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ABSTRACT

Suggesting multiple target candidates based on touch input is a
possible option for high-accuracy target selection on small touch-
screen devices. But it can become overwhelming if suggestions are
triggered too often. To address this, we propose SATS, a Suggestion-
based Accurate Target Selection method, where target selection is
formulated as a sequential decision problem. The objective is to
maximize the utility: the negative time cost for the entire target
selection procedure. The SATS decision process is dictated by a
policy generated using reinforcement learning. It automatically
decides when to provide suggestions and when to directly select
the target. Our user studies show that SATS reduced error rate and
selection time over Shift [51], a magnification-based method, and
MUCS, a suggestion-based alternative that optimizes the utility for
the current selection. SATS also significantly reduced error rate
over BayesianCommand [58], which directly selects targets based
on posteriors, with only a minor increase in selection time.

CCS CONCEPTS

+ Human-centered computing — Human computer interac-
tion (HCI); Pointing; Touch screens.
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1 INTRODUCTION

Accurately selecting targets with finger touch is an essential aspect
of the user experience with touchscreen interactions. However,
selecting a target with finger touch on a small touchscreen is error-
prone, due to the small target sizes and imprecise touch input [10,
20, 21, 25, 26, 41, 51, 52]. Erroneous selections can cause tedious
undo and redo actions. Besides, some selection errors are non-
reversible and can lead to undesirable consequences. For example,
if the “SEND" button on a keyboard is mis-selected while using
an instant messaging application, the incomplete message is sent
right away. One approach to mitigate this problem is suggestion-
based input: target candidates near the touchpoint are presented
as suggestions and the user confirms the selection with a second
touch action.

Although a suggestion-based method could improve the accuracy
of target selection, it comes with its own challenges for implemen-
tation. First, when should the suggestions be triggered? Ideally, a
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Figure 1: An overview of SATS. Given a touchpoint and menu layout, SATS, an agent trained via reinforcement learning, has
a decision to make: directly selecting a target or showing suggestions. In this example, it shows two suggestions, because this

action has the highest expected reward (utility).

system should only trigger suggestions when the input is ambigu-
ous. Otherwise, it may overwhelm users and become distracting.
Second, which candidates should be suggested? The number of
suggestions should be large enough to include the intended target.
On the other hand, if the number of suggestions is too large and
unnecessary candidates are included, they become a distraction
and will slow the user down.

In this paper, we introduce SATS, a Suggestion-based Accurate
Target Selection method. We first view whether and which targets
should be suggested as a decision problem: upon the observation of
a touchpoint, the computer as an agent decides whether it should
directly select a target candidate, or provide suggestions and ask
for confirmation. In the latter case, it needs to further decide which
candidates to suggest. The objective of the agent is to maximize the
utility, which is defined as the negative time cost of the entire selec-
tion procedure. As we assume that the user will repeat the selection
until the intended target is successfully selected if the current selec-
tion fails, using the negative time cost as the utility also captures the
cost of erroneous selections. Under this setup, whether and which
targets should be suggested becomes a stochastic sequential decision
problem [2], because the agent may make sequential decisions if
the user performs multiple selections to select the intended target.

We adopt a reinforcement learning-based approach, as shown
in Fig. 1, to solve this sequential decision problem: the SATS agent
interacts with the environment and learns an optimal policy for
making the decisions using a Deep Q-Network (DQN) [38]. We
simulate the interaction between the agent and environment using
existing interaction models (e.g., using the Dual Gaussian model [6]
to simulate the touchpoints). Each time the agent makes a decision,
it receives a reward (utility) from the environment immediately,
which is the negative of the time cost of the action. The agent learns
the policy via the simulated interaction experience.

Our investigation shows that the SATS agent is able to learn an
optimal policy that will trigger suggestions if the input is ambigu-
ous, and will directly select the target if the input is deemed cer-
tain. Empirical evaluation shows that SATS significantly improves
the accuracy of target selection over existing methods including
Shift [51], BayesianCommand [58], and Visual Boundary, which
selects a target using its boundaries. SATS also outperforms two
other suggestion-based methods: Maximizing Utility for Current
Selection (MUCS), which maximizes the utility of the current selec-
tion only, and Heuristic, which uses a simple heuristic for triggering
suggestions.

2 RELATED WORK

This work is related to improving target selection on touchscreen
devices, using decision theoretic approach and reinforcement learn-
ing to improve interaction experience with computers.

2.1 Improving Accuracy of Touchscreen Target
Selection

Previous research shows that the performance of touchscreen target
selection is affected by many factors, including hand postures [10,
21], finger angles [25, 26], body movement [20, 41]. These factors
may affect the size and shape of the contact region. Also, the “fat
finger" problem prevents the user from having direct feedback
on where the touch point is [51, 52]. It further exacerbates the
inaccuracy of target selection.

To improve the accuracy of touchscreen target selection, some
works modeled the user’s target selection behavior using probability
and machine learning techniques [6, 9, 55] and carry the uncertainty
during the input process [44, 45, 53]. Other works have approached
target selection in a probabilistic way, i.e. using techniques such as
Bayes Theorem. For example, Goodman et al. proposed a decoding
algorithm for soft keyboard based on Bayes Theorem [22]. Bi et al.
proposed to use a Gaussian distribution to model the user input
distribution, and used it to compute the likelihood for a target to
be selected [5]. Zhu et al. [58] further extended the method by
incorporating a prior distribution for the targets based on input
history, and proposed BayesianCommand, which selects the target
with the highest posterior.

To provide more visual feedback, some works compensated the
touchpoint offset based on the finger input angle [25, 26], or lo-
cation on the screen [24]. And some utilized the back of the de-
vice as the input interface [16, 56]. Other approaches utilized dif-
ferent input methods such as gestures [36], sliding [10, 40, 57],
rubbing [43], and multi-touch [3] to improve the target selection
accuracy. Magnification-based methods are also widely used for
high-accuracy target selection. For example, Vogel et al. proposed
Shift [51], where a call-out window showing the magnified view of
the area underneath the finger can be triggered by the user by long
pressing. Before lifting the finger, the user can adjust the finger
position to select the intended target.

Showing suggestions could be another approach to resolve the
ambiguity in interaction [37]. One challenge of suggestion-based
methods is to decide when suggestions should be provided and
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what candidates should be included. Our SATS method uses a rein-
forcement learning-based approach to automatically make these
decisions.

2.2 Decision-Theoretic Research in HCI

Decision theory studies how an agent makes decisions [7, 46]. It has
been adopted to (1) model user’s interaction with computers, or (2)
guide the design of interfaces or intelligent interaction techniques.

