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Evolutionary change impacts the rate at which insect pests,
pollinators, or disease vectors expand or contract their geographic
ranges. Although evolutionary changes, and their ecological
feedbacks, strongly affect these risks and associated ecological
and economic consequences, they are often underappreciated in
management efforts. Greater rigor and scope in study design,
coupled with innovative technologies and approaches, facilitates
our understanding of the causes and consequences of eco-
evolutionary dynamics in insect range shifts. Future efforts need to
ensure that forecasts allow for demographic and evolutionary
change and that management strategies will maximize (or
minimize) the adaptive potential of range-shifting insects, with
benefits for biodiversity and ecosystem services.
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Introduction

Insect range expansions and contractions in response to
human activities are widespread and are reshaping entire
food webs and altering ecosystem functions and services
[1e,2¢]. Practical consequences of range shifts include
the rescue of species from degraded habitats, more ro-
bust populations with expanded ranges, and increases in
local biodiversity. While such consequences can often be
favorable, negative impacts are also observed, if range-
shifting species include agricultural pests and vectors of
human and agricultural diseases, or disrupt native com-
munities and ecosystem services [3,4]. Because both
ecological and economic consequences of insect range
shifts are important, it is a priority to understand what
drives some insects, but not others, to undergo rapid
range shifts, and to further understand drivers of varia-
tion. Until recently, however, forecasting models have
mostly considered ecological drivers such as coloniza-
tion, biotic interactions, and abundance shifts, without
taking into account rapid evolution associated with range
shifting, which can affect all of these ecological para-
meters. Rapid evolution commonly occurs during range
shifts; this phenomenon was first shown in insects [5¢],
and is clearly a dominant phenomenon in this group,
facilitated by their sensitivities to environmental change
and by their short life cycles and large population sizes.
These characteristics can facilitate rapid transgenera-
tional genetic or epigenetic change [6,7¢] Strong Il life-
history trade-offs in insects can further help to maintain
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evolutionary variability, and therefore, perhaps counter-
intuitively, can increase fitness when encountering novel
environments during range expansions [8].

Range shifts are ecological processes, so when they in-
volve evolution they invoke eco-evolutionary dynamics,
L.e. interactions between evolutionary change and ecolo-
gical outcomes. For example, insect range expansions can
both drive evolution of dietary niche breadth [9¢] and be
facilitated by it [5¢,10]. There is well-established theore-
tical understanding of eco-evolutionary dynamic feed-
backs  between  microevolutionary  change  and
demographic shifts during colonization of novel environ-
ments [11]. However, empirical evidence lags behind
theoretical developments. This omission is largely due to a
lack of established approaches for discovering, diagnosing
and monitoring eco-evolutionary processes in wild sys-
tems. Lack of data to test models therefore makes it dif-
ficult to predict evolutionary responses and their
relationship to ecological patterns and processes. This is
unfortunate, given that conservation and management
actions depend on a robust prediction of range shift tra-
jectories. To increase awareness of this gap between
theory and data, we (1) highlight opportunities that insects
offer for identifying the eco-evolutionary basis of range
shifts and their applied relevance; (2) discuss recent ad-
vances in our understanding of eco-evolutionary dynamics
of insect range shifts; and (3) identify critical avenues for
robustly assessing the temporal and spatial scale of those
dynamics to improve predictions of range shifts and their
impacts on biodiversity.

The importance of studying eco-evolutionary
dynamics during insect range expansions

Insects are among the most rapidly range-expanding of
all terrestrial taxa [12¢]. Range-shifting insects have a
large impact on the assembly of resident biotas [13], on
pollinator networks [4] and other ecosystem services
[14e]. Life histories of range-expanding insects are often
distinct from resident communities in that they exhibit
increased resilience to stressors, ecological generalism, or
competitive ability [15]. These observations have been
used to suggest that colonizing species are those already
with ecological traits that enable rapid spread. However,
this conclusion rests on the assumption that ecological
and evolutionary processes occur on different time
scales, where the evolution of the traits that confer the
capacity for ecological disruption is thought to occur in
advance of geographical expansion. However, we argue
that this assumption is often unlikely to be true, in part
because attempts to discover traits predisposing range
expansions have failed or detected only weak effects
(reviewed in [16¢]). Instead, we suggest that traits con-
ferring colonization ability most likely evolve during
range expansions (see also: [17¢]; Figure 1). Conversely,
traits and processes likely to arise during range

contraction may potentially confer enhanced sensitivity
to further declines, although evolutionary processes
during range contraction are even less well characterized
than those associated with expansion.

