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Figure 1: An overview of SATS. Given a touchpoint and menu layout, SATS, an agent trained via reinforcement learning, has 
a decision to make: directly selecting a target or showing suggestions. In this example, it shows two suggestions, because this 
action has the highest expected reward (utility). 

system should only trigger suggestions when the input is ambigu-
ous. Otherwise, it may overwhelm users and become distracting. 
Second, which candidates should be suggested? The number of 
suggestions should be large enough to include the intended target. 
On the other hand, if the number of suggestions is too large and 
unnecessary candidates are included, they become a distraction 
and will slow the user down. 

In this paper, we introduce SATS, a Suggestion-based Accurate 
Target Selection method. We frst view whether and which targets 
should be suggested as a decision problem: upon the observation of 
a touchpoint, the computer as an agent decides whether it should 
directly select a target candidate, or provide suggestions and ask 
for confrmation. In the latter case, it needs to further decide which 
candidates to suggest. The objective of the agent is to maximize the 
utility, which is defned as the negative time cost of the entire selec-
tion procedure. As we assume that the user will repeat the selection 
until the intended target is successfully selected if the current selec-
tion fails, using the negative time cost as the utility also captures the 
cost of erroneous selections. Under this setup, whether and which 
targets should be suggested becomes a stochastic sequential decision 
problem [2], because the agent may make sequential decisions if 
the user performs multiple selections to select the intended target. 

We adopt a reinforcement learning-based approach, as shown 
in Fig. 1, to solve this sequential decision problem: the SATS agent 
interacts with the environment and learns an optimal policy for 
making the decisions using a Deep Q-Network (DQN) [38]. We 
simulate the interaction between the agent and environment using 
existing interaction models (e.g., using the Dual Gaussian model [6] 
to simulate the touchpoints). Each time the agent makes a decision, 
it receives a reward (utility) from the environment immediately, 
which is the negative of the time cost of the action. The agent learns 
the policy via the simulated interaction experience. 

Our investigation shows that the SATS agent is able to learn an 
optimal policy that will trigger suggestions if the input is ambigu-
ous, and will directly select the target if the input is deemed cer-
tain. Empirical evaluation shows that SATS signifcantly improves 
the accuracy of target selection over existing methods including 
Shift [51], BayesianCommand [58], and Visual Boundary, which 
selects a target using its boundaries. SATS also outperforms two 
other suggestion-based methods: Maximizing Utility for Current 
Selection (MUCS), which maximizes the utility of the current selec-
tion only, and Heuristic, which uses a simple heuristic for triggering 
suggestions. 

2 RELATED WORK 
This work is related to improving target selection on touchscreen 
devices, using decision theoretic approach and reinforcement learn-
ing to improve interaction experience with computers. 

2.1 Improving Accuracy of Touchscreen Target 
Selection 

Previous research shows that the performance of touchscreen target 
selection is afected by many factors, including hand postures [10, 
21], fnger angles [25, 26], body movement [20, 41]. These factors 
may afect the size and shape of the contact region. Also, the “fat 
fnger" problem prevents the user from having direct feedback 
on where the touch point is [51, 52]. It further exacerbates the 
inaccuracy of target selection. 

To improve the accuracy of touchscreen target selection, some 
works modeled the user’s target selection behavior using probability 
and machine learning techniques [6, 9, 55] and carry the uncertainty 
during the input process [44, 45, 53]. Other works have approached 
target selection in a probabilistic way, i.e. using techniques such as 
Bayes Theorem. For example, Goodman et al. proposed a decoding 
algorithm for soft keyboard based on Bayes Theorem [22]. Bi et al. 
proposed to use a Gaussian distribution to model the user input 
distribution, and used it to compute the likelihood for a target to 
be selected [5]. Zhu et al. [58] further extended the method by 
incorporating a prior distribution for the targets based on input 
history, and proposed BayesianCommand, which selects the target 
with the highest posterior. 

To provide more visual feedback, some works compensated the 
touchpoint ofset based on the fnger input angle [25, 26], or lo-
cation on the screen [24]. And some utilized the back of the de-
vice as the input interface [16, 56]. Other approaches utilized dif-
ferent input methods such as gestures [36], sliding [10, 40, 57], 
rubbing [43], and multi-touch [3] to improve the target selection 
accuracy. Magnifcation-based methods are also widely used for 
high-accuracy target selection. For example, Vogel et al. proposed 
Shift [51], where a call-out window showing the magnifed view of 
the area underneath the fnger can be triggered by the user by long 
pressing. Before lifting the fnger, the user can adjust the fnger 
position to select the intended target. 

Showing suggestions could be another approach to resolve the 
ambiguity in interaction [37]. One challenge of suggestion-based 
methods is to decide when suggestions should be provided and 
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what candidates should be included. Our SATS method uses a rein-
forcement learning-based approach to automatically make these 
decisions. 

2.2 Decision-Theoretic Research in HCI 
Decision theory studies how an agent makes decisions [7, 46]. It has 
been adopted to (1) model user’s interaction with computers, or (2) 
guide the design of interfaces or intelligent interaction techniques. 

The frst line of research assumes that users’ interaction with 
computers will converge to optimal actions (determined by the 
utility) which maximize the utility under constraints [27]. Indeed, 
Howes et al. [29] found that the individual’s choices are bound-
edly optimal via two experiments on remembering internal and 
external resources. Under this assumption, research has been car-
ried out to model users’ interaction with computers. For example, 
Tseng et al. [50] proposed a computational model of how users 
perform visual search, where users try to maximize a utility related 
to the trade-of between speed and accuracy. Chen et al. [13] mod-
eled the rational menu search by setting the goal to maximizing 
the trade-of between speed and accuracy during using the menu. 
Jokinen et al. [30] modeled how user learns to locate a key on 
diferent keyboards: a keyboard with familiar layouts or new key-
board layouts, based on utility learning. Toomim etc. [49] proposed 
a crowdsource-based approach to measure how the user makes 
choices, and quantifes it as a measure of utility. 

The second line of research adopts the decision theory to im-
prove the interaction experience with computers. For example, 
Horvitz [28] proposed a decision-theoretic approach to decide when 
the agent should suggest actions or intervene the interaction be-
tween the user and computers. Todi et al. [48] proposed adapting 
the menu layout by maximizing the utility, which was defned as 
the usefulness of a menu adaptation to the user. Lomas et al. [35] 
modeled the optimized interface design as a Multi-Armed Bandit 
problem, which optimizes the user engagement. The present work 
is also an example of research along this line. It proposes a decision-
theoretic method to improve the accuracy of touch selection. 

