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ABSTRACT
Precise asteroseismic parameters allow one to quickly estimate radius and mass distributions for large samples of stars. A number
of automated methods are available to calculate the frequency of maximum acoustic power (𝜈max) and the frequency separation
between overtone modes (Δ𝜈) from the power spectra of red giants. However, filtering through the results requires either manual
vetting, elaborate averaging across multiple methods, or sharp cuts in certain parameters to ensure robust samples of stars free
of outliers. Given the importance of ensemble studies for Galactic archaeology and the surge in data availability, faster methods
for obtaining reliable asteroseismic parameters are desirable. We present a neural network classifier that vets Δ𝜈 by combining
multiple features from the visual Δ𝜈 vetting process. Our classifier is able to analyse large numbers of stars determining whether
their measured Δ𝜈 are reliable thus delivering clean samples of oscillating stars with minimal effort. Our classifier is independent
of the method used to obtain 𝜈max and Δ𝜈, and therefore can be applied as a final step to any such method. Tests of our classifier’s
performance on manually vetted Δ𝜈 measurements reach an accuracy of 95%. We apply the method to giants observed by K2
Galactic Archaeology Program and find that our results retain stars with astrophysical oscillation parameters consistent with the
parameter distributions already defined by well-characterised Kepler red giants.
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1 INTRODUCTION

Since the launch of CoRoT (Baglin et al. 2000) and Kepler (Borucki
et al. 2010; Koch et al. 2010), asteroseismic analysis pipelines such
as SYD (Huber et al. 2009), COR (Mosser & Appourchaux 2009),
CAN (Kallinger et al. 2010), A2Z (Mathur et al. 2010; García et al.
2014), BAM (Zinn et al. 2019), and BHM (Elsworth et al. 2017)
have been developed to extract 𝜈max and Δ𝜈 in more automated
ways than was done in the past. To analyse the data and to deter-
mine Δ𝜈, each of these pipelines relies on different methods such as:
the autocorrelation of the power spectrum (SYD), the autocorrela-
tion of the timeseries (COR) or equivalently, the power spectrum of
the power spectrum (BHM), a fit to the power spectrum (CAN), a
fit to the folded power spectrum (BAM), or a combination thereof
(A2Z, BAM). Additional statistical testing is also used by some as
internal detection calibration. However, many of the pipelines still
require a form of vetting to remove unreliable measurements of Δ𝜈
beyond what is captured by statistical significance testing. The vetting
therefore often involves some sort of manual verification sometimes
involving results from multiple pipelines and/or hard-coded cuts in
certain parameters. The former is very time consuming and the latter
can easily result in unphysical sharp features in the properties of the
resulting stellar population, which can be undesirable.
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After Kepler came K2 (Howell et al. 2014), and for the first time a
constant flow of large amounts of data of previously unknown seismic
targets that needed vetting beyond what is suitably performed using
a manual approach. With the launch of TESS (Ricker et al. 2014)
and later in this decade of PLATO (Rauer 2017), fully automated
yet robust methods are more necessary than ever to ensure fast and
reliable asteroseismic measurements providing both complete and
pure sets of measurements.

Here we present a neural network-based classifier that is able to
determine whether Δ𝜈 values are reliable, independent of the method
used to derive Δ𝜈 and 𝜈max. We start by giving an overview of
the data used in this paper. Then we describe the methods used to
build the machine learning model, and next we show its performance
on the training set using traditional machine learning performance
metrics. Finally, we examine the classifier’s performance on data
from different pipelines by comparing our vetted results with 𝜈max
and Δ𝜈 distributions reported by Zinn et al. (2021).

2 DATA

The data used in this project correspond to observations obtained as
part of the K2 Galactic Archaeology Program, GAP, Campaigns 1 to
8 and 10 to 18 (Stello et al. 2017; Zinn et al. 2020; Zinn et al. 2021).
K2 GAP targets were chosen to satisfy simple colour and magnitude
cuts where red giants are more likely to be found (Stello et al. 2015;
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Sharma et al. 2021). Reasons for targeting red giants are: their high
luminosity, which allows probing deeper Galactic regions, and their
oscillation frequencies, which are detectable from K2 long-cadence
data (which has a Nyquist frequency ≈ 280 𝜇Hz). Hence solar like
oscillators from K2 GAP are expected to be mostly red giant branch
(RGB) stars in various evolutionary phases as well as core Helium
burning red clump (RC) stars.

For the initial analysis of this paper, values of Δ𝜈 and 𝜈max are
from the SYD pipeline, while in Sections 4.2 we examine the results
of our method on results from various other pipelines in literature.

3 METHODOLOGY

We want to build a classifier that can vet Δ𝜈 regardless of the pipeline
that provided the measurement. For this task we choose to use su-
pervised learning, a machine learning technique characterised by its
use of labelled data sets to train algorithms for data classification (or
regression). Specifically, we use neural networks because we need
a method that can deal with the various aspects and complexities
shown by oscillation spectra of red giants. Key capabilities of such
non-linear algorithms, including parallel processing of multiple fea-
tures and complex-pattern detection and extrapolation, make neural
networks well-suited for this task.

We first discuss the data set used to train our machine learning
method in Section 3.1, then we discuss the features we extract from
power spectra in Section 3.2, the neural network architecture in Sec-
tion 3.3, the training steps in Section 3.4 and finally the assessment
of the network’s performance on the training data in Section 3.5.

3.1 Training Set Preparation

It is essential to carefully build a training set that is balanced and
representative of the different spectra that our machine learning al-
gorithm will encounter in practice. Following Yu et al. (2018) we use
visual inspection to classify stars as having Δ𝜈 detections or not. To
prepare for the visual vetting we generate diagnostic plots that allow
us to examine the identified oscillations in power spectra using the
following three diagrams.

3.1.1 Autocorrelation function

The first diagnostic we use is the autocorrelation function (Figure1b)
of the power spectrum (Figure1a). The autocorrelation highlights the
near regularity of the oscillation spectrum and is useful to confirm
if Δ𝜈 can be measured reliably and whether it has been measured
correctly. This regularity is expected from the asymptotic relation
(Tassoul 1980), where the frequency of a mode with spherical degree
𝑙 of radial order 𝑛 is given by

𝜈𝑛,𝑙 ≈ Δ𝜈(𝑛 + 𝑙

2
+ 𝜖) − 𝛿𝜈0,𝑙 . (1)

Here 𝜖 is a dimensionless offset or phase term and the small separa-
tion 𝛿𝜈0,𝑙 is defined as 0 for 𝑙 = 0. From equation 1 we expect the
autocorrelation to show peaks at multiples of ∼Δ𝜈/2.

To produce the plots we calculate the autocorrelation up to a shift of
the spectrum equivalent to three Δ𝜈 and then we scale the amplitudes
between 0 and 1, but first we make sure to avoid the global maximum
of the autocorrelation (at a shift of zero) by ignoring the first 0.02Δ𝜈
shift. To do this, we standardise the function to a fixed length ensuring
that the autocorrelation peaks were not smoothed away. A length of

Table 1. Nominal 𝜈max values and calculated Δ𝜈 for the nine theoretical
oscillation models considered to span the entire frequency range of the K2
sample. The last column shows the range of the observed Δ𝜈 we used to select
which model corresponds to each star.

Model 𝜈max [𝜇Hz] Δ𝜈model [𝜇Hz] Δ𝜈obs range [𝜇Hz]

A 350.5 24.5 [ 18.9, 31.5 )
B 180.8 14.7 [ 11.4, 18.9 )
C 94.6 8.9 [ 7.65, 11.4 )
D 64.2 6.6 [ 5.35, 7.65 )
E 37.4 4.4 [ 3.44, 5.35 )
F 20.2 2.7 [ 2.08, 3.44 )
G 10.0 1.6 [ 1.25, 2.08 )
H 5.5 1.0 [ 0.88, 1.25 )
I 4.0 0.8 [ 0.71, 0.88 )

300 data points was found to be conservative, therefore the first 6
points are ignored for each star.

3.1.2 Folded Spectrum

The second diagnostic is the folded oscillation spectrum (Figure1c).
It is constructed by taking the central portion of the spectrum around
the frequency of maximum power and co-adding each Δ𝜈 segment.
This provides a simple way of showing the regularity in the mode
pattern, and is particularly useful for low S/N cases where not every
segment on their own would necessarily show the full pattern of
modes.

To further guide the eye towards the expected pattern, we use model
spectra that we fold and lay on top of the observed folded spectra
(see grey dotted lines in Figure1c). If a reliable measurement of Δ𝜈 is
used, the overall shape described by the folded spectrum will follow
this template. We used theoretical oscillation modes for 1M⊙ models
in different evolutionary phases from the base to the tip of the RGB
taken from Stello et al. (2014). These models were based on simula-
tions from the ASTEC stellar evolution code (Christensen-Dalsgaard
2008), which does not include the later core Helium burning phases.