Insects further offer ideal opportunities for detailed stu-
dies of range shifts. Data on insect distributional shifts is
increasing in volume owing to technological advances in
rapid insect surveying methods [18], such as remote sen-
sing and techniques that exploit frequencies of solar ra-
diation to track individuals and their microclimates [19¢].
These advances offer more in-depth insight into the
densities, distributions and dispersal behavior of flying
insects. However, such data are highly biased towards
terrestrial insect communities, which are unlikely to be
representative of aquatic species and the important eco-
system services they provide. Increasing research on the
eco-evolutionary dynamics of range shifting pest species
and disease vectors [20] is particularly needed, given their
relevance for food sustainability and human health.

Eco-evolutionary dynamics during insect
range shifts

Many studies of evolution during range shifts in insects
have focused on changes in physiological traits, such as
thermal tolerances, shaped under ecological selection in
the new part of the range (e.g. [21-23]). However, novel
demographic conditions arising from range expansion
can also impose selection on characteristics such as en-
hanced dispersal or resistance to inbreeding, and on life
history traits such as reduced generation time, voltinism
and diapause that can speed up the expansion itself [24].
In addition, gene flow from the historic range and ge-
netic drift further shape genetic variation and, thus alter
evolutionary dynamics [25]. Neutral, rather than adap-
tive processes, can dominate evolutionary changes
during colonization events, making it difficult to predict
range shift outcomes. Nonetheless, certain anticipatory
responses may also evolve, for example, serial coloniza-
tion at the leading edge of range shifts can select for
indiscriminate individuals that are more likely to accept
marginal habitat conditions [26].

Recent studies highlight the importance of trait plasti-
city for insect adaptation during range shifts [23,27]. In
particular, increased learning ability may be important
for insects to cope with environmental heterogeneity
and unpredictability during colonization events [28,29]
Evolutionary ioncreases in learning ability, as in any
form of plasticity, can further facilitate environmental
adaptation by allowing persistence in a novel environ-
ment until genetic accommodation has occurred [30].

Dispersal evolution is often part of eco-evolutionary
feedback loops, both as a driver and response [31]. In
addition to being favored during serial colonization [24],
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Mechanistic, simplified representation of eco-evolutionary dynamics during insect range shifts and their importance for (applied) research. The gear
wheels can move in the direction indicated by the arrows, such that the exemplary selection of demographic, environmental and social drivers (D) (see
color legend on bottom right) may individually, or in combination, (1) evoke evolutionary responses (e.g. epigenetic, or genetic) (R) in range expanding
insect populations on contemporary time scales (2). Understanding the rates and strengths of these processes will be crucial for theoretical
advancements and practical implications of insect range shifts (see boxes on bottom left). Moreover, responses can induce new driving forces (3),
resulting in positive or negative eco-evolutionary feedbacks and feedback loops, for example, an increase in a driving process A induces a genetic
response that further increases versus decreases trait A, thus accelerating or dampening the dynamic and resulting range shift trajectory.
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high or low population densities at the range limit may
further facilitate changes in dispersal propensity [32].
Evolutionary impacts of range shift-induced dispersal
traits may not evolve independently from other traits,
meaning that changes in dispersal will impact correlated
traits, further modifying eco-evolutionary dynamics
[33e,34¢]. Furthermore, insect dispersal traits are often
temperature-sensitive, suggesting that the interplay be-
tween shifts in environmental plasticity and dispersal
needs to be considered together to predict likely evo-
lutionary dynamics [35].

Social dynamics also evolve readily during range shifts,
influencing adaptive potential to both expand and to
resist contraction. This may occur for instance if sexual
or other socially-mediated selection differs between the
range core and the range edge [36], due to changes in
fragmentation, relatedness, or density conditions at
fluctuating range edges that impact reproductive and
competitive opportunities. Novel social dynamics at
range margins can feed back to impact individual phe-
notypes and fitness, for example, via invoking general-
ized stress responses that also confer fitness in novel
environments [37]. Another consequence of range shifts
may be skewed sex ratios, particularly where sexes differ
in dispersal, meaning the more dispersive sex reaches
the range limit in higher numbers. The resulting skew
can impact mating systems or the strength of sexual
selection (e.g. in damselflies: [7¢]).

An understudied area is the complex, interactive effect of
eco-evolutionary change on community dynamics during
insect range shifts. For example, novel plant-insect inter-
actions caused by unequal rates of range shifting likely
impact both plant and insect biodiversity, population sizes,
and evolutionary potential, with shifts in pollinator and
pest communities impacting food security. In particular,
encountering novel resources during range shifts can
trigger diet evolution (e.g. increase or reduction in
Lepidopteran host breadth: [9¢,38¢ 39¢]). Moreover, shifts
in plasticity, physiology, life history and dispersal asso-
ciated with range shifts can further impact future com-
munity dynamics: colonizing lineages, which have already
adapted to spatial variability, may then have an evolu-
tionary advantage over existing residents when future
environments become more variable or less predictable
[40]. To take into account the evolution of interactions
among species and environments, an approach that in-
cludes multiple drivers and responses is needed to detect
how biotic interactions affect and are impacted by eco-
evolutionary processes during range shifts (Figure 1).

