
1.  Introduction
As water demand drastically increased due to growing population and urbanization over the last century, a 
vast installation of reservoirs proliferated worldwide, fundamentally changing the water cycle (Ripl, 2003). 
Large-scale water regulation and conveyance systems currently determine present and future water availa-
bility to society (Sivapalan et al., 2003, Vogel et al., 2015; Vörösmarty & Sahagian, 2000). In the United States 
(U.S.) alone, more than 90,000 dams change the quantity and variability of natural flow regimes, altering 
an estimated >85% of inland waterways (National Research Council, 1992). The impacts of such alteration 
propagate through river networks and affect the fluvial ecosystem in multiple ways: by preventing sediment 
transport (Willis & Griggs, 2003), by stabilizing channel morphology (Brandt, 2000; Graf, 2006; Topping 
et al., 2000), by fundamentally changing thermal and flow regimes (Olden & Naiman, 2010; Poff et al., 2007; 
Ruhi et al., 2019), and by altering the composition and dynamics of aquatic biota (Bunn & Arthington, 2002; 
Poff et al., 2007).

Many studies have investigated dam-induced flow alteration, mostly by estimating the proportion of an-
nual flows that can be withheld by a dam or a cluster of dams (Graf, 1999; Grill et al., 2014, 2015; Lehner 
et al., 2011; Mailhot et al., 2018; Nilsson et al., 2005; Vörösmarty & Sahagian, 2000). However, this metric 
may not capture whether flow alteration is affecting the periodic (‘signal’) or stochastic (‘noise’) compo-
nents of streamflow. Streamflow periodicity is a critical element in water supply and hydropower genera-
tion planning (Koch et al., 2011), and for riparian and aquatic biota with life histories that are ‘coupled’ with 
cyclical, predictable high and low flows (Lytle & Poff, 2004). Additionally, previous studies have largely pro-
vided a single, time-invariant estimate that averages fluctuations in alteration in trying to understand how 
both climate and dams together alter the flow regime (Chalise et al., 2021). Because dam operations change 
over time with dam specific objectives and regional climatic conditions, there is increasing recognition that 
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time-invariant metrics may not be sufficient to explain streamflow alteration and its impacts (Poff, 2018; 
Ruhi et al., 2018). Developing time-varying flow alteration metrics may help better understand the tran-
sience of hydrologic conditions in river basins dominated by dams – as well as their impacts. In addition, 
showing the local and watershed-scale spatiotemporal variability of streamflow alteration, which shapes 
biota and ecosystem processes along river networks, could help prioritize selection of sites for restoration 
(Palmer & Ruhi, 2019).

Streamflow variability has been typically expressed in the time domain (Box & Jenkins, 1970; Gao et al., 2009; 
Thomas & Fiering, 1962), and more recently also in the frequency domain (Milly & Wetherald, 2002; Pat-
skoski et al., 2015). Wavelet transforms, which permit the orthogonal decomposition of a time series into 
both time and frequency domains, have been applied to many geophysical time series (Farge, 1992; Foufou-
la-Georgiou & Kumar 2014; Hubbard, 1996; Kulkarni, 2000; Kwon et al., 2006, 2007; Wang & Wang, 1996; 
Weng & Lau, 1994). Some studies have demonstrated the usefulness of wavelet analysis for assessing post-
dam operational discharge modulations at specific frequencies (Ruhi et al., 2018; White et al., 2005). Wave-
let analysis provides information on the frequency at all scales and times with a single spectrum image 
that is easy to interpret, can be used when management history is uncertain, and performs well even if the 
underlying data (e.g., streamflow) is non-stationary due to external forcing (e.g., climate change) or local 
management. Building on the univariate wavelet transform, wavelet coherence examines the relationship 
of two time series in the time-frequency domain (Grinsted et al., 2004; Torrence & Compo, 1998), making it 
an ideal tool to assess how time-varying flow alteration may propagate across a river network.

Here we performed wavelet coherence analysis based on the wavelet transforms of controlled (observed) 
and naturalized (modeled “free-flowing”) streamflow data. This analysis allowed us to explore the degree 
of alteration in streamflow over time – focusing on its annual and multi-annual frequencies. The Colorado 
River Basin, a highly regulated fluvial network, is used for demonstration purposes. Similarities in the 
degree of alteration across the basin were quantified using the dynamic time warping clustering method 
(Berndt & Clifford, 1994; Keogh & Ratanamahatana, 2005). Loss of wavelet coherence represents the cumu-
lative alteration of streamflow due to both climate and human activities. Controlled flows result from re-
gional climate forcing, basin characteristics, and anthropogenic factors. In contrast, naturalized flows were 
derived by removing the anthropogenic factors. Wavelet coherence between the two (natural and controlled 
flows) measures the local correlation in the time-frequency space, revealing locally phase-locked behavior 
(Grinsted et al., 2004). Whereas high coherence at a given frequency and time indicates little to no altera-
tion, low coherence suggests high alteration. As we quantified the degree of alteration, we also identified 
dams with significant impacts on local and basin-wide alteration. We primarily focused on the annual and 
multi-annual frequencies since streamflow seasonality (i.e., the cycle of high and low flows) has a regular 
annual periodicity, while large-scale climatic fluctuations tend to manifest at a multi-annual scale. We also 
identified dams with significant impacts on their local streamflow frequency and discuss the significance of 
our approach to quantify time-varying flow alteration in the frequency domain and its propagation across 
a river network.

2.  Data
2.1.  The Colorado River Basin and Its Importance for Water Management

We focused on the Colorado River Basin (CRB) owing to its high levels of regulation, data availability, and 
importance for water resources management in the United States. Starting from Wyoming and Colorado, 
the Colorado River flows for about 2,300 km until it crosses the international border with Mexico (Figure 1). 
The total drainage area is about 637,000 km2, and extends over seven U.S. states: Arizona, California, Colo-
rado, New Mexico, Nevada, Utah, and Wyoming. More than 25 million people and ∼12,000 km2 of cropland 
depend on the Colorado River for water supply (Bruce, 2012). Colorado River water is partially diverted to 
serve Denver, Salt Lake Valley, Albuquerque, Cheyenne, Los Angeles, San Diego, and Imperial Valley in 
California. The CRB is commonly divided into two parts, the Upper (UCRB) and the Lower Colorado River 
Basin (LCRB), located upstream and downstream of Lees Ferry (immediately downstream of Glen Canyon 
Dam), respectively. The UCRB includes most of the headwaters of the Colorado River, while the LCRB com-
prises the strongly regulated and heavily altered downstream section. More than 1,400 dams exist in this 
basin, including the Hoover Dam and Glen Canyon Dam, which create the two largest reservoirs in the U.S. 
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by volume (U.S. Army Corps of Engineers, 2020). Glen Canyon Dam and Hoover Dam have been operating 
since 1963 and 1936, respectively, altering flow regimes along the Colorado River due to operations at vari-
ous time scales – sub-daily hydropeaking, seasonal low flow augmentation and flood control, and long-term 
inter-basin transfers (Maupin et al., 2018; U.S. Department of the Interior and Office of the Secretary of the 
Interior, 1996; Wiele & Smith, 1996).

