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Abstract

Unlike spiking neurons which compress continuous inputs into digital signals for transmitting
information via action potentials, non-spiking neurons modulate analog signals through
graded potential responses. Such neurons have been found in a large variety of nervous tis-
sues in both vertebrate and invertebrate species, and have been proven to play a central
role in neuronal information processing. If general and vast efforts have been made for
many years to model spiking neurons using conductance-based models (CBMs), very few
methods have been developed for non-spiking neurons. When a CBM is built to characterize
the neuron behavior, it should be endowed with generalization capabilities (i.e. the ability to
predict acceptable neuronal responses to different novel stimuli not used during the model’s
building). Yet, since CBMs contain a large number of parameters, they may typically suffer
from a lack of such a capability. In this paper, we propose a new systematic approach based
on multi-objective optimization which builds general non-spiking models with generalization
capabilities. The proposed approach only requires macroscopic experimental data from
which all the model parameters are simultaneously determined without compromise. Such
an approach is applied on three non-spiking neurons of the nematode Caenorhabditis ele-
gans (C. elegans), a well-known model organism in neuroscience that predominantly trans-
mits information through non-spiking signals. These three neurons, arbitrarily labeled by
convention as RIM, AlY and AFD, represent, to date, the three possible forms of non-spiking
neuronal responses of C. elegans.

Introduction

Spiking neurons are often considered as the major information processing unit of the nervous

system. Nonetheless, not all neurons elicit spikes. While spiking neurons compress continuous
inputs into digital signals for transmitting information via action potentials, non-spiking neu-

rons modulate analog signals through graded potential responses. More specifically, the ampli-
tude and waveform of the action potentials are essentially invariant with respect to the
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amplitude, duration, and waveform of the stimulus, unlike graded potentials which are stimu-
lus-dependent (see S1 Fig) [1]. An advantage of the non-spiking response type is that it allows
not to sacrifice information content [2]. A large variety of nervous tissues in both vertebrate
and invertebrate species have revealed that a number of sensory, inter- and motorneurons
function without eliciting spikes. Some examples are the human retina neurons [3], numerous
interneurons in insects and crustaceans [4], the motorneurons of the Ascaris worm [5, 6], or
most of the C. elegans neurons [7]. Non-spiking neurons have been found in sensorimotor
and central pattern generator circuits, and proven to be central in neuronal integration [4] and
to provide a determining mechanism for the control of motor behavior [8-10].

Despite their differences, non-spiking neurons use similar mechanisms to those of spiking
neurons to transmit neuronal information: they both rely on the active and passive propaga-
tion of electrical signals. The cell membrane is also composed of similar ion channels, i.e. a
large diversity of classical voltage-dependent ion channels have been experimentally and
genetically identified in non-spiking neurons of different cell types [4]. As a consequence, sev-
eral studies have already proposed conductance-based models (CBMs) as a means to charac-
terize the non-spiking behavior of some neurons, such as retina neurons [11, 12] or C. elegans
neurons [13]. These works are however built in an ad-hoc manner by combining both experi-
mental measurements and results from different species and neurons. Unfortunately, such a
procedure can easily fail to yield reliable conductance-based models [14, 15]. To the extent of
our knowledge, this paper is a first attempt to propose general and systematic methods to char-
acterize this type of neurons’ behavior using CBMs.

CBMs have become one of the most powerful computational approaches for characterizing
the behavior of neurons [16]. In simple terms, a CBM is a biophysical representation of a neu-
ron in which the ion channels are represented by conductances and the polar membrane by a
capacitor [17, 18]. In such models, every individual parameter and state variable has an estab-
lished electrophysiological meaning so that their role in the neuron dynamics can be unequiv-
ocally identified. However, due to the difficulty to perform some experimental recordings (e.g.
ionic conductances [19]), many modeling studies suffer from the lack of sufficient physiologi-
cal data to determine all the parameter values. As a consequence, parameters are often tuned
in an ad-hoc manner. Furthermore, when new biological recordings come into play, these
models can typically suffer from good generalization capabilities (i.e. the ability to predict
acceptable responses to stimuli not used while building the model) [20, 21]. In order to over-
come these issues, we propose a new approach in which all the model parameters are simulta-
neously determined, from macroscopic data, by trading off the accuracy and the capability of
generalization of the model.

To obtain a CBM that characterizes the neuron behavior accurately and with a good gener-
alization capability, one needs to capture the right underlying bifurcation structure of the neu-
ron, i.e. the qualitative changes that the neuron behavior undergoes as a result of a change in
stimuli. In a sense, neurons are dynamical systems [22]. In this paper, we show that the steady-
state current (depicted in Fig 1) plays a pivotal role in the dynamics of non-spiking CBMs by
determining: (i) the number of equilibria as well as their values, and (ii) all the bifurcations of
the resting state along with the values to which they occur. Therefore, this paper adopts a
multi-objective optimization approach so that, in addition to fitting the membrane potential
evolution, it also captures the underlying bifurcation structure of non-spiking neurons by con-
sidering an additional objective: the fitting of the steady-state current.

