a computer mouse or touchpad. As a consequence, blind
screen reader users have to expend significantly more time and
effort compared to their sighted peers to do the same tasks such as
accessing application controls [29]. Furthermore, as the underlying
implementations of GUIs are likely to vary between applications
and operating system platforms, blind users also face the cognitive
burden of remembering different navigation strategies for different
applications (e.g., VLC media player vs. Windows Media Player) or
even the same application on different platforms (e.g., Microsoft
Excel on Windows vs. Microsoft Excel on MacOS).

Existing solutions to improve interaction efficiency and experi-
ence for blind screen reader users have predominantly focused on
web andmobile applications [6, 25, 27, 30], whereas desktop applica-
tions have been largely overlooked. To the best of our knowledge, no
general-purpose solution currently exists that enables convenient

212

https://doi.org/10.1145/3503252.3531317
https://doi.org/10.1145/3503252.3531317

UMAP ’22, July 4–7, 2022, Barcelona, Spain Utku Uckun, Rohan Tumkur Suresh, Md Javedul Ferdous, Xiaojun Bi, IV Ramakrishnan, and Vikas Ashok

Figure 1: Example use of AccessBolt with File Explorer application. Buttons highlighted with red and dark blue boundaries in
the pop-up dashboard correspond to controls highlighted by the same colored rectangles in the application’s GUI.

non-visual interaction with the GUIs of a wide range of desktop ap-
plications. To better understand the usability issues faced by blind
screen reader users when they interact with different desktop appli-
cations, we conducted an interview study with 12 blind participants.
Analysis of the interview data revealed many interaction challenges
of blind users, most notably the need to memorize different sets of
keyboard shortcuts and navigation strategies for different desktop
applications, a tedious navigation method involving a multitude of
keyboard shortcut presses, and long learning curves for unfamiliar
desktop applications.

As an initial step towards addressing the above users’ concerns,
we built a proof-of-concept assistive technology, namely Access-
Bolt, to facilitate convenient interaction with arbitrary applications
for blind screen reader users. The design of AccessBolt was based
on the following core principles: (i) Uniformity: AccessBolt auto-
matically extracts all the application controls and then makes them
available to the screen reader users via a custom dashboard inter-
face (see Figure 1) that is navigable using the same shortcuts in all

applications; (ii) Efficiency: AccessBolt provides a special shortcut
for blind users to instantly access the dashboard menu, thereby
eliminating the need for tedious manual exploration of application
GUI via screen reader shortcuts. AccessBolt also provides a search
feature for the dashboard menu controls which further reduces the
time needed to access the desired control; and (iii) Usability: The
design of AccessBolt dashboard menu is such that blind users can
easily navigate its contents via basic shortcuts such as ARROW
keys, TAB, and ENTER, thus obviating the need to memorize a wide
array of shortcuts to access the application controls.

A pilot study with 6 screen reader users showed that with Ac-
cessBolt, the participants needed 40% (avg.) fewer keystrokes to
access the desired application controls compared to the status quo
condition without AccessBolt. Furthermore, the participants also
indicated that they experienced a much lighter interaction work-
load with AccessBolt – nearly 4 times lower NASA-TLX [20] score
compared to status quo. In sum, our contributions in this paper are:

213

Taming User-Interface Heterogeneity with Uniform Overlays for Blind Users UMAP ’22, July 4–7, 2022, Barcelona, Spain

• The findings of a preliminary interview study uncovering
the difficulties faced by screen reader users when interacting
with desktop application interfaces.

• The design of AccessBolt interface which aims to provide
a uniform, efficient, and usable interaction experience for
blind screen reader users in all desktop applications.

2 BACKGROUND
2.1 Usability Issues of Screen Readers
A screen reader (e.g., JAWS [16], NVDA [35], and Voiceover [3]) is
a special purpose assistive technology that enables people with se-
vere visual impairments to interact with computer applications by
listening to their content. The popularity of screen readers among
the community of blind users stems from the the fact that they are
relatively cheaper and easier to access than hardware based solu-
tions such as braille displays [19, 47, 48]. A screen reader provides
a set of special keystrokes that allow a blind user to navigate an ap-
plication’s GUI elements in a one-dimensional paradigm. However,
since the modern two-dimensional graphical user interfaces are
primarily intended for sighted interaction, screen reader users strug-
gle to efficiently and conveniently interact with applications, as
evidenced by the findings of many prior studies [12, 40, 41, 44, 45].

For instance, Kurniawanand and Sutcliffe [26] investigated the
mental models utilized by the screen reader users while navigating
desktop application interfaces, and noticed that the screen reader
users either created a structural mental model to remember the
locations of the controls within the interface or memorized the
complex shortcuts for directly accessing these controls. As a con-
sequence, when they encountered an application that did not fit
their mental model, they failed to properly navigate the applica-
tion content. Moreover, their mental model was also likely to be
challenged in a familiar application, if they had to access an unfa-
miliar application control. Similarly, Billah et al. [5] observed how
differences in shortcut mappings between different screen readers
and sometimes even between applications, created confusion and
interaction difficulties for blind screen reader users. As there is no
universal screen reader that supports uniform interaction across
all operating systems and applications, blind users are required to
constantly learn new navigational paradigms and strategies, which
can be frustrating and time consuming. The challenge of conve-
nient navigation/orientation was also uncovered by Shinohara and
Tenenberg in their study [39]. This study revealed how easily an
accidental key press could completely disorient a blind user, and
also how the user would need to expend considerable mental effort
and time to detect and recover from such mistakes.

2.2 Usability Enhancing Techniques for Screen
Reader Users

There exist a few prior works that have focused on overcoming
the usability challenges and thereby improving the desktop screen
reader experience for blind users [13, 15, 33, 50]. Even the screen
readers themselves are now offering additional support to offset
usability issues caused by the one-dimensional navigational par-
adigm. For instance, the VoiceOver screen reader has an in-built
Rotor [2] feature which allows users to filter and navigate GUI
elements based on their types (e.g. navigating only the buttons or

links). While this feature allows user to skip over irrelevant GUI
elements, content navigation is none-the-less still one-dimensional;
the interaction benefits depend on the number of the filtered ele-
ments. Moreover, the user should have apriori knowledge of the
type (button, link, tab, etc.) of a target control; remembering such
application-specific details can induce considerable cognitive load
for blind users [5].