Historical observations of precipitation in the CRB show strong annual and decadal variabilities that are 
assumed to be associated with global climate processes, such as El Niño-Southern Oscillation (ENSO) and 
Pacific Decadal Oscillation (PDO) (Kalra & Ahmad,  2012; Nowak et  al.,  2012; Redmond & Koch,  1991; 
Ropelewski & Halpert, 1986; Tamaddun et al., 2017). Several studies have shown that the southwestern U.S. 
often receives above-normal (below-normal) precipitation during strong El Niño (La Niña) years (Hidalgo 
& Dracup,  2003; Ropelewski & Halpert,  1986; Webb & Betancourt,  1992). Nevertheless, the UCRB and 
LCRB show distinctly different hydroclimatic characteristics. Monthly precipitation in the UCRB shows 

Figure 1.  Spatial distribution of the 26 selected USGS streamflow gauging stations and 61 intermediate-to-large NID 
dams across the Colorado River Basin (including both Upper and Lower Colorado Basins). Station numbers are also 
presented.
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a relatively even distribution throughout the year, while precipitation over the LCRB generally shows sig-
nificant seasonality with a sharp peak in summer and a secondary peak in winter (Sheppard et al., 2002; 
Whitlock & Bartlein, 1993). Snowmelt water from the Rocky Mountains contribute ∼70% of the UCRB's 
annual streamflow (Christensen et al., 2004). That is, streamflow variations during the warm season (April–
September) in the UCRB are heavily dependent on snowpacks, which are determined by precipitation dur-
ing the antecedent cold season (October–March). The hydroclimatology of LCRB is characterized by quick 
storm events and flash floods associated with the North American Monsoon, especially during the warm 
season (Douglas et al., 1993; Higgins et al., 1999).

2.2.  Naturalized Flow Data

Monthly time series of naturalized streamflow developed by the United States Bureau of Reclamation are 
available for 26 streamflow sites over the CRB. Historical data of monthly consumptive uses and losses, 
reservoir regulations, and historic flow in CRB were taken into account to calculate naturalized streamflow 
(Prairie & Callejo,  2005). Monthly consumptive uses and losses in the UCRB were obtained at a USGS 
hydrologic unit code (HUC) based on Consumptive Uses and Losses Reports, which have been published 
every five years since 1971. For the LCRB, Decree Accounting records of water use were utilized to deter-
mine consumptive uses and losses. The historic reservoir regulation data accounts for water storage and 
release from 12 mainstem reservoirs and 25 off-stream reservoirs located within the basin. The resultant 
naturalized flow covers 111 years ranging from 1906 to 2016, at a monthly scale.

2.3.  Observed Flow Data

At the 26 USGS streamflow gauging stations with available naturalized streamflow, monthly streamflow 
records have been continuously reported for at least 30 years between 1906 and 2016. The corresponding ob-
served monthly streamflow data were retrieved from the USGS National Water Information System (NWIS), 
with period of record varying by station (average length of 79 years) and the common period of record 
beginning in 1987. As this study intended to explore the level of streamflow alteration relative to its natural 
state, a wavelet coherence analysis between naturalized and observed streamflow (both at the monthly time 
scale) was carried out for the time span where continuous data is available, including the common period 
(1987–2016), at each station. The spatial distribution of the selected USGS gauging stations is shown in 
Figure 1. Stations are indexed, listed, and georeferenced in Table 1. Standardized time series of observed 
and naturalized flows at each 26 selected USGS streamflow gauging stations are provided in Figure S1 in 
Supporting Information S1.

2.4.  Criteria for Dam Selection

According to the National Inventory of Dams (NID) database, 1,455 dams are present in the CRB, fulfilling 
various purposes (mainly hydropower, flood control, water supply and irrigation). Here we only considered 
intermediate to large dams, i.e., those with a height greater than 12.2 meters or a storage capacity over 1.23 
million m3, following the definition of the American Society of Civil Engineering (Snyder, 1964). This pro-
cedure returned 61 dams (Figure 1), which are assumed to impact the riverine system where the 26 stream-
flow gauges are located. Most of these selected dams were constructed before 1987, and their cumulative 
capacity is >99.9% of the total storage of the 61 dams. We therefore assumed that further dam construction 
post-1987 had lesser impacts on flow regime alteration (e.g., via increased capacity). Connectivity between 
the selected dams and streamflow gauges was developed based on the River and Infrastructure Connectivity 
Network (RICON) tool, which systematically combines three geospatial information sources: the National 
Hydrographic Dataset (NHDPlusV2), streamflow gauges from the USGS National Water Information Sys-
tem, and NID reservoirs (Mukhopadhyay et al., 2020).
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3.  Methods
We took both the naturalized and controlled streamflow series for each station and computed the wavelet 
coherence spectrum between them – delivering a localized coefficient for each of the 256 frequency scales 
over the given period. Further details on the wavelet coherence analysis are discussed in Section 3.2. The 
wavelet coherence spectrum between the 10-month and 14-month frequency scales was then selected and 
averaged (across scales) into the annual frequency band for each timestep. Similarly, for the multi-annual 
frequency band, the wavelet coherence spectrum for frequency scales between the 24- and 60-months was 
selected and scale-averaged for each timestep. The scale-averaged wavelet coherence loss for each frequency 
band was then computed by subtracting the wavelet coherence value from 1. This scale-averaged wavelet 
coherence loss time series measures the degree of alteration over time. We finally grouped stations with 
similar time-varying wavelet coherence loss for each frequency band using the dynamic time warping hier-
archical clustering method.