In the present work, we apply our proposed approach on three non-spiking neurons (RIM,
AIY and AFD) of the nematode C. elegans. Non-spiking neurons can display two typical
behaviors: (i) near-linear, with a smoothly depolarization or hyperpolarization from the resting
potential, and (ii) bistable, with nonlinear transitions characterized by a voltage jump between
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Fig 1. In-vivo recordings of three different non-spiking neurons of C. elegans which represent, to date, the three forms of possible non-spiking
neuronal responses of the nematode. (Top) Evolution of membrane potential for a series of current injections, in spans of 5 seconds, starting from
-15pA and increasing to 35pA by 5pA increments. (Bottom) I-V relationships obtained from averaged whole-cell current traces induced by a series of
voltage steps in voltage-clamped RIM, AIY and AFD neurons (RIM: n = 3; AIY: n = 7; AFD: n = 3). Peak currents are measured by the absolute
maximum amplitude of currents within the first 100 ms of each voltage step onset, while steady-state currents are measured by the averaged currents of
the last 50 ms of each voltage step. (A) Near-linear behavior. Published in [23] (reproduced with the consent of the authors). (B) Bistable behavior. New

unpublished results for AFD.

https://doi.org/10.1371/journal.pone.0268380.g001

the resting potential and a depolarized potential of higher voltage. In particular, RIM and AIY
neurons display a near-linear behavior (Fig 1A) while AFD exhibits a bistable one (Fig 1B). In
this way, our approach is applied on experimental behavior representative of the known types
of non-spiking neurons.

Materials and methods

This paper is primarily based on the experimental data obtained in [23] for the three neurons
under study. Nonetheless, we also provide new unpublished experimental data on the evolu-
tion of the AFD membrane potential and a description of the conducted experimental proto-
col. In order to find accurate models from these data with generalization capabilities, we need
to capture the right underlying bifurcation structure of neurons [22]. In this section, we
describe the important role that the steady-state current plays when trying to capture the bifur-
cation dynamics of non-spiking neurons, and therefore the importance of considering it dur-
ing the optimization process. That is why we introduce a novel multi-objective approach that
takes into account both the evolution of the membrane potential and the steady-state current
of the neurons.

Electrophysiology

The used C. elegans strain was PY1322 oylIs18[gcy-8::GFP] X with GFP exclusively expressed
in AFD neurons. Experiments were performed on young adult hermaphrodites (3-4 days old)
maintained at room temperature (22-23°C) on nematode growth medium (NGM) plates
seeded with E. coli OP50 bacteria as a food source [24]. Electrophysiological recording was
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performed as previously described [23]. Briefly, an adult was immobilized with cyanoacrylate
adhesive (Vetbond tissue adhesive; 3M) on a Sylgard 184-coated (Dow Corning) glass cover-
slip and dissected to expose AFD. Recordings were performed using single-electrode whole-
cell current clamp (Heka, EPC-10 USB) with two-stage capacitive compensation optimized at
rest, and series resistance compensated to 50%. The standard pipette solution was (all concen-
trations in mM): [K-gluconate 115; KCI 15; KOH 10; MgCI2 5; CaCl2 0.1; Na2ATP 5; NaGTP
0.5; Na-cGMP 0.5; cAMP 0.5; BAPTA 1; Hepes 10; Sucrose 50], with pH adjusted with KOH
to 7.2, osmolarity 320-330 mOsm. The standard extracellular solution was: [NaCl 140; NaOH
5; KCL 5; CaCl2 2; MgCI2 5; Sucrose 15; Hepes 15; Dextrose 25], with pH adjusted with NaOH
to 7.3, osmolarity 330-340 mOsm. Liquid junction potentials were calculated and corrected
before recording. Data analysis were conducted using Fitmaster (Heka) and exported to Origi-
nPro 2018 (OriginLab) for graphing.

Conductance-based model description

Conductance-based neuron models, based on the Hodgkin-Huxley formalism, were first
introduced in a series of seminal works in the 1950s [25]. They describe the neuronal dynamics
in terms of activation and inactivation of voltage-gated conductances. In particular, the
dynamics of the membrane potential V'is described by a general equation of the form

av
CE:—ZLM—I—I (1)

ion

where C is the membrane capacitance, ¥,,,, I, is the total current flowing accross the cell
membrane, and I is an applied current.

The dynamics of every I;,,, are governed by gating particles (gates) sensitive to the changes
in the membrane potential (voltage). These gates can be of two types: activation gate and inac-
tivation gate, each of which can be in an open or a closed state. The probability of an activation
or inactivation gate being in the open state is denoted respectively by the variables m and h.
Thus, the current generated by a large population of identical ion channels is given by

Ly = GonMip, iy, (V — Ey,,)

ion’ “ion ion

where g;,, is the maximal conductance (namely the conductance of the channel when all the
gates are open); E,,, is the reverse potential, that is, the potential at which the ion current
reverses its direction (a.k.a. equilibrium potential); and a and b respectively refer to the num-
ber of activation and inactivation gates. Channels that do not have inactivation gates (b = 0)
induce a persistent current (i.e. current that does not inactivate) noted by I, 5, while channels
that do inactivate (b = 1) induce a transient current (i.e. current that inactivates) noted by I, ;.