Table 1 lists the parameters of the models, from model A
(𝜈max=260.5𝜇Hz) to model I (𝜈max=4.0𝜇Hz) used to cover the entire
range of frequencies in the K2 sample. We derivedΔ𝜈 from the radial
modes following the approach by White et al. (2011), performing a
weighted linear fit to the radial frequencies 𝑙 = 0 as a function of
the order 𝑛 as in equation 1, with weights obtained from a Gaus-
sian window of width=0.25𝜈max centred on 𝜈max, taking the slope
of this fit as our Δ𝜈. The last column of Table 1 refers to the range
of Δ𝜈 from real stars for which we use each model. The boundaries
for each range are set to the midpoint between Δ𝜈 of the models on
a logarithmic scale. Note that these models fully take into account
the presence of mixed modes that arise from the coupling between
pressure and gravity waves, as it is evident specially for 𝑙 = 1 from
Figure 2a, in blue. The peak height of each mode is modelled as the
inverse of the square root of the mode’s inertia and scaled to that
of the radial modes interpolated at each mode frequency, following
Aerts et al. (2010) and Stello et al. (2014).

Figure 2a shows the central four Δ𝜈 segments around 𝜈max of the
modelled oscillation spectrum for models B, D, E and F, which rep-
resent four of the most commonly used models. Because for very low
𝜈max models there are only significant oscillation modes in the four
central Δ𝜈 segments around 𝜈max (Stello et al. 2014, Figure 1), we
obtain the folded spectra in Figure 2b from these four segments. For
the real data, however, we consider six central segments to account
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Figure 1. Examples of diagnostic plots from our training set showing stars with reliable Δ𝜈 in different 𝜈max ranges. Rows marked I-IV correspond to stars from
K2 GAP campaign 1: EPIC 201829369, 201207669, 201245474, 201681005 respectively. (a) portion of the power spectrum around the frequency of maximum
power 𝜈max. Segmented lines indicate multiples of Δ𝜈. Here 𝜈max has been shifted to the nearest multiple of Δ𝜈. Annotated 𝜈max and Δ𝜈 values are given in
𝜇Hz.(b) autocorrelation function showing the periodic peaks at multiples of Δ𝜈, (c) folded spectrum of width 1Δ𝜈 obtained from folding the six central Δ𝜈
segments from (a), shown here together with the folded modelled spectrum (grey dotted outline) assigned to the star based on its Δ𝜈. Modes 𝑙 = 0, 1, 2 are
annotated. Modes of degree 𝑙 = 1 appear spread out showing the coupling of dipoles with a large number of higher order g modes from the core. (d) The échelle
diagram constructed from the power spectrum from column (a), with hotter colours indicating higher relative power. The extension to the right of the grey line
marking 1𝜈max on (c) and (d) mirrors the first 30% of the diagram, for continuity. All data are scaled in amplitude between 0 and 1.

Figure 2. Models B, D, E and F from Table 1 representing four of the
most commonly used models. Radial modes are shown in red, dipole modes
in blue and quadrupole modes in black. All amplitudes are normalised. (a)
four central segments of the spectra of width 1Δ𝜈 around the frequency of
maximum oscillation power 𝜈max. (b) folded model spectra obtained from
folding (a). The positions of the 𝑙 = 0, 1, 2 modes are annotated. The ordinate
range of the folded spectrum is extended beyond 1 for clarity of the repeating
structure of the oscillations.

for possible asymmetric distributions of the oscillation power around
the value of 𝜈max.

To obtain the templates corresponding to the dotted lines in Figure
2b, we generate an array (not shown) in which we represent each of
the modes with a Lorentzian of width 0.04Δ𝜈. Finally, we convolve
the upper envelope of this array with a Gaussian of 𝜎 = 7 𝜈/Δ𝜈
modulo 1, chosen to produce a smoothed template without losing any
of the general features of the folded models. The resulting template
is scaled to a fixed range between 0 and 1 and used together with the
star’s folded spectrum as in Figure 1c, where the template has been
shifted to the position of maximum correlation. This shift takes care
of the difference in 𝜖 between the data and the model (White et al.
2011). The choice of which template model to use is made according
to each star’s Δ𝜈 and Table 1. Because solar-like oscillations are
stochastically driven, the oscillation amplitudes seen in short time
series (such as the 80-day K2 data used in this work) can show
significant variation from the simple, and rather regular, mode inertia-
based ‘amplitudes’ we use in the template. Hence we allow for some
variation of the mode heights around the predicted model when we
decide whether Δ𝜈 is reliable.

3.1.3 Échelle diagram

The third diagnostic plot is the échelle diagram, which is created by
dividing the power spectrum into segments of lengthΔ𝜈 and stacking
each segment above one another. The resulting two-dimensional ar-
ray is colour-coded according to power in each array bin. If a reliable
measurement of Δ𝜈 is used, the 𝑙 = 0 and 𝑙 = 2 modes are expected
to align vertically in the échelle diagram (Bedding 2011). Figure 1d
shows the diagram created from the central 6 Δ𝜈 segments of the
power spectrum. The échelle diagram carries additional information
that the autocorrelation and folded spectra do not provide; in partic-
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ular, while the natural curvature of the mode pattern can slightly blur
the autocorrelation function and the folded spectrum, it can be dis-
played neatly in the échelle diagram (Kallinger et al. 2012, Figure 6).
Still, the three diagrams in concert was useful in the process of visual
vetting, particularly for spectra with missing modes, low S/N or full
of mixed modes where one diagram alone might be inconclusive.

3.1.4 Constructing the training set

Having all three diagnostic plots in place we then start creating the
training set. To obtain a representative sample we use stars from a
wide range of K2 campaigns. We chose the 15,585 stars observed
during campaigns 1, 4, 8, 13 and 15, that were deemed to be poten-
tially oscillating giants by the machine learning algorithm from Hon
et al. (2018b). In order to obtain a series of Δ𝜈 values that we could
label as reliable or unreliable we ran the SYD pipeline on this full
sample of 15,585 spectra and removed only those with values in the
following ranges: Δ𝜈 ≤ 0.3 𝜇Hz, 𝜈max ≤ 3 𝜇Hz, and 𝜈max ≥ 278.8
𝜇Hz, but retained all 15,170 remaining stars irrespective of the data
actually showing oscillations or not. This was to have a significant
fraction of Δ𝜈 values that we would later label visually as unreliable
with the aim of having a training set with roughly equal numbers
of reliable and unreliable labeled Δ𝜈 values.We note that the source
of the Δ𝜈 values is not important for our training and subsequent
results, as long as the final number of reliable and unreliable Δ𝜈

values ends up being balanced. In order words, we could have used
mock-generated Δ𝜈 values.

For all the stars in the selected sample, we generated the three
diagnostic plots, performed visual checks individually for each star,
and from this concluded that a total of 7,240 stars showed oscillation
mode structure consistent with a correct Δ𝜈 measurement, meaning:

- the autocorrelation showed peaks at multiples of ∼Δ𝜈/2,
- the folded spectrum followed the modelled template, and/or
- modes 𝑙 = 0 and 𝑙 = 2 aligned in the échelle diagram.

Hence, these were labelled as reliable. Meanwhile, 7,143 are labelled
as unreliable either because there was absolutely no oscillation signal
or signature of Δ𝜈, or because the Δ𝜈 value was considered too far
off. The latter was typically the case when the Δ𝜈 value was offset
more than ∼3% from the value that would align the échelle ridges.
If Δ𝜈 is off by 3% or more the ridges in the échelle are significantly
slanted (Stello et al. 2011 Figure 5), the peaks in the autocorrelation
function are shifted, and the mode pattern in the folded spectrum gets
slightly scrambled. The remaining 787 stars could not be confidently
classified and were left out from training. Examples of stars that we
visually classified as having reliable Δ𝜈 are shown in Figure 1. In
Appendix B we show a larger sample of reliable and unreliable Δ𝜈.

The 𝜈max distribution of stars in the training set is shown in Figure
3a. The fraction of reliable detections as obtained from the described
visual method over the totals as a function of 𝜈max is shown in Fig-
ure 3b. For stars with 𝜈max below 10𝜇Hz the frequency resolution
of K2 data makes it difficult to measure and confidently verify Δ𝜈,
explaining the lower prevalence of reliable Δ𝜈 detections. The lower
detection fraction around 30𝜇Hz, where RC stars are typically found,
may be caused by their spectra showing a lower height to background
ratio (Mosser et al. 2012, Equation 6) and/or due to their larger num-
ber of detectable mixed modes making the spectrum more complex
(Grosjean et al. 2014, Figure 7) and hence in both cases harder for
the pipelines to find the correct Δ𝜈 and for us to verify it. We also
see a decline in the fraction of reliable Δ𝜈 when 𝜈max approaches
100𝜇Hz and beyond. This can be caused by the increased presence
of mixed modes throughout the power spectrum and the fact that

Figure 3. (a) 𝜈max distribution of the full training set, (b) Fraction of reliable
Δ𝜈 over the full training set.

Figure 4. Example of calculating a reliability score from the autocorrelation
function of EPIC 201207669. a) The detrended autocorrelation of the power
spectrum is shown. Annotated red shaded areas mark the six regions of
interest, where the autocorrelation is expected to be strongest, and the blue
shaded regions where the autocorrelation is expected to be weaker. b) The
final score is obtained as the weighted sum of the local contrast scores, which
are calculated for each region of interest as the average of the two highest
values in each red region (red dots in the figure) divided by the average of all
the points inside the two blue bracketing regions (blue dots).

modes oscillate at lower amplitudes in this 𝜈max range leading to
lower signal-to-noise ratios. In the last frequency bin, when 𝜈max
approaches the Nyquist frequency, we can expect reflections from
frequencies greater than Nyquist to interfere with the oscillation pat-
tern, making it harder to identify good Δ𝜈 measurements. The shape
of the histogram in Figure 3b is similar to that of the six independent
pipelines analysed by Zinn et al. 2021 (Figure 12). This suggests
there is little or no bias unique to our method in the training.