In the following sub-sections, we provide details on the wavelet transform, wavelet coherence, and dynamic 
time warping hierarchical clustering methods. In Figure 2, we present the workflow diagram for the system-
atic approach that was carried out in this study.

Index number
NWIS site 
number NWIS site name (description of location)

Drainage area 
(km2) Elevation (km)

Controlled flow 
data availability

1 9,095,500 COLORADO RIVER NEAR CAMEO, CO. 20,683 1.47 1933.10–2016.12

2 9,109,000 TAYLOR RIVER BELOW TAYLOR PARK RESERVOIR, CO. 657 2.80 1938.10–2016.12

3 9,152,500 GUNNISON RIVER NEAR GRAND JUNCTION, CO. 20,520 1.41 1916.10–2016.12

4 9,180,000 DOLORES RIVER NEAR CISCO, UT 11,862 1.27 1986.10–2016.12

5 9,180,500 COLORADO RIVER NEAR CISCO, UT 62,418 1.25 1922.10–2016.12

6 9,211,200 GREEN RIVER BELOW FONTENELLE RESERVOIR, WY 11,085 1.94 1963.12–2016.12

7 9,217,000 GREEN RIVER NEAR GREEN RIVER, WY 36,259 1.85 1951.10–2016.12

8 9,234,500 GREEN RIVER NEAR GREENDALE, UT 50,245 1.71 1963.10–2016.12

9 9,251,000 YAMPA RIVER NEAR MAYBELL, CO 8,761 1.80 1916.05–2016.12

10 9,260,000 LITTLE SNAKE RIVER NEAR LILY, CO 10,448 1.73 1921.10–2016.12

11 9,302,000 DUCHESNE RIVER NEAR RANDLETT, UT 9,816 1.45 1942.10–2016.12

12 9,306,500 WHITE RIVER NEAR WATSON, UT 10,411 1.51 1923.10–2016.12

13 9,315,000 GREEN RIVER AT GREEN RIVER, UT 116,160 1.23 1905.03–2016.12

14 9,328,500 SAN RAFAEL RIVER NEAR GREEN RIVER, UT 4,216 1.28 1945.10–2016.12

15 9,355,500 SAN JUAN RIVER NEAR ARCHULETA, NM 8,443 1.72 1962.10–2016.12

16 9,379,500 SAN JUAN RIVER NEAR BLUFF, UT 59,569 1.23 1927.04–2016.12

17 9,380,000 COLORADO RIVER AT LEES FERRY, AZ 289,560 0.94 1921.10–2016.12

18 9,382,000 PARIA RIVER AT LEES FERRY, AZ 3,651 0.95 1923.10–2016.12

19 9,402,000 LITTLE COLORADO RIVER NEAR CAMERON, AZ 68,528 1.21 1947.10–2016.12

20 9,402,500 COLORADO RIVER NEAR GRAND CANYON, AZ 366,742 0.74 1922.10–2016.12

21 9,415,000 VIRGIN RV AT LITTLEFIELD, AZ 13,183 0.54 1929.10–2016.12

22 9,421,500 COLORADO RV BLW HOOVER DAM, AZ-NV 444,700 0.21 1934.04–2016.12

23 9,423,000 COLORADO RIVER BELOW DAVIS DAM, AZ-NV 448,844 0.15 1949.03–2016.12

24 9,426,000 BILL WILLIAMS RIVER BELOW ALAMO DAM, AZ 11,999 0.30 1969.10–2016.12

25 9,427,520 COLORADO RIVER BELOW PARKER DAM, AZ-CA 473,190 0.09 1935.01–2016.12

26 9,429,490 COLORADO RIVER ABOVE IMPERIAL DAM, AZ-CA 488,212 NA 1976.10–2016.12

Table 1 
Details of the USGS Streamflow Gauging Stations Used in the Study
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3.1.  Wavelet Transform

As this study investigated the level of alteration in streamflow relative to its natural state in terms of time 
and frequency, we determined wavelet coherence between monthly naturalized and controlled (observed) 
streamflow. Decomposing a time series into a time-frequency domain allows for localizing intermittent 
periodicities across scales (Torrence & Compo, 1998). This process conjugates the given time series with a 
flexible wavelet function, which can be temporally dilated/compressed while it translates along the time-
steps. High-frequency features of a given time series can be captured with a wavelet function narrow in 
time, whereas low-frequency components can be analyzed with a dilated wavelet function. A variety of 
wavelet functions (or ‘mother wavelets’) are available; here, we implemented the Morlet wavelet, defined as,

       
21/4 /20

0
iwe e� (1)

where 0E w  and E  are the dimensionless frequency and time, respectively. The non-dimensional frequency of 
the Morlet wavelet was set as 6 in this study to satisfy the wavelet admissibility (Farge, 1992). This complex 
wavelet function returns information about both the amplitude and phase, and thus makes itself applica-
ble for describing wave-like oscillatory behaviors such as streamflow and precipitation (Kumar & Foufou-
la-Georgiou, 1997; Labat, 2005; Torrence & Compo, 1998). The continuous wavelet transform of a discrete 
time series (  nE x  ) with equal time spacing of E t is defined as the convolution with a scaled and normalized 
wavelet function (Torrence & Compo, 1998) as

    






 
   

 

1

0

N
X

b n
n

tW a x n b
a� (2)

where  X
bE W a  is the wavelet spectrum, a is the scale parameter, b is the localized time index, N is the total 

number of sample points in the time series, the (*) indicates complex conjugate, and E  is the normalized 
 0E  . The  0E  was normalized to have unit energy at each scale in Equation 2 to ensure the wavelet transforms 
at each scale are directly comparable. The convolution was done for N times for each scale to estimate the 

wavelet power spectrum in both time and frequency scales, and the wavelet power is defined as  
2X

bE W a  .

Figure 2.  Methodological flowchart for the wavelet coherence analysis.
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3.2.  Wavelet Coherence

Wavelet coherence is a quantity that describes the coherence between two different time series based on 
their cross-wavelet transforms as a function of both time and frequency. Given two time series X and Y, the 
cross-wavelet spectrum is defined as

     XY X Y
b b bW a W a W a� (3)

where (*) denotes the complex conjugate. The cross-wavelet spectrum reveals the covariance between the 
time series as a function of time and frequency. By dividing the square of the absolute value of the smoothed 
cross-wavelet power with smoothed wavelet power spectra, one can obtain the wavelet coherence, 2E R  (Tor-
rence & Webster, 1999):

 

   



 

 

    

21
2

2 21 1

XY
b

X Y
b b

a W a
R

a W a a W a
� (4)

This provides a quantity ranging from 0 to 1, representing the localized correlation coefficient in time and 
frequency space (Grinsted et al., 2004). The brackets 〈·〉 in Equation 4 indicate smoothing in both time and 

scale. For the Morlet wavelet, the temporal smoothing operator is a Gaussian function, 
   
 

2 2/ 2t s
E e  , while the 

scale smoothing is done using a boxcar filter. For a more elaborate description of the wavelet coherence, see 
Torrence and Webster (1999).