The dynamics of variables m and h are described by the following equation:

dx  x (V) —x

7 — x € {m, h}.

X

where 7, is the constant time for which x reaches its respective equilibrium value x,.. The latter
is expressed by a Boltzmann sigmoid function:

1
x,.(V) = oo
1+ exp(/k—)

where V), satisfies x_ (V},) = 1/2 and k, is the slope factor with k,,, > 0 and k; < 0 as to rep-

x € {m,h}.

resent activation and inactivation respectively, i.e., smaller values of |k,| lead to a sharper x...
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Conductance-based models for the RIM, AIY and AFD C. elegans neurons

From vertebrate to invertebrate species, non-spiking neurons are ubiquitous in nervous sys-
tems [4]. Experimental and genetic evidence supports the existence of various types of ion
channels in these types of neurons. For instance, a large number of ion channels have been
identified in non-spiking retinal networks [26]. Regarding the C. elegans neurons, there is
extensive biological evidence (refer to [16] and references therein) supporting the existence of
calcium, inwardly rectifying potassium and potassium channels. In more detail, C. elegans
genome sequencing [27], electrophysiological measurements [7], and calcium imaging [28,
29], combined with a series of in-silico experiments, identified the most suitable models for
electrophysiology of RIM, AIY and AFD neurons [16] that we use in this paper as base models.
Specifically, I, , + Ikir + Ik, + I -model was identified for RIM and AFD neurons, and I, +
Ixir + Ik, + I -model for ATY. A complete mathematical description of these models is pre-
sented in S1 Table.

Bifurcation dynamics of non-spiking neurons

In typical voltage-clamp experiments, the membrane potential is stabilized at several values Vy
(H stands for hold) for which the resulting currents are measured. Asymptotic values (t — co)
of those currents, depending only on Vg, are called steady-state currents and noted I..(Vz).
Mathematically, the steady-state current I, is the total current ¥;,, I;,, flowing accross the cell
membrane when gating variables m and h are at their equilibrium, i.e. x = x,, where x € {m,

h}. Therefore, its analytical expression is defined as follows:

Lo(V) = LV )

where
Iionx ( V) = gionm?onoo ( V) hfonoo ( V) (V - Eion)

In non-spiking CBMs, we show that the curve V — I (V) defined in (2) plays a pivotal role
in the system dynamics by determining: (i) the number of equilibria as well as their values, and
(ii) all the bifurcations of the resting state along with the values of I to which they occur.
Indeed, any stationary point of gating variables x € {m, h} must satisfy x- = x,(V-). Replacing
this into the first equation on V, fixed points V- of such models are those that satisfy the equa-
tion

L(V.)=L1 (3)

In other words, equilibria V- correspond to the intersections between the steady-state curve
I, and a horizontal line I = ¢ where c is a constant. There are two standard shapes of the
steady-state curve I, monotonic and cubic (Fig 2), each involving fundamentally different
neuro-computational properties for non-spiking neurons:

o As shown in Fig 2A, CBMs with a monotonic steady-state current only have one equilibrium
for any value of I. Non-spiking neurons with such a steady-state current display a near-linear
behavior characterized by smoothly depolarization or hyperpolarization from the resting
potential, such as the RIM and AIY neurons (Fig 1A and Table 1).

« As shown in Fig 2B, a N-shape curve leads to a saddle-node bifurcation. When I = ¢y, there
are 3 equilibria, noted Vi!, V! and V;.. Increasing I results in coalescence of two equilibria
(the stable V7! with the unstable V!). The value I = c,, at which the equilibria coalesce, is
called the bifurcation value. For this value of I, there exist 2 equilibria. For I > ¢,, for example
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Fig 2. Two typical shapes of the steady-state current V — I (V), in red. Intersections of I, and horizontal line I = ¢ (with ¢ constant) correspond to
equilibria of the system. We denote stable equilibria as filled circles ®, unstable equilibria as open circles o and saddle-node equilibria as 0. (A)
Monotonic steady-state current. V' and V@ correspond to equilibria for a current injection I = ¢; and I = ¢, respectively. (B) N-shape steady-state
current. The number of equilibria of the system depends on the value of I. For the sake of readibility, we highlight equilibria only for I = ¢;, noted V7!,

V! and V3.
https://doi.org/10.1371/journal.pone.0268380.9002

I = ¢3, the system has only one equilibrium. In summary, when the parameter I increases, a
stable and an unstable equilibrium approach, coalesce, and then annihilate each other. Non-
spiking neurons with a N-shape steady-state current display a bistable behavior character-
ized by a voltage jump between the resting potential and a depolarized potential of higher
voltage, such as the AFD neuron (Fig 1B and Table 1).

As a consequence, it can be stated that the steady-state current determines: (i) the bifurca-
tion structure of non-spiking neurons when I is considered as the bifurcation parameter, and
(ii) the equilibrium values of their graded responses to a particular stimuli.