2.3 Reinforcement Learning in HCI 
Reinforcement learning is a machine learning paradigm where 
an agent learns to take actions through interacting with its en-
vironment so that the expected cumulative reward can be maxi-
mized [47]. Typically, the environment is a form of Markov Decision 
Process (MDP). An MDP consists of the following 5 components 
< S, A,T , R,γ >: (1) A set of states S , which describes the state of 
the environment; (2) A set of actions A, which defnes what action 
the agent can take; (3) A transition function T which defnes the 
transition probability between two states given an action; (4) A 
reward function R, which defnes the goal of the agent in the en-
vironment; and (5) A discount factor γ , which defnes the agent’s 
preference between seeking immediate or more distant rewards. 
Theoretically, by solving the Bellman equation, we can obtain the 
best actions to take, which is formally called policy, at diferent 
state of the environment. Sometimes, if the transition probability 
(and the reward function) is not known, we can use a model-free 
algorithm to solve the reinforcement learning problem, e.g. the Q-
learning algorithm [54]. One of the recent advances for Q-learning 

is to use a deep learning technique, Deep Q-learning, which uses a 
neural network called Deep Q-Network (DQN) [38] to estimate the 
state-action value function (Q-value) in Q-learning. 

In the HCI feld, reinforcement learning has been adopted to (1) 
model user behavior and (2) create intelligent interfaces or inter-
action techniques. For example, Chen et al. [12] proposed to use a 
Partially Observable Markov Decision Process to model the eye gaze 
target selection process. Leino et al. [31] proposed the RL-KLM, 
a reinforcement learning-based keystroke-level model, which is 
able to generate user-like operations in simple realistic interaction 
tasks. Cheema et al. [11] used reinforcement learning to predict 
the interaction movements and arm fatigue in mid-air interaction. 
Do et al. [17] proposed a model to simulate point-and-click behav-
ior for both stationary and moving targets. The point-and-click 
behavior was formulated as an MDP problem, and solved via deep 
reinforcement learning. Regarding creating intelligent interfaces 
or interaction techniques, Todi et al. [48] proposed a model-based 
reinforcement learning approach to design better menu systems. 
Gebhardt et al. [19] proposed to use reinforcement learning to learn 
when to show or hide the label of an object to better support visual 
search task in a mixed reality system. This work is another example 
of using reinforcement learning to create intelligent interaction 
techniques. It addresses a common problem in HCI: accurate target 
selection on touchscreen devices. 

3 SATS: A SUGGESTION-BASED ACCURATE 
TARGET SELECTION METHOD 

We propose SATS, a Suggestion-based Accurate Target Selection 
method. We frst formulate whether and which target(s) should be 
suggested as a sequential decision problem [2]: upon the observa-
tion of a touchpoint, the computer as an agent decides whether 
it should directly select a target, or ofer suggestions and ask for 
confrmation. The decision is sequential because a user may re-
select should the current selection fails. The goal of the decision 
is to maximize the utility, which is the negative time cost of the 
selection procedure. 

Based on this formation, we adopt reinforcement learning to 
solve this sequential decision problem. The computer as an agent 
learns an optimal policy using the Deep Q-Network (DQN) [38] 
based on simulations, where the interaction between the agent 
and the environment is simulated based on existing interaction 
models. The learned policy is used to automatically decide what 
action to take at each step. Fig. 2 shows an overview of how the 
agent interacts with the environment. 

In the remainder of the section, we describe the assumptions 
for the reinforcement learning framework, the formulation of the 
problem, the implementation of the reinforcement learning agent 
SATS, and an alternative solver. 

3.1 Theoretical Assumption 
Before we dive into the detailed formulation, we introduce some 
theoretical assumptions as follows: 

Touchpoint distribution model. Since we use a simulation-based 
method to train the agent, it is important to simulate how a user 
would land the touchpoints in target selection tasks. We adopted 
the Dual Gaussian model [5, 6] to simulate touch interaction. 
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Figure 2: An overview of the reinforcement learning framework. The computer acts as the agent to interact with the environ-
ment. After observing a touchpoint made by the user, it decides whether to directly select a target or to show suggestions. If 
the decision is the latter, it also decides what suggestions should be shown. 

The Dual Gaussian distribution model [5, 6] assumes that the 
touchpoint distribution for selecting a target t follows a Gaussian 
distribution. The probability of observing a touchpoint p given t as 
the intended target can be represented as: 

P(p |t) = 
1 p

2πσx σy 1 − ρ2 

� � 
z 

exp − ,
2(1 − ρ2) 

(1) 

where 

z ≡ 
(px − tx )

2 

σ 2 
x 

2ρ(px − tx )(py − ty )
+ 

σx σy 

(py − ty )
2 

+ . 
σ 2 
y 

(2) 

(tx , ty ) is the target center, σx and σy are the standard deviations of 
the users’ touchpoints, and ρ is the correlation coefcient between x 
and y. We followed [6] to set ρ = 0 and used the following empirical 
model for σx 

2 and σy 
2: 

σ 2 = 0.0075 × d2 + 1.68,x W (3)
σ 2 = 0.0108 × dH 

2 + 1.33,y 

where dW and dH are the width and height (in mm) of the target. 
Prior distribution of targets. We assumed that the distribution of 

the user’s intended targets follows a Zipf distribution [42]. Based 
on the distribution, we can generate target selection frequencies in 
the simulation and user study. This assumption was made based 
on previous research in menu selection [14, 34], smartphone APP 
launching [39], and target triggering [1, 18, 58]. Specifcally, the 
frequency of each target candidate can be modeled by the following 
equation: 

1/ls 
f (l ; s, N ) = ÍN 

, (4) 
n=1 (1/ns ) 

where N is the number of target candidates, l ∈ {1, 2, . . . , N } is the 
rank of each target candidate, and s is the value of the exponent 
characterizing the distribution. 

While the distribution of the target candidates is not known to 
the agent, we adopted the frequency model introduced in [58] to 
estimate the prior probability for each candidate being the intended 
target prior to observing the touchpoint based on the selection 

history: 
k + ci

P(ti ) = ÍN 
, (5) 

k · N + j=1 c j 

where N is the number of target candidates (e.g., the number of 
menu items), ci is the number of times we have observed target 
ti being selected. k is the pseudocount, a hyper-parameter of the 
distribution, and we used k = 1 as suggested by [58]. 

Empirical time cost model. We adopted the empirical models 
in [4, 14] to estimate the time cost for selecting a target from N 
target candidates. According to [14], we separated the selection 
time into a decision time and a touch action time: 

R(N ) = Rd (N ) + Rtouch , (6) 

where R(N ) is the time cost for selecting a target from N candidates, 
Rd (N ) is the time cost of deciding which object to select among the 
N candidates, and Rtouch is the time cost of the motor action of 
selecting the target. 

We used the empirical model for decision-making time (in sec-
onds) in [14]: Rd (N ) = 0.08 log2(N ) + 0.24. We adopted the FFitts 
Law [4] to estimate touch pointing time. We frst used Equation 
2 and the empirical parameter values reported by Bi et al.’s [4] to 
estimate the touch selection times when ID = 0 for 1D and 2D tar-
gets, and obtained the average value for these two types of targets 
as the fnal estimate: Rtouch = 0.129 seconds. 