We were interested in knowing how wavelet coherence between the naturalized and controlled flow evolved 
over time at the annual and multi-annual frequency bands. To this end, we computed the scale-averaged 
coherence for each time step based on each frequency band of the annual frequency (10–14 months) and 
multi-annual frequency (24–60 months). In turn, the coherence loss at each timestep was calculated by 
subtracting the coherence value from 1. This procedure yields a time series of wavelet coherence loss of 
controlled relative to naturalized flow at the annual and multi-annual frequency bands. Sub-annual fre-
quencies were not examined in this study since these are primarily associated with short-term management, 
which may produce high-frequency signals that are difficult to differentiate from random noise. Moreover, 
we assumed these short-term management signals would have a low impact on the systematic coherence 
loss in streamflow across the basin. We note that the resolution of a continuous wavelet transform is de-
termined by the tradeoff between temporal and frequency resolutions of the wavelet. We can retain the 
temporal accuracy of the scale-averaged wavelet coherence loss in the annual frequency scale, whereas loss 
in the multi-annual frequency scale contains less accurate temporal information. Thus, for multi-annual 
features we focus on long-term trends rather than explaining them locally. While we focused on annual and 
multi-annual frequency resolutions because the given data were at the monthly time scale, if daily/sub-dai-
ly data are available, sub-daily management signals could be also resolved. For example, Ciria et al. (2019) 
identified streamflow regime breakpoints caused by anthropogenic factors at different scales, including 
sub-weekly, weekly, and annual scales, using wavelet analysis.

3.3.  Dynamic Time Warping Based Hierarchical Clustering

To explain the regional discordance between controlled and naturalized flow across the basin, stations were 
clustered in groups based on their scale-averaged time-varying wavelet coherence loss from 1987 to 2016. 
Since most dams in the basin were constructed before 1987, coherence analysis after this period provides 
a complete dam-induced alteration signal. Euclidean distance is typically used as a similarity measure for 
clustering. However, as Euclidean distance is determined by aligning the ith point in one sequence with the 
ith point in the other, it is susceptible to phase lags and outliers, a critical aspect when clustering cascading 
stations. Here we implemented the dynamic time warping (DTW) technique instead, which provides a ro-
bust distance metric for similarity quantification. Unlike the Euclidean distance, DTW is a flexible measure 
that can detect similarities between time series even if they are out of phase (Berndt & Clifford, 1994; Keogh 
& Ratanamahatana, 2005). Based on the DTW similarity measures, the wavelet coherence loss dynamics at 
different stations were grouped using the hierarchical clustering method. The optimal number of clusters 
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was determined based on the elbow method (Thorndike, 1953). The impacts of anthropogenic regulation 
and climatic forcing on wavelet coherence loss were then explored based on the resultant clusters.

3.4.  Wavelet Coherence Interpretation Under “Known” Signals

Before interpreting wavelet coherence loss results for the CRB, we performed wavelet coherence under 
known time series signals, here referred to as “experiments”. These experiments provide the sensitivity 
of wavelet coherence to changes in the wave components of signals in specific frequency bands. For this 
purpose, we created two noiseless identical sinusoidal time series (  1E y  and 2E y  ) containing both annual and 
multi-annual frequency signals (Equations 5 and 6):

         1 1 1 1 2 2 22 2y A sin f t A sin f t� (5)

         3 3 3 4 4 42 2 2y A sin f t A sin f t� (6)

In the above equations, 1E A  and 3E A  are the amplitude of the annual signal; 2E A  and 4E A  indicate the amplitude 
of the multi-annual signal. 1E f  and 3E f  signify the annual frequency; 2E f  and 4E f  are the multi-annual frequency. 
1E  and 3E  are the phase lag of the annual signal; and 2E  and 4E  represent the phase lag of the multi-annual 
signal. In a sequence of six simulations, one of the two time series, 1,E y  remains unperturbed, whereas the 
other, 2E y  , is set to have the signal characteristics change over time. Each simulation focused on one frequen-
cy band at a time, and measured wavelet coherence between the two time series while ensuring only one 
wave component changes over time. For example, in the first simulation, the amplitude of the second time 
series that relates to the annual frequency (  3E A  ) is altered three times over the 1,500 time periods. Between 
 1E t  to  375E t  , 3 1E A  ; between  376E t  to  750E t  , 3 2 / 3E A  ; between  751E t  to  1125E t  , 3 1 / 3E A  ; and 

between  1126E t  to  1500E t  , 3 0E A  ; hence creating a time series where the amplitude systematically tapers 
off to zero. Likewise, in the second and third simulation, the phase lag ( 3E  ) and the frequency (  3E f  ) is altered 
systematically. The amplitude (  4E A  ), phase lag ( 4E  ) and frequency (  4E f  ) of the multi-annual band were altered 
in simulations four to six. Phase lag components were altered four times over the 1,500 time periods during 
the simulations. Details of the six simulations are summarized in Table 2.

For both frequency bands, changes in the amplitude resulted in a temporary drop in the wavelet coherence, 
followed by an immediate recovery (Figures 3a and 3d). Unless the amplitude of the frequency signal was 

Frequency band Wave component Simulation Description

Annual Amplitude 1 1E A  (Constant) Significant change in wavelet coherence is observed only 
when the amplitude was completely diminished

3 1E A  , 2
3

E  , 1
3

E  , 0E

Phase Lag  1 0E  (Constant) Wavelet coherence instantaneously fluctuates whenever 
the phase lag changes by π

 3 0E  , 
4

E  , 
2

E  , E  , 0E

Frequency 1 12E f  (Constant) A permanent shift in the wavelet coherence is observed 
whenever there is a change in the frequency3 12E f  , 13E  , 15E  , 17E

Multi-Annual Amplitude 2 1E A  (Constant) Significant change in wavelet coherence is observed only 
when the amplitude was completely diminished

4 1E A  , 2
3

E  , 1
3

E  , 0E

Phase Lag  2 0E  (Constant) Wavelet coherence instantaneously fluctuates whenever 
the phase lag changes by π

 4 0E  , 
4

E  , 
2

E  , E  , 0E

Frequency 2 48E f  (Constant) A permanent shift in the wavelet coherence is observed 
whenever there is a change in the frequency4 48E f  , 49E  , 54E  , 60E

Table 2 
Summary of Wavelet Coherence Simulation
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completely removed, changes in amplitude had a minor impact on wavelet coherence — if entirely re-
moved, wavelet coherence exhibited a significant downward shift.