3.2 Feature Selection

The selection of input features is one of the key concepts in machine
learning because the performance of the final model heavily depends
on it. From our diagnostic plots described in Section 3.4 we derive
four informative features to provide as input to our machine learning
algorithm that mimic what we used for the visual classification of the
training set. In this section we describe how we derived each feature.

3.2.1 Feature AC - based on the Autocorrelation Function

To automate the process of looking for the characteristic peaks in the
autocorrelation function we assign a score to each autocorrelation
based on the contrast between the regions where strong correlation is
expected and the rest of the function. The autocorrelation function of
star EPIC 201207669 (row II in Figure1b) is used to exemplify this
scoring method. We treat the autocorrelation as described in Section
3.1.1, but additionally we now fit and remove its background slope
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using a RANSAC regressor (Fischler & Bolles 1981). In Figure 4a
we show the resulting function where red shaded areas indicate our
six regions of interest: The first one at 𝜈/Δ𝜈 = 0.12 indicates the
point of expected high autocorrelation from the pairs of 𝑙 = 0 and
𝑙 = 2 (Bedding et al. 2010). The rest, at 𝜈/Δ𝜈 = 0.5, 1.0, 1.5, 2.0
and 2.5, indicate the expected peaks from the correlations between
𝑙 = 0 and 𝑙 = 1 modes. The blue shaded regions to the left and right
of each red region are where we expect low correlation, and will be
used to derive the contrast. Figure 4b shows, for each of the six red
regions, two points with the highest value. We derive the contrast
score for each red region by dividing the average of the red points by
the average of the bracketing blue points.

The final AC score for the star is a weighted sum of these re-
sults with weights 𝑤 = {0.05, 0.30, 0.50, 0.05, 0.10, 0.00} chosen
manually to emphasise the presence of correlation peaks at 0.5
and 1 𝜈/Δ𝜈, but also to account for correlations at 0.12, 1.5, and
2 𝜈/Δ𝜈, and adjusted by looking at the performance of different sets
of weights for stars with good and bad Δ𝜈. The weights are modi-
fied to 𝑤 = {0., 0., 1., 0., 0., 0.} for low Δ𝜈 stars (Δ𝜈<1.25𝜇Hz). For
these stars we are only interested in the autocorrelation in region 3,
because peaks at Δ𝜈/2 are no longer expected and the pair 𝑙 = 0, 2 is
no longer located at 0.12𝜈/Δ𝜈 because the oscillations pattern begins
to resemble a triplet structure (Stello et al. 2014).

3.2.2 Features XC1 and XC2 - based on the Folded Spectrum

We were able to craft a good indicator of the similarity between
a star’s folded spectrum and its corresponding modelled template
from their cross-correlation function. We call this metric XC1, and
it measures how the maximum correlation coefficient compares to
the rest of the correlation function across all shifts. The procedure to
calculate XC1 is illustrated for EPIC 201207669 in Appendix C1.

We also tried an alternative way of quantifying the similarity be-
tween folded spectra and templates: metric XC2 is obtained by cal-
culating the Manhattan distance between the model template shifted
to the position of maximum correlation and a smoothed version of
the star’s folded spectrum. The smoothing is done applying a Butter-
worth filter of order 4 and cut-off frequency 18 cycles per Δ𝜈, and
scaling the result between 0 and 1. The Manhattan distance is the
sum of the absolute differences between the observed and modelled
folded spectra at each point.

Even when both XC1 and XC2 aim to extract similar information
from the data, we keep them both as inputs for the neural network
because a combination of both features is a better Δ𝜈 reliability
indicator than any one of them. (See analysis in Appendix C2).

3.2.3 Categorical Feature based on 𝜈max

There is generally some dependency of how the autocorrelation func-
tion looks with 𝜈max and therefore adding in 𝜈max as a feature is
informative. In practice we do this by encoding 𝜈max of each star into
a categorical feature. The feature is set to define six bins of equal
width in logarithmic space between 7.7 and 280 𝜇Hz, where a 𝜈max
corresponding to the first bin generates the array [1, 0, 0, 0, 0, 0], and
so on.

Finally, the 𝜈max categorical variable is concatenated with the three
features AC, XC1 and XC2 into an array of length 9 for each star.
This array will be referred to as Input A.

3.2.4 Échelle Diagram as Image Input

Like in the visual labelling process, we found that the neural network
performed better when adding the échelle diagram as a feature. The
validation accuracy during training tests went from roughly 91% to
94%.

To create the échelle diagrams for the network we used a 11Δ𝜈-
wide segment of spectrum around 𝜈max. To process this feature as
an image we use a convolutional neural network, which is a special
class of deep neural networks particularly useful for image analysis.
Because échelle diagrams need to be standardised in size before they
can be fed to the algorithm, we resize them into 11x150 images us-
ing nearest neighbour interpolation. Similarly to the autocorrelation
function, the number of columns of the standardised diagram, 150,
was chosen conservatively to not introduce smoothing that is too
severe for even the narrowest peaks. Our choice of using 11 rows, or
11 Δ𝜈 segments, ensures that all the excess power is always encap-
sulated in the diagram with at least one row with little or no power
on either side of the excess. The resulting images form what we call
Input B for our neural network algorithm.

While the échelle diagram implicitly carries all the information
described by the other metrics, using it together with the AC, XC1
and XC2 metrics yields the best network performance.

3.3 Network Architecture

There is no machine learning architecture that is a priori guaranteed
to work better than other for any dataset (Wolpert 1996), therefore
the only way to find the optimal model for a problem would be to
evaluate them all. In practice, the way to choose a suitable algorithm
for a problem is to make reasonable assumptions about the data and
evaluate only a few reasonable models with a limited number of
hyperparameters known to work well for similar tasks. For our clas-
sification problem we assume that a deep neural network architecture
will be appropriate for Input A (Branch A), while we anticipate that
a convolutional network (Branch B) will be suitable for our image-
like features Input B. Once reasonable performances are reached,
fine tuning of the hyperparameters is not recommended because it
can lead to over fitting and hence any improvements in training are
unlikely to generalise to new data (Géron 2019).

The structure of the neural network algorithm is illustrated in Fig-
ure 5. Outputs from the two branches, A and B, are merged by a
concatenation layer and fed to the interpretation stage. Its role is to
calculate the relative importance of the results of each branch, which
becomes specially important if the two branches return conflicting
outputs. The activation function used until this point in dense and
convolutional layers is the Rectified Linear Unit (ReLU) defined as
𝑓 (𝑥) = 𝑚𝑎𝑥(0, 𝑥), where 𝑥 represents the inputs. After the interpre-
tation stage we apply a dropout layer (Srivastava et al. 2014) with a
rate of 0.75. The role of this layer is to randomly and temporarily
deactivate 75% of the neurons from the previous layers during each
training step forcing the network to train with a different subset of
neurons each time. This is done to prevent overfitting of the training
set, which would otherwise happen when the model is optimised for
performance on the samples that it has "seen", instead of optimis-
ing to generalise on unseen data. Note that the dropout layer is only
active during the training phase of the network. Outputs from the
dropout layer go to the output layer, where a single output neuron
with a sigmoid activation function gives the final probability. The
sigmoid function is used generally as an activation function in binary
classifiers because it constraints the results to values between 0 and 1,
with intermediate values (e.g., 0.5) indicating an uncertain decision.
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Table 2. Neural Network Hyperparameters. We specify the types of layers and the hyperparameters used when defining each layer. "NN" indicates the number
of neurons, "Activ." indicates the activation function used.

Dense Branch A Convolutional Branch B Interpretation Stage
Layer Size NN Activ. Layer Size Filters Kernel Stride Activ. Layer NN Rate Activ.

Input [9,1] - - Input [11,150,1] - - - - Concat. - - -
Dense [64] ReLU Conv2D - [16] [3,7] [1,1] ReLU Dense [64] - ReLU
Dense [32] ReLU Conv2D - [16] [3,7] [1,1] ReLU Dense [32] - ReLU
Flatten - - - Max-Pooling [1,7] - - - - Dropout - 0.75 -

Conv2D - [16] [3,19] [1,1] ReLU Dense [1] - Sigmoid
Conv2D - [16] [3,19] [1,1] ReLU
Global - - - - -Avg-Pooling

Figure 5. Schematic representation of the Multiple-input algorithm. Input A
goes trough a fully-connected neural network (Branch A) and comes out as a
1D array of size [288], and Input B comes out of the convolutional Branch B
as a 1D array of size [16], as implied by the parameters detailed in Table 2.
They are concatenated before going through another fully-connected neural
network, whose output is of size 1.