3.2 Problem Formulation 
We viewed the target selection problem as a stochastic sequential 
decision problem [2] and used a reinforcement learning approach to 
solve it. Fig. 3 shows how the problem is described in reinforcement 
learning framework. For a state s0 of the environment, the agent can 
take one action from 4 types of action, including directly selecting 
a target candidate and showing 2, 3, or 4 suggestions. For each 
action the agent takes, the agent receives a reward immediately. If 
it successfully selects the correct target, the environment will enter 
the terminal state, noted T, otherwise it enters a new state, then the 
agent will repeat the selection procedure until a successful selection. 
For the action where the suggestions included the intended target, 
we assumed that a user successfully selected it because suggestions 



Select or Suggest? Reinforcement Learning-based Method for High-Accuracy Target Selection on Touchscreens CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA 

r8

Repeat selection

until successS0

Suggest 2

targets

Direct

select

Suggest 3

targets

Suggest 4

targets

r
1

r
2

r
3

r
4

r5

r6

r7

S1

T

State Types of action Reward New state …

Selection Re-Selection

…

Figure 3: The target selection as a sequential decision problem, where si is a state, T is the terminal state, and ri is a reward. 
The agent performs selections until successfully select the target. 

are often displayed in large size, and the chance of making an error 
is very slim. 

The elements in the reinforcement learning framework are as 
follows: 

• State: At each time step τ , the environment has a state sτ ∈ S , 
and sτ = {T , p}, where T is the set of target candidates 
T = {t1, t2, · · · , tN }, including their location information. 
And p = (px , py ) is a touchpoint made by the user to select 
the intended target. 

• Observation: The agent can fully observe the state T and 
p from the environment at each time step, denoted by oτ . 
Based on the observation, the agent frst computes the pos-
terior for each candidate being the intended target following 
the Bayesian method introduced in BayesianCommand [58]. 
Specifcally, we used Eq. 1 as the likelihood, and Eq. 5 to 
update the prior. Then the agent takes the top K posteriors 
among all target candidates as the input for the DQN. We 
chose K = 4 in the current implementation as in a common 
grid menu a touchpoint mostly has 4 closest target candi-
dates which may cause ambiguity in selection. 

• Action: The agent can take an action aτ at each time step. 
The action space is constructed based on the four target 
candidates with the highest posteriors. The agent can select 
one target candidate directly, or show suggestions with 2, 
3, or 4 target candidates. To include all possible actions, we 
consider all non-empty subsets of the four target candidates. 
Therefore, there are 15 actions, which can be categorized 
into four types: (1) Directly select a target candidate, (2) 
Suggest 2 target candidates, (3) Suggest 3 target candidates, 
(4) Suggest 4 target candidates. For example, a possible action 
can be: Suggest the target candidates with the 1st, 2nd, and 
3rd highest posteriors. 

• Reward: After taking an action, the agent receives a reward 
immediately from the environment. We set the reward as the 
negative value of the estimated time cost of each action based 
on Eq. 6. The time cost consists of three parts: (1) Select the 

intended target from N target candidates: R(N ). (2) Select 
the intended target from the suggestions if n suggestions are 
shown: R(n). (3) Cancel the incorrect selection if it happens. 
We assumed the user needs to select a predefned cancel 
button, and the time cost is a constant R(1) as the cancel 
button is at a fxed position on a particular UI. Following 
these assumptions, Table 1 summarizes the reward of the 
diferent actions in Fig. 3. 

• Discount rate 0 ≤ λ ≤ 1: The model receives a scalar 
reward after taking each action. By maximizing the valueÍ∞E[ =0 λ

τ r (sτ , aτ )], the algorithm can derive the optimal τ 
policy. 

We used a model-free algorithm, DQN [38], to learn the optimal 
policy. We chose DQN because it can handle the policy learning 
problem in which the state space is continuous and the action 
space is discrete [33]. The target selection problem is a good ft 
for DQN as the touchpoint p could be anywhere on the screen 
(i.e., continuous state space) and there are only a limited number 
of actions available (i.e., discrete action space). Instead of passing 
the raw touchpoint and layout information to the DQN, which is 
computationally expensive, the DQN takes the top four posteriors 
among the target candidates as input and outputs an action for the 
agent to take. In a grid layout, one touchpoint is adjacent to at most 
4 candidates. Therefore, the candidate set with the four highest 
posteriors will likely include the intended target. 

3.3 Implementation 
We implemented the target selection environment within OpenAI 
Gym [8]. We were able to freely confgure the layout and the target 
size for the environment, e.g. 4 × 6 grid layout and 3.5 mm target 
size (we assumed that the targets have the same width and height). 
The frequency of each target candidate to be selected was modeled 
by Zipf’s law, as shown in Eq. 4. Given an intended target, the 
environment can generate a touchpoint by using the Dual Gaussian 
distribution in Eq. 1 to simulate user input. For the actions, if the 
agent chooses to show suggestions and the suggestions contain the 
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Selection result Direct selection Suggest 2 targets Suggest 3 targets Suggest 4 targets 

Correct r1 = −R(N ) r2 = −R(N ) − R(2) r3 = −R(N ) − R(3) r4 = −R(N ) − R(4)
Incorrect r5 = r1 − R(1) r6 = r2 − R(1) r7 = r3 − R(1) r8 = r4 − R(1)

Table 1: The reward settings for the four kinds of actions when they select the correct and incorrect target. An incorrect 
selection has R(1) as extra cost because users need to cancel the current selection. 

correct target, we assumed it is a successful selection. After each 
trial, the agent estimates the prior probability by Eq. 5 based on the 
selection frequency in the history. 

We used the model-free reinforcement learning algorithm DQN, 
and its implementation in the Stable-Baselines3 library1 to solve the 
problem. The library is a set of implementations of reinforcement 
learning algorithms using Pytorch. The DQN was trained based 
on a replay bufer. The hyperparameters to train the DQN were 
as follows: MlpPolicy (a 3-layer neural network, hidden size: 64, 
activation function: ReLU) as the policy network, batch_size=128, 
total_timestemps=200,000. Other parameters were set to the de-
fault as in the Stable-Baselines3 library: learning_rate=0.0001, ex-
ploration_fraction=0.1, optimizer: Adam, gamma=0.99. The policy 
network usually converged after fewer than 600 updates. After 
the DQN is trained, we can load the pretrained policy network on 
Android/iOS devices using the Pytorch Mobile runtime2. 

3.4 Maximizing Utility for Current Selection 
(MUCS) as An Alternative Solver 

Besides reinforcement learning, we may solve the decision problem 
with a Maximizing Utility for Current Selection (MUCS) based 
method. This method calculates the expected utility of each action, 
and executes the one with the highest utility. The expected utility 
of an action is calculated based on the posterior of the action being 
correct and its reward. More specifcally, the expected utility of an 
action a (denoted by EU (a)) is calculated as: 

EU (a) = P(a) × Reward of correct action 

+ (1 − P(a)) × Reward of incorrect action, 

where P(a) is the posterior probability of a being a correct action. If 
the action a is the direct selection, P(a) is the posterior probability of 
the selected target being the intended target, calculated based on the 
method proposed in the BayesianCommand work [58]. If the action 
a is showing 2/3/4 suggestions, P(a) is the sum of the posterior 
probabilities of the suggested targets. The utility of correct actions is 
the same as defned in Table 1. The utility for incorrect actions is the 
time cost defned in Table 1 minus R(N ), as we assume that the user 
will re-select if the current selection fails and he/she will succeed 
in re-selection. Taking the action of “showing two suggestions” as 
an example, its utility EU (a) under these assumptions is defned as: 

EU (a) = P(a) × r2 + (1 − P(a)) × (r6 − R(N )). 