Objective functions

Primary objective: Membrane potential. The primary objective of the proposed conduc-
tance-based models is to reproduce the evolution of the membrane potential depicted in Fig 1
for the different neurons under study. To that end, we employ the cost function f; as being the
root-mean-square error normalized to the noise level (i.e. standard deviation) of each experi-

mental voltage trace. The noise level, noted oy, is estimated as in [30], that is, we choose a time
window at the end of each trace where the curve is relatively flat for calculating the standard

Table 1. Numerical values of the steady-state current of the RIM, AIY and AFD neurons displayed in Fig 1.

mV -120 -110 -100 -90 -80 -70 -60 -50 -40

RIM / / -12.2 -9.13 -6.57 -4.91 -3.57 -2.13 -0.807

ALY -13.1 -10.4 -7.92 -5.89 -4.11 -2.69 -1.02 0.0211 1.17

AFD / -68.6 -49.5 -18.2 -5.06 2.19 3.37 2.52 2.68

mV -30 -20 -10 0 10 20 30 40 50

RIM 0.229 1.46 4.27 7.46 11.8 17.2 21.6 27.1 32.5

ALY 3.1 7.32 14.2 22.4 31.5 43.2 54.5 69.5 82.4

AFD 5.97 14.6 33.4 60.2 85 114 152 208 254
https://doi.org/10.1371/journal.pone.0268380.t001
PLOS ONE | https://doi.org/10.1371/journal.pone.0268380 May 13, 2022 6/22


https://doi.org/10.1371/journal.pone.0268380.g002
https://doi.org/10.1371/journal.pone.0268380.t001
https://doi.org/10.1371/journal.pone.0268380

PLOS ONE Systematic generation of models with generalization capability for non-spiking neurons

deviation. Therefore, fy, takes the following form:

1 2
NT t(Vexp(L t) - V(?V(L t))
fv(gv) :ﬁ E \/NZ

0;

(4)

where V,.,(I, t) are the experimental voltages depicted in Fig 1 and V, (I, t) the voltages esti-
mated by the model where 8y is the vector containing all the model parameters (see S1 Table);
t € [0, 50ds] corresponds to the biological real time with a sampling period of At = 0.004ds;

N = 12500 is the number of data points in the measurement record, and I corresponds to suc-
cessive step values of current injections starting from -15pA and increasing to 35pA by inter-
vals of 5pA.

Secondary objective: Steady-state current. As the primary objective alone may fail to
predict generalized responses to novel stimuli, the secondary objective aims to fit the mean of
the experimental responses of the steady-state current (RIM: n = 3; AIY: n = 7; AFD: n = 3)
displayed in Fig 1. The fitting of the steady-state current is carried out by minimizing the root-
mean-square error normalized to the standard deviation, noted o. Therefore, the cost function
denoted f,, is defined as follows:

VUV, - 2(v,)

1 (1
foollss) = WZH: (5)

GVH

where I?(V) is the experimental mean (Fig 1) and I’ (V') the estimated one; s is the vector
containing the parameters related to the steady-state current (see S1 Table); Vy; corresponds to
a series of voltage clamped starting from -100mV and increasing to 50mV by 10mV incre-
ments, and oy, the experimental noise level (standard deviation).

Initial conditions. About the initial conditions of the model, V}, is set to the biological val-
ues determined by Liu et al. [23]: V, = -38mV for RIM, V, = -53mV for AlY, and V=
-78mV for AFD. Meanwhile, m, and hy, because of the lack of biological information, are con-
sidered as two additional parameters to be estimated within the optimization procedure (i.e.
along with ionic conductances and the other parameters). This is relevant for multistable sys-
tems, such as the bistable AFD neuron, which has two stable asymptotic states. For such sys-
tems, the convergence to a stable state depends on the initial conditions and a bad
initialization choice could result in the inability of the system to fit data. Therefore, by consid-
ering m, and hy as parameters to be estimated within the optimization procedure, the choice
of these initial conditions is robust as the unique equilibrium point of non-spiking CBM:s is
necessarily globally asymptotically stable [31].

Conflicting cost functions. Both primary and secondary objectives can be considered
conflicting. In principle, there is no biological reason behind such a conflict, however, the dif-
ferent nature of the data employed in each of the functions, which are obtained from different
experimental procedures with their own intrinsic and extrinsic sources of experimental noise,
prevent finding a single optimal parameterization that optimizes both objectives at once.
Therefore, the multi-objective approach proposed in this paper provides a natural mechanism
for both objectives to be treated simultaneously.

Differential evolution

Originally proposed by Storn and Price [32], differential evolution (DE) is a simple yet power-
ful evolutionary algorithm for global optimization, successfully applied in many practical cases
[33]. In the context of parameter estimation in conductance-based models (as it is the case in
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Table 2. Parameter bounds, determined to be biologically relevant [16, 22, 23].

Parameters Minimum value Maximum Value
8ca> 8Kir 8K> 8L onS 50nS
Ec, 20mV 150mV
Ex -100mV 0omV
E; -80mV 30mV
Vi, Vf/2, Vf/‘; -90mV 0mV
ko 0mV 30mV
kns kiir -30mV 0mV
Ty Th 0ds 15ds
X0, X 0 1

C 0 10

https://doi.org/10.1371/journal.pone.0268380.t002

this paper), it has not only been shown to be an effective method [16, 34], but also superior to
other optimization methods such as genetic algorithms, simulated annealing and particle
swarm optimization algorithm in terms of convergence speed, simulation time, and minimiza-
tion of the cost function [35].

