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Singularity of sparse random matrices: simple proofs

Asaf Ferber* Matthew Kwan' Lisa Sauermannt

Abstract

Consider a random n X n zero-one matrix with “sparsity” p, sampled according to one of the following
two models: either every entry is independently taken to be one with probability p (the “Bernoulli”
model), or each row is independently uniformly sampled from the set of all length-n zero-one vectors
with exactly pn ones (the “combinatorial” model). We give simple proofs of the (essentially best-
possible) fact that in both models, if min(p,1 — p) > (1 +¢)logn/n for any constant £ > 0, then our
random matrix is nonsingular with probability 1 — o(1). In the Bernoulli model this fact was already
well-known, but in the combinatorial model this resolves a conjecture of Aigner-Horev and Person.

1 Introduction

Let M be an n x n random matrix with i.i.d. Bernoulli(p) entries (meaning that each entry M;; sat-
isfies Pr(M;; = 1) = p and Pr(M;; = 0) = 1 — p). It is a famous theorem of Komlo6s [15, 16]
that for p = 1/2 a random Bernoulli matrix is asymptotically almost surely nonsingular: that is,
lim,, oo Pr(M is singular) = 0. Komlos’ theorem can be generalised to sparse random Bernoulli ma-
trices as follows.

Theorem 1.1. Fize > 0, and let p = p(n) be any function of n satisfying min(p, 1 —p) > (1+¢)logn/n.
Then for a random n x n random matriz M with i.i.d. Bernoulli(p) entries, we have

lim Pr(M is singular) = 0.

n—oo

Theorem 1.1 is best-possible, in the sense that if min(p,1 — p) < (1 — €)logn/n, then we actually have
lim,, —, o Pr(M is singular) = 1 (because, for instance, M is likely to have two identical columns). That
is to say, logn/n is a sharp threshold for singularity. It is not clear when Theorem 1.1 first appeared in
print, but strengthenings and variations on Theorem 1.1 have been proved by several different authors
(see for example [1, 3, 5, 6]).

Next, let @ be an n X n random matrix with independent rows, where each row is sampled uniformly
from the subset of vectors in {0,1}" having exactly d ones (Q is said to be a random combinatorial
matrix). The study of such matrices was initiated by Nguyen [19], who proved that if d = n/2 then Q
is asymptotically almost surely nonsingular (where n — oo along the even integers). Strengthenings of
Nguyen’s theorem have been proved by several authors; see for example [2, 10, 12, 13, 23]. Recently,
Aigner-Horev and Person [2] conjectured an analogue of Theorem 1.1 for sparse random combinatorial
matrices, which we prove in this note.

Theorem 1.2. Fiz e > 0, and let d = d(n) be any function of n satisfying min(d,n —d) > (1 +¢)logn.
Then for a n x n random zero-one matriz (Q with independent rows, where each row is chosen uniformly
among the vectors with d ones, we have

lim Pr(Q is singular) — 0.

n—roo
Just like Theorem 1.1, Theorem 1.2 is best-possible in the sense that if min(d,n —d) < (1 —¢)logn, then
lim,,—, o Pr(M is singular) = 1. Theorem 1.2 improves on a result of Aigner-Horev and Person: they
proved the same fact under the assumption that lim, . d/(n'/2log®?n) = co (assuming that d < n/2).

*Department of Mathematics, University of California, Irvine. Email: asaff@uci.edu. Research supported in part by
NSF Awards DMS-1954395 and DMS-1953799.

TDepartment of Mathematics, Stanford University, Stanford, CA. Email: mattkwan@stanford.edu. Research supported
by NSF Award DMS-1953990.

£School of Mathematics, Institute for Advanced Study, Princeton, NJ. Email: lsauerma®mit.edu. Research supported
by NSF Grant CCF-1900460 and NSF Award DMS-2100157.


http://arxiv.org/abs/2011.01291v2
mailto:asaff@uci.edu
mattkwan@stanford.edu
lsauerma@mit.edu

The structure of this note is as follows. First, in Section 2 we prove a simple and general lemma
(Lemma 2.1) which applies to any random matrix with i.i.d. rows. This lemma distills the essence
of (a special case of) an argument due to Rudelson and Vershinyn [22]. Essentially, it shows that in order
to prove Theorem 1.1 and Theorem 1.2, one just needs to prove some relatively crude estimates about
the typical structure of the vectors in the left and right kernels of our random matrices.