The first line of research assumes that users’ interaction with
computers will converge to optimal actions (determined by the
utility) which maximize the utility under constraints [27]. Indeed,
Howes et al. [29] found that the individual’s choices are bound-
edly optimal via two experiments on remembering internal and
external resources. Under this assumption, research has been car-
ried out to model users’ interaction with computers. For example,
Tseng et al. [50] proposed a computational model of how users
perform visual search, where users try to maximize a utility related
to the trade-off between speed and accuracy. Chen et al. [13] mod-
eled the rational menu search by setting the goal to maximizing
the trade-off between speed and accuracy during using the menu.
Jokinen et al. [30] modeled how user learns to locate a key on
different keyboards: a keyboard with familiar layouts or new key-
board layouts, based on utility learning. Toomim etc. [49] proposed
a crowdsource-based approach to measure how the user makes
choices, and quantifies it as a measure of utility.

The second line of research adopts the decision theory to im-
prove the interaction experience with computers. For example,
Horvitz [28] proposed a decision-theoretic approach to decide when
the agent should suggest actions or intervene the interaction be-
tween the user and computers. Todi et al. [48] proposed adapting
the menu layout by maximizing the utility, which was defined as
the usefulness of a menu adaptation to the user. Lomas et al. [35]
modeled the optimized interface design as a Multi-Armed Bandit
problem, which optimizes the user engagement. The present work
is also an example of research along this line. It proposes a decision-
theoretic method to improve the accuracy of touch selection.

2.3 Reinforcement Learning in HCI

Reinforcement learning is a machine learning paradigm where
an agent learns to take actions through interacting with its en-
vironment so that the expected cumulative reward can be maxi-
mized [47]. Typically, the environment is a form of Markov Decision
Process (MDP). An MDP consists of the following 5 components
< S,AT,R,y >: (1) A set of states S, which describes the state of
the environment; (2) A set of actions A, which defines what action
the agent can take; (3) A transition function T which defines the
transition probability between two states given an action; (4) A
reward function R, which defines the goal of the agent in the en-
vironment; and (5) A discount factor y, which defines the agent’s
preference between seeking immediate or more distant rewards.
Theoretically, by solving the Bellman equation, we can obtain the
best actions to take, which is formally called policy, at different
state of the environment. Sometimes, if the transition probability
(and the reward function) is not known, we can use a model-free
algorithm to solve the reinforcement learning problem, e.g. the Q-
learning algorithm [54]. One of the recent advances for Q-learning
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is to use a deep learning technique, Deep Q-learning, which uses a
neural network called Deep Q-Network (DQN) [38] to estimate the
state-action value function (Q-value) in Q-learning.

In the HCI field, reinforcement learning has been adopted to (1)
model user behavior and (2) create intelligent interfaces or inter-
action techniques. For example, Chen et al. [12] proposed to use a
Partially Observable Markov Decision Process to model the eye gaze
target selection process. Leino et al. [31] proposed the RL-KLM,
a reinforcement learning-based keystroke-level model, which is
able to generate user-like operations in simple realistic interaction
tasks. Cheema et al. [11] used reinforcement learning to predict
the interaction movements and arm fatigue in mid-air interaction.
Do et al. [17] proposed a model to simulate point-and-click behav-
ior for both stationary and moving targets. The point-and-click
behavior was formulated as an MDP problem, and solved via deep
reinforcement learning. Regarding creating intelligent interfaces
or interaction techniques, Todi et al. [48] proposed a model-based
reinforcement learning approach to design better menu systems.
Gebhardt et al. [19] proposed to use reinforcement learning to learn
when to show or hide the label of an object to better support visual
search task in a mixed reality system. This work is another example
of using reinforcement learning to create intelligent interaction
techniques. It addresses a common problem in HCI: accurate target
selection on touchscreen devices.

3 SATS: A SUGGESTION-BASED ACCURATE
TARGET SELECTION METHOD

We propose SATS, a Suggestion-based Accurate Target Selection
method. We first formulate whether and which target(s) should be
suggested as a sequential decision problem [2]: upon the observa-
tion of a touchpoint, the computer as an agent decides whether
it should directly select a target, or offer suggestions and ask for
confirmation. The decision is sequential because a user may re-
select should the current selection fails. The goal of the decision
is to maximize the utility, which is the negative time cost of the
selection procedure.

Based on this formation, we adopt reinforcement learning to
solve this sequential decision problem. The computer as an agent
learns an optimal policy using the Deep Q-Network (DQN) [38]
based on simulations, where the interaction between the agent
and the environment is simulated based on existing interaction
models. The learned policy is used to automatically decide what
action to take at each step. Fig. 2 shows an overview of how the
agent interacts with the environment.

In the remainder of the section, we describe the assumptions
for the reinforcement learning framework, the formulation of the
problem, the implementation of the reinforcement learning agent
SATS, and an alternative solver.

3.1 Theoretical Assumption

Before we dive into the detailed formulation, we introduce some
theoretical assumptions as follows:

Touchpoint distribution model. Since we use a simulation-based
method to train the agent, it is important to simulate how a user
would land the touchpoints in target selection tasks. We adopted
the Dual Gaussian model [5, 6] to simulate touch interaction.
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Figure 2: An overview of the reinforcement learning framework. The computer acts as the agent to interact with the environ-
ment. After observing a touchpoint made by the user, it decides whether to directly select a target or to show suggestions. If
the decision is the latter, it also decides what suggestions should be shown.

The Dual Gaussian distribution model [5, 6] assumes that the
touchpoint distribution for selecting a target t follows a Gaussian
distribution. The probability of observing a touchpoint p given t as
the intended target can be represented as:

1 z
P - - El
o 2moxoy\1-p? o [ 2(1- Pz)] W
where
- — _ 2
2= (px - tx)z N 2p(Px tx)(py ty) N (py Zty) ' (2)

O'J% Ox Oy Oy

(tx, ty) is the target center, ox and oy are the standard deviations of
the users’ touchpoints, and p is the correlation coefficient between x
and y. We followed [6] to set p = 0 and used the following empirical
model for o2 and 05:

02 =0.0075 X d?, + 1.68,
g = 0.0108 X dg +1.33, ®)
where dyy and dpg are the width and height (in mm) of the target.

Prior distribution of targets. We assumed that the distribution of
the user’s intended targets follows a Zipf distribution [42]. Based
on the distribution, we can generate target selection frequencies in
the simulation and user study. This assumption was made based
on previous research in menu selection [14, 34], smartphone APP
launching [39], and target triggering [1, 18, 58]. Specifically, the
frequency of each target candidate can be modeled by the following
equation:

fEsN) = e @
o mLamy
where N is the number of target candidates, [ € {1,2,..., N} is the
rank of each target candidate, and s is the value of the exponent
characterizing the distribution.

While the distribution of the target candidates is not known to
the agent, we adopted the frequency model introduced in [58] to
estimate the prior probability for each candidate being the intended
target prior to observing the touchpoint based on the selection

history:
k+c¢i

Pt) = ———h—
' k-N+3N ¢

®)
where N is the number of target candidates (e.g., the number of
menu items), ¢; is the number of times we have observed target
t; being selected. k is the pseudocount, a hyper-parameter of the
distribution, and we used k = 1 as suggested by [58].