As every population-based metaheuristic, DE is an optimization method that iteratively
optimizes a problem by trying to improve a set of NP candidate solutions, so-called individu-
als, that are initially set at random within a given solution space of D parameters. At each itera-
tion, new individuals (called trial vectors) are constructed by means of two operations: so-
called mutation and crossover. Then selection determines which individuals will survive into
the next iteration. Every individual of the population has to serve once as target vector, so that
there are NP competitions in one generation and the population size is kept constant at NP
with NP > 4. During the mutation operation, if a component of a mutant vector falls out of the
bounds of the feasible region (depicted in Table 2), we set this component to the closest
boundary value. This approach is particularly efficient if the optimum lies near bounds and
produces feasible solutions by making as few alterations to the mutant vector as possible;
unlike other techniques consisting in random reinitialization or penalty [36].

Multi-objective proposal

In this paper, the conflicting nature of the proposed primary and secondary objectives imposes
a multi-objective treatment of the problem since, under two or more conflicting objectives,
there is not a single optimal solution that can optimize all objectives simultaneously. Instead,
in a multi-objective setting, solutions can be compared by using the notion of dominance: a
solution A is said to be dominant over another solution B if A is superior to B in at least one
objective while B is not superior to A in the rest of objective functions. Using this notion, the
multi-objective outcome is not one but a set of non-dominated optimal solutions, so-called the
Pareto front.

Out of all variants of DE for solving multi-objective optimization problems [37], the
DEMO (Differential Evolution for Multi-objective Optimization) approach [38] is selected
because it provides a good trade-off between the simplicity of the implementation and the
good results on benchmarks compared to several state-of-the-art methods in terms of conver-
gence and quality of the obtained solutions [37, 38].

Using DEMO as baseline algorithm, the proposed multi-objective approach has been tai-
lored to best suit the nature of the problem, where the primary objective (membrane potential)
must prevail over the secondary one (steady-state current). In other words, the primary
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objective must be favored as it is the one that guarantees quality in the neuronal response
while the secondary objective is aimed at capturing the bifurcation structure of the neuron
model as to improve its generalization capabilities. We denote the proposed approach DEMO/
rand/best/biased.

Inspired by multi-objective guided search [39], the DEMO/rand/best/biased variant tries to
guide the search towards an optimal region on the primary objective. To that end, in a prelimi-
nary step, a standalone single-objective DE is executed to yield a good candidate solution on
the primary objective. This solution is then used to bias the multi-objective approach by inte-
grating it into the initial randomly generated population. In order to reinforce this bias, the
algorithm incorporates a rand/best strategy [40] that greedily uses the best individual on the
primary objective to form the trial vector. The aim of this variant is therefore to concentrate
and explore the Pareto front region around the best found primary objective solution. The
consequence is that the algorithm provides a set of solutions that reproduce the evolution of
the membrane potential with high fidelity due to the bias, while taking into account the bifur-
cation structure of the neuron guided by the secondary objective.

The DEMO/rand/best/biased algorithm was run with different values of control parameters
NP, F and CR in order to fine-tune its search capabilities. The values that we recommend are
NP =600, F = 1.5 and CR = 0.3 with a number of 2000 iterations. The algorithm was run 10
times for each neuron model and combination of control parameters.

Automated decision-making process. The result of a multi-objective optimization pro-
cess is a set of non-dominated solutions which constitute the best found trade-offs between the
conflicting objective functions. If the aim is to adopt one of these solutions as a global solution
to the problem, a decision-making process need to be put in place in order to discriminate the
selected solution under some criteria. In order to automate this process, we propose a four-
stage method that automatically selects a solution capable of reproducing adequate neuronal
responses to new stimuli.

o Step 1: Split the membrane potential dataset into three sets.
Procedure: The membrane potential dataset depicted in Fig 1 is split into three sets: the
training set, the validation set, and the test set [41]. The training set, from which the model
parameters are estimated, is composed of all the traces of membrane potential for the series
of current injections going from -15pA to 25pA by 5pA increments and also the steady-state
current. The validation set, used to select a solution with a good predictive capability, is com-
posed of the voltage trace relative to 30pA. The test set, composed of the voltage trace relative
to 35pA, is used to assess the model performance from data not used in any part of learning
or decision-making process. The different sets are summarized in Table 3.
The validation and test sets are selected from the voltage traces relative to the highest stimu-
lus values for the following reasons:

1. While simultaneously optimizing the steady-state current and the experimental voltage
traces, the empirical evidence suggests that the conflicting nature of both objectives max-
imizes at the upper extreme values (refer to the Results section and Figures therein). In

Table 3. Training, validation and test sets.
Training set Validation set Test set

« Voltage traces for stimuli going from —15pA to « Voltage trace relative to « Voltage trace relative to
25pA. 30pA. 35pA.

« Steady-state current.

https://doi.org/10.1371/journal.pone.0268380.t003
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other words, the most aberrant behavior that can occur is for stimuli higher than those
considered during the training procedure.