Wavelet coherence finds locally phase-locked behaviors (Grinsted et al., 2004), and therefore, changes in the 
phase difference between two signals have a minimal impact on the fluctuation of the wavelet coherence at 
any frequency level (Figures 3b and 3e). However, it is shown from the simulation that the wavelet coher-
ence drastically decreases and recovers whenever one of the signals changes its phase by π. Instantaneous 
fluctuations in the wavelet coherence caused by this phase shift can be detected by comparing the phase 
differences between the signals before and after the expeditious fluctuation.

As expected, wavelet coherence showed the most sensitive response to changes in frequency (Figures 3c 
and 3f). Wavelet coherence began to shift as soon as the frequency of signals started to differ from each oth-
er. The larger the frequency change, exponentially more the wavelet coherence was lost. During these sim-
ulations, it was confirmed that the temporal resolution of wavelet coherence was lower in the multi-annual 
frequency band than in the annual frequency band. Wavelet coherence responded immediately to changes 
in the relationship between the signals in the annual frequency band, while it tended to lag in the multi-an-
nual frequency band. This observation reflects the tradeoff between the temporal and frequency resolutions 
of the wavelet. To summarize the simulations, fluctuations in wavelet coherence could be affected by any 
wave component, but permanent shifts were only induced by changes in frequency.

Figure A1 presents an example of the wavelet coherence analysis between the naturalized and controlled 
flows downstream of Glen Canyon Dam. Streamflow amplitude decreased remarkably after the construc-
tion of Glen Canyon Dam in 1963 (Figures A1d and A1e), and the annual frequency of streamflow dimin-
ished (Figures A1a and A1b). However, considering the findings from our experiments, the significant de-
cline in wavelet coherence between naturalized and controlled flows in both the annual and multi-annual 
frequency bands (Figures A1c and A1f) was presumed to be dominantly caused by the distortion in the 
frequency component of streamflow. The inferences from this experiment were then used to better explain 
wavelet coherence results for the CRB.

Figure 3.  Wavelet coherence simulations between two synthetic sinusoidal time series 1E y  and 2E y  . The simulated time series 1E y  and 2E y  were initially set to be 
identical to each other, and one wave component of 2E y  was forced to change over time for each simulation while the other components remained fixed. The 
time-varying wavelet coherence between 1E y  and 2E y  was estimated when the amplitude component of the annual signal of 2E y  (  3E A  ) changes over time (a), when the 
phase lag component of the annual signal of 2E y  ( 3E  ) changes over time (b), and when the phase lag component of the annual signal of 2E y  (  3E f  ) changes over time 
(c). Similarly, the simulation measures wavelet coherence between 1E y  and 2E y  when the amplitude component of the multi-annual signal of 2E y  (  4E A  ) changes over 
time (d), when the phase lag component of the multi-annual signal of 2E y  ( 4E  ) changes over time (e), and when the phase lag component of the multi-annual 
signal of 2E y  (  4E f  ) changes over time (f).
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4.  Results
As a result of DTW-based hierarchical clustering, the 26 streamflow gaging stations were classified into four 
clusters for both the annual and multi-annual frequency bands. Figures 4 and 5 show the stations constitut-
ing each cluster and the behavior of wavelet coherence loss for each cluster in the annual and multi-annual 
frequency ranges, respectively. Panel (a) of Figures 4 and 5 show the spatial distribution of the 26 stations 
and the cluster they belong. Panels (b) to (e) show wavelet coherence loss time series for the stations repre-
senting the clusters. While the DTW-based hierarchical clustering was applied to 1987–2016 data, wavelet 
coherence loss for the entire time series is shown in these panels. Dam constructions are also illustrated in 
these figures, with the evolution of each cluster's cumulative reservoir capacity. The time-varying wavelet 
coherence loss between naturalized and controlled streamflow is qualitatively explained for each cluster 
and frequency band – their collective characteristics in relation to the climate and anthropogenic condi-
tions. We assumed that naturalized flow represents climatic conditions. For each station, the mean annual 
naturalized flow was divided into three categories based on the terciles (33 percentile and 66 percentile), 
each representing a dry, neutral, and wet year, in ascending order.

4.1.  Annual Frequency

Based on wavelet coherence loss at the annual frequency, the river network of CRB was clustered into four 
groups. The annual frequency component was relatively well preserved across the basin even in areas where 
streamflow was heavily regulated, such as the downstream of Hoover Dam, whereas some tributaries in 
the UCRB have been showing significant variability in the annual wavelet coherence loss. The section im-
mediately downstream of Glen Canyon Dam has been systematically losing its annual frequency since the 
construction of Glen Canyon Dam in 1963.

The first cluster included eight stations from the UCRB and four stations from the tributaries in the LCRB 
(Figure  4a). The time series of wavelet coherence loss for these 12 stations show that streamflow lost 

Figure 4.  Cluster profiles based on wavelet coherence loss of streamflow regarding annual frequency (10–14 months). The spatial distribution of the clusters 
(a) and time series of wavelet coherence loss at each cluster (b–e) is shown. Each cluster is assigned with different colors, as shown in the map, and its time 
series of wavelet coherence loss is displayed following the same color scheme. Each set of time-varying wavelet coherence loss is locally fitted (LOWESS) 
for each cluster and is shown with a solid black line. The vertical dashed line indicates year 1987. In the lower part of each subplot, upstream reservoirs' 
construction timing is depicted for each cluster, with black and gray points over time. Black points indicate construction of immediate upstream reservoirs, 
which directly fed the cluster at that time, whereas gray points represent the installation of upstream reservoirs with indirect impact. Change in immediate 
upstream reservoirs' total storage capacity is shown in a scaled measure for each cluster (solid blue line). The fitted line for cluster 1 is overlapped with the zero-
base line.
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coherence with the naturalized flow by less than 33% (low coherence loss) in terms of annual frequency at 
these stations since 1987 (past 30 years) (Figure 4b). This suggests that anthropogenic influences such as 
management have had little to minimal impact on annual frequency of streamflow at these locations.