Empirical time cost model. We adopted the empirical models
in [4, 14] to estimate the time cost for selecting a target from N
target candidates. According to [14], we separated the selection
time into a decision time and a touch action time:

R(N) = Rg(N) + Riouchs (6)

where R(N) is the time cost for selecting a target from N candidates,
R;(N) is the time cost of deciding which object to select among the
N candidates, and R; .4, is the time cost of the motor action of
selecting the target.

We used the empirical model for decision-making time (in sec-
onds) in [14]: Ry(N) = 0.08log,(N) + 0.24. We adopted the FFitts
Law [4] to estimate touch pointing time. We first used Equation
2 and the empirical parameter values reported by Bi et al.’s [4] to
estimate the touch selection times when ID = 0 for 1D and 2D tar-
gets, and obtained the average value for these two types of targets
as the final estimate: R; .5 = 0.129 seconds.

3.2 Problem Formulation

We viewed the target selection problem as a stochastic sequential
decision problem [2] and used a reinforcement learning approach to
solve it. Fig. 3 shows how the problem is described in reinforcement
learning framework. For a state sg of the environment, the agent can
take one action from 4 types of action, including directly selecting
a target candidate and showing 2, 3, or 4 suggestions. For each
action the agent takes, the agent receives a reward immediately. If
it successfully selects the correct target, the environment will enter
the terminal state, noted T, otherwise it enters a new state, then the
agent will repeat the selection procedure until a successful selection.
For the action where the suggestions included the intended target,
we assumed that a user successfully selected it because suggestions
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Figure 3: The target selection as a sequential decision problem, where s; is a state, T is the terminal state, and r; is a reward.
The agent performs selections until successfully select the target.

are often displayed in large size, and the chance of making an error
is very slim.

The elements in the reinforcement learning framework are as
follows:

o State: At each time step 7, the environment has a state s; € S,
and s; = {T,p}, where T is the set of target candidates
T = {t1,t2,- -+ ,tN}, including their location information.
And p = (px, py) is a touchpoint made by the user to select
the intended target.

e Observation: The agent can fully observe the state T and
p from the environment at each time step, denoted by o;.
Based on the observation, the agent first computes the pos-
terior for each candidate being the intended target following
the Bayesian method introduced in BayesianCommand [58].
Specifically, we used Eq. 1 as the likelihood, and Eq. 5 to
update the prior. Then the agent takes the top K posteriors
among all target candidates as the input for the DQN. We
chose K = 4 in the current implementation as in a common
grid menu a touchpoint mostly has 4 closest target candi-
dates which may cause ambiguity in selection.

Action: The agent can take an action a; at each time step.

The action space is constructed based on the four target

candidates with the highest posteriors. The agent can select

one target candidate directly, or show suggestions with 2,

3, or 4 target candidates. To include all possible actions, we

consider all non-empty subsets of the four target candidates.

Therefore, there are 15 actions, which can be categorized

into four types: (1) Directly select a target candidate, (2)

Suggest 2 target candidates, (3) Suggest 3 target candidates,

(4) Suggest 4 target candidates. For example, a possible action

can be: Suggest the target candidates with the 1st, 2nd, and

3rd highest posteriors.

e Reward: After taking an action, the agent receives a reward
immediately from the environment. We set the reward as the
negative value of the estimated time cost of each action based
on Eq. 6. The time cost consists of three parts: (1) Select the

intended target from N target candidates: R(N). (2) Select
the intended target from the suggestions if n suggestions are
shown: R(n). (3) Cancel the incorrect selection if it happens.
We assumed the user needs to select a predefined cancel
button, and the time cost is a constant R(1) as the cancel
button is at a fixed position on a particular Ul Following
these assumptions, Table 1 summarizes the reward of the
different actions in Fig. 3.

e Discount rate 0 < A < 1: The model receives a scalar
reward after taking each action. By maximizing the value
E[¥7. ) ATr(sz, az)], the algorithm can derive the optimal
policy.

We used a model-free algorithm, DQN [38], to learn the optimal
policy. We chose DQN because it can handle the policy learning
problem in which the state space is continuous and the action
space is discrete [33]. The target selection problem is a good fit
for DON as the touchpoint p could be anywhere on the screen
(i.e., continuous state space) and there are only a limited number
of actions available (i.e., discrete action space). Instead of passing
the raw touchpoint and layout information to the DQN, which is
computationally expensive, the DQN takes the top four posteriors
among the target candidates as input and outputs an action for the
agent to take. In a grid layout, one touchpoint is adjacent to at most
4 candidates. Therefore, the candidate set with the four highest
posteriors will likely include the intended target.

3.3 Implementation

We implemented the target selection environment within OpenAl
Gym [8]. We were able to freely configure the layout and the target
size for the environment, e.g. 4 X 6 grid layout and 3.5 mm target
size (we assumed that the targets have the same width and height).
The frequency of each target candidate to be selected was modeled
by Zipf’s law, as shown in Eq. 4. Given an intended target, the
environment can generate a touchpoint by using the Dual Gaussian
distribution in Eq. 1 to simulate user input. For the actions, if the
agent chooses to show suggestions and the suggestions contain the
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Selection result ‘ Direct selection ‘ Suggest 2 targets ‘ Suggest 3 targets ‘ Suggest 4 targets

r = —R(N)
rs =r; — R(1)

Correct
Incorrect

r2=—=R(N) - R(2) | r3=—=R(N) - R(3) | r4 = —R(N) — R(4)
re = ry — R(1)

r; =r3 — R(1) rg =rq — R(1)

Table 1: The reward settings for the four kinds of actions when they select the correct and incorrect target. An incorrect
selection has R(1) as extra cost because users need to cancel the current selection.

correct target, we assumed it is a successful selection. After each
trial, the agent estimates the prior probability by Eq. 5 based on the
selection frequency in the history.

We used the model-free reinforcement learning algorithm DQN,
and its implementation in the Stable-Baselines3 library! to solve the
problem. The library is a set of implementations of reinforcement
learning algorithms using Pytorch. The DQN was trained based
on a replay buffer. The hyperparameters to train the DQN were
as follows: MlpPolicy (a 3-layer neural network, hidden size: 64,
activation function: ReLU) as the policy network, batch_size=128,
total_timestemps=200,000. Other parameters were set to the de-
fault as in the Stable-Baselines3 library: learning_rate=0.0001, ex-
ploration_fraction=0.1, optimizer: Adam, gamma=0.99. The policy
network usually converged after fewer than 600 updates. After
the DON is trained, we can load the pretrained policy network on
Android/iOS devices using the Pytorch Mobile runtime?.