The main diference between this MUCS method and SATS is that 
MUCS only maximizes the reward for the current selection while 
SATS maximizes the accumulated reward of the whole selection 
procedure until a successful selection. We adopted reinforcement 
1https://github.com/DLR-RM/stable-baselines3 
2https://pytorch.org/mobile/home/ 

learning to solve the sequential decision problem as it can take 
future actions into consideration and maximize the reward beyond 
the current selection action. Nevertheless, we empirically compared 
these two methods and found that SATS outperformed MUCS (see 
details in Section 5). Next, we investigate how training factors 
would afect the performance of SATS via simulation. 

4 SIMULATION BASED EVALUATION OF SATS 
We frst adopted a simulation-based approach to evaluate the perfor-
mance of SATS, using the aforementioned Dual Gaussian model [5, 
6] to simulate touch interaction. We evaluated how diferent train-
ing factors, including the s parameter in Zipf’s law, the menu layout 
and the target size, afect the performance of SATS. 

The evaluation metrics are: (1) Error rate: it is the number of 
trials where SATS makes at least one selection error divided by the 
total number of trials. (2) Selection time: it is the duration starting 
from the beginning of a trial to the moment that the intended target 
is fnally selected. This time cost was estimated by the empirical 
model (Eq. 6). 

4.1 Efects of Distribution of Target 
As our model assumes that the distribution of intended targets in a 
menu layout follows Zipf’s law, we frstly evaluated how varying 
the s value of Zipf’s law in the training data afects the performance 
of SATS. 

We trained a policy network under a specifc s value of Zipf’s law 
(with a layout and a target size), and tested it on environments with 
identical and diferent s values. More specifcally, we trained three 
types of policy networks with s = 1, s = 2, and s = 3, respectively, 
and evaluated each of them on three types of testing environments 
with s = 1, s = 2, and s = 3, respectively. In both training and 
testing, the menu was a 4 × 6 grid layout, and the target sizes were 
2.5 mm and 3.5 mm. The average error rates of policy networks 
trained on diferent s (s = 1, s = 2, s = 3) of Zipf’s law across the 
testing environments were 6.48%, 7.35%, and 7.88% respectively, 
and the average selection times were 0.932, 0.932, and 0.921 seconds 
respectively. The diference between policies trained under diferent 
s value was small: there was only around 1% diference in error rate 
and 0.01 s diference in selection time, indicating that the s value in 
training has a minor infuence on SATS’s performance. 

4.2 Efects of Layout 
We also evaluated the performance of SATS trained on diferent 
target layouts using a similar approach. Specifcally, we trained 
three types of policy networks with 4 × 6, 6 × 8, 10 × 10 layout 
respectively. For each type of policy network, we evaluated them 
on three types of testing environments with 4 × 6, 6 × 8, 10 × 10 

https://github.com/DLR-RM/stable-baselines3
https://pytorch.org/mobile/home/
https://gamma=0.99
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layout respectively. In both training and testing, we used s = 1 and 
target sizes 2.5 mm and 3.5 mm. 

The average error rates of policy networks trained on diferent 
layouts (4 × 6, 6 × 8, 10 × 10) across the testing environments were 
10.37%, 10.45%, and 9.17% respectively, and the average selection 
times were 1.185, 1.187, and 1.179 seconds respectively. The difer-
ence between policies trained under diferent layouts was small, 
which indicates that the layout in training has a minor infuence 
on SATS’s performance. 

4.3 Efects of Target Size 
We then evaluated the performance of SATS trained on datasets 
generated by a single target size and a combination of target sizes. 
Specifcally, we trained four policy networks with target size 2.5 mm, 
3.5 mm, (2.5 and 3.5 mm) together, (2.5, 3, 3.5, and 4 mm) together, 
where s = 1 and layout is 4 × 6. For the last two policy networks, 
we generated the training dataset using two/four environments 
with the corresponding target size. We evaluated the four policy 
networks on two testing environments with setting s = 1, 4 × 6 
layout and two target sizes, 2.5 mm and 3.5 mm respectively. Note 
that the policy networks trained on 2.5 mm and 3.5 mm were only 
evaluated on the testing environment with the same target size, 
and we averaged the results for the two models. 

The average error rates of policy networks trained on diferent 
target size (same as the testing environment, [2.5, 3.5 mm] together, 
[2.5, 3, 3.5, 4 mm] together) across the testing environments were 
11.3%, 12.4%, and 12.45% respectively, and the average selection 
times were 1.102, 1.107, and 1.106 seconds respectively. The policy 
network trained for specifc target size and the policy network 
trained on a combination of target sizes has similar performance, 
indicating that it is not necessary to train a policy network for 
diferent target sizes. 

Overall, our simulation-based evaluation shows that the distribu-
tion of target, layout, and target sizes in the training settings have 
only minor efects on the performance of trained policy networks. 

4.4 A General Policy Network for SATS 
Based on the above result, we trained a general policy network 
based on the setting s = 1, 10 × 10 layout, 4 target sizes (2.5, 3, 
3.5, 4 mm together), and compared it with policy networks trained 
with specifc settings as in the testing environment. We evaluated 
the policy networks in the testing environments in Section 4.1 
and 4.2 (10 testing environments in total). We found that the average 
performance of the general policy network is similar to the policy 
network trained on specifc settings. Specifcally, the testing error 
rates were 8.03% and 7.65% respectively, and the testing selection 
times were 1.052 and 1.050 seconds respectively. Therefore, we used 
this general policy network for SATS. 

In the next sections, we report three controlled experiments that 
systematically evaluated SATS. In User Study I, we compare SATS 
with two suggestion-based methods: (1) MUCS, which maximizes 
the utility of the current selection, and (2) Heuristic, which uses 
a simple heuristic for triggering suggestions based on the highest 
posterior. Such a comparison will tell us whether using reinforce-
ment learning can improve suggestion accuracy. In User Study 
II, we compare SATS with methods that directly selected targets 

without showing any suggestions. In User Study III, we compare 
SATS with Shift [51], in which a user manually triggers a call-out 
window and adjusts the input fnger to confrm the target selection. 
The comparison with Shift will tell us whether automatically pro-
viding suggestions can improve target selection performance over 
manually triggering a magnifcation window. 