2. We select high traces for validation or test, the deterioration of a voltage trace between
two traces is necessarily constrained and cannot be as large as the one observed for sti-
muli higher than those used during the parameter estimation procedure.

o Step 2: Determining the set of non-dominated solutions.
Procedure: 10 runs with different random seeds of the multi-objective optimization
approach DEMO/rand/best/biased are conducted using the training set. The final set of solu-
tions (that we denote as S) is composed of all non-dominated solutions found during these
independent runs.
Input: 6000 solutions (600 solutions per run x 10 independent runs).
Output: A set S composed of all non-dominated solutions.

o Step 3: Selecting solutions with a correct bifurcation structure.
Procedure: This step aims at eliminating from the set S the solutions that do not display the
right expected shape of the steady-state current I, i.e. monotonic for the RIM and AIY neu-
rons, and N-shape for AFD. To do so, we first compute the first-order derivative of I,
noted I’_. For the RIM and AIY neurons, we then verify that I’ (V) > 0 for any values of V
€ [-100mV;50mV] to ensure the monotonicity of I.... For the AFD neuron, I_ has to be pos-
itive, then negative, and positive again to ensure the N-shape of I,.. These are the conditions
we verify to select solutions with a correct bifurcation structure.
Input: The set S composed of all non-dominated solutions.
Output: A set S; composed of all non-dominated solutions displaying appropriate bifurca-
tion structure.

o Step 4: Selecting the best solution according to the validation trace.
Procedure: Using Eq (4), compute the numerical scores of all solutions in S; by only consid-
ering the validation trace. The solution with the lowest score, i.e. minimal cost function, is
the one selected.
Input: The set of non-dominated solutions S; and the validation trace.
Output: The final selected solution.

The proposed decision-making process does not take into account the test trace. The aim is
to reserve a trace that has not been used in any part of the learning or decision-making process
to assess the quality of the solution found.

Results

A series of in-silico experiments is conducted with the purpose of showing the predictive capa-
bilities of the proposed multi-objective approach (see Materials and methods). In addition to
the fitting of the membrane potential, the proposal aims to capture the bifurcation dynamics
of the neuron by considering the fitting of the steady-state current as a second objective. This
section illustrates first the problems that a single-objective approach encounters when trying
to generalize the responses of a neuron model to new stimuli. Then, the multi-objective
approach is analyzed and shown to be capable of predicting adequate responses to the same
new stimuli.
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https://doi.org/10.1371/journal.pone.0268380.9003

Single-objective optimization may fail to determine a model with

generalization capabilities

Single-objective optimization experiments are conducted using stimuli from -15pA and
increasing to 25pA by 5pA increments, for the RIM, AIY and AFD neurons. The obtained
parameter values for the three neurons are shown in S2 Table. The generalization capability is
then assessed from the voltage trace relative to 30pA and 35pA.

The AFD case. Fig 3 shows the results obtained for the AFD neuron using the single-
objective approach. The high quality of the fitting, which takes into account current injections
in the interval [-15pA;25pA], can be observed in Fig 3A. Nonetheless, when considering the
resulting steady-state currents of the model in Fig 3B, it can be observed that the model deteri-
orates for values higher than 25pA, involving a non-physiological dramatic change in the neu-
ronal dynamics. Fig 3C confirms this non-physiological response in the evolution of the
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https://doi.org/10.1371/journal.pone.0268380.9004

membrane potential for the 30pA and 35pA traces that are not taken into account during the
parameter estimation phase. In fact, as the steady-state current displays a second aberrant and
unexpected N-shape for I > 25, another saddle-node bifurcation occurs at I ~ 28.4 (see Fig
3D), explaining the drastic rise of the membrane potential trajectory to a new stable state of
higher voltage. Thus, it can be concluded that the model fails to predict neuron responses to
stimuli not encountered during the parameter estimation process, making it not acceptable
and inadequate for the description of the AFD neuron behavior.

The near-linear RIM neuron. As in the case of AFD, Fig 4A illustrates that the model fits
well with experimental data for all series of current injections considered during the optimiza-
tion process (i.e. traces relative to stimuli from -15pA to 25pA by 5pA increments). Addition-
ally, Fig 4B reveals that the steady-state current does not heavily deteriorate for stimuli higher
than 25pA, so that the model should obtain relative good predictive capabilities for new sti-
muli. This fact is confirmed by Fig 4C which shows a good fitting for the validation traces
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https://doi.org/10.1371/journal.pone.0268380.9005

(depicted in light blue). Nonetheless, if we analyze the steady-state current in the interval I €
[-2pA;8pA] (i.e. space between the two red lines in Fig 4B), we can observe a deterioration of
the steady-state current shape: instead of a monotonic shape, two N-shape appear. As a conse-
quence, two saddle-node bifurcations occur so that the membrane potential of the model does
not display a near-linear behavior as expected, but various jumps arise (as illustrated in

Fig 4D) making the model inadequate for the description of the RIM neuron behavior.

The near-linear AIY neuron. As can be seen in Fig 5A, the model is capable of predicting
accurate responses for traces relative to 30pA and 35pA. However, one can observe a relatively
high deterioration of the steady-state current for stimuli higher than 35pA (Fig 5B). One can
then hypothesize that the model may not describe adequately the voltage responses for these
stimuli.