3.4 Maximizing Utility for Current Selection
(MUCS) as An Alternative Solver

Besides reinforcement learning, we may solve the decision problem
with a Maximizing Utility for Current Selection (MUCS) based
method. This method calculates the expected utility of each action,
and executes the one with the highest utility. The expected utility
of an action is calculated based on the posterior of the action being
correct and its reward. More specifically, the expected utility of an
action a (denoted by EU(a)) is calculated as:

EU(a) = P(a) X Reward of correct action

+ (1 = P(a)) X Reward of incorrect action,

where P(a) is the posterior probability of a being a correct action. If
the action a is the direct selection, P(a) is the posterior probability of
the selected target being the intended target, calculated based on the
method proposed in the BayesianCommand work [58]. If the action
a is showing 2/3/4 suggestions, P(a) is the sum of the posterior
probabilities of the suggested targets. The utility of correct actions is
the same as defined in Table 1. The utility for incorrect actions is the
time cost defined in Table 1 minus R(N), as we assume that the user
will re-select if the current selection fails and he/she will succeed
in re-selection. Taking the action of “showing two suggestions” as
an example, its utility EU(a) under these assumptions is defined as:

EU(a) = P(a) X ra + (1 — P(a)) X (r¢ — R(N)).

The main difference between this MUCS method and SATS is that
MUCS only maximizes the reward for the current selection while
SATS maximizes the accumulated reward of the whole selection
procedure until a successful selection. We adopted reinforcement

!https://github.com/DLR-RM/stable-baselines3
Zhttps://pytorch.org/mobile/home/

learning to solve the sequential decision problem as it can take
future actions into consideration and maximize the reward beyond
the current selection action. Nevertheless, we empirically compared
these two methods and found that SATS outperformed MUCS (see
details in Section 5). Next, we investigate how training factors
would affect the performance of SATS via simulation.

4 SIMULATION BASED EVALUATION OF SATS

We first adopted a simulation-based approach to evaluate the perfor-
mance of SATS, using the aforementioned Dual Gaussian model [5,
6] to simulate touch interaction. We evaluated how different train-
ing factors, including the s parameter in Zipf’s law, the menu layout
and the target size, affect the performance of SATS.

The evaluation metrics are: (1) Error rate: it is the number of
trials where SATS makes at least one selection error divided by the
total number of trials. (2) Selection time: it is the duration starting
from the beginning of a trial to the moment that the intended target
is finally selected. This time cost was estimated by the empirical
model (Eq. 6).

4.1 Effects of Distribution of Target

As our model assumes that the distribution of intended targets in a
menu layout follows Zipf’s law, we firstly evaluated how varying
the s value of Zipf’s law in the training data affects the performance
of SATS.

We trained a policy network under a specific s value of Zipf’s law
(with a layout and a target size), and tested it on environments with
identical and different s values. More specifically, we trained three
types of policy networks with s = 1, s = 2, and s = 3, respectively,
and evaluated each of them on three types of testing environments
with s = 1, s = 2, and s = 3, respectively. In both training and
testing, the menu was a 4 X 6 grid layout, and the target sizes were
2.5 mm and 3.5 mm. The average error rates of policy networks
trained on different s (s = 1,s = 2,s = 3) of Zipf’s law across the
testing environments were 6.48%, 7.35%, and 7.88% respectively,
and the average selection times were 0.932, 0.932, and 0.921 seconds
respectively. The difference between policies trained under different
s value was small: there was only around 1% difference in error rate
and 0.01 s difference in selection time, indicating that the s value in
training has a minor influence on SATS’s performance.

4.2 Effects of Layout

We also evaluated the performance of SATS trained on different
target layouts using a similar approach. Specifically, we trained
three types of policy networks with 4 X 6, 6 X 8, 10 X 10 layout
respectively. For each type of policy network, we evaluated them
on three types of testing environments with 4 X 6, 6 X 8, 10 X 10
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layout respectively. In both training and testing, we used s = 1 and
target sizes 2.5 mm and 3.5 mm.

The average error rates of policy networks trained on different
layouts (4 X 6, 6 X 8, 10 X 10) across the testing environments were
10.37%, 10.45%, and 9.17% respectively, and the average selection
times were 1.185, 1.187, and 1.179 seconds respectively. The differ-
ence between policies trained under different layouts was small,
which indicates that the layout in training has a minor influence
on SATS’s performance.

4.3 Effects of Target Size

We then evaluated the performance of SATS trained on datasets
generated by a single target size and a combination of target sizes.
Specifically, we trained four policy networks with target size 2.5 mm,
3.5 mm, (2.5 and 3.5 mm) together, (2.5, 3, 3.5, and 4 mm) together,
where s = 1 and layout is 4 X 6. For the last two policy networks,
we generated the training dataset using two/four environments
with the corresponding target size. We evaluated the four policy
networks on two testing environments with setting s = 1, 4 X 6
layout and two target sizes, 2.5 mm and 3.5 mm respectively. Note
that the policy networks trained on 2.5 mm and 3.5 mm were only
evaluated on the testing environment with the same target size,
and we averaged the results for the two models.

The average error rates of policy networks trained on different
target size (same as the testing environment, [2.5, 3.5 mm] together,
[2.5, 3, 3.5, 4 mm] together) across the testing environments were
11.3%, 12.4%, and 12.45% respectively, and the average selection
times were 1.102, 1.107, and 1.106 seconds respectively. The policy
network trained for specific target size and the policy network
trained on a combination of target sizes has similar performance,
indicating that it is not necessary to train a policy network for
different target sizes.

Overall, our simulation-based evaluation shows that the distribu-
tion of target, layout, and target sizes in the training settings have
only minor effects on the performance of trained policy networks.

4.4 A General Policy Network for SATS

Based on the above result, we trained a general policy network
based on the setting s = 1, 10 X 10 layout, 4 target sizes (2.5, 3,
3.5, 4 mm together), and compared it with policy networks trained
with specific settings as in the testing environment. We evaluated
the policy networks in the testing environments in Section 4.1
and 4.2 (10 testing environments in total). We found that the average
performance of the general policy network is similar to the policy
network trained on specific settings. Specifically, the testing error
rates were 8.03% and 7.65% respectively, and the testing selection
times were 1.052 and 1.050 seconds respectively. Therefore, we used
this general policy network for SATS.

In the next sections, we report three controlled experiments that
systematically evaluated SATS. In User Study I, we compare SATS
with two suggestion-based methods: (1) MUCS, which maximizes
the utility of the current selection, and (2) Heuristic, which uses
a simple heuristic for triggering suggestions based on the highest
posterior. Such a comparison will tell us whether using reinforce-
ment learning can improve suggestion accuracy. In User Study
II, we compare SATS with methods that directly selected targets
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without showing any suggestions. In User Study III, we compare
SATS with Shift [51], in which a user manually triggers a call-out
window and adjusts the input finger to confirm the target selection.
The comparison with Shift will tell us whether automatically pro-
viding suggestions can improve target selection performance over
manually triggering a magnification window.