5 USER STUDY I: COMPARE SATS WITH 
SUGGESTION BASED TARGET SELECTION 
METHODS 

To understand whether SATS improves performance over other 
suggestion-based methods, we conducted a user study to compare 
SATS with (1) MUCS, as described in Section 3.4, and (2) a simple 
heuristic-based method which we refer to as Heuristic. Heuristic 
directly selects the top candidate if its posterior exceeds a threshold 
δ ; otherwise Heuristic suggests the top four candidates according to 
their posteriors. We set the threshold δ to 0.7 via a simulation-based 
study. In the study, we performed a grid search in the range of [0.5, 
0.95] with a step size of 0.05 to search for the optimal δ , which 
minimized the estimated selection time for 1000 simulated trials. 
We assumed that the user would repeat the trial until the selection 
succeeded, and the time cost of selection actions was calculated 
according to Table 1. The simulation study suggested that δ = 0.7 
had the lowest selection time within the range [0.5, 0.95]. 

5.1 Participants and Apparatus 
Eighteen adults (4 female, 14 male) between 21 and 36 years old 
(average 27.7±3.6) participated in the study. Seventeen of them 
used the right index fnger, and the other one used the right middle 
fnger for target selection. Ten participants had the experience of 
using Android/Apple watches or other small-screen devices. We 
used a Ticwatch S smartwatch with a 45mm diameter screen. The 
watch runs Google’s Wear OS, which is a version of the Android 
operating system designed for smartwatches and other wearables. 

5.2 Design 
We adopted a [3×2] within-subjects design. There were two inde-
pendent variables: (1) target selection method with 3 levels (SATS, 
MUCS, Heuristic), (2) target size with 2 levels (2.5 mm and 3.5 mm). 
The target sizes were similar to those used in the previous work 
BayesianCommand [58] and Shift [51], which represented the small-
sized targets a user might encounter on a small touchscreen device 
(e.g., a hyperlink on a webpage is approximately 2.5 mm wide on 
a smartphone [4]). Similar to BayesianCommand, we used a 4 × 6 
grid layout to display 24 items, as shown in Fig. 4a. A grid layout 
refects the commonly used layout for presenting menu items or 
icons on touchscreen devices. We randomly selected 12 items as 
target candidates and used the same set of target candidates across 
participants and conditions. For each method × target size condi-
tion, there were 2 blocks, each with 50 trials. Before the 100 formal 
trials, the user practiced 5 trials for each method. The frequency of 
each target to be selected was generated based on Zipf’s law, where 
the parameter s was 1, and the total trials was 50. The generated 
frequencies were 16, 8, 5, 4, 3, 3, 2, 2, 2, 2, 2, 1. The frequencies were 
assigned randomly to the 12 target candidates, and the order of tar-
get candidates was randomized. Similar to [1, 23, 58], we balanced 
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the frequency assignments on the 12 target candidates across all 
participants and conditions, so that each target item was selected 
an equal number of times. We also counterbalanced the orders of 
the 6 (3 selection methods × 2 target sizes) experimental conditions 
across 18 participants according to a Latin Square. 

5.3 Procedure 
The participant was frst introduced to the target selection task 
where they selected targets with fnger touch on a smartwatch. 
They were allowed to use whatever fngers they preferred. There 
were 24 items shown in a 4 × 6 grid layout, and the target to be 
selected was shown above the grid layout, as shown in Fig. 4a. 

(a) (b) (c) 

Figure 4: Implementation for user study I. (a) Target selec-
tion page: the participants will select a target in the menu 
layout bounded by the grey rectangle, (b) Suggestion in SATS: 
SATS shows suggestions with three target candidates (in the 
red rectangle). (c) Selection result page: once a target candi-
date is selected, the participant needs to confrm the selec-
tion result by clicking ‘OK’ if the selection is correct, ‘RESE-
LECT’ otherwise. 

For the three methods, we told the participant that a suggestion 
window may show up after a touch, e.g. Fig. 4b shows a suggestion 
window with 3 target candidates, and the participant can choose 
from the suggested target candidates. The suggested target candi-
dates were ordered by their posteriors and were shown in one row, 
or in a 2×2 grid if there were four target candidates. The target size 
in the suggestion window was set to 2.5 times the target size in the 
grid menu to ensure that the participant can easily select them. 

For all methods, the participant needed to decide whether to 
cancel the selection after a target candidate was selected. We used 
a selection result page as shown in Fig. 4c. If an incorrect target 
was selected, the “OK" button was disabled and the participant se-
lected the “RESELECT" button to cancel the selection. If the correct 
target was selected, the “RESELECT" button was disabled and the 
participant selected the “OK" button to proceed to the next trial. 
We included the disabled button to make sure that the participant 
would redo the trial if the target selection failed, and would advance 
to the next trial if the target selection succeeded. 

The study started after we introduced the task. Fig. 5 shows a 
participant doing the experiment. The participant was asked to 
fnish the target selection as accurately and quickly as possible. At 
the end of the study, participants were asked to rate their preference 
over the three methods on a scale of 1 to 5 (1: dislike, 5: like very 
much). They also answered a subset of NASA-TLX questions to 
measure the workload of the target selection task, including mental 

Figure 5: A participant is selecting a 3.5 mm target 

and physical demand. The rating was on a scale from 1 to 10, from 
least demanding to most demanding. The study for each participant 
lasted about 30 minutes. The study in total included 18 participants 
× 3 methods × 2 target sizes × 100 trials = 10,800 trials. 

5.4 Results 
5.4.1 Error Rate. Error rate is the number of trials in which the 
participant makes at least one selection error divided by the total 
number of trials. The results for error rate (Fig. 6a) showed that for 
both target sizes, SATS had the lowest and MUCS had the highest 
error rate. 

A repeated measures ANOVA showed signifcant main efects 
for target selection method (F2,34 = 4.86, p < 0.05) and target 
size (F1,17 = 4.78, p < 0.05) on error rate. No signifcant interac-
tion efect was observed between these two independent variables 
(F2,34 = 1.53, p = 0.23). Pairwise mean comparisons with Bon-
ferroni adjustments showed that the diference was signifcant for 
SATS vs. MUCS (p < 0.001), but not for SATS vs. Heuristic (p = 0.22) 
or MUCS vs. Heuristic (p = 0.81). Further, Cohen’s efect size values 
suggested a large diference for SATS vs. MUCS (d = −0.85), and 
small diferences for SATS vs. Heuristic (d = −0.31) and MUCS vs. 
Heuristic (d = 0.19). 

5.4.2 Selection time. Selection time is the duration starting from 
the beginning of a trial to the moment that the intended target 
is fnally selected. The results for selection time (Fig. 6b) showed 
that SATS achieved the fastest input speed, while Heuristic had the 
longest selection time. 

A repeated measures ANOVA showed signifcant main efects 
for target selection method (F2,34 = 3.44, p < 0.05) and target size 
(F1,17 = 29.57, p < 0.001) on selection time. No signifcant interac-
tion efect was observed between the two independent variables 
(F2,34 = 0.839, p = 0.44). Pairwise mean comparisons with Bon-
ferroni adjustment showed that the diference was signifcant for 
SATS vs. Heuristic (p < 0.05), but there was no signifcant difer-
ence between SATS vs. MUCS (p = 0.28) and MUCS vs. Heuristic 
(p = 0.46). Furthermore, Cohen’s efect size values suggested small 
diferences for SATS vs. MUCS (d = −0.29) and MUCS vs. Heuris-
tic (d = −0.24), and a medium diference for SATS vs. Heuristic 
(d = −0.50). 