To address this issue concerning navigational efficiency, Lee et
al. [28] proposed a hardware based solution for Microsoft Word
application, where they re-programmed an external dial device to
serve as an additional auxiliary input modality for quickly access-
ing the application’s controls. Specifically, with the help of dial
interface, screen reader users could easily navigate the ribbon con-
trols (e.g., Home, Insert, Design) of Microsoft Word without getting
disoriented and also without needing to remember shortcuts and
navigation strategies. Hendy et al. [22] on the other hand developed
a Command-Line-Interface tool for Microsoft Word, where the user
could simply type the name of the control they wanted to access,
instead of doing the same by manually navigating the application’s
interface. There also exist other similar works that have strived to
improve the screen reader usability for word processing applica-
tions [10, 34, 38, 43]. However, the scope of all these aforementioned
works were limited to a few specific productivity applications, and
as such did not generalize to arbitrary applications.

In sum, findings of prior research emphasize the need for an
efficient and uniform interface for blind users to conveniently in-
teract with arbitrary desktop applications, and thereby bridge the
usability gap between the desktop interaction experiences of blind
and sighted users.

3 PRELIMINARY STUDY
We conducted an IRB-approved interview study with 12 screen
reader users in order to better understand the usability challenges
they face while interacting with desktop applications.

3.1 Participants
We recruited 12 (P1 to P12) screen reader users for the study. The
average age was 48.2 (median=48.5, SD=10.5, Range=29 − 64) and
the gender representation was equal (6 female, 6 male). Recruit-
ment was done using an email list and snowball sampling. Inclusion
criteria were: (i) exclusive dependence on a screen reader with no
functional vision, and (ii) proficiency with a screen reader software.
Except two participants (P1 and P2), all others owned a computer1.
Participants P1 and P2 stated that they accessed computers in li-
braries and at their friend’s homes. Almost all (11) participants had
experience with the Windows operating system platform. When
asked to self-assess their screen reader proficiency, P1 claimed to
be a beginner, P6, P10, P11 claimed to be experts, and the rest of
the participants claimed to have intermediate proficiency.

3.2 Interview format
All the interviews were conducted remotely via phone. The inter-
views were semi-structured, with questions about the following
two topics:

1Participant details can be found here: https://github.com/UMAP2022-Supplementary-
Files/AccessBolt

214

https://github.com/UMAP2022-Supplementary-Files/AccessBolt
https://github.com/UMAP2022-Supplementary-Files/AccessBolt

UMAP ’22, July 4–7, 2022, Barcelona, Spain Utku Uckun, Rohan Tumkur Suresh, Md Javedul Ferdous, Xiaojun Bi, IV Ramakrishnan, and Vikas Ashok

(a) (b)

Figure 2: Accessing controls in desktop applications. Rectangles highlight the ribbons that contain the controls of the desktop
applications. (a): Ribbon for the Notepad. Yellow rectangle highlights the menu ribbon of the Notepad application which is
accessible via “Alt” key. Controls in this ribbon are navigable via arrow keys. (b): Ribbons of File Explorer. Ribbon labelled as
1 is the content area. Red ribbon (top) is accessible via “Alt” key but the ribbons tagged with numbers 2-5 do not have a key
shortcut. They are accessible via TAB.

• Desktop usability: What desktop applications do you use
most frequently? How frequently do you come across unus-
able desktop applications? What are the causes for usability
issues in desktop applications? What do you do to overcome
these challenges?

• Shortcut usage and GUI navigation habits: Do you memorize
shortcuts for specific applications? How frequently do you
use shortcuts in desktop applications? How frequently do
you use navigational shortcuts (ARROW keys and TAB)
in desktop applications? Do you memorize screen reader
specific shortcuts?

Each interview lasted about 10 minutes. The interviews were
recorded, with the permission of the participant, and transcribed
for analysis. Open coding technique [46] was used for analyzing
the collected interview data; authors iteratively went over the user
responses and identified key insights and themes that reoccurred in
the data. Participation in the study was voluntary and no monetary
compensation was given to the participants.

3.3 Findings
Heterogeneous keyboard shortcuts. Six participants (P1, P3,

P5, P6, P10, P12) mentioned poor interface navigability as the source
of many usability problems across multiple applications. In this
regard, P5 and P6 specifically highlighted the lack of a uniform
access paradigm to applications’ controls, and additionally stated
that many controls in applications could only be accessed via a
combination of different kinds of shortcuts. P10 and P12 also men-
tioned that some controls could not be reached using the common
navigational shortcuts, and instead required use of less familiar
and hard-to-remember shortcuts. The participants also indicated
that the usability problems were further exacerbated whenever
they interacted with new applications due to the interaction burden
associated with learning new shortcut mappings.

In order to further examine this issue, we used a screen reader to
navigate interfaces of different desktop applications. We observed

that simple applications such as Notepad used a single menu ribbon
that was accessible via single keystroke and navigable with basic
shortcuts (see Figure 2a). However, complex applications such as
File Explorer and Microsoft Word used multiple ribbons to orga-
nize their controls, and these ribbons in turn had different access
methods (i.e., shortcut mappings) for navigating the controls within
them (see Figure 2b). As screen reader users often do not have (or
remember) this application-specific shortcut knowledge, they end
up manually exploring the interface using different combinations
of ALT, TAB and ARROW keys to reach their target control.

Repeating actions and hoping for different outcome. Four
participants (P4, P5, P6 and P11) stated that they often were unable
to reach their target control in the first navigational attempt, and
therefore they repeated their actions and tried different shortcut
strategies with the hope of succeeding in one of the attempts. These
participants however asserted that the strategy of repeating actions,
even if successful, was annoying and frustrating. Eight participants
(P1, P2, P4, P5, P9, P10, P11 and P12) stated that if even repetition
and alternative exploration strategies did not help them in locating
target controls, they sought help from either sighted friends or
online forums.

Using general navigational shortcuts more than applica-
tion specific shortcuts. All 12 participants claimed that theymostly
relied on basic screen reader shortcuts that are common across mul-
tiple applications. Specifically, all of them mentioned that they fre-
quently used ARROW and TAB keys for navigation, and 7 of them
indicated that they also sometimes relied on basic ‘skip’ shortcuts
(e.g., skipping between paragraphs, headings, and links). Only five
participants (P4, P5, P6, P7 and P12) stated that they had memorized
slightly more advanced shortcuts such as open/close, minimize,
maximize, application title andmenu bar. As for application-specific
shortcuts (e.g., Insert Table in Excel Align Center in Word), 9 partic-
ipants said that they less frequently used such shortcuts, except for
the standard “Cut”, “Copy”, and “Paste” shortcuts. Only the remain-
ing 3 participants (P6, P7 and P12) mentioned that they knew some

215

Taming User-Interface Heterogeneity with Uniform Overlays for Blind Users UMAP ’22, July 4–7, 2022, Barcelona, Spain

Figure 3: Architectural workflow of AccessBolt.

application-specific advanced shortcuts such as “Find”, “Replace”,
“Indent Left/Right/Center”, New document, “AutoSum”(Excel), and
“Row/Column header names”(Excel). However, all participants agreed
that using the application specific shortcuts to access controls, al-
though efficient, was not feasible on most occasions due to the
cognitive burden of remembering a plethora of complex shortcuts.