5 USER STUDY I: COMPARE SATS WITH
SUGGESTION BASED TARGET SELECTION
METHODS

To understand whether SATS improves performance over other
suggestion-based methods, we conducted a user study to compare
SATS with (1) MUCS, as described in Section 3.4, and (2) a simple
heuristic-based method which we refer to as Heuristic. Heuristic
directly selects the top candidate if its posterior exceeds a threshold
J; otherwise Heuristic suggests the top four candidates according to
their posteriors. We set the threshold § to 0.7 via a simulation-based
study. In the study, we performed a grid search in the range of [0.5,
0.95] with a step size of 0.05 to search for the optimal §, which
minimized the estimated selection time for 1000 simulated trials.
We assumed that the user would repeat the trial until the selection
succeeded, and the time cost of selection actions was calculated
according to Table 1. The simulation study suggested that § = 0.7
had the lowest selection time within the range [0.5, 0.95].

5.1 Participants and Apparatus

Eighteen adults (4 female, 14 male) between 21 and 36 years old
(average 27.7+3.6) participated in the study. Seventeen of them
used the right index finger, and the other one used the right middle
finger for target selection. Ten participants had the experience of
using Android/Apple watches or other small-screen devices. We
used a Ticwatch S smartwatch with a 45mm diameter screen. The
watch runs Google’s Wear OS, which is a version of the Android
operating system designed for smartwatches and other wearables.

5.2 Design

We adopted a [3x2] within-subjects design. There were two inde-
pendent variables: (1) target selection method with 3 levels (SATS,
MUCS, Heuristic), (2) target size with 2 levels (2.5 mm and 3.5 mm).
The target sizes were similar to those used in the previous work
BayesianCommand [58] and Shift [51], which represented the small-
sized targets a user might encounter on a small touchscreen device
(e.g., a hyperlink on a webpage is approximately 2.5 mm wide on
a smartphone [4]). Similar to BayesianCommand, we used a 4 X 6
grid layout to display 24 items, as shown in Fig. 4a. A grid layout
reflects the commonly used layout for presenting menu items or
icons on touchscreen devices. We randomly selected 12 items as
target candidates and used the same set of target candidates across
participants and conditions. For each method X target size condi-
tion, there were 2 blocks, each with 50 trials. Before the 100 formal
trials, the user practiced 5 trials for each method. The frequency of
each target to be selected was generated based on Zipf’s law, where
the parameter s was 1, and the total trials was 50. The generated
frequencies were 16, 8,5, 4, 3, 3, 2, 2, 2, 2, 2, 1. The frequencies were
assigned randomly to the 12 target candidates, and the order of tar-
get candidates was randomized. Similar to [1, 23, 58], we balanced



CHI 22, April 29-May 5, 2022, New Orleans, LA, USA

the frequency assignments on the 12 target candidates across all
participants and conditions, so that each target item was selected
an equal number of times. We also counterbalanced the orders of
the 6 (3 selection methods X 2 target sizes) experimental conditions
across 18 participants according to a Latin Square.

5.3 Procedure

The participant was first introduced to the target selection task
where they selected targets with finger touch on a smartwatch.
They were allowed to use whatever fingers they preferred. There
were 24 items shown in a 4 X 6 grid layout, and the target to be
selected was shown above the grid layout, as shown in Fig. 4a.
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Figure 4: Implementation for user study I. (a) Target selec-
tion page: the participants will select a target in the menu
layout bounded by the grey rectangle, (b) Suggestion in SATS:
SATS shows suggestions with three target candidates (in the
red rectangle). (c) Selection result page: once a target candi-
date is selected, the participant needs to confirm the selec-
tion result by clicking ‘OK’ if the selection is correct, ‘RESE-
LECT’ otherwise.

For the three methods, we told the participant that a suggestion
window may show up after a touch, e.g. Fig. 4b shows a suggestion
window with 3 target candidates, and the participant can choose
from the suggested target candidates. The suggested target candi-
dates were ordered by their posteriors and were shown in one row,
or in a 2x2 grid if there were four target candidates. The target size
in the suggestion window was set to 2.5 times the target size in the
grid menu to ensure that the participant can easily select them.

For all methods, the participant needed to decide whether to
cancel the selection after a target candidate was selected. We used
a selection result page as shown in Fig. 4c. If an incorrect target
was selected, the “OK" button was disabled and the participant se-
lected the “RESELECT" button to cancel the selection. If the correct
target was selected, the “RESELECT" button was disabled and the
participant selected the “OK" button to proceed to the next trial.
We included the disabled button to make sure that the participant
would redo the trial if the target selection failed, and would advance
to the next trial if the target selection succeeded.

The study started after we introduced the task. Fig. 5 shows a
participant doing the experiment. The participant was asked to
finish the target selection as accurately and quickly as possible. At
the end of the study, participants were asked to rate their preference
over the three methods on a scale of 1 to 5 (1: dislike, 5: like very
much). They also answered a subset of NASA-TLX questions to
measure the workload of the target selection task, including mental
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Figure 5: A participant is selecting a 3.5 mm target

and physical demand. The rating was on a scale from 1 to 10, from
least demanding to most demanding. The study for each participant
lasted about 30 minutes. The study in total included 18 participants
X 3 methods X 2 target sizes X 100 trials = 10,800 trials.

5.4 Results

5.4.1  Error Rate. Error rate is the number of trials in which the
participant makes at least one selection error divided by the total
number of trials. The results for error rate (Fig. 6a) showed that for
both target sizes, SATS had the lowest and MUCS had the highest
error rate.

A repeated measures ANOVA showed significant main effects
for target selection method (F5,34 = 4.86, p < 0.05) and target
size (F1,17 = 4.78, p < 0.05) on error rate. No significant interac-
tion effect was observed between these two independent variables
(F2,3¢ = 1.53, p = 0.23). Pairwise mean comparisons with Bon-
ferroni adjustments showed that the difference was significant for
SATS vs. MUCS (p < 0.001), but not for SATS vs. Heuristic (p = 0.22)
or MUCS vs. Heuristic (p = 0.81). Further, Cohen’s effect size values
suggested a large difference for SATS vs. MUCS (d = —0.85), and
small differences for SATS vs. Heuristic (d = —0.31) and MUCS vs.
Heuristic (d = 0.19).

5.4.2  Selection time. Selection time is the duration starting from
the beginning of a trial to the moment that the intended target
is finally selected. The results for selection time (Fig. 6b) showed
that SATS achieved the fastest input speed, while Heuristic had the
longest selection time.

A repeated measures ANOVA showed significant main effects
for target selection method (Fy 34 = 3.44, p < 0.05) and target size
(F1,17 = 29.57, p < 0.001) on selection time. No significant interac-
tion effect was observed between the two independent variables
(F2,34 = 0.839, p = 0.44). Pairwise mean comparisons with Bon-
ferroni adjustment showed that the difference was significant for
SATS vs. Heuristic (p < 0.05), but there was no significant differ-
ence between SATS vs. MUCS (p = 0.28) and MUCS vs. Heuristic
(p = 0.46). Furthermore, Cohen’s effect size values suggested small
differences for SATS vs. MUCS (d = —0.29) and MUCS vs. Heuris-
tic (d = —0.24), and a medium difference for SATS vs. Heuristic
(d = -0.50).