We also analyzed the total numbers of suggestions that were 
triggered by SATS, MUCS, and Heuristic in Fig. 7. MUCS showed the 
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Figure 6: Results for user study I by target size × method. 

Figure 7: Suggestion count (95% CI) for SATS, MUCS and 
Heuristic per 100 trials 

Touch point Posteriors
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0.02

0.01

Target:

Action of MUCS:

Action of SATS:

r 

r 

Figure 8: An example where SATS suggested the correct tar-
get while MUCS selected an incorrect one 

showed signifcant main efects of selection methods on two metrics: 
overall preference (X 2 

(X 2 

r 

(2) = 9.58, p < 0.01) and physical demand 
(2) = 10.98, p < 0.01). There was no signifcant main efect of 

mental demand (X 2 
SATS outperformed MUCS and the Heuristic in both error 
rate and selection time. 

least suggestions among the three methods, which explains why it 
had the highest error rate. On the other hand, Heuristic showed the 
most suggestions, which explains why Heuristic had the longest 
selection time. By using reinforcement learning to dynamically 
show suggestions, SATS outperformed MUCS and Heuristic in both 
error rate and selection time. 

As SATS takes future actions into consideration when learning 
the policy, its reward estimation is closer to the actual cost of se-
lection than that of MUCS as participants repeated selection until 
successfully selecting the intended target. SATS sometimes recom-
mended diferent actions than MUCS, resulting in the diference 
in performance. Fig. 8 is an example showing MUCS and SATS 
recommending diferent actions. 

5.4.3 Subjective Feedback. The results for subjective feedback are 

(2) = 5.88, p = 0.053). 
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Figure 9: Median subjective ratings of overall preference, 
shown in Fig. 9. For overall preference, the median ratings of SATS, 
MUCS, and Heuristic were 4.0, 4.0, and 3.0 respectively. The me-

mental demand, and physical demand in study I. For overall 
preference, higher ratings are better. For mental and physi-

dian ratings for mental demand were 3.0, 4.5, and 5.5 for the three 
methods respectively, and the median ratings for physical demand 
were 3.0, 5.0, and 6.0 respectively. Non-parametric Friedman tests 

cal demand, lower ratings are better. 
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6 USER STUDY II: COMPARE SATS WITH 
DIRECT SELECTION BASED METHODS 

In this study, we compared SATS with two direct selection-based 
methods, BayesianCommand and Visual Boundary (direct touch). 
We included BayesianCommand and Visual Boundary as baselines 
because: 1) BayesianCommand is a high-accuracy, direct selection-
based method, and 2) Visual Boundary is the most commonly used 
method. 

6.1 Participants and Apparatus 
Eighteen adults (7 female, 11 male) between 24 and 36 years old 
(average 28.7±2.9) participated in the study. 17 of them used the 
right index fnger to select targets, the other one used the left index 
fnger. 11 participants had the experience of using Android/Apple 
watch or other small-screen devices. We also used a Ticwatch S 
smartwatch with a 45mm diameter screen as in study I. 

6.2 Design and Procedure 
We adopted a [3 × 2] within-participant design. There were two 
independent variables: (1) target selection method with 3 levels 
(SATS, BayesianCommand, and Visual Boundary), (2) target size 
with 2 levels (2.5 mm and 3.5 mm). 

The BayesianCommand and Visual Boundary method did not 
show any suggestions, and a target candidate was selected once 
the user lifted the fnger of the screen. BayesianCommand selected 
the target candidate with the highest posterior. The Visual Bound-
ary selected the target candidate whose boundaries contained the 
touchpoint. Other settings for the study, i.e. the targets arrange-
ment and procedure, were the same as in study I. The study for each 
participant lasted about 30 minutes. The orders of 6 experimental 
conditions (3 selection methods × 2 target sizes) were counter-
balanced across 18 participants using a Latin Square. In total, we 
collected 18 users × 3 methods × 2 target sizes × 100 trials = 10,800 
trials. 

6.3 Results 
6.3.1 Error Rate. The results for error rate (Fig. 10a) showed that 
for both target sizes, SATS had the lowest error rate and Visual 
Boundary had the highest error rate. 

A repeated measures ANOVA showed signifcant main efects 
for target selection method (F2,34 = 40.13, p < 0.001) and target 
size (F1,17 = 52.46, p < 0.001), and a signifcant interaction ef-
fect method × target size (F2,34 = 15.28, p < 0.001) on error rate. 
Pairwise mean comparisons with Bonferroni adjustment showed 
the diferences were signifcant for SATS vs. BayesianCommand 
(p < 0.001), SATS vs. Visual Boundary (p < 0.001), and Bayesian-
Command vs. Visual Boundary (p < 0.001). Further, Cohen’s efect 
size values suggested large diferences for SATS vs. BayesianCom-
mand (d = −0.94), SATS vs. Visual Boundary (d = −1.19), and 
BayesianCommand vs. Visual Boundary (d = −0.87). 

We also presented the statistical information of how many times 
the suggestions were triggered for SATS and the attempt count for 
the three methods to successfully select the targets in 100 trials, as 
shown in Table 2. SATS had the smallest attempt count, while it 
had a relatively high suggestion count, especially when the target 
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Figure 10: Results for user study II by target size × method. 
Both SATS and BayesianCommand outperformed the base-
line Visual Boundary. SATS outperformed BayesianCom-
mand in error rate, but slightly increased selection time 
(around 200 ms). 

size is 2.5 mm. This is because when the target is too small, input 
is more likely to be ambiguous. 

6.3.2 Selection Time. The results for selection time (Fig. 10b) showed 
that SATS has almost the same selection time as Visual Boundary, 
while the average selection time for BayesianCommand was about 
200 ms lower than the other two methods. 

A repeated measures ANOVA showed signifcant main efects 
for target selection method (F2,34 = 5.97, p < 0.01) and target size 
(F1,17 = 42.86, p < 0.001) on selection time. No signifcant interac-
tion efect was observed. Pairwise mean comparisons with Bonfer-
roni adjustment showed the diferences were signifcant for SATS 
vs. BayesianCommand (p < 0.01) and BayesianCommand vs. Visual 
Boundary (p < 0.01), but not for SATS vs. Visual Boundary (p = 1). 
Further, Cohen’s efect size values suggested medium diferences 
for SATS vs. BayesianCommand (d = 0.58) and BayesianCommand 
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Target size 
Suggestion count 

SATS SATS 

Attempt count 

BayesianCommand Visual Boundary 

3.5 mm 4.33 (1.46) 100.78 (0.63) 101.83 (1.06) 105.40 (2.08) 
2.5 mm 23.61 (3.98) 101.06 (0.43) 105.78 (1.42) 115.11 (5.08) 

Table 2: Suggestion count and attempt count (95% CI) for three methods in 100 trials 

vs. Visual Boundary (d = −0.55), and a small diference for SATS 
vs. Visual Boundary (d = −0.03). 