The interview study findings clearly illuminate the need for
an efficient and uniformly navigable interface for screen reader
users to interact with desktop applications. This interface should
also minimize the cognitive and learning overhead with respect
to shortcut memorization and moreover should be scalable, i.e.,
assist users in a wide range of desktop applications across different
operating system platforms. By casting these interface requirements
as design principles, we developed AccessBolt as described next.

4 ACCESSBOLT DESIGN
Figure 3 presents an architectural schematic of AccessBolt. When
a user presses the special shortcut “CTRL + K” to instantly access
the AccessBolt interface, AccessBolt first automatically detects and
extracts all the controls in the application using an accessibility
API. Then, the command controls (e.g., font dropbox in Word, New
Slide button in PowerPoint etc.) are separated from non-command
controls (e.g., structural controls such as panes and ribbons) and
main content area controls (e.g., cells in Excel Table, files/folder in
File Explorer) using custom built machine learning-based classifi-
cation models. The identified command controls are subsequently
passed to the layout design module which in turn dynamically
creates a pop-up interface for displaying these commands to the
user. Navigation within the popup interface is uniform, i.e., the
user only needs to press the basic TAB shortcut to navigate the list

of commands. The interface also provides a search functionality
to assist the user in quickly locating the desired command. When
the user selects a command in our interface, the Action Relay mod-
ule triggers a selection or click event on the actual corresponding
command in the application GUI. Also, the pop-up interface gets
automatically closed and the screen reader focus returns to the
application GUI (specifically the GUI element that was in focus
when the user pressed the AccessBolt shortcut). This way the user
can resume without having to readjust the screen reader focus via
multiple key presses. The AccessBolt popup interface can also be
manually closed at any instant using “CTRL + K” shortcut.

4.1 Extracting Application Controls
The accessibility API of the operating systems in general has access
to the underlying UI trees of applications so as to ensure their
accessibility for screen reader users. For instance, on the Windows
operating system platform, theMicrosoft UI Automation framework
[32] serves as the accessibility API that gives screen readers access
to application GUI elements. Specifically, this framework provides
access to the UI Automation tree (also referred to as control tree
from this point onwards for convenience) of an application that
contains its structural information along with detailed information
such as name, description, control type, and default action for each
of the application’s controls (buttons, lists, ribbons, etc.) [21]. When
the user seeks to opens AccessBolt’s popup interface, AccessBolt
detects the application that is currently in use, and extracts all of
its controls by leveraging the UI Automation framework.

4.2 Classifying Application Controls
After extracting the controls, AccessBolt classifies them as belong-
ing to one of the two groups – command or non-command. Struc-
tural controls such as ribbons and panes do not offer any direct
functionality to the user as their sole purpose is to group and vi-
sually arrange other controls for sighted users, therefore they are
placed under the non-command category. Functional controls are
the controls that can be triggered by the user (e.g. clicked, toggled,
expanded, selected) and they execute operations on behalf of the
user. For example, ribbon controls or commands such as Bold, Left
Indent, Fonts in a word processor; Increase volume, Play/Pause but-
tons in a music player, are all functional controls. However, not
all functional controls are command controls, some are content
controls such as cells in Excel or files/folders in File Explorer. Clas-
sifying structural controls as non-command controls is relatively
easy, but distinguishing between content controls and command
controls is challenging due to their shared similarities. Therefore,
we built custom machine learning models to aid us in this binary
classification (command controls vs. everything else).

ClassificationModels. We trained threemachine learningmod-
els for this classification task – decision tree, support vector ma-
chine (SVM), and neural network. We leveraged the scikit-learn
software library [14] to train the machine learning model. The deci-
sion tree model used the Gini impurity metric and the SVM model
used the Radial Basis Function kernel. The neural network model
comprised two hidden layers (36 nodes in each layer) with rectified
linear unit function. The learning rate was set to 0.001 and the
maximum number of iterations was 200. In addition to these three

216

UMAP ’22, July 4–7, 2022, Barcelona, Spain Utku Uckun, Rohan Tumkur Suresh, Md Javedul Ferdous, Xiaojun Bi, IV Ramakrishnan, and Vikas Ashok

machine learning models, we also built an ontology consisting of
manually designed classification rules.

We handcrafted features2 to train the machine learning models.
This included a categorical control type feature that was vector-
ized using the term frequency-inverse document frequency (tf-idf)
method for training. Features capturing patterns (e.g., selection,
toggle) were binary, and the features relevant to a control’s relative
screen location (e.g., horizontal and vertical position) were contin-
uous. Note that we also tested the models both with and without
the screen location-based features to assess their influence on the
models’ performances.

The manually constructed ontology-based classification model
on the other hand had only 3 simple rules. The first rule checked if
the type of an application control belonged to one of the predefined
types in a custom predetermined list. This handcrafted list included
types such as buttons, checkboxes, etc., that are commonly used
in applications to represent command controls. The second rule
checked whether an application control was a leaf node in the
UI Automation control tree; our manual inspections revealed that
structural controls such as panels and ribbons were almost always
the inner nodes of the UI control tree. The last rule used default
action attribute value of the application control to check if it was
interactive via a keyboard or a mouse, as command features are
always interactive e.g. clickable, toggleable, selectable, etc.

Dataset. To evaluate our models, we built a dataset by selecting
15 desktop applications and manually annotating all their con-
trols as either command or non-command. Specifically, we chose a
diverse set of applications to ensure generalizeability of the classifi-
cation models – Calendar, Excel, File Explorer, Google Chrome, MS
To do, Mozilla Firefox, Notepad, Notepad++, Outlook, PowerPoint,
Skype, Weather, Word, WordPad and Zoom. In total, there were
1014 command (25%) and 3095 non-command (75%) controls in our
dataset summing up to a total of 4109 controls.3

Evaluation. We used a folding method, where in each fold an
application was left out for testing, and the models were trained on
the data collected from the remaining 14 applications. The precision
and recall metrics were then averaged across all applications, and
the results are presented in Table 1.