Cluster-2 consisted of eight stations, four of which are located along the Colorado River after Hoover Dam, 
and the rest along tributaries of the UCRB (Figure 4a). It is notable that the Colorado River below Hoover 
Dam shows similar behavior to the UCRB tributaries in terms of annual frequency. Average wavelet coher-
ence loss was 11%, and an evident temporal variation was observed at these stations (Figure 4c). The prob-
ability of wavelet coherence loss exceeding 66% (high coherence loss) was negligible at these eight stations 
for years 1987–2016. Coherence loss was mostly less than 33% (low coherence loss) during those years, 
regardless of the annual climate conditions. As shown in Figure 4c, this cluster consisted of two groups of 
stations that exhibited different behaviors in the earlier years (1930–1980). During this period, the Colorado 
River downstream of Hoover Dam exhibited more temporal variability in wavelet coherence loss than the 
more recent 30-year period, while UCRB tributaries showed a constant behavior.

The third cluster contained four stations in the UCRB, mostly in tributaries regulated by dams (Green River, 
San Juan River, San Rafael River, Duchesne River) (Figure 4a). Average wavelet coherence loss of stream-
flow at these stations was 28%, and significant interannual variability was observed (Figure 4d). Wavelet 
coherence loss at two of these stations (San Rafael River, Duchesne River) tended to be relatively greater 
during dry years (e.g., 1988, 1989, 1990, 2002, 2003, 2004). In contrast, wavelet coherence was preserved 
during wet and dry years at the Green and San Juan Rivers. The probability of wavelet coherence loss being 
less than 33% (low coherence loss) was 72% on average across stations. When examining climatically wet 
and dry years, the probability remained high (58%–81%). The overall probability of losing wavelet coherence 
by 33%–66% (medium coherence loss) was 19%. Depending on climatic conditions, this probability became 
7% under wet conditions, 25% under neutral conditions, and 25% under dry conditions (on average). The 
probability of wavelet coherence loss being greater than 66% (high coherence loss) at these four stations was 
10% on average. Under drier conditions, wavelet coherence loss exhibited a higher probability of exceedance 
(11%–38%) except at one station (San Juan River), where exceedance never occurred over the given 30-year 
period.

Wavelet coherence loss estimates at these stations showed a synchronized pattern of fluctuation over time 
since the 1980s. To explain this better, we explored wavelet coherence in (annual frequency) between the 

Figure 5.  Cluster profiles based on the wavelet coherence loss of streamflow regarding multi-annual frequency (24–60 months). The spatial distribution of the 
clusters (a) and time series of the wavelet coherence loss at each cluster (b–e) is shown. Rest of the figure is similar to the description provided in Figure 4.
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naturalized flow series of these four stations with one another (i.e., coherence between the natural flows 
of San Rafael River and Duchesne rivers, San Rafael River and Green River, San Rafael River and San Juan 
River, Duchesne River and Green River, Duchesne River and San Juan River, and Green River and San Juan 
River) (Figures A2–A6). We confirmed a high level of synchronicity regardless of their distant location. 
This shows that these four stations have a high degree of co-variability in their naturalized flows, indicating 
that regional climatic fluctuations at these locations are very similar. The fact that wavelet coherence loss 
estimates at these stations between natural and controlled flows show a synchronized pattern of fluctua-
tion over time (since the 1980s) also indicates they have a high degree of co-variability in controlled flows, 
indicating a synchronized alteration – similar anthropogenic forcing. In other words, streamflow at these 
four stations may have been under similar controls in terms of annual frequency since the 1980s. As shown 
in Figure 4d, significant shifts in wavelet coherence loss can be observed since 1987. These shifts can occur 
when the annual frequency is particularly disrupted in either the naturalized or controlled streamflow. Ac-
cording to the wavelet power spectra, controlled flows had a weak annual frequency signal during the shifts, 
whereas naturalized flows showed statistically significant annual frequency signals for most of the time at 
these four stations (Figure A2). The significant shift of wavelet coherence loss that occurred at Cluster-3 in 
the 1980s is reflected in the Final Biological Opinion on the Operation of Flaming Gorge issued by the U.S. 
Fish and Wildlife Service in 1992. The opinion stated that Flaming Gorge Dam's operation would endanger 
the aquatic biota and riparian ecology of the Green River (U.S. Fish and Wildlife Service, 1992). During 
this time, additional constructions for water storage facilities were planned, and hydrologic assessments 
suggested that ecological impacts could be partially counterbalanced by flexibly changing the operation of 
Navajo Dam (U.S. Fish and Wildlife Service, 1991). In 1993, the U.S. Bureau of Reclamation started to alter 
the operation of these dams to meet flow recommendations outlined in the 1992 Final Biological Opinion. 
This operational change coincides with the recovery of the wavelet coherence loss of the cluster.

Lastly, the fourth cluster consisted of two sequential stations in the Colorado River mainstem below Glen 
Canyon Dam (Figure 4a). Their overall average wavelet coherence loss was 54%, and a systematic loss in 
wavelet coherence was observed with a quasi-cyclical variability (Figure 4e). Trends in wavelet coherence 
loss at these two stations were tested using the Mann-Kendall test (Kendall, 1948; Mann, 1945), both show-
ing a statistically significant upward trend (Mann-Kendall tau = 0.68, 0.71; p-value < 0.01). The beginning 
of this trend coincided with the completion of Glen Canyon Dam in 1963. The wavelet power spectrum of 
naturalized flow at these stations indicates that the annual frequency signal is statistically significant across 
the study period. In contrast, the annual frequency signal in controlled flow at these stations is mostly di-
minished (Figure A3). Therefore, the systematic increase in wavelet coherence loss observed in Cluster-4 
is assumed to be due to anthropogenic factors rather than to climate. At this point it would be premature 
to conclude that Glen Canyon Dam's operations are the dominant cause for the distortion. It is possible 
for streamflow to exhibit high levels of frequency distortion even while its immediate upstream reservoirs 
pass on their upstream hydrograph. That is, wavelet coherence loss of streamflow could propagate from 
upstream as affected by other dams, while the dams located immediately upstream operate in a way that 
do not alter streamflow frequency. Details of this aspect will be discussed in Section 4.3. Meanwhile, the 
probability of observing coherence loss greater than 33% (medium or high coherence loss) at these two 
stations was 89% and 79% respectively, and probabilities of coherence loss exceeding 66% (high loss) were 
both 30%. Regardless of climate, the average probability of exceedance remained significant (Wet: 29%, 
Neutral: 35%, Dry: 22%). Specifically, wavelet coherence loss (WCL) at the station immediately below the 
Glen Canyon Dam had a probability P(WCL > 0.66) = 0.29, while P(WCL > 0.66|Wet) = 0.29 and P(WCL 
> 0.66|Dry) = 0.22. At the other station, P(WCL > 0.66) = 0.31, and P(WCL > 0.66|Wet) = 0.33, P(WCL 
> 0.66|Dry) = 0.23. Wavelet coherence loss of streamflow at these two stations showed a similar modality 
despite tributaries joining between them.