6.3.3 Subjective Feedback. The results for subjective feedback are 
shown in Fig. 11. For overall preference, the median ratings of SATS, 
BayesianCommand, Visual Boundary were 5, 4, and 3 respectively. 
SATS had the highest median preference. The median ratings for 
mental demand were 3.5, 5.0, and 6.5 for the three methods re-
spectively, and the median ratings for physical demand were 3.0, 
4.0, and 5.5 respectively. Non-parametric Friedman tests showed 
signifcant main efects for selection method on two metrics: over-
all preference (X 2(2) = 15.10, p < 0.001) and mental demand 
(X 2 < 0.01). There was no signifcant main efect 

r 

r (2) = 12.04, p 
of physical demand (X 2 

r 

7.1 Participants and Apparatus 
Twelve adults (4 female, 8 male) between 21 and 36 years old (aver-
age 28±4.41) participated in the study. They selected targets using 
the preferred input fngers. Nine of them used the right index fn-
ger for selection, two used the left index fnger, and another one 
used the right thumb. 8 participants had the experience of using 
Android/Apple watch or other small-screen devices. We also used 
a Ticwatch S smartwatch with a 45mm diameter screen as in study 
I and II. 

7.2 Design and Procedure 
We adopted a [2 × 2] within-participant design, where the two 

(2) = 5.72, p = 0.057). independent variables were: (1) target selection method with 2 
levels (SATS and Shift), (2) target size with 2 levels (2.5 mm and 3.5 
mm). Similar to the previous two user studies, for each method × 
target size condition, there were 2 blocks, each with 50 trials. Before 
the 100 formal trials, the user practiced 5 trials for each method. 

For Shift, a call-out window showing the view underneath the 
user’s fnger magnifed 1.5 times appeared right after the user 
touched the screen, as shown in Fig. 12. To maintain high efciency, 
the call-out window appeared as soon as the fnger touched the 
screen. Such a design required no dwelling time for triggering the 
call-out window. This feature was close to the original work [51] 
which set an extremely short dwelling time (<5 ms) for targets 
smaller than 3.5 mm. The call-out window remained static as the 
fnger was on the screen, and it disappeared as soon as the input 
fnger was lifted. Before lifting the fnger, the user can move the 
fnger to adjust the touch position, and as feedback, a red cross 
showed the real-time touch point in the call-out window. The user 
may also ignore the call-out window and directly select the target 
with fnger touch. To accommodate the limited screen size of the 
watch, we set the diameter of the call-out window to 8.75 mm (100 
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Figure 11: Median subjective ratings of overall preference, 
mental demand and physical demand in study II. For overall 

pixels on the watch), and placed it 8.75 mm above the initial contact preference, higher ratings are better. For mental and physi-
point of the fnger. cal demand, lower ratings are better. 

7 USER STUDY III: COMPARE SATS WITH 
SHIFT 

In this experiment, we compared SATS with Shift [51], a magnifcation-
based method in which a user can manually trigger a call-out 
window and adjust the fnger to confrm the target selection. As 
magnifcation-based methods have been widely adopted on touch-
screen devices (e.g., iPhone) to assist target selection, we wanted 
to assess whether automatically providing suggestions could out-
perform manually triggering a magnifcation window. Figure 12: Implementation of Shift 
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Other settings for the study, i.e. targets arrangement and proce-
dure, were the same as in the study I and II. The user study for each 
user lasted about 20 minutes. The orders of the four experimental 
conditions (2 selection methods × 2 target sizes) were counterbal-
anced across participants using a Latin Square. In total, we collected 
12 users × 2 methods × 2 target sizes × 100 trials = 4,800 trials. 

7.3 Results 
7.3.1 Error Rate. We plotted the mean error rate with 95% con-
fdence interval (CI) for SATS and Shift in Fig. 13a. SATS outper-
formed Shift in error rate in both target sizes. 
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Figure 13: Results for user study III by target size × method. 
SATS outperformed Shift in both error rate and selection 
time. 

A repeated measures ANOVA showed signifcant main efects 
for target selection method (F1,11 = 9.92, p < 0.01), and target 
size (F1,11 = 5.10, p < 0.05) on error rate. No signifcant interac-
tion efect was observed between the two independent variables 
(F1,11 = 5.01, p = 0.38). Pairwise mean comparisons with Bonfer-
roni adjustment indicated that the diference was signifcant for 
SATS and Shift (p < 0.01). Cohen’s efect size value suggested a 
medium diference for SATS vs. Shift (d = −0.70) [15]. As reported 

in Section 7.2, the 100 trials of each user for each method × target 
size condition was divided into 2 blocks. The mean error rates of 
SATS for 3.5 mm targets were 1.17% for block 1, and 0.83% for block 
2, and for 2.5 mm targets were 2.5% for block 1, and 2.0% for block 
2. The mean error rates of Shift for 3.5 mm targets were 3.67% for 
block 1, and 6.33% for block 2, and for 2.5 mm targets were 9.5% for 
block 1, and 8.17% for block 2. As shown, the error rates were simi-
lar across blocks for each method × target size condition, except 
for Shift × 3.5 mm target where block 2 had higher error rate. 

7.3.2 Selection Time. The results for selection time (Fig. 13b) showed 
that SATS also outperforms Shift in selection speed. A repeated mea-
sures ANOVA showed signifcant main efects for target selection 
method (F1,11 = 41.94, p < 0.001) and target size (F1,11 = 41.26, p < 
0.001) on selection time. No signifcant interaction efect between se-
lection method and target size was observed (F1,11 = 0.30, p = 0.59). 
Pairwise mean comparisons with Bonferroni adjustment showed 
that the diference was statistically signifcant between the two 
selection methods (p < 0.001). Cohen’s efect size value suggested a 
large diference for SATS vs. Shift (d = −1.20). The mean selection 
times of SATS for 3.5 mm targets were 1.38 s for block 1, and 1.22 
s for block 2, and for 2.5 mm targets were 2.08 s for block 1, and 
1.67 s for block 2. The mean selection times of Shift for 3.5 mm 
targets were 1.88 s for block 1, and 1.86 s for block 2, and for 2.5 
mm targets were 2.62 s for block 1, and 2.54 for block 2. As shown, 
for each method × target size condition, the selection times were 
similar across blocks for Shift, while the select time for SATS in the 
block 2 was shorter than that in the block 1. 

7.3.3 Suggestion Usage. SATS on average showed suggestions in 
6.5 (95% CI 2.62) trials per 100 trials for 3.5 mm target: 3.17 trials 
for 2 suggestions, 1.5 trials for 3 suggestions, and 1.83 trials for 
4 suggestions. For 2.5 mm targets, it showed suggestions for 26.5 
(95% CI: 8.739) per 100 trials: 2.3 trials for 2 suggestions, 5.3 trials 
for 3 suggestions, and 19 trials for 4 suggestions. It matched our 
expectation that suggestions would be more frequently displayed 
for trials with smaller targets. In Shift, the call-out window appeared 
as soon as the fnger landed on the screen. Therefore it was turned 
on for all trials. Such a design followed the previous research [51] 
where a negligible dwelling time (< 5ms) was adopted for small 
target (< 5.2 mm) selection. 