We also analyzed the total numbers of suggestions that were
triggered by SATS, MUCS, and Heuristic in Fig. 7. MUCS showed the
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Figure 6: Results for user study I by target size X method.

SATS outperformed MUCS and the Heuristic in both error
rate and selection time.

least suggestions among the three methods, which explains why it
had the highest error rate. On the other hand, Heuristic showed the
most suggestions, which explains why Heuristic had the longest
selection time. By using reinforcement learning to dynamically
show suggestions, SATS outperformed MUCS and Heuristic in both
error rate and selection time.

As SATS takes future actions into consideration when learning
the policy, its reward estimation is closer to the actual cost of se-
lection than that of MUCS as participants repeated selection until
successfully selecting the intended target. SATS sometimes recom-
mended different actions than MUCS, resulting in the difference
in performance. Fig. 8 is an example showing MUCS and SATS
recommending different actions.

5.4.3 Subjective Feedback. The results for subjective feedback are
shown in Fig. 9. For overall preference, the median ratings of SATS,
MUCS, and Heuristic were 4.0, 4.0, and 3.0 respectively. The me-
dian ratings for mental demand were 3.0, 4.5, and 5.5 for the three
methods respectively, and the median ratings for physical demand
were 3.0, 5.0, and 6.0 respectively. Non-parametric Friedman tests
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Figure 7: Suggestion count (95% CI) for SATS, MUCS and
Heuristic per 100 trials

- A=T8Y0) #) 059 Target: &

b e 85 n= 8 % 035 .

EU ® @ gs » @ 0.02 » Action of MUCS: (#

L WP ) & ® o001 Action of SATS: (#) 3%
Touch: point Posteriors

Figure 8: An example where SATS suggested the correct tar-
get while MUCS selected an incorrect one

showed significant main effects of selection methods on two metrics:
overall preference (X2(2) = 9.58, p < 0.01) and physical demand
(X2(2) = 10.98, p < 0.01). There was no significant main effect of
mental demand (X?(2) = 5.88, p = 0.053).
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Figure 9: Median subjective ratings of overall preference,
mental demand, and physical demand in study I. For overall
preference, higher ratings are better. For mental and physi-
cal demand, lower ratings are better.



CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

6 USER STUDY II: COMPARE SATS WITH
DIRECT SELECTION BASED METHODS

In this study, we compared SATS with two direct selection-based
methods, BayesianCommand and Visual Boundary (direct touch).
We included BayesianCommand and Visual Boundary as baselines
because: 1) BayesianCommand is a high-accuracy, direct selection-
based method, and 2) Visual Boundary is the most commonly used
method.

6.1 Participants and Apparatus

Eighteen adults (7 female, 11 male) between 24 and 36 years old
(average 28.7+2.9) participated in the study. 17 of them used the
right index finger to select targets, the other one used the left index
finger. 11 participants had the experience of using Android/Apple
watch or other small-screen devices. We also used a Ticwatch S
smartwatch with a 45mm diameter screen as in study L.

6.2 Design and Procedure

We adopted a [3 X 2] within-participant design. There were two
independent variables: (1) target selection method with 3 levels
(SATS, BayesianCommand, and Visual Boundary), (2) target size
with 2 levels (2.5 mm and 3.5 mm).

The BayesianCommand and Visual Boundary method did not
show any suggestions, and a target candidate was selected once
the user lifted the finger off the screen. BayesianCommand selected
the target candidate with the highest posterior. The Visual Bound-
ary selected the target candidate whose boundaries contained the
touchpoint. Other settings for the study, i.e. the targets arrange-
ment and procedure, were the same as in study I. The study for each
participant lasted about 30 minutes. The orders of 6 experimental
conditions (3 selection methods X 2 target sizes) were counter-
balanced across 18 participants using a Latin Square. In total, we
collected 18 users X 3 methods X 2 target sizes X 100 trials = 10,800
trials.

6.3 Results

6.3.1 Error Rate. The results for error rate (Fig. 10a) showed that
for both target sizes, SATS had the lowest error rate and Visual
Boundary had the highest error rate.

A repeated measures ANOVA showed significant main effects
for target selection method (Fz,34 = 40.13, p < 0.001) and target
size (F1,17 = 52.46, p < 0.001), and a significant interaction ef-
fect method X target size (Fo,34 = 15.28, p < 0.001) on error rate.
Pairwise mean comparisons with Bonferroni adjustment showed
the differences were significant for SATS vs. BayesianCommand
(p < 0.001), SATS vs. Visual Boundary (p < 0.001), and Bayesian-
Command vs. Visual Boundary (p < 0.001). Further, Cohen’s effect
size values suggested large differences for SATS vs. BayesianCom-
mand (d = —0.94), SATS vs. Visual Boundary (d = —1.19), and
BayesianCommand vs. Visual Boundary (d = —0.87).

We also presented the statistical information of how many times
the suggestions were triggered for SATS and the attempt count for
the three methods to successfully select the targets in 100 trials, as
shown in Table 2. SATS had the smallest attempt count, while it
had a relatively high suggestion count, especially when the target
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Figure 10: Results for user study II by target size X method.
Both SATS and BayesianCommand outperformed the base-
line Visual Boundary. SATS outperformed BayesianCom-
mand in error rate, but slightly increased selection time
(around 200 ms).

size is 2.5 mm. This is because when the target is too small, input
is more likely to be ambiguous.

6.3.2  Selection Time. The results for selection time (Fig. 10b) showed
that SATS has almost the same selection time as Visual Boundary,
while the average selection time for BayesianCommand was about
200 ms lower than the other two methods.

A repeated measures ANOVA showed significant main effects
for target selection method (Fy,34 = 5.97, p < 0.01) and target size
(F1,17 = 42.86, p < 0.001) on selection time. No significant interac-
tion effect was observed. Pairwise mean comparisons with Bonfer-
roni adjustment showed the differences were significant for SATS
vs. BayesianCommand (p < 0.01) and BayesianCommand vs. Visual
Boundary (p < 0.01), but not for SATS vs. Visual Boundary (p = 1).
Further, Cohen’s effect size values suggested medium differences
for SATS vs. BayesianCommand (d = 0.58) and BayesianCommand
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Target size ‘ Suggestion count ‘

Attempt count

SATS ‘ SATS ‘ BayesianCommand ‘ Visual Boundary
3.5 mm 4.33 (1.46) 100.78 (0.63) 101.83 (1.06) 105.40 (2.08)
2.5 mm 23.61 (3.98) 101.06 (0.43) 105.78 (1.42) 115.11 (5.08)

Table 2: Suggestion count and attempt count (95% CI) for three methods in 100 trials

vs. Visual Boundary (d = —0.55), and a small difference for SATS
vs. Visual Boundary (d = —0.03).