4.2.  Multi-Annual Frequency

The analysis of wavelet coherence loss for multi-annual frequency classified the river network into four 
different clusters: all rivers of UCRB (except San Juan River) and tributaries in LCRB (Cluster-1), the San 
Juan River (Cluster-2), a segment of the Colorado River below Hoover Dam (Cluster-3), and the section 
immediately downstream of Glen Canyon Dam (Cluster-4). While wavelet coherence loss of multi-annual 
frequency remained at a relatively low level in most UCRB rivers, significant losses were observed in other 
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regions. A systematic increase in wavelet coherence loss has been observed since completion of Navajo Dam 
in 1962. The section immediately downstream of Glen Canyon and Hoover Dams has shown a high level of 
alteration in the multi-frequency component, but the downstream of Glen Canyon Dam has been recently 
recovering its wavelet coherence loss.

The first cluster comprised 14 stations from the UCRB and four stations in the LCRB tributaries (Figure 5a), 
for a total of 18 stations. As shown in Figure 5b, estimated wavelet coherence loss was relatively low at these 
stations, with an average of 4% for the multi-annual frequency band. Wavelet coherence loss never exceeded 
66% at these stations, regardless of climate conditions (dry or wet years). A few stations showed moderate 
levels of wavelet coherence loss (33% < WCL < 66%) during a few months, but most of the losses were lower 
than 33% (low coherence loss) over the study period. This cluster contained all 12 stations of Cluster-1 from 
the annual frequency analysis. Moreover, three stations classified as Cluster-2 from the annual frequency 
analysis were also included in this cluster. Cluster-1 and Cluster-2 from the annual frequency analysis rep-
resented stations with little to no coherence loss in the annual frequency. That is, those 15 stations retained 
a low level of modification at both the annual and multi-annual frequency scales.

The second cluster consisted of two stations in the San Juan River (Figure 5a). As shown in Figure 5c, a sys-
tematic increase in the multi-annual wavelet coherence loss was observed at these two stations (Mann-Ken-
dall tau = 0.84, 0.81; p-value < 0.01). This trend began to develop with the completion of Navajo Dam, the 
largest dam on the San Juan River. This systematic increase may be attributable to the drastic reduction of 
the multi-annual frequency in the controlled flow, which can be observed from its wavelet power spectrum 
(Figure A4). The increasing trend in multi-annual wavelet coherence loss in the San Juan River is assumed 
to be mainly driven by dam operations or other anthropogenic factors. To determine whether Navajo Dam 
had a significant impact on coherence loss in the San Juan River, the dam's local regulation was assessed 
by investigating wavelet coherence upstream vs. downstream of the dam (see Section 4.3). One station of 
this cluster is located downstream of the other and was classified as Cluster-2 from the annual frequency 
analysis, showing little to no coherence loss in the annual frequency range. The other station is immediate-
ly downstream of the Navajo Dam and belonged to Cluster-3 of the annual frequency analysis, exhibiting 
significant interannual variability in the annual wavelet coherence loss. Both the annual and multi-annual 
signals in the San Juan River were disrupted in the upstream, and the annual frequency partially recovered 
as the streamflow proceeds along the river. However, the disruption of the multi-annual signal mostly prop-
agated downstream.

The four stations along the Colorado River mainstem below Hoover Dam were grouped as Cluster-3 (Fig-
ure 5a). The multi-annual wavelet coherence loss at these four stations was high, 73% on average since 
1987, with some temporal variability (Figure 5d). Interestingly, these four stations had been categorized as 
Cluster-2 in the annual frequency analysis, with little to no coherence loss in the annual frequency range. 
In other words, streamflow at these four stations had lost its coherence in terms of multi-annual frequen-
cy, while the annual frequency feature was preserved (during the 30-year study period). A shift in wavelet 
coherence loss was observed at these four stations in the 1950s after the construction of Davis Dam. The 
multi-annual frequency wavelet power spectrum of controlled flow exhibited a deflation in both variability 
and scale-averaged power since dam completion. In contrast, a consistent quasi-oscillatory signal of the 
multi-annual frequency component was observed in the wavelet power spectrum of naturalized flow across 
the 30-year period (Figure A5). These observations led us to assume that an operational change to the local 
dams after construction of Davis Dam partially diminished the local streamflow's coherence with its natu-
ralized flow at the multi-annual scale. The Mexican Water Treaty of 1944 ensured the construction of Davis 
Dam to regulate and deliver annual flow to Mexico (U.S. Bureau of Reclamation, 1946), which, in turn, 
likely contributed to the recovery of annual frequency in streamflow downstream of Davis Dam.

Cluster-4 comprised two sequential stations in the Colorado River below Glen Canyon Dam (Figure 5a). A 
recovery in multi-annual wavelet coherence was observed at these stations during the past 30 years. Over 
the extended time series shown in Figure 5e, wavelet coherence loss increased dramatically as Glen Canyon 
Dam's construction started in 1956, and it has recently been decreasing. The ascending shift in wavelet co-
herence loss may result from the multi-annual frequency signal's subsidence in the controlled streamflow, 
which can be observed in its wavelet power spectrum (Figure A6). The recent decrease in wavelet coherence 
loss reflects a recovery of the local correlation in multi-annual frequency signal between naturalized and 
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controlled flows. The mean probability of wavelet coherence loss exceeding 66% (high coherence loss) at 
these two stations is 0.36.