Analysis. As seen in Table 1, the ontologymodel had the highest
average recall but lowest average precision across all applications.
A deeper analysis revealed that this was due to the model not lever-
aging the screen location information of the controls; it labelled
controls even outside of the typical menu region in applications as
command elements. The SVM model on the other hand performed
much better than the ontology model, even when excluding the
location information. However, it performed poorly on applications
with relatively fewer command controls such asMS ToDo, Calendar,
Weather, Google Chrome and Firefox. Inclusion of location-related
features slightly improved the SVM model performance for these
specific applications, but the overall performance dropped signifi-
cantly. The performance of the neural network model was similar

2Due to space constraints, detailed list of features along with their descriptions can be
found here: https://github.com/UMAP2022-Supplementary-Files/AccessBolt
3The dataset can be found here: https://github.com/UMAP2022-Supplementary-Files/
AccessBolt

to the SVM model, however its overall performance improved with
the addition of location-related features. The decision tree model
without the location features performed very poorly on applications
such as Excel and Calendar where it labelled cells of the table and
days on the calendar respectively as command controls. However,
once the location features were included, the performance of the
decision tree model drastically increased, and it yielded the best F1
score. We therefore selected the decision tree model with location
features included as the classifier model in AccessBolt.

4.3 AccessBolt Popup Interface
Once the command controls are identified in the application GUI,
AccessBolt creates proxy commands for them in its popup inter-
face as shown in Figure 1. As seen in this figure, all applications
commands regardless of their containing ribbons, are grouped to-
gether into one list in the popup, thereby eliminating the need for
memorizing different shortcuts and strategies for accessing differ-
ent commands within and across applications. This design choice
was also motivated by prior work [24] and our own observations,
which indicated that blind users were generally familiar with the
command names (e.g., “Find”) and not their container names(e.g.,
“Editing”). The linear arrangement of commands also facilitates
simple uniform navigation with basic TAB or ARROW shortcuts.

Figure 4: Search feature illustration using the keyword “Se-
lect” for the interface in Figure 1.

4.3.1 Search Feature. To further reduce the time need to access
a target command, we included a search feature at the beginning of
the popup interface. Specifically, while navigating the commands in
the popup, the user can press the “S” shortcut anytime to instantly
focus on the search bar, and then type the name of the command.
In this regard, we used Levenshtein distance based matching [31]
to provide more flexibility with the search queries; only the com-
mands with the highest matching scores are shown in the popup
thereby reducing the search space for the user. For example, Figure
4 depicts how the AccessBolt popup interface gets updated with
fewer relevant commands in the list, when the user enters a query
“Select” in the search bar. Without search functionality, the user
would need 20 key presses to reach the “Select all” button in the
original list, whereas with the search functionality, the same can be
achieved with fewer key presses by typing select and then pressing
the ENTER key.

4.3.2 Action Relay. Once the user selects a command from the
popup interface, AccessBolt leverages Microsoft UI Automation API
to automatically trigger the default action (click, expand, toggle, etc.)
on the actual corresponding command control in the application
GUI. AccessBolt then automatically closes the popup interface and
returns the screen reader focus to where it was prior to accessing
the popup interface, thereby ensuring seamless interface transition
and context preservation for the user.

217

https://github.com/UMAP2022-Supplementary-Files/AccessBolt
https://github.com/UMAP2022-Supplementary-Files/AccessBolt
https://github.com/UMAP2022-Supplementary-Files/AccessBolt

Taming User-Interface Heterogeneity with Uniform Overlays for Blind Users UMAP ’22, July 4–7, 2022, Barcelona, Spain

Averaged Scores (Standard Deviations)
Models Precision Recall F1
Ontology 0.37 (0.28) 1.0 (0.0) 0.54 (0.24)
SVM 0.84 (0.32) 0.83 (0.39) 0.83 (0.34)

SVM with Location features 0.68 (0.21) 0.70 (0.16) 0.69 (0.18)
Neural Network 0.83 (033) 0.83 (0.38) 0.83 (0.34)

Neural Network with Location features 0.80 (0.18) 0.91 (0.19) 0.85 (0.15)
Decision Tree 0.39 (0.34) 0.82 (0.38) 0.53 (0.34)

Decision Tree with Location features 0.88 (0.25) 0.89 (0.21) 0.88 (0.22)
Table 1: Precision, Recall and F1 scores of the classification models.

5 EVALUATION
5.1 Pilot Study

Participants. We conducted an IRB-approved pilot study with
6 screen reader users (see Table 2) to evaluate AccessBolt. The aver-
age age of the participants was 47.5 (median=47, min=37, max=58)
and the gender representation was equal (3 male, 3 female). Recruit-
ment of the participants was done via word of mouth and snowball
sampling. The inclusion criteria were: (i) exclusive dependency on
screen readers for interacting with computers; (ii) at least basic
proficiency with one screen reader (JAWS or NVDA); and (iii) ex-
perience with the Windows operating system platform. To ensure
external validity, there was also no overlap between the participant
pools of the two studies.

Design. In the study, the users had to complete four typical
desktop-application tasks using a screen reader. These tasks along
with the comprising sub-tasks are listed in Table 3. Since the goal of
the study was to evaluate ease and speed with which a user could
access application controls with and without AccessBolt, we did
not want the user’s familiarity with the application to be a con-
founding factor. Therefore, each task was divided into a sequence
of clearly specified sub-tasks such that all participants had equal
knowledge about the task. In a within-subject experimental setup,
the participants had to complete these tasks under the following
two conditions, with two tasks per condition:

• ScreenReader: Using just the screen reader shortcuts (status-
quo baseline)

• AccessBolt: Using the popup interface generated by Access-
Bolt (proposed approach)

As noticeable in Table 3, we considered both a Microsoft appli-
cation and a third-party application for our tasks in order to have a
more general representation of desktop applications. Specifically,
we chose the Windows File Explorer and Zoom Cloud Meetings
[49] applications, as both of these applications provide important
service to desktop users. The File Explorer tasks requires 3 and 4
mouse clicks for a sighted person while the Zoom tasks requires 3
and 5 mouse clicks. The assignment of tasks to conditions and the
ordering of the conditions and tasks were counterbalanced using
the Latin square method [9].

Procedure. The experimenter first allowed the participants to
refresh their memory regarding the standard screen reader short-
cuts and also get accustomed to the AccessBolt popup interface. For
this practice session, we selected the Wordpad application, where

they were asked to type, navigate between “Home” and “View”
menu tabs, and find “Bold” and “Align text to center” controls in
the Wordpad ribbons. After practice, the participants were asked
to complete the main study tasks in the predetermined counterbal-
anced order. To complete a task, the participants had to complete
all of its subtasks as listed in Table 3. We allocated a maximum
of 10 minutes for each task. For each participant, the keystrokes
and task completion times were recorded. After completing each
task, the participants were asked to answer an SEQ (Single Ease
Question)4, on a scale of 1(hard) to 7(easy). The participants were
also administered the NASA-TLX [20] questionnaire to estimate
their perceived workload after each study condition. Each study
lasted for nearly 2 hours, and the participants were given monetary
compensation for their time and contribution.