6.3.3 Subjective Feedback. The results for subjective feedback are
shown in Fig. 11. For overall preference, the median ratings of SATS,
BayesianCommand, Visual Boundary were 5, 4, and 3 respectively.
SATS had the highest median preference. The median ratings for
mental demand were 3.5, 5.0, and 6.5 for the three methods re-
spectively, and the median ratings for physical demand were 3.0,
4.0, and 5.5 respectively. Non-parametric Friedman tests showed
significant main effects for selection method on two metrics: over-
all preference (X2(2) = 15.10,p < 0.001) and mental demand
(X2(2) = 12.04,p < 0.01). There was no significant main effect
of physical demand (X?(2) = 5.72, p = 0.057).
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Figure 11: Median subjective ratings of overall preference,
mental demand and physical demand in study II. For overall
preference, higher ratings are better. For mental and physi-
cal demand, lower ratings are better.

7 USER STUDY III: COMPARE SATS WITH
SHIFT

In this experiment, we compared SATS with Shift [51], a magnification-
based method in which a user can manually trigger a call-out
window and adjust the finger to confirm the target selection. As
magnification-based methods have been widely adopted on touch-
screen devices (e.g., iPhone) to assist target selection, we wanted
to assess whether automatically providing suggestions could out-
perform manually triggering a magnification window.

7.1 Participants and Apparatus

Twelve adults (4 female, 8 male) between 21 and 36 years old (aver-
age 28+4.41) participated in the study. They selected targets using
the preferred input fingers. Nine of them used the right index fin-
ger for selection, two used the left index finger, and another one
used the right thumb. 8 participants had the experience of using
Android/Apple watch or other small-screen devices. We also used
a Ticwatch S smartwatch with a 45mm diameter screen as in study
Tand II.

7.2 Design and Procedure

We adopted a [2 X 2] within-participant design, where the two
independent variables were: (1) target selection method with 2
levels (SATS and Shift), (2) target size with 2 levels (2.5 mm and 3.5
mm). Similar to the previous two user studies, for each method x
target size condition, there were 2 blocks, each with 50 trials. Before
the 100 formal trials, the user practiced 5 trials for each method.

For Shift, a call-out window showing the view underneath the
user’s finger magnified 1.5 times appeared right after the user
touched the screen, as shown in Fig. 12. To maintain high efficiency,
the call-out window appeared as soon as the finger touched the
screen. Such a design required no dwelling time for triggering the
call-out window. This feature was close to the original work [51]
which set an extremely short dwelling time (<5 ms) for targets
smaller than 3.5 mm. The call-out window remained static as the
finger was on the screen, and it disappeared as soon as the input
finger was lifted. Before lifting the finger, the user can move the
finger to adjust the touch position, and as feedback, a red cross
showed the real-time touch point in the call-out window. The user
may also ignore the call-out window and directly select the target
with finger touch. To accommodate the limited screen size of the
watch, we set the diameter of the call-out window to 8.75 mm (100
pixels on the watch), and placed it 8.75 mm above the initial contact
point of the finger.
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Figure 12: Implementation of Shift
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Other settings for the study, i.e. targets arrangement and proce-
dure, were the same as in the study I and II. The user study for each
user lasted about 20 minutes. The orders of the four experimental
conditions (2 selection methods X 2 target sizes) were counterbal-
anced across participants using a Latin Square. In total, we collected
12 users X 2 methods X 2 target sizes X 100 trials = 4,800 trials.

7.3 Results

7.3.1 Error Rate. We plotted the mean error rate with 95% con-
fidence interval (CI) for SATS and Shift in Fig. 13a. SATS outper-
formed Shift in error rate in both target sizes.

Shift SATS
15- .
S
9 10-
= 8.83
>4
=
[
w 5.00
5-
= 2.25
11.00
0
Target Size: 3.5 mm 2.5 mm
(a) Mean error rate with 95% CI
Shift SATS
3,
]2.58
a
[}
£ 2- 1.87 1.87
£
c
o
B 1.30
ko I
[}
wn1l-
0
Target Size: 3.5 mm 2.5 mm

(b) Mean selection time with 95% CI

Figure 13: Results for user study III by target size X method.
SATS outperformed Shift in both error rate and selection
time.

A repeated measures ANOVA showed significant main effects
for target selection method (Fy,11 = 9.92, p < 0.01), and target
size (F1,11 = 5.10, p < 0.05) on error rate. No significant interac-
tion effect was observed between the two independent variables
(F1,11 = 5.01,p = 0.38). Pairwise mean comparisons with Bonfer-
roni adjustment indicated that the difference was significant for
SATS and Shift (p < 0.01). Cohen’s effect size value suggested a
medium difference for SATS vs. Shift (d = —0.70) [15]. As reported
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in Section 7.2, the 100 trials of each user for each method X target
size condition was divided into 2 blocks. The mean error rates of
SATS for 3.5 mm targets were 1.17% for block 1, and 0.83% for block
2, and for 2.5 mm targets were 2.5% for block 1, and 2.0% for block
2. The mean error rates of Shift for 3.5 mm targets were 3.67% for
block 1, and 6.33% for block 2, and for 2.5 mm targets were 9.5% for
block 1, and 8.17% for block 2. As shown, the error rates were simi-
lar across blocks for each method X target size condition, except
for Shift x 3.5 mm target where block 2 had higher error rate.

7.3.2  Selection Time. The results for selection time (Fig. 13b) showed
that SATS also outperforms Shift in selection speed. A repeated mea-
sures ANOVA showed significant main effects for target selection
method (Fy,11 = 41.94, p < 0.001) and target size (F1,11 = 41.26,p <
0.001) on selection time. No significant interaction effect between se-
lection method and target size was observed (F1,11 = 0.30, p = 0.59).
Pairwise mean comparisons with Bonferroni adjustment showed
that the difference was statistically significant between the two
selection methods (p < 0.001). Cohen’s effect size value suggested a
large difference for SATS vs. Shift (d = —1.20). The mean selection
times of SATS for 3.5 mm targets were 1.38 s for block 1, and 1.22
s for block 2, and for 2.5 mm targets were 2.08 s for block 1, and
1.67 s for block 2. The mean selection times of Shift for 3.5 mm
targets were 1.88 s for block 1, and 1.86 s for block 2, and for 2.5
mm targets were 2.62 s for block 1, and 2.54 for block 2. As shown,
for each method X target size condition, the selection times were
similar across blocks for Shift, while the select time for SATS in the
block 2 was shorter than that in the block 1.

7.3.3  Suggestion Usage. SATS on average showed suggestions in
6.5 (95% CI 2.62) trials per 100 trials for 3.5 mm target: 3.17 trials
for 2 suggestions, 1.5 trials for 3 suggestions, and 1.83 trials for
4 suggestions. For 2.5 mm targets, it showed suggestions for 26.5
(95% CI: 8.739) per 100 trials: 2.3 trials for 2 suggestions, 5.3 trials
for 3 suggestions, and 19 trials for 4 suggestions. It matched our
expectation that suggestions would be more frequently displayed
for trials with smaller targets. In Shift, the call-out window appeared
as soon as the finger landed on the screen. Therefore it was turned
on for all trials. Such a design followed the previous research [51]
where a negligible dwelling time (< 5ms) was adopted for small
target (< 5.2 mm) selection.