Then, in Section 3 and Section 4 we show how to use Lemma 2.1 to give simple proofs of Theorem 1.1
and Theorem 1.2. Of course, Theorem 1.1 is not new, but its proof is extremely simple and it serves as
a warm-up for Theorem 1.2. It turns out that in order to analyse the typical structure of the vectors in
the left and right kernel, we can work over Z, for some small integer ¢ (in fact, we can mostly work over
Zs). This idea is not new (see for example, [2, 4, 8, 9, 10, 11, 18, 20, 21]), but the details here are much
simpler.

We remark that with a bit more work, the methods in our proofs can also likely be used to prove the
conclusions of Theorem 1.1 and Theorem 1.2 under the weaker (and strictly best-possible) assumptions
that lim,,—, o (min(pn,n — pn) — logn) = oo and lim, o (min(d,n — d) — logn) = co. However, in this
note we wish to emphasise the simple ideas in our proofs and do not pursue this direction.

Notation. All logarithms are to base e. We use common asymptotic notation, as follows. For real-valued
functions f(n) and g(n), we write f = O(g) to mean that there is some constant C' > 0 such that
|f| < Cg. If g is nonnegative, we write f = (g) to mean that there is ¢ > 0 such that f > cg for
sufficiently large n. We write f = o(g) to mean that f(n)/g(n) — 0 as n — oo.

Acknowledgements. We would like to thank Elad Aigner-Horev, Yury Person, and the anonymous referee,
for helpful comments and suggestions.

2 A general lemma

In this section we prove a (very simple) lemma which will give us a proof scheme for both Theorem 1.1
and Theorem 1.2. For a vector x, let supp(z) (the support of x) be the set of indices i such that x; # 0.

Lemma 2.1. Let F be a field, and let A € F"*™ be a random matriz with i.i.d. rows Ry,...,R,. Let
P C F™ be any property of vectors in F™. Then for any t € R, the probability that A is singular is
upper-bounded by

Pr(z” A =0 for some nonzero x € F™ with | supp(z)| < t) (2.1)
+ %Pr(there is nonzero x ¢ P such that x - R; =0 for alli=1,...,n—1) (2.2)
+ 2 sup Pr(z - R, = 0) (2.3)

z€P

Proof. Note that A is singular if and only if there is a nonzero z € F" satisfying 27 A = 0. Let & be
the event that R; € span{Ry,...,Ri—1, Ri11,..., Rn}, and let X be the number of ¢ for which &; holds.

Then by Markov’s inequality and the assumption that the rows Ry,..., R, are i.i.d., we have
T . EX n
Pr(z' M = 0 for some x with |supp(z)| > ¢) < Pr(X >1t) < - =7 Pr(&,).

It now suffices to show that % Pr(&,) is upper-bounded by the sum of the terms (2.2) and (2.3). Note

that we can always choose a nonzero vector x € F" with - R; = 0 for : = 1,...,n — 1. We interpret
x as a random vector depending on Ry,..., R,—1 (but not R,). If the event &, occurs, we must have
z-R,=0,s0

%Pr(ﬁn)g%Pr(z¢P)+%Pr(z~Rn:0|z€P).

Then % Pr(xz ¢ P) is upper-bounded by the expression in (2.2), and, since x and R,, are independent,
#Pr(z- R, = 0|z € P) is upper-bounded by the expression in (2.3). O



3 Singularity of sparse Bernoulli matrices: a simple proof

Let us fix 0 < ¢ < 1. We will take ¢ = ¢n for some small constant ¢ (depending on ¢), and let P be the
property {x € Q™ : |supp(x)| > t}. All we need to do is to show that the three terms (2.1), (2.2) and
(2.3) in Lemma 2.1 are each of the form o(1). The following lemma is the main part of the proof.

Lemma 3.1. Let Ry, ..., R, be the first n—1 rows of a random Bernoulli(p) matriz, with min(p, 1—p) >
(1+¢)logn/n. There is ¢ > 0 (depending only on ) such that with probability 1 — o(1), no nonzero
vector x € Q™ with |supp(z)| < cn satisfies Ry -x =0 foralli=1,...,n— 1.

Proof. If such a vector x were to exist, we would be able to multiply by an integer and then divide by
a power of two to obtain a vector v € Z™ with at least one odd entry also satisfying |supp(v)| < cn and
R;-v=0fori=1,...,n— 1. Interpreting v as a vector in Z%, we would have R; - v = 0 (mod 2) for
i=1,...,n— 1 and furthermore v € Z} would be a nonzero vector consisting of less than cn ones. We
show that such a vector v is unlikely to exist (working over Zy discretises the problem, so that we may
use a union bound).