5.1.1 Results.

Task Completion. With 6 participants and 4 tasks per partic-
ipant, there were in total 24 tasks (12 per condition). Under the
AccessBolt condition, all participants were able to complete all of
the tasks within the time limit; however, they were only able to
complete 5 tasks (cumulative) under the baseline Screen Reader
condition (see Table 4). Also, as shown in Table 4, in the Screen
Reader condition, the participants could not finish 3 tasks (cumula-
tive) within the stipulated time limit, and further they even gave
up in 4 tasks (highlighted in red) due to frustration.

Our observations showed that the participants spent a lot of time
and key presses navigating the application GUI, because the right
navigational instructions were not communicated to them clearly
by the applications in real time. For example, when searching for the
“Target” folder in File Explorer task 1, most participants managed
to navigate to the correct ribbon using the TAB shortcut, however,
they failed to realize that they were supposed to use the ARROW
keys to navigate within this ribbon. This need for changing the
shortcut from TAB to ARROW keys for navigation was not commu-
nicated to them by either the application or the screen reader, and
consequently the participants were never able to reach their goal;
instead they simply cycled over the remaining elements leading to
frustration. In the Zoom application, the TAB shortcut was needed
to navigate between the ribbons, but the ARROW keys were re-
quired to navigate within the top ribbon. The participants therefore
struggled to find the “Meetings” tab, and they kept navigating in

4https://measuringu.com/seq10/

218

UMAP ’22, July 4–7, 2022, Barcelona, Spain Utku Uckun, Rohan Tumkur Suresh, Md Javedul Ferdous, Xiaojun Bi, IV Ramakrishnan, and Vikas Ashok

ID Gender & Age Condition Screen reader Proficiency Computer Most Used
Usage Application

P1 Female / 48 Blind JAWS Beginner Once a week Notepad
P2 Female / 37 Blind JAWS, VoiceOver Intermediate Twice a week Outlook
P3 Male / 55 Light Perception NVDA, VoiceOver Intermediate Once a week Word, Notepad
P4 Male / 46 Blind JAWS Intermediate Once a month Windows Media Player
P5 Male / 41 Light Perception JAWS, VoiceOver Expert Everyday Word, Notepad, Skype
P6 Female / 58 Blind JAWS Expert Everyday Excel, Calculator, Word

Table 2: Pilot study participant demographics. Screen reader proficiency is self-assessed

Application Task Number Subtasks

File Explorer 1 Navigate to “Target” Folder -> Select “Target.txt” file
-> Go to “View” Tab -> Invoke “Hide Selected Item” button

2 Select all items in the folder -> Go to “Share” Tab -> Invoke the “Zip” button

Zoom 1 Go to “Meetings” Tab -> Select the “Target” meeting -> Invoke the “Edit” button
-> Check the “Host Video Off” checkbox -> Invoke the “Save” button.

2 Go to “Chat” Tab -> Select the “Target” chat -> Type and send message
Table 3: Pilot study tasks along with sub-tasks.

circles over the application elements. As a consequence, two partic-
ipants P1 and P4 run out of time whereas the participant P6 simply
gave up (see Table 4). On the other hand, none of the participants
navigated the AccessBolt dashboard interface more than once. We
observed that once the participants got accustomed to the search
bar, they used it frequently which reduced the task completion
times further, while also improving the application usability.

Number of Key Presses. Keystroke statistics for 5 participants
are shown in Table 5 (note that key press data for the participant
P1 was lost due to technical issues). In Table 5, we also show the
number of basic navigational key presses (TAB and ARROW keys)
used by the participants while doing the tasks.

The participants performed 178.35 key presses on average in
the Screen Reader condition, whereas they only needed an average
of 72.18 keystrokes in the AccessBolt condition, a result that is
in accordance with the prior observations regarding task comple-
tion times. The high number of key presses in the Screen Reader
condition was mainly due to repeated cyclic navigation of inter-
face elements due to lack of proper navigational instructions. In
the AccessBolt condition however, none of the participants had
to navigate the controls in the popup interface more than once,
which significantly decreased the number of keystrokes for doing
the tasks. The use of search bar lowered the number of key presses
by reducing the command search space. As shown in Table 5, the
average ratio of navigational keystrokes (TAB and ARROW keys)
to total number of keystrokes was 0.87 in the baseline condition,
whereas it was just 0.22 with AccessBolt. This indicates that the
participants preferred to use the search bar for quickly accessing the
controls rather than navigating the interface element by element.

SEQ and NASA-TLX Scores. The average SEQ score was 2.08
(min=1 , max=4, median=1.5) for the baseline condition and 5.66
(min=3, max=7, median=6) for the AccessBolt condition (higher is
better) suggesting that participants had an easier time completing

the tasks using AccessBolt. The average NASA-TLX score for the
baseline and the AccessBolt conditions were 11.08 and 3.33 respec-
tively (lower is better). A detailed examination of the individual
components of the TLX scores revealed that the average scores for
the performance, effort and frustration sub-scales were very high
for the baseline condition (14.5, 13.3 and 13 respectively out of 20),
which indicates that the participants felt they were exerting more
effort for completing the tasks, while feeling that they have not
performed well and getting increasingly frustrated in the process.
Meanwhile the scores for the same categories in the AccessBolt
condition were much lower – 5.3, 2.5 and 1.8 respectively, which
confirms that the participants had a more pleasant experience under
the AccessBolt condition.

Subjective Feedback. Subjective feedback of the participants
was collected at the end of the study via exit interviews. In the
interviews, all participants explicitly stated that they preferred the
AccessBolt condition over the baseline screen reader condition. Few
of them (P2, P3) mentioned that they liked how quickly they could
find a desired GUI element using the proposed AccessBolt interface.
Quoting participant P2 – “I just open [interface] and searched. It’s
quick. Very basic, and useful.” All participants also liked that the
arrangement of having all functional application controls in a single
popup interface. For instance, P4 stated that – “I liked it because all
the options were in place. There was a searchmethod in place. If you
don’t do the old method you can search it.” Lastly, the participants
felt that AccessBolt was easy to learn and easy to use. To quote P1,
“It was fewer keystrokes, less to remember, controls come easy.”,
and P5 said “Simple and user friendly.” Two participants suggested
that the AccessBolt interface should also be capable of reminding
them of their relative location in the interface. In this regard, P5
said “Screen reader should read where you exactly are.”, while
P6 suggested that the interface should “Remind which element is
currently selected”. Using sound prompts to communicate the status
of the popup interface and also the location of the user within the

219

Taming User-Interface Heterogeneity with Uniform Overlays for Blind Users UMAP ’22, July 4–7, 2022, Barcelona, Spain