7.3.4  Subjective Feedback. The results for subjective feedback are
shown in Fig. 14. They indicate that the participants had a higher
preference for SATS than Shift, with median ratings 5 and 2.5 re-
spectively. The median ratings for mental demand were 3.0 and
6.5 for the two methods respectively, and the median ratings of
the physical demand were 3.5 and 8.0 respectively. The Wilcoxon
signed-rank tests showed that the differences were statistically sig-
nificant for user preference (p < 0.001), mental demand (p < 0.001),
and physical demand (p < 0.001).

8 DISCUSSION

8.1 Performance of SATS

The user study results show that SATS achieved higher target
selection accuracy over other suggestion-based approaches, di-
rect selection-based approaches, as well as a magnification-based
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Figure 14: Median subjective ratings of overall preference,
mental demand and physical demand in study III. For over-
all preference, higher ratings are better. For mental and
physical demand, lower ratings are better.

method. Compared with the suggestion-based method MUCS, SATS
reduced error rate from 3.47% to 1.09%, and reduced selection time
from 1.55 seconds to 1.43 seconds, a 7.74% reduction. Meanwhile,
compared to Heuristic, SATS reduced error rate from 2.64% to 1.09%,
and reduced selection time from 1.67 seconds to 1.43 seconds, a
14.37% reduction. Compared with the direct selection methods,
SATS also reduced the error rate of BayesianCommand from 3.64%
to 0.89%, while the selection time of SATS was only around 200 ms
slower than BayesianCommand, i.e. 1.58 seconds vs 1.39 seconds.
At the same time, SATS had almost the same selection time as the
most commonly used Visual Boundary method, which was 1.59
seconds, but reduced error rate from 8.53% down to 0.89%. Com-
pared with the manually triggering magnification window-based
approach Shift, SATS reduced error rate from 6.92% to 1.63%, and
reduced selection time from 2.23 seconds to 1.59 seconds, a 28.70%
reduction.

The extremely low error rate of SATS in our user studies suggests
that SATS is a high-accuracy selection method. It will especially be
beneficial when touch selection errors are costly, such as in condi-
tions where touch selection errors are non-reversible, e.g. clicking a
“pay” button in online shopping or clicking the “send” button in live
messaging, or in conditions where correcting errors is tedious, e.g.
when the “undo” button is hard to access. That said, the selection
time of SATS is around 200 ms longer than BayesianCommand,
indicating that in conditions where touch selection errors are not
costly and can be easily reversed, BayesianCommand is also an
appropriate method.

8.2 Select or Suggest in SATS

To understand when SATS directly selected a target, and when it
showed 2, 3, 4 suggestions which could be a combination of any tar-
get candidates from the top 4 candidates (see details in Section 3.2),
we summarize the statistical information for the top 4 posteriors
for the four types of action across the three user studies in Table 3.
As shown, SATS directly selected the target if the top posterior
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was extremely high (i.e., 90%). It included 2, 3, or 4 suggestions
if the top posterior dropped to around 59%, 56%, and 48%. Such
a policy is well-matched with our expectation that SATS directly
selected the target if there was high confidence in determining the
target, and it provided suggestions if there was high uncertainty.
For actions showing 2, 3, or 4 suggestions, the sum of posteriors
of all suggestions was more than 90%, indicating that SATS had a
broad coverage of possible target candidates, and was able to adjust
the number of suggested candidates to accommodate the drop of
the top posterior.

8.3 Execution Time Cost

Although SATS uses a neural network to predict action, it is an
efficient method that can be used on devices with limited computa-
tional abilities. We recorded the loading time and prediction time
of the policy network of SATS for 30 trials on the Android watch.
It turned out that the average loading time of the policy network is
1244.17 (95% CI: 33.32) ms and the average prediction time is 17.37
(95% CI: 0.86) ms. Therefore, prediction is very fast, and we can
load the policy network once when the system or an application
starts, which does not affect the target selection performance.

8.4 Future Work

The policy network of SATS is pre-trained based on simulated
interaction experiences. The interaction between the agent and
the environment is simulated based on existing interaction models,
i.e. the Dual Gaussian model for touch point distribution and the
empirical time cost model. This means that SATS uses the same
policy network for all users. A possible future work is to fine-tune
the pre-trained policy network based on the user’s real interaction
data to create a personalized target selection method.

The core idea behind SATS, using reinforcement learning to train
an optimal action policy, could be generalized beyond touch based
target selection. The input to the policy network is the posteriors
of target candidates. In theory, the method can work with other
target selection methods or modalities as long as the posteriors
of selecting targets can be obtained. For example, previous work
showed that the posteriors of selecting targets can be calculated for
gestural input [58], and for gaze-based input [32]. We could then
follow a similar procedure of training the policy network for SATS
to obtain an optimized action policy for these two different target
(command) selection methods.

9 CONCLUSION

In this paper, we frame the question of whether to suggest candi-
dates and which candidates to suggest in a suggestion-based target
selection task as a sequential decision problem, and solve it with
reinforcement learning. Our investigation led to SATS, a Suggestion-
based Accurate Target Selection method. In SATS, the computer
acts as an agent that assists the user in target selection. It learns
an optimal policy via a Deep Q-Network trained on simulated in-
teractions between the agent and the environment. Following the
optimal policy, the agent shows suggestions if the input is ambigu-
ous, and directly selects the target if the input is certain. Empirical
evaluations showed that SATS significantly improved the accuracy
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# of occurrences |

Meanzstandard deviation of top 4 posteriors

Type of action ‘

‘ out of 10,226 attempts ‘ Highest ‘ 2nd highest ‘ 3rd highest | 4th highest

Direct selection 8,598 (123) 0.90+0.10
Suggest 2 targets 262 (0) 0.59+0.06
Suggest 3 targets 382 (0) 0.56+0.06
Suggest 4 targets 984 (7) 0.48+0.09

0.06+0.06 0.02+0.03 0.01+0.01
0.38+0.06 0.02+0.01 0.01+0.01
0.31+0.07 0.07+0.03 0.03+0.01
0.26+0.07 0.14+0.05 0.08+0.03

Table 3: Statistics of four types of action introduced in Section 3.2 taken by SATS in 10,226 attempts in the three studies,
including the occurrence of actions: total occurrence (occurrence where the direct selection was wrong, or the intended target
was not included in the suggestions), and mean+standard deviation of the top-four posteriors.

of target selection over two suggestion-based methods: Maximiz-
ing Utility for Current Selection (MUCS), which maximizes the
utility of the current selection only, and Heuristic, which uses a
simple heuristic for triggering suggestions. Compared to existing
approaches, SATS also achieved higher accuracy than Shift [51],
BayesianCommand [58] and Visual Boundary, which selects a target
using its boundaries.
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