The hyperparameters of this neural network are summarised in
Table 2. They were a design choice made by manual tuning of mul-
tiple combinations of numbers of neurons, filters, dropout rates and
kernel sizes. Broadly, we followed three guidelines to reach this set
of hyperparameters: (a) We required enough complexity (number of
neurons) so that the algorithm would converge to a solution. (b) We
needed to introduce enough regularisation so that we could train to
convergence but before overfitting. (c) In Branch B, the kernels in
the first couple of convolutional layers were tuned roughly to the size
of the features we expect to find in Input B.

Readers interested in learning more about artificial and convolu-
tional neural networks are referred to Appendices A1 and A2.

3.4 Training

From the 14,383 labelled stars, we use 75% to train the algorithm,
and the remaining 25% to validate the algorithm’s performance. The

fraction of reliable Δ𝜈 (class "1") to unreliable Δ𝜈 (class "0") is the
same in the training and validation samples.

During training we monitor the accuracy and minimise the binary
cross entropy, given by:

− 1
𝑁

𝑁∑︁
𝑛=1

𝑦𝑖 · log(𝑃(𝑦𝑖) + (1 − 𝑦𝑖) · log(1 − 𝑃(𝑦𝑖)) (2)

where 𝑦𝑖 is the truth label for each star 𝑖; 𝑃(𝑦𝑖) is the probability
assigned to star 𝑖 by the network, and 𝑁 is the number of train-
ing samples. The training is done using a variant of the stochastic
gradient descent algorithm called "Adam" (Kingma & Ba 2017),
with a learning rate 𝜂 fixed at 0.001. "Adam" aims to minimise the
loss function (which is indicative of the error rate) by adjusting the
weights of the model iteratively, with the caveat that each step of
the gradient descent does not use every example like the stochastic
gradient descent does. Instead a mini-batch is randomly selected to
train the model in steps. The size of the mini-batch determines how
many steps are required to train the model using the entire training
sample. One pass through the entire sample constitutes 1 epoch. The
model was trained using a mini-batch size of 150.

We trained the algorithm several times. For every training session
a new random data split was made and the weights were initiated
at random values each time. We terminated the training just be-
fore it started to overfit. From each training session we saved the
weights from the epoch with the best validation performance, and
used them to build an ensemble of 39 models where each of them
has a validation accuracy of ∼94%. The final results of our neural
network classifier are given by the average across this ensemble. This
re-sampling method is known as Monte Carlo cross-validation or re-
peated training/test splits, and is done to allow for a better use of the
limited labelled data while allowing better predictions of how well
the model will perform on future samples (Kuhn & Johnson 2013).

3.5 Network Performance

Our choice to use cross-validation during training implies that there
is no one unique validation sample unseen by the algorithm, but this
also means that we have simulated a different training distribution in
each training session, thus allowing reasonable estimates of model
performance on unknown data using the training set.

Figure 6a, shows the distribution of the predictions made by the
ensemble on the 14,383 labelled stars from the full training sample.
Figure 6b is the confusion matrix when a threshold is set at t = 0.5.
Black quadrants represent the correct predictions. The upper-left
quadrant shows the number of true negatives, with predictions and
truth labels of "0" ("Unreliable Δ𝜈"). The lower-right quadrant shows
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Figure 6. (a) Distribution of neural network predictions on the training set.
(b) confusion matrix when a threshold is set at 𝑡 = 0.5. Quadrants in black
represent the number of correct predictions for each class and the white
quadrants the number of mistakes for each class.

the number of true positives, the number of stars with predictions and
truth labels of "1" (Reliable Δ𝜈). White quadrants show the number
of false positives and false negatives: spectra that were predicted to
have "Reliable Δ𝜈" (1) when the truth label was "Unreliable Δ𝜈" (0)
and vice versa.

We use the predictions to derive the following three performance
metrics: Accuracy, or the number of correct predictions made by
the algorithm over all the predictions made, Precision (or purity), or
the fraction of correct positives predictions among all the positive
predictions made by the algorithm, and Recall (or completeness),
or the fraction of correct positive predictions among all the real
positives in the data set. Precision is the best metric to optimise when
false positives are specifically undesirable, whereas Recall should be
optimised when false negatives are specifically undesirable.

Figure 7a shows the Precision and Recall functions for different
probability thresholds t. At probability = 0.5, the values of Precision,
Recall and Accuracy reach 95.5%. This is a good decision threshold
for us because for our purposes Precision and Recall are equally
important.

Figure 7b shows the distribution of predicted probabilities for the
mistakes made by the network. We find that most of the mistakes are
indeed those with intermediate prediction values, as suggested by
the fact that in Figure 7a, Precision approaches 1 for t>0.8 (meaning
false positives approach zero) and Recall approaches 1 for t<0.2
(meaning false negatives approaches zero). It follows that to obtain a
clean sample with highly reliable Δ𝜈 and a minimum number of false
positives, the threshold can be set higher: for example for 𝑡 = 0.9
Precision is 99.66%. However there would be a trade-off in Recall,
which means there will be more false negatives, meaning good Δ𝜈

values incorrectly vetted out.
Figure 7c shows the distribution of incorrect predictions divided

by total number of predictions as a function of 𝜈max. Green and
blue represent false negative and false positive rates respectively.
The red line shows the combined rate of mistakes. The greatest rates
of mistakes occur around stars with 𝜈max=10 𝜇Hz, which is caused
by the low frequency resolution. There is also a small increase in
mistakes around 𝜈max=30 𝜇Hz and around 𝜈max=200 𝜇Hz. We will
discuss the challenges of vetting stars in these frequency ranges in
section 4.1.

The results just presented tell us that when applying this neural
network to a new sample we could expect our outputs to be consistent
with its labelling from a human vetter ∼95.5% of the time, granted
that the 𝜈max distribution of the new sample is similar to the one
from this training set.

Figure 7. Performance of the neural network classifier on the training set. (a)
Precision-Recall (or Purity-Completeness) curve. (b) Prediction distribution
of mistakes. (c) 𝜈max distribution of the mistakes, normalised to the number
of stars from the full training set in each particular bin. In red dots the sum
of False Positives and False Negatives for each 𝜈max bin. Green and blue bars
correspond to FP and FN (which are colour coded as in (b)).

4 RESULTS

In this section we present the results obtained by running our classifier
on the K2 GAP sample for which 𝜈max andΔ𝜈 are derived by different
pipelines.

In order to evaluate the performance of the classifier on unlabelled
data we look for agreement between the Δ𝜈 and 𝜈max for the stars
vetted by us and empirically obtained relations from well known
oscillating red giant samples observed by Kepler (Yu et al. 2018).
We do this first with Δ𝜈 and 𝜈max predictions from the SYD pipeline
followed by results from five other pipelines.

4.1 Results on Δ𝜈 from SYD pipeline

The SYD pipeline is run on all the K2 power spectra from campaigns
1-8 and 10-18 corresponding to 47,683 time series (from 45,132
unique targets) that were deemed to potentially show oscillations
by the neural network detection algorithm from Hon et al. (2018b).
No significance testing or other form of vetting was performed on
the resulting 𝜈max and Δ𝜈 results from this SYD run. Hence, by
construction we expect a large fraction of Δ𝜈 values to be incorrect.
Less than 20,000 stars are known to actually show oscillations with
reliable seismic results for both 𝜈max and Δ𝜈 in the K2 GAP sample
(Zinn et al. 2021). The vetting method that we now implement as
part of the SYD pipeline is therefore our neural network classifier,
and the resulting vetted SYD values are listed in Table G1.

Figure 8a shows the 𝜈max distribution for our entire K2 sample
of 47,683 stars, including targets observed during more than one
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Figure 8. (a) Distribution of 𝜈max for our full K2 sample before vetting, (b)
Fraction of good Δ𝜈 measurements found in every 𝜈max bin after vetting the
sample from (a).

campaign. We can see in Figure 8b that the fraction of reliable Δ𝜈

measurements found by our vetting has the same general distribution
as the corresponding histogram from the training set (Figure 3b).

To analyse the performance of the automated vetting, we first
compare our predictions against the well established power law
relation between 𝜈max and Δ𝜈 from Stello et al. (2009), where
Δ𝜈 = 0.26 · 𝜈0.77

max . Figure 9a shows this 𝜈max-Δ𝜈 relation with a grey
line. The scatter points correspond to the entire sample of 47,683 stars
colour-coded by the probability assigned to each star by the neural
network. The stars in yellow, which indicate high probability of hav-
ing a good Δ𝜈, closely follow the power law. The stars for which the
classifier predicts with certainty that Δ𝜈 is wrong (darkest points),
are those furthest from the power law; these points correspond to
measurements that are unphysical. The points coloured from violet
to orange show uncertainty in the predictions (interim values) and
are mostly concentrated at either low or high 𝜈max or around 30 𝜇Hz,
as expected from the discussion in section 3.1.4.

To further verify if our vetting performs as desired, we show in
Figure 9b the relation between oscillation amplitude and 𝜈max, which
is known to follow a power law distribution for solar like oscillators.
Particularly, like seen in the Kepler sample (Yu et al. 2018), we see
that the stars with a high probability of correct Δ𝜈 measurements
show a sharp upper edge along the power law relation they define.