Let p* = min(p,1 —p) > (1 4+ €)logn/n. Consider any v € {0,1}" with |supp(v)] = s. Then R; - v
for i = 1,...,n — 1 are i.i.d. Binomial(s,p) random variables. Let P, denote the probability that a
Binomial(s, p) random variable is even. We observe

(B (w5 (o)
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Then, using the fact that e~ =1 — ¢ 4+ O(t?) for t = o(1), we deduce

P <{6_(l+0(1))‘$p* if sp* = o(1),
s, p =

e () if sp* = Q(1).

Taking r = §/p* for sufficiently small § (relative to ¢), and recalling that p > (14 ¢e)logn/n, the
probability that there exists nonzero v € Z5 with |supp(v)| < en and R; - v = 0 (mod 2) for all i =

1,...,n —1is at most
Z( )Pn 1 < Z slogn—(1—¢/3)snp” + Z s(log(n/s)+1)—Q(n)
s=1 s=r+1
< Zn—sa/s L Zen((s/n)aog(n/s)m 201) Z o(1),
s=1
provided ¢ is sufficiently small (relative to ). O

Taking ¢ as in Lemma 3.1, we immediately see that the term (2.2) is of the form o(1). Observing that
the rows and columns of M have the same distribution, and that the event 27 M = 0 is simply the event
that - C; = 0 for each column C; of M, it also follows from Lemma 3.1 that the term (2.1) is of the form
o(1). Finally, the following straightforward generalisation of the well-known Erdés-Littlewood—Offord
theorem shows that the term (2.3) is of the form o(1), which completes the proof of Theorem 1.1. This
lemma is the only nontrivial ingredient in the proof of Theorem 1.1. It appears as [5, Lemma 8.2], but it
can also be quite straightforwardly deduced from the Erd&s-Littlewood-Offord theorem itself.

Lemma 3.2. Consider a (non-random) vector x = (x1,...,2,) € R™, and let &,...,&, be i.i.d.
Bernoulli(p) random variables, and let p* = min(p,1 — p). Then

1
max Pr(z1&; + -+ 2,6, = a) = O ————|.
ack | supp()[p*



4 Singularity of sparse combinatorial matrices

Let us again fix 0 < € < 1. The proof of Theorem 1.2 proceeds in almost exactly the same way as the
proof of Theorem 1.1, but there are three significant complications. First, since the entries are no longer
independent, the calculations become somewhat more technical. Second, the rows and columns of ) have
different distributions, so we need two versions of Lemma 3.1: one for vectors in the left kernel and one
for vectors in the right kernel. Third, the fact that each row has exactly d ones means that we are not
quite as free to do computations over Zy (for example, if d is even and v is the all-ones vector then we
always have Qu = 0 over Zz). For certain parts of the argument we will instead work over Z;_1.

Before we start the proof, the following lemma will allow us to restrict our attention to the case where
d < n/2, which will be convenient.

Lemma 4.1. Let Q € R™*"™ be a matriz whose every row has sum d, for some d ¢ {0,n}. Let J be the
n X n all-ones matriz. Then Q is singular if and only if J — Q is singular.

Proof. Note that the all-ones vector 1 is in the column space of @ (since the sum of all columns of @
equals d1). Hence every column of J — @ is in the column space of ). Therefore, if @ is singular, then
J — @ is singular as well. The opposite implication can be proved the same way. [l

In the rest of the section we prove Theorem 1.2 under the assumption that (14 ¢)logn < d < n/2 (note
that if @ is a uniformly random zero-one matrix with every row having exactly d ones, then J — @ is a
uniformly random zero-one matrix with every row having exactly n — d ones).

The first ingredient we will need is an analogue of Lemma 3.2 for “combinatorial” random vectors. In
addition to the notion of the support of a vector, we define a fibre of a vector to be a set of all indices
whose entries are equal to a particular value.

Lemma 4.2. Let 0 < d < n/2, and consider a (non-random) vector x € R™ whose largest fibre has size
n—s, and let v € {0,1}™ be a random zero-one vector with exactly d ones. Then

max Pr(z -y = a) = O(/n/(sd)).

We deduce Lemma 4.2 from the p = 1/2 case of Lemma 3.2 (that is, from the Erdés—Littlewood—Offord
theorem [7]).

Proof. The case p = 1/2 is treated in [17, Proposition 4.10[; this proof proceeds along similar lines. Let
p=d/n < 1/2. We realise the distribution of ~ as follows. First choose d = pn random disjoint pairs
(t1,91)5 -+ (pns dpn) € {1, ..., n}2 (each having distinct entries), and then determine the 1-entries in ~
by randomly choosing one element from each pair.