Advances in the study of eco-evolutionary
dynamics

To advance our understanding of eco-evolutionary dy-
namics, a temporal approach is needed to quantify the

nature, rate and magnitude of population changes along
range expansion trajectories. However, due to practical
constraints, most studies assess range shift dynamics
across only one or a few generations. Improving temporal
resolution may be accomplished via judicious use of
historical records or genetic inference of past demo-
graphy and adaptation, to make links between previous
or ongoing population processes and resulting demo-
graphic characteristics or trait values [7¢,39]. Statistical
approaches that account for abiotic and biotic factors that
can bias range estimates are also developing rapidly to
enable more accurate modeling of past and current range
dynamics [41ee].

Recent advances in genomic sequencing approaches and
computational improvements further present the oppor-
tunity to track historical eco-evolutionary processes using a
greatly expanded set of ‘omic’ markers. Spatial genomic
datasets allow for high-powered tests for dispersal and
demographic processes that influence genetic con-
nectivity, and provide insight into spatial and temporal
dynamics of neutral and adaptive genomic variation
[42,43]. Likewise, transcriptomic approaches can test the
relationships between environment, gene expression, and
phenotype in insect populations impacted by range
shifting, providing insight into how the genetic basis of
traits, and their plasticities, may evolve [44,45¢]. Epige-
nomics, the study of DNA modifications that impact gene
expression, 1s another growing field that identifies how
insects can rapidly respond to a changing climate [6], with
accumulating evidence suggesting that modifications can
have significant transgenerational impact [46]. One inter-
esting idea is that the evolution of ‘epigenectic potential’
(i.e. proportion of the genome available for new epigenetic
modifications) may be an important mechanism of plasti-
city evolution during range shifts [47], a hypothesis that
remains untested in insects.

Effective use of these techniques depends on careful
experimental design to allow for generalizations about
the role of eco-evolutionary dynamics in the likelihood,
rate, and outcomes of range shifts. For instance, effec-
tive design may include careful sampling over time
within the range as well as at the edge, repeated sam-
pling across multiple range shift transects within a spe-
cies, or comparing outcomes across range-shifting versus
nonshifting species along a shared spatial gradient [48].
Meta-analyses adopting this latter approach have re-
cently revealed that only range-shifting insects exhibit
classical latitudinal gradients in dietary and thermal
niche breadth. This work suggests that rapid niche
evolution during range shifts is an important cause of
macroecological patterns [9¢,49]. In addition, replicated
assessment of trait or distribution outcomes across in-
dependent expansion trajectories within a species, such
as in [38], are crucial to understand what patterns are due
to stochastic versus general responses of populations.
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Appropriate application of ‘omic approaches often re-
quires a mechanistic understanding of how genetic var-
iation links to relevant traits, which in turn impact
demography and adaptation. Wetherefore advocate for
combining wild studies with laboratory or field experi-
ments to robustly corroborate these links. Experimental
approaches may involve evolution of replicate laboratory
populations under range shift conditions, and adopting
an ‘evolve and resequence’ approach to track how ge-
netic and phenotypic (co)variation respond to experi-
mentally altered patterns of demography and
environmental variation [50]. Alternatively, common
garden or reciprocal transplant studies can be used to
establish causality. Such common garden studies can also
be combined with more complex breeding designs
coupled to sequencing, to experimentally disentangle
and quantify genetic and environmental factors [51].

Increased collaborative efforts are also essential.
Extending the temporal and spatial scales of study re-
quires investment and prioritization at multi-institu-
tional, and in many cases, multi-national levels. A
multidisciplinary approach is also critical for integrating
data from environmental, physiological, demographic,
genetic, and epigenetic data sources. Effectively com-
bining this information will be essential for modeling
evolutionary trajectories and feedbacks that facilitate or
hinder range shifts. Such models are still in their infancy.
However, recent work suggests that incorporation of data
on genetic variation improves species distribution
models and forecasts [52], and the development of ge-
netically explicit process-based models is increasing at a
rapid pace [53,54]. Inverse fitting of process-based
forecasting models parameterized from rigorous em-
pirical demographic and genomic data represents the
next stage in forecasting sophistication [55].

Conclusions

Accurate forecasting of which insect species will or will
not range-shift or adapt is urgently needed. Insect range
shifts are already impacting biodiversity, human disease
risk, agriculture, and forestry, with severe economic
consequences [3]. Providing the needed empirical data
to understand and model the eco-evolutionary processes
that underpin range shifts demands multidisciplinary
insights e.g. from ‘omic’ approaches, and combinations
of wild and laboratory studies at the appropriate tem-
poral and ecological scale. Once we understand the
biological processes limiting or enhancing insect range
shifts, species and communities identified as being at
risk can be targeted to support their ecological and
adaptive potentials.
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