Figure 9c shows 𝜈0.75
max /Δ𝜈 as a function of 𝜈max, where the ordinate

is essentially a proxy for mass because:

(𝜈max/𝜈⊙)0.75

Δ𝜈/Δ𝜈⊙
≃
(
𝑀

𝑀⊙

)0.25 (
𝑇eff
𝑇eff⊙

)−0.375
, (3)

and 𝑇eff is nearly the same for all giants. The high probability points
in yellow-dominated areas describe the same general shape as the
Kepler sample shown in Figure 10. The excess of scatter points
forming a vertical stripe near 𝜈max=46 𝜇Hz coincide with K2’s 6-
hour thruster firings. The Hon et al. (2018b) method erroneously
flagged these to be oscillations; Here our method can clearly identify
and remove these stars whose detected signal is not astrophysical
in nature. Sixty six accepted values of Δ𝜈 fall beyond the vertical
range plotted in panel c (and d). They are mostly false positives with
probabilities between 0.5 and 0.8, where Δ𝜈 given by the pipeline is
one half of its real value, and our algorithm was misled by alignment
of the wrong modes.

Finally, we show in Figure 9d the same diagram as in c but now only
for stars with a vetting probability higher than 0.5, and we colour-
code stars according to their RGB/RC classification from Hon et al.
(2018a) based on the values of 𝜈max and Δ𝜈 (except for stars with
𝜈max>110𝜇Hz, which we all label as RGB). It is reassuring to see the
similarity between Figure 9d and the corresponding diagram from
the Kepler sample in Figure 10.

Figure 9. SYD pipeline results for the sample of 47,683 time series. Panel
(a) shows how the SYD 𝜈max-Δ𝜈 distribution compares to the power law
Δ𝜈=𝛼 · 𝜈𝛽max where 𝛼 = 0.26 and 𝛽 = 0.77. Panel (b) shows the distribution
of oscillation amplitude as given by SYD pipeline with respect to 𝜈max. Panel
(c) shows the distribution of the asteroseismic proxy for mass with respect
to 𝜈max. All results on panels a, b and c are colour-coded according to the
probability assigned to them by the neural network. Panel (d) shows the
same distribution as in panel (c) but only for those stars with probability >0.5
(20,708 observations in total, 19,577 unique targets), and making a distinction
in colour based on evolutionary phase.

Figure 10. Diagram showing 𝜈0.75
max /Δ𝜈 as a function of 𝜈max for the Kepler

sample of 16,000 stars from Yu et al. (2018) where 𝜈max and Δ𝜈 were derived
by the SYD pipeline from 6-month spectra. AllΔ𝜈 values were visually vetted
by Yu et al. RC stars are shown in red, in black are RGB stars and stars with
no RC/RGB classification available.
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4.2 Results on Δ𝜈 from various pipelines

In Zinn et al. 2021 the authors perform an ensemble-based vetting
on 𝜈max and Δ𝜈 for the K2 sample as derived by six automated
pipelines1: A2Z, BAM, BHM, CAN, COR, and SYD. Their ensemble
vetting includes an iterative scaling and averaging process that makes
use of results derived by the six pipelines to obtain corrected values
of 𝜈max and Δ𝜈, but in the latter case excluding A2Z. During the
vetting process, Δ𝜈 values that deviate from the agreement of the rest
of the pipelines are clipped out. The final ensemble-vetted sample
contains those stars for which Δ𝜈 from at least two pipelines have
‘survived’ the clipping and contributed to the final corrected value.
In this section we will be vetting the original values (unscaled and
non-ensemble-vetted) used by Zinn et al. 2021 from each pipeline
A2Z, BAM, BHM, CAN, and COR. Later we look for differences
between our vetted samples and the ensemble-vetted sample in search
for our network’s mistakes. Because the SYD sample used in Zinn
et al. 2021 was already vetted by our neural network, the SYD data
are not treated in this section.

Our vetted results and the probabilities given by the network after
running it on original samples from the five pipelines are listed in
Table G2, broken down by campaign. The vetting of the samples
after removing duplicated stars is summarised in Table 3a, where a
distinction is made between RC and non-RC stars as per the results
from Hon et al. (2018a) using ensemble-corrected values of 𝜈max
and Δ𝜈 (non-RC stars is our naming for RGB, RGB/AGB, and stars
for which an evolutionary classification has not been possible). The
samples used here were already vetted by the five pipelines’ own
internal methods. The number of those stars are listed as ‘Before’
meaning before our neural network vetting, while ‘After’ refers to
after applying our vetting. For completeness, we have also included
in Table 3a our vetted SYD sample from Section 4.1 after removing
duplicated observations.

Figure 11 shows the stars from Table 3a before and after our
vetting in the form of Δ𝜈 as a function of 𝜈max and the mass proxy
as a function of 𝜈max (Equation 3) for each pipeline. RC stars appear
in red, and non-RC stars in black. For all pipelines we see the vetted
𝜈max-Δ𝜈 plots (right) have been cleaned from almost all outliers
compared to the left plots. In both diagrams our vetting clears out the
sharp artificial cuts, which are evident in the ‘Before’ diagrams of all
pipelines except the two Bayesian-based algorithms BAM and CAN.
This cleaning reveals the astrophysical trend seen in the mass proxy
vs. 𝜈max diagram from Figure 10. This includes a more well-defined
‘hook’ of red clump stars, which is an astrophysical feature of low-
mass clump stars (Huber et al. 2010, Figure 7; Mosser et al. 2012,
Figure 4). However, we see a few likely incorrect Δ𝜈 measurements
remaining after our vetting, such as the points remaining from the
band under the mainΔ𝜈-𝜈max relation for BAM around 𝜈max∼30𝜇Hz.

In Figure 12 we further investigate the Before/After neural net-
work vetting samples for the different pipelines. The grey filled areas
represent the ensemble-vetted RC and non-RC stars, which by con-
struction is the same on the ‘Before’ and ‘After’ rows. We emphasise
that the ensemble is only used for qualitative comparison with the
network vetting results because the ensemble method uses corrected
values of 𝜈max and Δ𝜈 while our vetting is performed on raw val-
ues, and because the two methods are not applied to the exact same
samples. Yet, our vetting appears successful at removing incorrect
Δ𝜈 values in the case of non-RC stars, which is clear by the fact
that lines representing each pipeline ‘After’ vetting are pushed closer

1 A one-to-one analysis of the different pipelines’ performances is presented
in Zinn et al. 2021, Section 4.

towards where the ensemble-vetted results lie compared to ‘Before’
our vetting.

In the following we will examine the differences between our vet-
ted samples and those from the ensemble vetting. Table 3b shows
sample sizes from the different pipelines before and after the ensem-
ble vetting. The column ‘After’ for each pipeline is the number of
Δ𝜈 values that were used to obtain the final ensemble-corrected Δ𝜈.
Table 3 shows that our method retains more non-RC stars than the
ensemble method. However, our neural network is vetting out more
RC stars than the ensemble method, and hence possibly removing
good Δ𝜈 values. The lower rate of retained RC stars after our network
vetting is also seen in Figure 12.

First, we look into those Δ𝜈 detections that our network removed
but were retained by the ensemble vetting. We identify for each
pipeline all the stars retained by the ensemble method for which
our method returns probabilities lower than the threshold of 0.5. For
many of these, the 𝜈max and Δ𝜈 values differ by a significant amount
from their respective ensemble-scaled values. Following our criteria
for what we considered a good or badΔ𝜈 during the labelling process,
we assign as real negatives those Δ𝜈 departing 3% or more from the
ensemble-accepted values (See Table 4, column ’RN’), while those
within 3% agreement are considered suspected false negatives (Table
4 ‘SFN’). The rates of SFN to the total number of Δ𝜈 analysed from
each pipeline are shown as SFN% for the total number of stars and
for RC and non-RC stars separately. Figure 13 shows diagrams of
𝜈0.75

max /Δ𝜈 as a function of 𝜈max for the suspected false negatives
for each pipeline. Visual inspection of these stars confirmed many
of them as real false negatives. We also found unclear cases where
visual vetting of the spectra is ambiguous and many cases where
the Δ𝜈 values are offset from a visually-preferred value by ∼3% or
more. So even though these stars are within 3% from the ensemble-
accepted value, we still find quite a few of them not being accurate
based on our three diagnostic plots. A sample of these ‘true negatives’
is presented in Appendix F. The occurrence of these true negatives
was most pronounced among the RC stars. This is expected given
their less precise ensemble-vetted values, which is evident from the
larger spread in RC Δ𝜈 measurements (compared to RGB) from
individual pipelines shown by Zinn et al. 2021 in their Figures 10
and 11, bottom left panels.

Moving on from stars that our vetting removed (but the ensemble-
vetting did not) we now want to examine stars that our vetting pre-
serves but that the ensemble removes. We can see such stars in the
‘After’ plots of non-RC stars in Figure 12, where our vetting shows
a significantly larger number of accepted Δ𝜈 values from the BHM
sample at 𝜈max≳100𝜇Hz and Δ𝜈≳10𝜇Hz, and from BHM and COR
for (𝜈0.75

max /Δ𝜈)≳3.5, hence preserving stars that are taken out by the
ensemble method. To further examine cases like these, we plot in
Figure 14 the mass proxy diagram for all the stars found in our vetted
SYD sample that were clipped out of the ensemble-vetted sample
(2,862 stars in total). Visual inspection of this sample indicated that
more than 97% were genuine oscillators, translating into less than 80
false positives (or less than 0.1% of the total number of stars anal-
ysed). This suggests that the ensemble vetting may be removing a
significant fraction of genuine oscillators, specially at 𝜈max≳100𝜇Hz.
Examples of these ‘extra’ stars found to have reliable Δ𝜈 values are
presented in the Appendix, Figure E1.