We first claim that with probability 1—e~%(P) at least Q(sp) of our pairs (i, j) have x; # x; (we say such
a pair is good). To see this, let I be a union of fibres of z, chosen such that |I| > n/3 and n — |I| > s/3
(if s < 2n/3 we can simply take I to be the largest fibre of x, and otherwise we can greedily add fibres to
I until |I| > n/3). To prove our claim, we will prove that in fact with the desired probability there are
Q(sp) different ¢ for which i, ¢ I and j, € I.

Let f = [pn/6] and let S be the set of £ < f for which iy ¢ I. So, |S| has a hypergeometric distribution
with mean (n — [I])f/n = Q(sp), and by a Chernoff bound (see for example [14, Theorem 2.10]), we have
|S| = Q(sp) with probability 1 — e~?(?) Condition on such an outcome of iy, ..., if. Next, let T be
the set of £ € S for which j, € I. Then, conditionally, |T'| has a hypergeometric distribution with mean
at least (|I| — f)|S|/n = Q(sp), so again using a Chernoff bound we have |T'| = Q(sp) with probability
1 — e 9206P) | a5 claimed.

Now, condition on an outcome of our random pairs such that at least Q(sp) of them are good. Let & be
the indicator random variable for the event that i, is chosen from the pair (is, j¢), so &1, ..., &pn are iid.
Bernoulli(1/2) random variables, and x - v = a if and only if

(i, —2j)6 + -+ (@i, — T, )60 =a—Tj, — =5,



Under our conditioning, Q(sp) of the z;, — x;, are nonzero, so by Lemma 3.2 with p = 1/2, conditionally
we have Pr(z -y = a) < O(1/,/sp). We deduce that unconditionally

Pr(e -y = 0) < e~ P + O(1/\/5p) = O(1/+/3D) = O/ (D),
as desired. [l

The proof of Theorem 1.2 then reduces to the following two lemmas. Indeed, for a constant ¢ > 0
(depending on ¢) satisfying the statements in Lemmas 4.3 and 4.4, we can take t = cn/logd, and

P ={x € Q" : x has largest fibre of size at most (1 — ¢/logd)n}.

We can then apply Lemma 2.1. By Lemma 4.3, the term (2.1) is bounded by o(1), by Lemma 4.4 the
term (2.2) is bounded by (n/t) -n=*M) = (logd/c) - n= ") = (1), and by Lemma 4.2 the term (2.3) is

bounded by (n/t) - O(\/nlog d/(cnd)) = 0(log®?d/v/d) = o(1).

Lemma 4.3. Let Q be a random combinatorial matriz (with d ones in each row), with (1 4 €)logn <
d < n/2. There is ¢ > 0 (depending only on &) such that with probability 1 — o(1), there is no nonzero
vector x € Q™ with | supp(z)| < en/logd and x7Q = 0.

Lemma 4.4. Let Rq,...,R,_1 be the first n — 1 rows of a random combinatorial matriz (with d ones in
each row), with (1 + ¢)logn < d < n/2. There is ¢ > 0 (depending only on €) such that with probability
1—n2W every nonzero x € Q" satisfying R; - x =0 for alli =1,...,n — 1 has largest fibre of size at
most (1 —c¢/logd)n.

Proof of Lemma 4.3. As in Lemma 3.1, it suffices to work over Zy. Let C1,...,C,, be the columns of @,
consider any v € Z% with |supp(v)| = s, and let £, be the event that C;-v =0 (mod 2) fori=1,...,n.
Note that &, only depends on the submatrix @, of @) containing only those rows j with v; =1 (and &,
is precisely the event that every column of @, has an even sum).

Let p = d/n < 1/2, let M, be a random s x n matrix with i.i.d. Bernoulli(p) entries, and let &), be the
event that every column in M, has an even sum. Note that M, is very similar to ),, so the probability
of &, is very similar to the probability of £ . Indeed, writing Ry,..., Rs and R},..., R, for the rows
of @, and M, respectively, and writing s; = |supp(R;)|, for each j we have s; ~ Binomial(n, p), so an

elementary computation using Stirling’s formula shows that Pr(s; = d) = Q(1/vd) = e=20°84) Hence
Pr(&,) = Pr(E) | s; = d for all j) < Pr(E)/ Pr(s; = d for all j) = 918D pr(g!) = Os1osm) pr(g!),
Recalling the quantity F;, from the proof of Lemma 3.1, we have
B {e(lJr"(l))Sp” if sp=o0(1),

e %) if sp = Q(1),
so if s <en/logd = en/log(pn) for small ¢ > 0, then we also have

—(o()spn i gp — of1
Pr(e) <{° . if sp o(1),
e~ Un) if sp=Q(1).