Obtaining non-spiking conductance-based models with generalization
capabilities

In order to obtain a model with generalization capabilities, we follow the approach developed
in the previous section. The DEMO/rand/best/biased algorithm is run with different values of
control parameters NP, F and CR in order to fine-tune its search capabilities. The values that
we recommend are NP = 600, F = 1.5 and CR = 0.3 with a number of 2000 iterations. For the
three neurons, the model parameters obtained from the automated decision-making process
described in the previous section are displayed in S2 Table.

Generalization capability of models. For each neuron under study, it can be observed in
Fig 6A that the curves of the models fit well with experimental data in all series of current
injections, including the test trace not used in any part of the model learning. The quality of
the fitting is maintained throughout the entire evolution of the membrane potential. Further-
more, the steady-state current shape (Fig 6B), which determines the underlying bifurcation
structure of non-spiking neurons, is captured for all neurons: a monotonic steady-state current
for the RIM and AIY neurons, and a N-shape one for AFD. In this way, we constrain the RIM
and AIY models to a near-linear behavior, and the AFD neuron to a bistable one, even in
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Fig 6. Results of multi-objective optimization for the RIM, AIY and AFD neurons. (A) Green traces represent the experimental membrane potential
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https://doi.org/10.1371/journal.pone.0268380.9006

response to novel different stimuli not used during the model’s building. In the light of these
results, it can be concluded that the proposed approach allows to get models with good gener-
alization capabilities.

The steady-state current objective requires a relatively small deterioration to get models
with predictive capabilities. Both objectives cannot be simultaneously optimized due to
their conflicting nature. On the one hand, the steady-state curve for each neuron is obtained
from the average of several different cells, while the membrane potentials are representative
recordings from a single cell without averaging. On the other hand, the steady-state current
and the voltage data are obtained from different experimental procedures with their own
intrinsic and extrinsic sources of experimental noise [42-45]. Therefore, obtaining a perfect
fitting of both objectives simultaneously is not feasible. Furthermore, the relative deterioration
of the fitting for high steady-state currents in Fig 6B is correlated with higher values of the
standard deviation at this level. Actually, these deteriorations are necessary to obtain models
able to characterize voltage behavior. Indeed, as shown in Fig 7, a model that perfectly fits the
steady-state current (Fig 7A) does not accurately reproduce the given voltage traces and fails to
get the predictive capability (Fig 7B).
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https://doi.org/10.1371/journal.pone.0268380.g007

Discussion

Some experimental techniques, such as ionic conductance measurements [19], are generally
hard to perform. In the case of C. elegans, this difficulty is even higher due to the challenge of
dissecting a one-millimeter long worm and then patching its small size neurons (1um in the
soma) [46]. The consequence is that obtaining detailed biological microscopic data from C. ele-
gans neurons is a challenging task, and many neuronal parameters of C. elegans remain
unknown to this day. In this paper, parameters are set to their biological values whenever they
are known but, for the most part, they are simply bound to remain biologically plausible.
Therefore, the optimization conducted in this paper aims to determine biologically plausible
parameterizations that, formulated as hypotheses, would require future empirical validations.
Despite the lack of such microscopic data, the macroscopic behavior of the model is equivalent
to that of the neuron. Indeed, the methodology proposed in this paper, based on theoretical
mathematical development and experimental validation, provides a systematic approach to
endow the model with the same bifurcation structure as the neuron. As a consequence, and
paraphrasing Eugene M. Izhikevich [22], “we can be sure that the behavior of the model is
equivalent to that of the neuron, even if we omitted a current or guessed some of the
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parameters incorrectly”. In this section, we discuss both the biological and modeling implica-
tions of this methodology.

On the modeling of non-spiking neurons in general

In this paper, our proposed approach was applied on various non-spiking C. elegans neurons,
representative of the behavior of known types of non-spiking neurons (near-linear and bis-
table). Such neurons are not specific to C. elegans so that the proposed method could be
straightforwardly applied to other non-spiking neuronal cell types. As stated in the introduc-
tion, this type of neurons are ubiquitous in a large variety of nervous tissues in both vertebrate
and invertebrate species, e.g. in the human retina neurons [3], numerous interneurons in
insects and crustaceans [4], the motorneurons of the Ascaris worm [5, 6], or most of the C. ele-
gans neurons [7]. They have been found in sensorimotor and central pattern generator cir-
cuits, proven to be central in neuronal integration [4] and to provide a determining
mechanism for the control of motor behavior [8-10].

On the modeling of the C. elegans’ neuronal diversity

Numerous recordings of C. elegans’ neuronal activity have already been performed [7, 23, 47-
55]. Liu et al. [23] classify the recorded neurons into four large distinct classes based on the fea-
tures of the I-V curve (Fig 1). This classification is described in detail in Table 4. Among the
different classes, the authors enumerate three types of non-spiking neurons, of which RIM,
AIY and AFD are representative examples, and a fourth type involving the spiking neuron
AWA. However, the electrophysiological properties of many C. elegans neurons are unknown
yet, suggesting that additional types of neurons could be discovered in the future. The results
presented in this paper show that the proposed method is capable of capturing the behavior of
the current non-spiking neuronal diversity of C. elegans, and could be successfully applied to
model new non-spiking neurons.