Overall, the analysis of our vetting against the ensemble-vetted
sample does not contradict the classifier’s performance metrics from
Section 3.5. The four-pipeline-average of the total rates of suspected
false negatives from Table 4 is 4.8%, which is slightly more than
expected from our initial validation. However, it was found that not
all of suspected false negatives correspond to mistakes of the network,
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Figure 11. Results previously vetted by each pipeline on the left, and on the right columns we show the sample from the left vetted by our classifier. For each
pipeline we show Δ𝜈 and 𝜈0.75

max /Δ𝜈 distributions as a function of 𝜈max. RC stars appear in red and non-RC stars appear in black. All frequencies given in 𝜇Hz.
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Table 3. (a) Number of stars before and after our neural network vetting over the same samples used by the ensemble method. (b) Number of stars before
and after ensemble vetting of each pipeline’s results. A2Z Δ𝜈 values are not retained by the ensemble. The ’Before’ sample sizes in (a) do not exactly match
(b) because the selection process is slightly different for the neural-network and ensemble vetting. A distinction is made between Non-RC and RC stars. Total
numbers are also shown.

Pipeline Non-RC RC Total
(a) Name Before After Ret% Before After Ret% Before After Ret%

N
.N

. V
et

tin
g A2Z 18,306 7,653 41.8 3,869 1,397 35.9 22,175 9,050 40.8

BAM 9,031 7,767 86.0 2,490 1,900 76.3 11,521 9,667 83.9
BHM 16,456 12,510 76.0 5,255 3,527 67.1 21,711 16,037 73.9
CAN 13,302 10,119 76.1 4,396 2,634 59.9 17,698 12,753 72.1
COR 16,823 12,351 73.4 5,192 3,726 71.8 22,015 16,077 73.0
SYD∗ - 14,620 - - 4,957 - - 19,577 -

Pipeline Non-RC RC Total
(b) Name Before After Ret% Before After Ret% Before After Ret%

En
s.

Ve
tti

ng

A2Z 18,331 - - 3,870 - - 22,201 - -
BAM 9,421 7,362 78.1 2,491 2,261 90.8 11,912 9,623 80.8
BHM 16,657 11,006 66.1 5,260 4,948 94.1 21,917 15,954 72.8
CAN 13,471 9,512 70.6 4,397 4,085 92.9 17,868 13,597 76.1
COR 18,610 10,985 59.0 5,197 4,835 93.0 23,807 15,820 66.5
ENS - 12,978 - - 5,843 - - 18,821 -

∗Because the SYD pipeline’s internal vetting used our neural network vetter, the ‘Before’ and ‘After’ numbers are
the same. The number of stars for SYD are slightly different to those in Zinn et al. 2021 because the latter had
additional cuts applied (see Zinn et al. for details).

Table 4. Stars rejected by our neural network but retained by the ensemble method for each pipeline. Columns ’RN’, Real Negatives, indicate those with Δ𝜈

values departing 3% or more from the ensemble-scaled values. Columns ’SFN’ (suspected false negatives) are those rejected having Δ𝜈 values within 3% of the
ensemble-scaled value. The rates of SFN to the total number of non-RC, RC, and for all stars analysed by the network are shown as SFN%.

Pipeline Non-RC RC Total
Name RN SFN SFN% RN SFN SFN% RN SFN SFN%

BAM 238 82 0.9% 255 167 6.7% 493 249 2.1%
BHM 432 375 2.3% 703 833 15.8% 1,135 1,208 5.6%
CAN 375 226 1.7% 894 620 14.1% 1,269 846 4.8%
COR 386 524 3.1% 361 930 17.9% 747 1,454 6.6%

as this group also contains Δ𝜈 with errors of ∼3% or more, and stars
with unclear oscillation status upon visual verification. The real false
positives, on the other hand, were found to be a fraction of a percent
of the total number of stars analysed.

5 LIMITATIONS AND BIASES

Our classifier currently shows a higher incidence of false negatives in
RC stars. This is most likely explained by our XC1 and XC2 metrics
(Section 3.2.2), which are based on RGB models and thus may be too
harsh in rejecting Δ𝜈 in RC stars. A future version of this classifier
that includes templates for RC stars could help improve our vetting
by reducing the rate of false negatives, thus increasing our method’s
accuracy.

Another limitation of our classifier stems from the difficulties in
visually identifying Δ𝜈 reliably for certain 𝜈max ranges. As discussed
in Section 3.1.4, this limitation could be explained by the low data
resolution in the case of 𝜈max lower than ∼10 𝜇Hz, and by the
lower S/N and the Nyquist frequency mirroring effects in the case
of 𝜈max higher than ∼200 𝜇Hz. We note from Figure 11 (‘Before’)
that different methods show different efficiencies in determining Δ𝜈

at these 𝜈max ranges. While most stars in these ranges are removed
by our vetting, it is evident from Figure 13 that almost all of these

network-removed stars were also removed by the ensemble method.
This means there was no consensus on the Δ𝜈 value for the stars
vetted out by the ensemble method, indicating that these limitations
at low and high 𝜈max are intrinsic and not a unique bias to our vetting.
However, because our neural network was trained on data that was
manually labelled, a ‘human’ bias is inevitably present.

Despite these limitations, our classifier avoids the drawbacks of
vetting methods that employ sharp parameter cuts (undesirable for
population analyses) and it provides an efficient way to remove out-
liers in Δ𝜈. In Appendix D we present an attempt to vet the samples
using cuts to the uncertainties inΔ𝜈 delivered by each pipeline, which
demonstrates that the uncertainties for individual stars is not a good
measure to identify outliers.

6 CONCLUSIONS

We have presented a new automated method that efficiently vets
asteroseismic Δ𝜈 measurements applying criteria based on the visual
inspection of the spectra as defined in Section 3.1. Our automated
vetting is fully independent of the method used to derive 𝜈max and
Δ𝜈 and does not rely on any prior knowledge of empirical relations
as used by many pipelines to constrain Δ𝜈 detections based on 𝜈max
(Hekker et al. 2011). Furthermore, raw outputs of our classifier can
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Figure 12. Individual pipeline histograms before and after neural network
vetting showing (a) 𝜈max (b) Δ𝜈 and (c) 𝜈0.75

max /Δ𝜈 distributions. Left column
corresponds to the black points from Figure 11 and right column to the red
points from the same figure.

Figure 13. Mass proxy diagrams of the suspected false negatives from
pipelines BAM, BHM, CAN and COR. From these samples we find many
confirmed false negatives, but also unclear/inconclusive cases as well as cases
with wrong 𝜈max or Δ𝜈 (real negatives).

Figure 14. Mass proxy diagram showing SYD parameters for stars vetted by
our method and clipped out of the ensemble vetted sample: 2,213 non-RC
and 649 RC. These were suspected false positives, but upon visual analysis
of a random sample they were found to be true positives (good Δ𝜈) in more
than 97% of the cases.

be read as probabilities, demonstrated by the fact that hardly any of
the mistakes of the network correspond to high certainty results, i.e.
very close to either 0 or 1 (Figure 7b.)

From labelled training set performance we see that our neural
network is expected to agree with human-vetted samples about 95%
of the time, assuming theΔ𝜈 distributions of those samples are similar
to the one used in our training.

We tested our results against trusted values from the Kepler sample
and against K2 ensemble-vetted results. When applied to pre-vetted
samples from five different pipelines we saw that the neural network
removed almost all outliers from the diagrams mass-proxy vs. 𝜈max
and Δ𝜈 vs. 𝜈max, revealing astrophysical trends expected from the
oscillation parameters of solar-like oscillations. In raw values from
four pipelines we found a large number of suspected false negatives:
Δ𝜈 values vetted out by the network but accepted by the ensemble
method. Manual checks confirmed false negatives, but also revealed
many Δ𝜈 values with errors larger than ∼ 3% whose rejection is by
design of the training sample (Section 3.1.4). We also saw a higher
incidence of false negatives from RC stars when compared to non-RC
stars, which had not been previously detected. A future version of
the classifier with improvements to RC performance is planned to be
made available to the community, such that it could be added as a
last step to any algorithm that measures Δ𝜈. When used on the un-
vetted sample from SYD we found that the neural network correctly
accepted a significant number of stars that the ensemble vetting of the
K2 GAP sample is discarding, especially stars with 𝜈max≳100𝜇Hz.

Overall our method appears very promising for fully automated
and fast vetting of Δ𝜈 measurements on large samples of stars as
expected from missions like TESS (as applied by Stello et al. 2021)
and PLATO.