ID Baseline AccessBolt
File Explorer Zoom File Explorer Zoom
1 2 1 2 1 2 1 2

P1 >10:00 (3) N/A >10:00 (1) N/A N/A 2:00 (7) N/A 1:24 (7)
P2 N/A 2:31 (2) N/A 6:33 (1) 6:10 (5) N/A 2:39 (6) N/A
P3 7:12 (3) N/A N/A 8:14 (3) N/A 3:05 (4) 2:55 (3) N/A
P4 N/A 5:08 (4) >10:00 (1) N/A 3:56 (7) N/A N/A 1:52 (7)
P5 N/A 4:01 (4) N/A 3:53 (1) 4:21 (7) N/A 4:16 (5) N/A
P6 7:38 (1) N/A 3:49 (1) N/A N/A 2:05 (4) N/A 1:17 (6)

Table 4: Task completion times and SEQ scores for each participant. Tasks with greater than 10 minute completion times and
those that were abandoned before the time limit (indicated by red) are considered as failures. N/A indicated the participants
did not do the task in the specified condition.

Key Type Baseline AccessBolt
File Explorer Zoom File Explorer Zoom
1 2 1 2 1 2 1 2

Navigational 154.5 (142.1) 98.3(33.7) 177.5(102.5) 189.3(35.7) 37(32,8) 17.5(20.5) 10.3(12.8) 0 (0)
Total 188.5 (126.6) 115.3(31.8) 196(108.9) 213.6(41) 118.6(38.4) 47.5(24.7) 91.6(25.8) 31(7.1)

Average Navigational: 154.9 / Total:178.35 Navigational: 16.2 / Total: 72.18
Table 5: Average number of key presses with standard deviation for subtasks in baseline and AccessBolt conditions. Naviga-
tional keystrokes only consist of TAB and ARROW keys. Last row shows the average number of key presses per conditions.

interface was a common request by a majority (P1, P3, P5, P6) of
the participants.

6 DISCUSSION
The results of our pilot study demonstrated the potential of Ac-
cessBolt in improving the usability of desktop interaction for blind
screen reader users. However, the study also illuminated key limi-
tations as discussed next.

Fixing the accessibility issues. A limitation of AccessBolt is
that it does not fix any existing accessibility problems; it just focuses
on making the accessible elements more usable. Applications that
do not support any of the accessibility frameworks tend to have
unlabelled controls in their interfaces. For example, an application
can have a button with a “mute icon” but not provide any label to
the accessibility framework. A sighted person can read or recognize
the icon of the button on their screen, but a screen reader user will
only hear the word button when the cursor focus moves to this
control. For such scenarios, a machine learning model such as [11]
can be trained and integrated into AccessBolt, so as to automatically
generate labels for controls with missing labels.

Supporting other accessibility frameworks. The current Ac-
cessBolt prototype is limited to Windows applications that support
the Microsoft UI Automation accessibility framework, however
there exist other operating system-specific [1, 17], and also plat-
form independent accessibility frameworks[18, 36] that are yet to be
incorporated into AccessBolt. In order to support the applications
that use the other OS frameworks, we have to extend the AccessBolt
workflow pipeline by making changes to the Controls Extraction
module, and retrain the classification models if necessary.

Expanded scope of search functionality. Inmost applications,
all ribbons are not present on the screen at the same time. For exam-
ple, in the File Explorer application, controls under the “Home” tab
disappear when the user switches to the “View” tab. The present
AccessBolt prototype is unable to capture the controls under these
hidden tabs because they are not rendered on the screen and there-
fore not present in the UI control tree. As future work, we plan
to develop a pre-processing click monkey application, similar to
[23], that automatically traverses all these hidden tabs and dynamic
options, and then saves this information, so that AccessBolt always
has information regarding all the controls in the application. This
way when a user searches for a hidden control in the dashboard in-
terface, AccessBolt can first make it visible and then automatically
trigger it if selected by the user.

Adding alternative modes of interaction. Adding additional
modes of interaction to AccessBolt interface can provide more
options to the user and thereby improve the overall experience.
For example, opening the popup interface followed by navigating,
searching, and invoking the controls within it can all be carried out
using speech commands instead of using the key presses and short-
cuts. This can further reduce the need for typing when searching
and thereby reduce the overall effort and time needed for trigger-
ing a control. Speech interfaces can be especially beneficial for
novice screen reader users who have limited screen reader skills
and knowledge.

Contextual ordering of commands. In the current version of
AccessBolt, commands in the popup interface are listed in the same
order as they appear in the application’s internal UI tree. This can
sometimes lead to tedious linear navigation of the list, especially
if the user is unable to find the desired command via search (e.g.,

220

UMAP ’22, July 4–7, 2022, Barcelona, Spain Utku Uckun, Rohan Tumkur Suresh, Md Javedul Ferdous, Xiaojun Bi, IV Ramakrishnan, and Vikas Ashok

when the user is unaware of the exact name of the command). In
such scenarios, dynamic reordering of commands based on their
likelihood of being accessed next by the user given the context,
can significantly improve the efficiency of command access in Ac-
cessBolt’s popup interface. For example, if the user highlights a
document portion in a text editor application, AccessBolt can pri-
oritize commands related to text formatting and place them at the
top of the list in its popup interface.

Large-scale evaluation. An obvious limitation of our workwas
the small sample size of participants in the evaluation study5. The
lack of statistically significant observations can be attributed to the
small sample size. In the near future, we plan to conduct a large
scale study with more participants.

7 CONCLUSION
In this paper, we explored the usability issues blind screen reader
users typically face when interacting with the graphical user in-
terfaces of desktop applications. We conducted an interview study
which revealed interaction issues such as tedious navigation involv-
ing multiple shortcut presses in application interfaces, and the need
for memorizing different shortcuts for different applications. To
mitigate these issues, we proposed AccessBolt – a system wide ser-
vice application that can automatically access the interface details
of the target application, detect the command controls in it, and
then present these controls to the user instantly on demand via a
pop-up interface that is easily and uniformly navigable with simple
keyboard shortcuts. A pilot study with blind participants reaffirmed
our observations about usability issues of desktop applications, and
demonstrated the potential of AccessBolt in mitigating the negative
impact of these usability issues. The study also provided promising
directions for future work.

ACKNOWLEDGMENTS
Thisworkwas supported byNSFAwards: 1805076, 1815514, 1936027,
2113485, 2125147 and NIH Awards: R01EY030085, R01HD097188.