7.3.4 Subjective Feedback. The results for subjective feedback are 
shown in Fig. 14. They indicate that the participants had a higher 
preference for SATS than Shift, with median ratings 5 and 2.5 re-
spectively. The median ratings for mental demand were 3.0 and 
6.5 for the two methods respectively, and the median ratings of 
the physical demand were 3.5 and 8.0 respectively. The Wilcoxon 
signed-rank tests showed that the diferences were statistically sig-
nifcant for user preference (p < 0.001), mental demand (p < 0.001), 
and physical demand (p < 0.001). 

8 DISCUSSION 

8.1 Performance of SATS 
The user study results show that SATS achieved higher target 
selection accuracy over other suggestion-based approaches, di-
rect selection-based approaches, as well as a magnifcation-based 
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Figure 14: Median subjective ratings of overall preference, 
mental demand and physical demand in study III. For over-
all preference, higher ratings are better. For mental and 
physical demand, lower ratings are better. 

method. Compared with the suggestion-based method MUCS, SATS 
reduced error rate from 3.47% to 1.09%, and reduced selection time 
from 1.55 seconds to 1.43 seconds, a 7.74% reduction. Meanwhile, 
compared to Heuristic, SATS reduced error rate from 2.64% to 1.09%, 
and reduced selection time from 1.67 seconds to 1.43 seconds, a 
14.37% reduction. Compared with the direct selection methods, 
SATS also reduced the error rate of BayesianCommand from 3.64% 
to 0.89%, while the selection time of SATS was only around 200 ms 
slower than BayesianCommand, i.e. 1.58 seconds vs 1.39 seconds. 
At the same time, SATS had almost the same selection time as the 
most commonly used Visual Boundary method, which was 1.59 
seconds, but reduced error rate from 8.53% down to 0.89%. Com-
pared with the manually triggering magnifcation window-based 
approach Shift, SATS reduced error rate from 6.92% to 1.63%, and 
reduced selection time from 2.23 seconds to 1.59 seconds, a 28.70% 
reduction. 

The extremely low error rate of SATS in our user studies suggests 
that SATS is a high-accuracy selection method. It will especially be 
benefcial when touch selection errors are costly, such as in condi-
tions where touch selection errors are non-reversible, e.g. clicking a 
“pay” button in online shopping or clicking the “send” button in live 
messaging, or in conditions where correcting errors is tedious, e.g. 
when the “undo” button is hard to access. That said, the selection 
time of SATS is around 200 ms longer than BayesianCommand, 
indicating that in conditions where touch selection errors are not 
costly and can be easily reversed, BayesianCommand is also an 
appropriate method. 

8.2 Select or Suggest in SATS 
To understand when SATS directly selected a target, and when it 

showed 2, 3, 4 suggestions which could be a combination of any tar-
get candidates from the top 4 candidates (see details in Section 3.2), 
we summarize the statistical information for the top 4 posteriors 
for the four types of action across the three user studies in Table 3. 
As shown, SATS directly selected the target if the top posterior 

was extremely high (i.e., 90%). It included 2, 3, or 4 suggestions 
if the top posterior dropped to around 59%, 56%, and 48%. Such 
a policy is well-matched with our expectation that SATS directly 
selected the target if there was high confdence in determining the 
target, and it provided suggestions if there was high uncertainty. 
For actions showing 2, 3, or 4 suggestions, the sum of posteriors 
of all suggestions was more than 90%, indicating that SATS had a 
broad coverage of possible target candidates, and was able to adjust 
the number of suggested candidates to accommodate the drop of 
the top posterior. 

8.3 Execution Time Cost 
Although SATS uses a neural network to predict action, it is an 
efcient method that can be used on devices with limited computa-
tional abilities. We recorded the loading time and prediction time 
of the policy network of SATS for 30 trials on the Android watch. 
It turned out that the average loading time of the policy network is 
1244.17 (95% CI: 33.32) ms and the average prediction time is 17.37 
(95% CI: 0.86) ms. Therefore, prediction is very fast, and we can 
load the policy network once when the system or an application 
starts, which does not afect the target selection performance. 

8.4 Future Work 
The policy network of SATS is pre-trained based on simulated 
interaction experiences. The interaction between the agent and 
the environment is simulated based on existing interaction models, 
i.e. the Dual Gaussian model for touch point distribution and the 
empirical time cost model. This means that SATS uses the same 
policy network for all users. A possible future work is to fne-tune 
the pre-trained policy network based on the user’s real interaction 
data to create a personalized target selection method. 

The core idea behind SATS, using reinforcement learning to train 
an optimal action policy, could be generalized beyond touch based 
target selection. The input to the policy network is the posteriors 
of target candidates. In theory, the method can work with other 
target selection methods or modalities as long as the posteriors 
of selecting targets can be obtained. For example, previous work 
showed that the posteriors of selecting targets can be calculated for 
gestural input [58], and for gaze-based input [32]. We could then 
follow a similar procedure of training the policy network for SATS 
to obtain an optimized action policy for these two diferent target 
(command) selection methods. 

9 CONCLUSION 
In this paper, we frame the question of whether to suggest candi-
dates and which candidates to suggest in a suggestion-based target 
selection task as a sequential decision problem, and solve it with 
reinforcement learning. Our investigation led to SATS, a Suggestion-
based Accurate Target Selection method. In SATS, the computer 
acts as an agent that assists the user in target selection. It learns 
an optimal policy via a Deep Q-Network trained on simulated in-
teractions between the agent and the environment. Following the 
optimal policy, the agent shows suggestions if the input is ambigu-
ous, and directly selects the target if the input is certain. Empirical 
evaluations showed that SATS signifcantly improved the accuracy 
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Type of action 
# of occurrences 

out of 10,226 attempts 

Mean±standard deviation of top 4 posteriors 

Highest 2nd highest 3rd highest 4th highest 

Direct selection 8,598 (123) 0.90±0.10 0.06±0.06 0.02±0.03 0.01±0.01 
Suggest 2 targets 262 (0) 0.59±0.06 0.38±0.06 0.02±0.01 0.01±0.01 
Suggest 3 targets 382 (0) 0.56±0.06 0.31±0.07 0.07±0.03 0.03±0.01 
Suggest 4 targets 984 (7) 0.48±0.09 0.26±0.07 0.14±0.05 0.08±0.03 

Table 3: Statistics of four types of action introduced in Section 3.2 taken by SATS in 10,226 attempts in the three studies, 
including the occurrence of actions: total occurrence (occurrence where the direct selection was wrong, or the intended target 
was not included in the suggestions), and mean±standard deviation of the top-four posteriors. 

of target selection over two suggestion-based methods: Maximiz-
ing Utility for Current Selection (MUCS), which maximizes the 
utility of the current selection only, and Heuristic, which uses a 
simple heuristic for triggering suggestions. Compared to existing 
approaches, SATS also achieved higher accuracy than Shift [51], 
BayesianCommand [58] and Visual Boundary, which selects a target 
using its boundaries. 
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