DATA AVAILABILITY

The neural network vetted results are presented in Appendix G and
are available as supplementary material.
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APPENDIX A: NEURAL NETWORKS

A1 Artificial Neural Networks

An artificial neuron called a threshold logic unit is shown in Figure
A1a. The threshold logic unit is a simple mathematical unit that
produces an output signal by applying an activation function 𝜙 over
a weighted sum of its inputs ®𝑋 (in our examples ®𝑋 = [𝑥1, 𝑥2] ). Its
output can be expressed as 𝜙( ®𝑋𝑇 ®𝑊) where ®𝑊 represents the weights
associated to each connection, which are shown graphically as arrows

Figure A1. Basic structure of artificial neurons. (a) represents a threshold
logic unit (TLU). (b) the perceptron architecture. (c) the multi-layer percep-
tron architecture MLP with one hidden central layer. Each arrow connecting
neurons from different layers has a trainable weight associated (not repre-
sented here). Bias neurons represents a constant term that provides flexibility
to the results of the network.

Figure A2. Examples of activation functions (a) A step function simply
outputs ’0’ if its input is negative and ’1’ otherwise. (b) the sigmoid function:
𝑓 (𝑥) = 1

1+𝑒−𝑥 , (c) Tanh: 𝑓 (𝑥) = 2
1+𝑒−2𝑥 − 1 and (d) ReLU: 𝑓 (𝑥) = 0 if

𝑥 < 0 and 𝑓 (𝑥) = 𝑥 if 𝑥 >= 0. In our model (Figure 5) we used a sigmoid
function for the output layer, and rectified linear unit (ReLU) functions in the
dense layers.

in Figure A1. Activation functions, also known as transfer functions,
define how the weighted sum of the input is transformed into an
output by mapping that sum to a predefined set of values. Examples
of activation functions are shown in Figure A2. In practice, a network
of neurons as shown in Figures A1b and A1c, is used to increase
the complexity of functions that can be modelled or estimated with
neurons.

The Perceptron shown in Figure A1b is a network comprising a
single layer of neurons. Graphically, we can describe the neuron layer
in a Perceptron as a row of neurons, which has connections to the
neurons in layers above and/or below it but not within the row itself.
Perceptrons are trained by updating their weights using the equation
𝑤 = 𝑤′ + 𝜂(𝑦 − 𝑦̂)𝑥. During each update the connecting weights
of every neuron in the network are re-calculated by adding to the
current weight 𝑤′ the difference between the expected output 𝑦 and
the output obtained in the previous step 𝑦̂, multiplied by a learning
rate 𝜂 and its input 𝑥. The weights are updated as many times as
there are training instances available. This is the basis of the gradient
descent algorithm, widely used in machine learning.

In practice, additional layers are stacked to form a Multi-Layer
Perceptron as shown in Figure A1c. A Multi-Layer Perceptron is
capable of more complex classification tasks due to the greater degree
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of non-linearity from more layers between input and output. Multi-
layer perceptrons are examples of Deep Neural Networks.

A2 Convolutional Neural Networks

Convolutional neural networks - ConvNets - are the natural choice
for machine learning tasks involving images because they are able to
capture the spatial dependencies in them through the application of
convolving filters.

Inspired by neurons in the visual cortex (Fukushima 2004), in-
dividual neurons in a ConvNet respond to information from only a
restricted region of the input image known as their Receptive Field.
The overlapping receptive fields corresponding to individual neurons
cover the entire visual area. There are several elements involved when
designing ConvNets: First, a convolutional layer made of n feature
maps, convolves over the input layer one small sector at a time. The
size of the receptive field is known as the kernel size as shown in
Figure A3a.

All the feature maps in the same convolutional layer share the same
kernel size, and all the neurons in the same feature map share the
same set of weights. In ConvNets the sets of weights are called filters
and can be represented as small images the size of the kernel that
extract patterns from the inputs. Because weights in ConvNets form
filters, training such network involves learning image filters that are
best suited to perform a particular task.

Pooling layers are used as shown in Figure A3b. A pooling layer
outputs a predefined function of the neurons in its receptive field
called the pool size. Often the predefined function is the maximum
value (’max-pooling’) or the average value (’average-pooling’).

All neural networks need to be designed according to the problem
they are trying to solve. For ConvNets this involves using kernel sizes
appropriate to the size of the features we wish to detect in an image. It
is also important to experiment with different numbers of layers and
feature map elements in order to find an optimal structure that delivers
good performance while avoiding unnecessary computations.

APPENDIX B: EXAMPLES FROM THE TRAINING
SAMPLE

Figure B1 shows examples of stars with reliable Δ𝜈 from our train-
ing set. They represent red giants in different evolutionary phases
from the bottom to the tip of the red giant branch, except for EPIC
201245474 in row VI, which appears to be a RC star because there
are many mixed modes appearing all over the spectrum with heights
similar to the acoustic modes. These examples are representative for
our K2 sample. For high 𝜈max frequencies (rows I and II) the presence
of mixed modes is evident in diagrams b, c and d. For intermediate
𝜈max (examples from rows III and IV) we do not see many mixed
modes. A feature of our K2 sample is that occasionally some modes
appear to be missing due to the stochastic nature of the oscillations
and the relatively short duration of the light curves. The example in
row V demonstrates this: 𝑙 = 2 seems to be missing, but there are
small peaks around the 0.5Δ𝜈 and 1Δ𝜈 main peaks in the autocor-
relation. This indicates the quadrupoles are there, only with lower
power than normal. Continuing down the list, we see that peaks ap-
pear wider; this is because the frequency resolution is the same while
the frequency separation becomes smaller. The last example in row
IX is one of the clearest examples of oscillations found in this low
frequency range. It shows that the autocorrelation function becomes
broader and that there are only a couple of orders with power. In
contrast, Figure B2 shows examples of spectra with unreliable Δ𝜈

Figure A3. Two types of layers in a two dimensional convolutional neural
network. (a) A convolutional layer of stride=[1,1]: stride is the length (in
units of neurons) to skip between adjacent kernels. Here the convolutional
layer has the same dimensions as its input layer, and is made of ’n’ feature
maps. This diagram shows these neurons do not form fully connected layers
as only specific neurons of the input layer within a region that is defined by the
kernel size can connect to a particular neuron in the next layer. These regions
(e.g., black and red), however, can overlap. (b) A pooling layer performs an
operation on groups of neurons, with the size of the group determined by a
pooling size. In this example, the pool size is 2x2 and a maximum operator
is applied. This means that within a group of 2x2 neurons, only the neuron
with the maximum value is passed to the next layer (max pooling).

from our training set, which are the ones that our method aims to
remove.

APPENDIX C: METRICS

C1 Calculating metric XC1

We describe the procedure used to calculate metric XC1 that quanti-
fies the similarity between each star’s folded spectrum and the folded
template obtained from 1 M⊙ models, as described in Section 3.1.2.
Figures C1a and C1b illustrate this for EPIC 201207669: first we
chose the folded model template for this star’s Δ𝜈 of 7.9𝜇Hz, which
is model C according to Table 1. Figure C1a shows the star’s folded
spectrum in blue and two copies of the template in grey. Figure
C1b shows the full correlation between the functions from panel
(a). We create feature XC1 by subtracting the 52nd-percentile of the
correlation (green dashed line in Figure C1b) from the maximum
correlation (solid green line), and divide this result by the standard
deviation (green dotted line). We tried several different percentiles to
calculate this indicator, and found that the 52nd-percentile resulted
in the best separation of good and bad Δ𝜈 values in the training set.
However, a similar performance could be obtained if choosing values
between the 45th and the 60th percentile.

C2 Performance of the three metrics

By using histograms we assess the individual ability of the metrics
from Subsections 3.2.1 and 3.2.2 to separate reliable Δ𝜈 from unre-
liable Δ𝜈 in the training set of 14,383 stars. This is shown in Figure
C2 where good (reliable) Δ𝜈 appear in magenta and bad (unreli-
able) Δ𝜈 in blue. The metric with best separability is AC because
the intersection of good and bad Δ𝜈 distributions is only 1,796 stars.

MNRAS 000, 1–17 (2021)
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Figure B1. Diagnostic plots for a representative set of stars with reliable Δ𝜈 spanning the full range of Δ𝜈 values in the K2 sample. Values of 𝜈max and Δ𝜈 are
given in 𝜇Hz and all data have been scaled between 0 and 1.

This translates into 87.5% accuracy if we set a threshold at the point
where both histograms (blue and magenta) have close to the same
number of stars. In the same way we find that for the XC1 metric the
intersection is of 2,547 stars, translating into 82.3% accuracy, and
for XC2 it is 2,640 stars, leading to 81.6% accuracy.

Because the three metrics have very different numerical scales,
each metric will be standardised by removing the mean and scaling
to unit variance before feeding it to the neural network. Therefore,
the features derived from the unseen spectra to be vetted will also be
standardised to the same mean and variance from the training set.

We are now interested in testing whether the combination of pairs
of metrics allows for a better degree of separability than individually.
We implement a simple linear Stochastic Gradient Descent classifier
and fit it on the three pairs of metrics (AC-XC1, AC-XC2, XC1-XC2)
plus their labels (reliable or unreliable), represented by 1s and 0s.