REFERENCES
[1] Apple. 2021. Accessibility API. https://developer.apple.com/accessibility/macos/.
[2] Apple. 2021. Rotor function for VoiceOver. https://support.apple.com/guide/

voiceover/with-the-voiceover-rotor-mchlp2719/mac
[3] Apple. 2021. Vision Accessibility - Mac - Apple. https://www.apple.com/

accessibility/mac/vision/
[4] Edward C Bell and Natalia M Mino. 2015. Employment outcomes for blind and

visually impaired adults. (2015).
[5] Syed Masum Billah, Vikas Ashok, Donald E Porter, and IV Ramakrishnan. 2017.

Ubiquitous accessibility for people with visual impairments: Are we there yet?.
In Proceedings of the 2017 chi conference on human factors in computing systems.
5862–5868.

[6] Yevgen Borodin, Jeffrey P Bigham, Glenn Dausch, and IV Ramakrishnan. 2010.
More than meets the eye: a survey of screen-reader browsing strategies. In
Proceedings of the 2010 International Cross Disciplinary Conference on Web Acces-
sibility (W4A). ACM, 13.

[7] Diego Bovenzi, Gerardo Canfora, and Anna Rita Fasolino. 2003. Enabling legacy
system accessibility byweb heterogeneous clients. In Seventh European Conference
onSoftware Maintenance and Reengineering, 2003. Proceedings. IEEE, 73–81.

[8] LawrenceHBoyd,Wesley L Boyd, andGregg CVanderheiden. 1990. The graphical
user interface: Crisis, danger, and opportunity. Journal of Visual Impairment &
Blindness 84, 10 (1990), 496–502.

[9] James V Bradley. 1958. Complete counterbalancing of immediate sequential
effects in a Latin square design. J. Amer. Statist. Assoc. 53, 282 (1958), 525–528.

5Due to the COVID-19 pandemic, participant enrollment was much lower than usual.

[10] Maria Claudia Buzzi, Marina Buzzi, Barbara Leporini, and Giulio Mori. 2012.
Designing e-learning collaborative tools for blind people. E-Learning-Long-
Distance and Lifelong Perspectives (2012), 125–144.

[11] Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xiwei Xu, Liming Zhut, Guo-
qiang Li, and JinshuiWang. 2020. Unblind your apps: Predicting natural-language
labels for mobile gui components by deep learning. In 2020 IEEE/ACM 42nd Inter-
national Conference on Software Engineering (ICSE). IEEE, 322–334.

[12] Michael F Chiang, Roy G Cole, Suhit Gupta, Gail E Kaiser, and Justin B Starren.
2005. Computer and world wide web accessibility by visually disabled patients:
Problems and solutions. Survey of ophthalmology 50, 4 (2005), 394–405.

[13] Michael Connolly, Christof Lutteroth, and Beryl Plimmer. 2010. Document
resizing for visually impaired students. In Proceedings of the 22nd Conference of
the Computer-Human Interaction Special Interest Group of Australia on Computer-
Human Interaction. 128–135.

[14] David Cournapeau. 2021. Scikit-learn software library for Python. https://scikit-
learn.org/stable/

[15] Christin Engel, Emma Franziska Müller, and Gerhard Weber. 2019. SVGPlott: an
accessible tool to generate highly adaptable, accessible audio-tactile charts for
and from blind and visually impaired people. In Proceedings of the 12th ACM In-
ternational Conference on PErvasive Technologies Related to Assistive Environments.
186–195.

[16] Freedom Scientific. 2021. JAWS® - Freedom Scientific. https://www.
freedomscientific.com/products/software/jaws/

[17] GNOME. 2021. Accessibility Toolkit. https://developer.gnome.org/atk/.
[18] Andres Gonzalez and Loretta Guarino Reid. 2005. Platform-independent ac-

cessibility api: Accessible document object model. In Proceedings of the 2005
International Cross-Disciplinary Workshop on Web Accessibility (W4A). 63–71.

[19] Yoichi Haga,WataruMakishi, Kentaro Iwami, Kentaro Totsu, Kazuhiro Nakamura,
and Masayoshi Esashi. 2005. Dynamic Braille display using SMA coil actuator
and magnetic latch. Sensors and Actuators A: Physical 119, 2 (2005), 316–322.

[20] Sandra G Hart and Lowell E Staveland. 1988. Development of NASA-TLX (Task
Load Index): Results of empirical and theoretical research. In Advances in psy-
chology. Vol. 52. Elsevier, 139–183.

[21] Rob Haverty. 2005. New Accessibility Model for Microsoft Windows and Cross
Platform Development. SIGACCESS Access. Comput. 82 (June 2005), 11–17. https:
//doi.org/10.1145/1077238.1077240

[22] Jeff Hendy, Kellogg S. Booth, and Joanna McGrenere. 2010. Graphically Enhanced
Keyboard Accelerators for GUIs. In Proceedings of Graphics Interface 2010 (Ottawa,
Ontario, Canada) (GI ’10). Canadian Information Processing Society, CAN, 3–10.

[23] Sven Hertling, Markus Schröder, Christian Jilek, and Andreas Dengel. 2017.
Where is that Button Again?!-Towards a Universal GUI Search Engine.. In ICAART
(2). 217–227.

[24] Harry Hochheiser and Jonathan Lazar. 2010. Revisiting breadth vs. depth in
menu structures for blind users of screen readers. Interacting with Computers 22,
5 (2010), 389–398.

[25] Shaun K. Kane, Chandrika Jayant, Jacob O.Wobbrock, and Richard E. Ladner. 2009.
Freedom to Roam: A Study ofMobile Device Adoption andAccessibility for People
with Visual and Motor Disabilities. In Proceedings of the 11th International ACM
SIGACCESS Conference on Computers and Accessibility (Pittsburgh, Pennsylvania,
USA) (Assets ’09). Association for Computing Machinery, New York, NY, USA,
115–122. https://doi.org/10.1145/1639642.1639663

[26] Sri Hastuti Kurniawan, Alistair G Sutcliffe, and Paul Blenkhorn. 2003. How Blind
Users’ Mental Models Affect Their Perceived Usability of an Unfamiliar Screen
Reader.. In INTERACT, Vol. 3. 631–638.

[27] Jonathan Lazar, Aaron Allen, Jason Kleinman, and Chris Malarkey. 2007. What
frustrates screen reader users on the web: A study of 100 blind users. International
Journal of human-computer interaction 22, 3 (2007), 247–269.

[28] Hae-Na Lee, Vikas Ashok, and IV Ramakrishnan. 2020. Rotate-and-Press: A Non-
visual Alternative to Point-and-Click?. In International Conference on Human-
Computer Interaction. Springer, 291–305.