Let Py = Pr(&,) (which only depends on s). We can now conclude the proof in exactly the same way
as in Lemma 3.1. Taking r = ¢/p for sufficiently small § (relative to €), the probability that there exists

nonzero v € Z4 with |supp(v)| < en/logd and C; - v =0 (mod 2) for all i = 1,...,n is at most
cn/logd r cn/logd
n
P. < slogn—(1—¢/3)snp s(log(n/s)+1)—Q(n)
> (<Y LY e
s=1 s=1 s=r+1
cn/logd

<3 3T enll/mbos(n/9 =0 — (1),
s=1 s=1

provided ¢ is sufficiently small (relative to ). O



We will deduce Lemma 4.4 from the following lemma.

Lemma 4.5. Suppose p < 1/2 and pn — oo, and let v € {0,1}"™ be a random vector with exactly pn
ones. Let ¢ > 2 be an integer and consider a (non-random) vector v € Zq whose largest fibre has size
n—s. Then for any a € Z, we have Pr(v -~y = a (mod q)) < P, s for some P, s (only depending on
p, n and s) satisfying

p _femm when sp = Q(1),
Pros ) e=(=ese yhen sp = o(1)

Proof. As in the proof of Lemma 4.2, we realise the distribution of v by first choosing pn random disjoint
pairs (i1,71), - (Gpns Jpn) € {1,... ,n}?, and then randomly choosing one element from each pair to
comprise the 1-entries of ~.

Let & be the event that v; # v; for at least one of our random pairs (4, j). Then Pr(v-y = a (mod ¢) |€) <
1/2, and therefore Pr(v -~y = a (mod ¢)) <1 —Pr(€)/2. So, it actually suffices to prove that

) Q1) when sp = Q(1),
Pr(&) > {(2 —o0(1))sp when sp = o(1).

If s > n/3 (this can only occur if sp = (1)), then we can choose J C {1,...,n} to be a union of fibres
of the vector v € Zy such that n/3 < |J| < 2n/3. In this case,

Pr(&) > Pr(iy € J, j1 ¢ J) = Q(1),

as desired. So, we assume s < n/3, and let I C {1,...,n} be the set of indices in the largest fibre of v
(so |[I| = n —s). Note that £ occurs whenever there is a pair {iy, ji} with exactly one element in I.

Let F be the event that i, € I for all k =1,...,pn. We have

Q1) when sp = Q(1),

Pr(&|F)>1—(1—s/n)P" = {(1 —o(1))sp when sp = o(1)

and
Q(1) when sp = Q(1),

Pr(E]|F) = (n—s—pn)/(n - pn) = {1 —o(1) when sp = o(1).

This already implies that if sp = Q(1), then Pr(€) = Q(1) as desired. If sp = o(1) then Pr(F) <
(1—s/n)P"=1—(1+o0(1))sp, so

Pr(€) = Pr(F)Pr(E| F) + Pr(F) Pr(E | F) > (2 — o(1))sp,

as desired. O

Proof of Lemma 4.4. Let ¢ = d — 1. It suffices to prove that with probability 1 — o(1) there is no
nonconstant “bad” vector v € Z; whose largest fibre has size at least (1 — ¢/logg)n and which satisfies
R;-v =0 (mod q) for all i = 1,...,n — 1. (Note that by the choice of ¢, if v € Zy is constant and
nonzero, then it is impossible to have v - Ry = 0).

Let p = d/n, consider any v € Zy whose largest fibre has size n — s, and consider any i € {1,...,n —1}.
Then R; - v is of the form in Lemma 4.5, so taking » = d/p for sufficiently small ¢ (relative to ), the
probability that such a bad vector exists is at most

b,n,s —
S
s=1 s=r+1

c¢'n/logq r c'n/logq
Z <TL> qs+1Pn*1 < eSlog n+(s+1)2y/pn—(1—c/3)spn + Z es(log(n/s)+1)+cn+2\/p_nf§2(n)
s=1

c'n/loggq

< Zn—sa/3 + Z en((s/n)(log(n/s)—i-l)—Q(l)) — n—Q(l),
s=1 s=1

provided ¢’ > 0 is sufficiently small (relative to ¢) and n is sufficiently large. O
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