On the modeling of the C. elegans’ nervous system

Due to its fully mapped connectome and its small number of neurons, the C. elegans nervous
system serves to investigate how behavior emerges from its underlying physiological processes
[56-58]. Modeling the nervous system of C. elegans involves two fundamental stages [59]: one
relative to the modeling of the neuronal connectivity (connectome) and the other relative to
the modeling of the neuronal dynamics. Nowadays, the vast majority of modeling works on C.
elegans nervous system employ the well-established connectome but they do not take into
account the specificities of the neuronal dynamics [59-69]. Typically, these works rather

Table 4. Classification of the three types of non-spiking neurons in C. elegans, according to their current-voltage relationships. RIM, AIY and AFD neurons are repre-

sentatives of class 1, 2 and 3 respectively.

Neuron classes Class 1 Class 2 Class 3
Inward current Near-zero inward currents under hyperpolarizations. Near-zero inward currents under Large sustained inwardly currents under
features hyperpolarizations. hyperpolarizations.
Outward current | Rapid inactivating outward currents under depolarizations: | Non-inactivating outward currents Large inactivating outward currents
features lack of large sustained currents. under depolarizations. under depolarizations.
Neurons RIM [23] ATY [23, 48] AFD [23, 49]
AVA [50, 51, 54] VA5 [53, 54] ASER [7]
PLM [47] VB6 [53, 54] RMD [50]
AVE [51] AWC [49]
ASH [52]
AIA [55]

https://doi.org/10.1371/journal.pone.0268380.t004
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consider: (i) homogeneous model parameters for each neuron of the network (while C. elegans
neurons display a large repertoire of behaviors), and (ii) a neuron model that do not corre-
spond to the behavior of C. elegans neurons. The discordance between the accuracy of the con-
nectome and the inaccuracy of the neuronal dynamics considered is explained by the lack of
biophysical information for most neurons, making the building of conductance-based model
adapted to C. elegans’ neuronal dynamics currently challenging [57]. As pointed out by Sarma
et al. [57], building such neuron models is a key remaining component to make C. elegans ner-
vous system modeling studies adequate for biological research.

In particular, we would like to emphasize an open problem where computational works
could play an important role in order to fully understand the flow of information within the
nematode’s nervous system [70]. If one wants to deepen further our understanding of the C.
elegans nervous system, it is of paramount importance to gather information about the fea-
tures of its synaptic connections, such as their intrinsic nature (excitatory or inhibitory) and
their strength [70]. Actually, the connectome does not unveil such information [71]. To
address that issue, some computational studies [60, 62, 64, 66-68] adopt an evolutionary
approach in which the algorithm determines both the strength and nature of connections in
order to obtain observable, realistic worm behavior. In such studies, the functional circuits
studied are made up of identical neuron model parameters irrelevant to characterize the het-
erogeneity of C. elegans neurons and to represent acceptably their behavior (e.g. the homoge-
neous Izhikevich spiking model [72] is considered in [64, 66], or the Hindmarsh-Rose
spiking model in [68]). Therefore, even if the macroscopic behavior of C. elegans is accu-
rately reproduced, the results on the strength and nature of neuron connections may not be
biologically adequate. We argue that the current paper provides a systematic approach and
method to build conductance-based models capturing the dynamics of non-spiking C. ele-

gans’ neurons, so that the second stage relative to the C. elegans neuronal dynamics modeling
can be fulfilled.

On the multicompartmental conductance-based modeling

It is worth noting that characterizing a neuron as “spiking” or “non-spking” is only relative to
the site of recording. The fact that a neuron is spiking in one part of its anatomy does not
exclude that it may have non-spiking activity in other parts. For example, even in spiking neu-
rons, the integrative life of the cell is predominantly performed through graded electrical activ-
ity via the dendrites [4, 73]. The complex geometry of the dendritic tree, combined with its
active and passive membrane properties, play a key role in the way neurons integrate synaptic
inputs. Therefore, dendrites strongly influence both the timing and probability of neuronal
output [74, 75]. In order to take into account the heterogeneity of the dendritic morphology as
well as the different electrical characteristics between the regions (a.k.a. compartments) of the
neuron, numerous modeling studies [76-78] use multicompartmental conductance-based
models, which allow to develop more realistic and morphologically accurate models. More
specifically, in such a multicompartmental description, the structure of a neuron is divided
into separate compartments such as the dendritic tree, soma, axon, and axon terminal. Each of
these compartments have their own membrane potential and gating variables that determine
the membrane current within the compartment. The dynamics for the membrane potential of
each compartment follow an equation of the form (1) as the one in this paper, and the com-
partments are coupled via conductances that depend on the relative sizes of dendritic and
somatic compartments [17]. In this context, the parameters of the CBMs composing the differ-
ent compartments of the neuron could be straightforwardly estimated following the methodol-
ogy presented in this paper, provided that multicompartmental data are available.
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