Figure C3 shows the linear decision function as a green line sep-
arating reliable from unreliable Δ𝜈 in the two-dimensional space of
each pair of metrics. Setting a threshold as in Figure C3a for the pair
AC-XC1 provides an accuracy in classification of 89.2%, in (b) for
the pair AC-XC2 the accuracy reaches 89.8%. Even when metrics
XC1 and XC2 are based on the same characteristic of a star’s power

spectrum, there is indication that using both metrics is better than
just selecting the best metric between them. The line separating the
two populations on the scatter plot from Figure C3c still improves
the individual accuracy of metrics XC1 and XC2 from 82.3% and
81.6% respectively, to better than 84% when combined. Hence, AC,
XC1, and XC2 constitute good inputs for the machine learning al-
gorithm because individually they carry non-redundant information
that strongly correlates with the visual vetting or target variable.

APPENDIX D: NEURAL NETWORK VETTING VS.
UNCERTAINTY VETTING

We attempt to vet Δ𝜈 values from the five pipelines from Section
4.2 (A2Z, BAM, BHM, CAN and COR) using only cuts in the Δ𝜈

fractional uncertainty for each pipeline’s measurements. Figure D1a,
"Original Vetting" corresponds to the mass diagram of the same sam-
ple from the left column of Figure 11, making the same distinction
between RC and non-RC stars using red and black. Columns b and c
correspond to the resulting sample if we accept up to 5% and 2% of
Δ𝜈 fractional uncertainty, respectively.

MNRAS 000, 1–17 (2021)



16 C. Reyes et al.

Figure B2. Diagnostic plots for a representative set of stars with unreliable Δ𝜈 spanning the full range of Δ𝜈 values in the K2 sample. Values of 𝜈max and Δ𝜈

are given in 𝜇Hz and all data have been scaled between 0 and 1.

The performance of this uncertainty-vetting depends heavily on
the pipeline and on the way their uncertainty is measured. For A2Z
many of the clearly wrong values remain even after making the cut to
fractional uncertainties lower than 2%. The CAN pipeline has very
low fractional uncertainties across their entire sample, and neither of
our cuts has a significant effect on it. For BAM, BHM and COR the
cut to 2% does help to bring out the characteristic "hook" formed by
RC stars, however too many Δ𝜈 values are rejected in the lower 𝜈max
range.

Figure D2a shows the original sample from each pipeline (same as
Figure D1a) colour-coded by Δ𝜈 fractional uncertainty, where every
point with fractional uncertainty of 5% and larger appears in black,
and the lower fractional uncertainty points appear in yellow. Figure
D2b uses the same colour map to show the probabilities given by our
neural network classifier. Note that the colour map is inverted because
we look for low fractional uncertainty in (a) and for high probability
in (b). We see that our classifier performs more consistently across
the different pipelines, and decidedly removes those results that are
clearly outliers and brings out in yellow the known shape of the mass
proxy plot for every sample.

APPENDIX E: EXAMPLES OF APPARENT FALSE
POSITIVES WHEN COMPARING TO ENSEMBLE-VETTED
SAMPLE

In Figure 14 we showed the mass diagram of the stars left out by the
ensemble-vetting process, but accepted by our neural network. They
are mostly RGB stars with 𝜈max>100𝜇Hz and most of them show
clear oscillations. Here we show the diagnostic plots for four of them
in Figure E1. These stars are proved to be True Positives, which is
evident when looking at the folded spectra and especially the échelle
diagrams.

APPENDIX F: EXAMPLES OF APPARENT FALSE
NEGATIVES WHEN COMPARING TO
ENSEMBLE-VETTED SAMPLE

The analysis of Δ𝜈 values rejected by our classifier but accepted by
the ensemble method revealed a higher number of suspected false
negatives than expected from the network’s measured performance,
as shown in Table 4 and Figure 13. A visual check of these rejected
Δ𝜈 values showed that this higher number can be explained by the
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Figure C1. Example of calculating metric XC1 for EPIC 201207669 based
on the correlation between its folded spectrum and the folded template (model
C). (a) the star’s folded spectrum in blue and two copies of the folded template
in grey. (b) the full correlation of the functions where Shift=0 corresponds to
their relative position as shown in (a). The position of maximum correlation
is marked with a black vertical line. The value of the maximum correlation
coefficient, the 52nd percentile of the entire function and its standard deviation
are marked with solid, dashed, and dotted horizontal green lines, respectively.
XC1 is then the difference between the maximum correlation coefficient and
the 52nd percentile divided by the standard deviation.

Figure C2. Distribution of the numerical metrics AC, XC1, and XC2 shown
in magenta for stars in the training set with good Δ𝜈 and in blue for the stars
with bad Δ𝜈.

Figure C3. Scatter plots describing the distribution of the stars from the
training set over pairs of the metrics described in Section 3.2 (after standardi-
sation of each metric). Blue crosses correspond to unreliable Δ𝜈 and magenta
crosses are reliable Δ𝜈 from the training set. Green lines are given by the
fitting of a linear classifier to the data in the plot.

many cases where Δ𝜈 is offset by ∼3% or more. These Δ𝜈 values
were expected rejections due to the way our training sample and
the network’s features were constructed. For illustration, Figure F2
shows results of manually determined Δ𝜈 values found by visual
inspection. This should be compared to Figure F1, which is based
on raw pipeline Δ𝜈 values. For diagrams (c) and (d) in particular, the
manual values show much better alignment.

APPENDIX G: TABLES

We present in Table G1 our neural network vetted results after run-
ning it on the K2 sample with SYD parameters, including duplicates.
In Table G2 we present our neural network vetted results after run-
ning the network on K2 samples pre-vetted by each pipeline: A2Z,
BAM, BHM, CAN and COR, using 𝜈max and Δ𝜈 as derived by each
pipeline and including duplicates. The threshold used to discriminate
the good Δ𝜈 listed here was t=0.5.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Figure D1. Vetting of Δ𝜈 using cuts based on fractional uncertainties up to 5% and 2%. RC stars appear in red and non-RC in black.

Figure D2. Diagrams showing 𝜈0.75
max /Δ𝜈 as a function of 𝜈max colour-coded based on (a) fractional Δ𝜈 uncertainties as derived by each pipeline, and (b) by the

probabilities given by the neural network to the values provided by each pipeline.
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Figure E1. Examples of oscillating stars with Δ𝜈 considered good by the neural network, but missing from the ensemble-vetted sample. Values of 𝜈max and Δ𝜈

are given in 𝜇Hz and all data have been scaled between 0 and 1.

Table G1. SYD results of K2 GAP sample after applying our neural network vetter. Column dnu_prob indicates the probability assigned by our neural network.
RC/RGB column indicates if the star was deemed to be RGB (0) or RC (1) by the machine learning method from Hon et al. (2018a). Columns numax_sig and
dnu_sig indicate the uncertainty in the result by the SYD pipeline. Values in columns numax, numax_sig, dnu and dnu_sig are given in 𝜇Hz. This table contains
20,708 observations of 19,577 unique stars. Full table available as supplementary material.

Neural Network vetted results for values from SYD pipeline

EPIC campaign numax numax_sig dnu dnu_sig dnu_prob RC/RGB

201670988 1 4.539 0.676 1.001 0.194 0.540 0
201386006 1 5.088 0.527 1.031 0.084 0.751 0
201135864 1 5.117 1.440 1.098 0.063 0.624 0
201136194 1 5.504 0.352 1.081 0.030 0.910 0
201364846 1 5.868 0.179 1.244 0.052 0.829 0

Table G2. Neural Network vetted Δ𝜈 values for pipelines A2Z, BAM, BHM, CAN, and COR. Values in columns numax, numax_sig, dnu, dnu_sig are given
in 𝜇Hz. Columns EV_ensemble and EV indicate the evolutionary phase assigned to the star by the machine learning method from Hon et al. (2018a) for
ensemble-scaled 𝜈max and Δ𝜈 values and for values of 𝜈max and Δ𝜈 delivered by each pipeline, respectively. Column "dnu_prob" indicates the probability
assigned by our neural network. We have not removed stars with results from multiple campaigns. Full table available as supplementary material.

Neural Network vetted results for Δ𝜈 values from Pipelines A2Z - BAM - BHM - CAN - COR

Pipeline EPIC camp numax numax_sig dnu dnu_sig EV_ensemble EV dnu_prob

A2Z 201703016 1 11.032 0.698 1.880 0.071 RGB/AGB RGB/AGB 0.990
A2Z 201727507 1 11.990 0.753 2.020 0.030 RGB/AGB RGB/AGB 0.656
A2Z 201627037 1 12.220 0.786 2.030 0.325 RGB/AGB RGB/AGB 1.000
A2Z 201701753 1 12.248 0.590 1.730 0.283 RGB/AGB RGB/AGB 1.000
A2Z 201553833 1 13.400 2.039 2.020 0.009 RGB/AGB RGB/AGB 0.994
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Figure F1. Diagnostic plots showing examples of Δ𝜈 from pipelines in Section 4.2 rejected by the neural network. Values of 𝜈max and Δ𝜈 annotated in column
(a) are given in 𝜇Hz and the error with respect to our manually determined value of Δ𝜈 is in parenthesis.

Figure F2. Diagnostic plots showing the same spectra from Figure F1 but with Δ𝜈 visually determined as the value that puts the autocorrelation peaks closer
to multiples of Δ𝜈/2, makes the folded spectrum match the modelled template, and/or best aligns modes 𝑙 = 2 and 𝑙 = 0 in the échelle diagram.
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