[29] H. N. Lee, V. Ashok, and I. V. Ramakrishnan. 2020. Repurposing Visual Input
Modalities for Blind Users: A Case Study of Word Processors. In 2020 IEEE
International Conference on Systems, Man, and Cybernetics (SMC). 2714–2721.
https://doi.org/10.1109/SMC42975.2020.9283015

[30] Barbara Leporini, Maria Claudia Buzzi, and Marina Buzzi. 2012. Interacting with
Mobile Devices via VoiceOver: Usability and Accessibility Issues. In Proceedings
of the 24th Australian Computer-Human Interaction Conference (Melbourne, Aus-
tralia) (OzCHI ’12). Association for Computing Machinery, New York, NY, USA,
339–348. https://doi.org/10.1145/2414536.2414591

[31] Vladimir I Levenshtein. 1966. Binary codes capable of correcting deletions,
insertions, and reversals. In Soviet physics doklady, Vol. 10. 707–710.

[32] Microsoft. 2021. Microsoft UI Automation. https://docs.microsoft.com/en-
us/windows/win32/winauto/entry-uiauto-win32

[33] Lourdes Morales, Sonia M Arteaga, and Sri Kurniawan. 2013. Design guidelines
of a tool to help blind authors independently format their word documents. In
CHI’13 Extended Abstracts on Human Factors in Computing Systems. 31–36.

[34] Giulio Mori, Maria Claudia Buzzi, Marina Buzzi, Barbara Leporini, and Victor MR
Penichet. 2010. Making “Google Docs” user interface more accessible for blind

221

https://support.apple.com/guide/voiceover/with-the-voiceover-rotor-mchlp2719/mac
https://support.apple.com/guide/voiceover/with-the-voiceover-rotor-mchlp2719/mac
https://www.apple.com/accessibility/mac/vision/
https://www.apple.com/accessibility/mac/vision/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://www.freedomscientific.com/products/software/jaws/
https://www.freedomscientific.com/products/software/jaws/
https://doi.org/10.1145/1077238.1077240
https://doi.org/10.1145/1077238.1077240
https://doi.org/10.1145/1639642.1639663
https://doi.org/10.1109/SMC42975.2020.9283015
https://doi.org/10.1145/2414536.2414591
https://docs.microsoft.com/en-us/windows/win32/winauto/entry-uiauto-win32
https://docs.microsoft.com/en-us/windows/win32/winauto/entry-uiauto-win32

Taming User-Interface Heterogeneity with Uniform Overlays for Blind Users UMAP ’22, July 4–7, 2022, Barcelona, Spain

people. In International Conference on Advances in New Technologies, Interactive
Interfaces, and Communicability. Springer, 20–29.

[35] NVDA team. 2021. NVDA. https://www.nvaccess.org/.
[36] ORACLE. 2021. JAVA Accessibility API.

https://docs.oracle.com/javase/7/docs/technotes/guides/access/jaapi.html.
[37] Leonard H Poll and Berry H Eggen. 1996. Non-visual interaction with GUI objects.

In People and Computers XI. Springer, 159–168.
[38] John Gerard Schoeberlein and Yuanqiong Wang. 2014. Usability Evaluation of an

Accessible Collaborative Writing Prototype for Blind Users. Journal of Usability
Studies 10, 1 (2014).

[39] Kristen Shinohara and Josh Tenenberg. 2007. Observing Sara: A Case Study of
a Blind Person’s Interactions with Technology. In Proceedings of the 9th Inter-
national ACM SIGACCESS Conference on Computers and Accessibility (Tempe,
Arizona, USA) (Assets ’07). Association for Computing Machinery, New York, NY,
USA, 171–178. https://doi.org/10.1145/1296843.1296873

[40] Reeta Singh. 2012. Blind Handicapped Vs. Technology: How do Blind People use
Computers? International Journal of Scientific & Engineering Research 3, 4 (2012),
1–7.

[41] J. Thatcher. 1994. Screen Reader/2: Access to OS/2 and the Graphical User Inter-
face. In Proceedings of the First Annual ACM Conference on Assistive Technologies
(Marina Del Rey, California, USA) (Assets ’94). Association for Computing Ma-
chinery, New York, NY, USA, 39–46. https://doi.org/10.1145/191028.191039

[42] KatieWang, Laura G Barron, andMichelle RHebl. 2010. Making those who cannot
see look best: Effects of visual resume formatting on ratings of job applicants

with blindness. Rehabilitation psychology 55, 1 (2010), 68.
[43] Mirza Muhammad Waqar, Muhammad Aslam, and Muhammad Farhan. 2019.

An intelligent and interactive interface to support symmetrical collaborative
educational writing among visually impaired and sighted users. Symmetry 11, 2
(2019), 238.

[44] Tetsuya Watanabe, Shinichi Okada, and Tohru Ifukube. 1998. Development of
a GUI screen reader for blind persons. Systems and Computers in Japan 29, 13
(1998), 18–27.

[45] Brian Wentz and Jonathan Lazar. 2011. Usability evaluation of email applications
by blind users. Journal of Usability Studies 6, 2 (2011), 75–89.

[46] David Wicks. 2017. The coding manual for qualitative researchers. Qualitative
research in organizations and management: an international journal (2017).

[47] Cheng Xu, Ali Israr, Ivan Poupyrev, Olivier Bau, and Chris Harrison. 2011. Tactile
display for the visually impaired using TeslaTouch. In CHI’11 Extended Abstracts
on Human Factors in Computing Systems. 317–322.

[48] Levent Yobas, Dominique M Durand, Gerard G Skebe, Frederick J Lisy, and
Michael A Huff. 2003. A novel integrable microvalve for refreshable braille
display system. Journal of microelectromechanical systems 12, 3 (2003), 252–263.

[49] Zoom. 2021. Zoom Meetings. https://explore.zoom.us/meetings.
[50] Hong Zou and Jutta Treviranus. 2015. ChartMaster: A Tool for Interacting with

StockMarket Charts Using a Screen Reader. In Proceedings of the 17th International
ACM SIGACCESS Conference on Computers & Accessibility (Lisbon, Portugal)
(ASSETS ’15). Association for ComputingMachinery, NewYork, NY, USA, 107–116.
https://doi.org/10.1145/2700648.2809862

222

https://doi.org/10.1145/1296843.1296873
https://doi.org/10.1145/191028.191039
https://doi.org/10.1145/2700648.2809862

	Abstract
	1 Introduction
	2 Background
	2.1 Usability Issues of Screen Readers
	2.2 Usability Enhancing Techniques for Screen Reader Users

	3 Preliminary Study
	3.1 Participants
	3.2 Interview format
	3.3 Findings

	4 AccessBolt Design
	4.1 Extracting Application Controls
	4.2 Classifying Application Controls
	4.3 AccessBolt Popup Interface

	5 Evaluation
	5.1 Pilot Study

	6 Discussion
	7 Conclusion
	Acknowledgments
	References