4.3.  Local Impacts of Dams on Frequency Alteration

In previous sections we focused on stations where streamflow showed significant distortion in frequency 
and examined whether it was mainly due to anthropogenic factors or changes in the regional climate. Even 
if frequency loss at a given station is presumed to be driven by anthropogenic factors, the distortion does 
not need to take place immediately upstream of the station – it could have been increasing cumulatively 
over the entire network. To identify reservoirs or group of reservoirs with significant contributions to such 
streamflow alteration, we computed the time-averaged wavelet coherence loss between the controlled flow 
series upstream and downstream of each dam cluster, for both the annual and multi-annual frequency 
bands. Local regulation was ascribed to dams that regulate flow between upstream-downstream pair(s). 
In addition, the time-averaged wavelet coherence loss between the naturalized and controlled streamflow 
series was computed for each station and frequency band. We assumed this metric captures cumulative 
alteration across the river network.

Local regulation and cumulative discordance for both the annual and multi-annual frequency bands are 
shown in Figure 6 with a simplified riverine network diagram. The figure presents the time-averaged wave-
let coherence loss between naturalized and controlled flow in circles across the basin, and they indicate the 
cumulative alterations in frequency. Meanwhile, the time-averaged wavelet coherence loss between the up-
stream and downstream controlled flow series of each dam or dam cluster is shown in triangles – they rep-
resent local alteration in frequency due to the corresponding dam or dam cluster. We found that the annual 
frequency of streamflow was less cumulatively altered at most of the stations in the UCRB. Alteration on 

Figure 6.  Simplified diagram of the riverine network with local and cumulative streamflow alteration measured for both the annual (a) and multi-annual 
frequency bands (b). Dam-induced local regulation is represented with triangles, and cumulative alteration is denoted with circles.
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annual frequency generally became more perceptible as the river proceeded, especially after Glen Canyon 
Dam, but it eventually recovered (as it passed Hoover Dam). The annual frequency signal of streamflow at 
station 15 (San Juan River near Archuleta, NM) in the San Juan River was moderately regulated, and the 
downstream group of dams showed a low level of local regulation on the annual frequency signal of stream-
flow (0.09). Consequently, streamflow recovered its distorted annual frequency signal by the time it reached 
station 16 (San Juan River near Bluff, UT). This recovery may be induced by confluences of tributaries with 
a robust annual frequency signal. Glen Canyon Dam showed a significant impact on the local streamflow's 
annual periodicity (0.58), and it propagated to station 20 (Colorado River near Grand Canyon, AZ). Hoo-
ver Dam seemed to heavily regulate the annual frequency of the local streamflow (0.56), but in a way that 
got closer to the “naturalized” annual frequency. This could be partially due to the Mexican Water Treaty 
of 1944, where the U.S. agreed to commit 1,850 million m3 of the Colorado River's annual flow to Mexico 
(U.S. Bureau of Reclamation, 1946) at scheduled monthly minimum agreements. Dams on the mainstem 
downstream of Hoover Dam had minimal impact on the annual frequency. Therefore, streamflow regime 
characteristics at these four stations in Cluster-2 arise from local regulation at Hoover Dam and the opera-
tion of subsequent dams “inheriting” upstream hydrographs.

The multi-annual frequency feature of streamflow was less altered in the UCRB, except in the San Juan Riv-
er. The multi-annual frequency component of the Colorado River below Glen Canyon Dam showed a high 
degree of alteration and became even higher as it passed through Hoover Dam. For the multi-annual fre-
quency scale, a significant degree of cumulative alteration was observed at station 15 (San Juan River near 
Archuleta, NM), and it propagated down the San Juan River. This cumulative distortion of the San Juan Riv-
er's multi-annual frequency was partially recovered reaching station 16 (San Juan River near Bluff, UT), but 
not enough to resemble its natural state. For both the annual and multi-annual frequency bands, the cluster 
of reservoirs that directly fed station 16 (San Juan River near Bluff, UT) showed negligible local regulation 
(0.17). Considering there are no major dams in the San Juan River other than those feeding station 15 (San 
Juan River near Archuleta, NM) and 16 (San Juan River near Bluff, UT), the mutual behavior of streamflow 
at these stations for the multi-annual frequency, shown in Cluster-2 of the multi-annual frequency analysis, 
is assumed to be driven by management of the Navajo Dam. Glen Canyon Dam significantly regulated the 
multi-annual frequency component of local streamflow (0.41). Since there are no major dams in the river 
segment that significantly affects the multi-annual frequency signal of the streamflow between station 17 
(Colorado River at Lees Ferry, AZ) and 20 (Colorado River near Grand Canyon, AZ), the mutual pattern of 
wavelet coherence loss of multi-annual frequency (shown in Cluster-4) is likely due to the local regulation 
of Glen Canyon Dam. Hoover Dam also had significant control over the multi-annual frequency signal 
of local streamflow (0.64), and downstream of the dam showed a consistent pattern in wavelet coherence 
loss. There are three major dams downstream of Hoover Dam (Davis, Parker, Headgate Rock), which have 
negligible local impacts on the cumulative distortion of the multi-annual frequency band (0.05, 0.25, 0.06). 
This observation suggests that local regulation of Hoover Dam drives the observed multi-annual frequency 
coherence loss in Cluster-3.

5.  Discussion
This study focused on quantifying streamflow alteration particularly the contribution from local dams over 
the CRB. However, joint operations of dams within the basin collectively control flow and propagate alter-
ation from the headwaters to the lower sections of the CRB. Detailed information of operation rules of res-
ervoirs is difficult to extract particularly for multi-purpose reservoirs with complex treaties. Hence, joint op-
erations were indirectly explored by focusing on compacts, decrees, contracts, and regulatory guidelines for 
the CRB. The Colorado River Compact of 1922 divided the CRB into upper and lower halves and required 
the upper basin to maintain the annual flow at Lee Ferry (below Glen Canyon Dam) at least 9,250 million 
m3 (U.S. Bureau of Reclamation, 1922). This compact may have contributed to the distinct difference be-
tween flow alteration patterns at UCRB and LCRB as shown in Figure 6. The natural annual frequency 
band was mostly preserved in the upper basin. In turn, the restoration of the annual frequency by Hoover 
Dam and preservation of the restored annual frequency by subsequent dams (Figure 6a) could be related to 
the Mexican Water Treaty of 1944, which defines biannual allotment of water delivery from the Colorado 
River to Mexico at the monthly scale (U.S. Bureau of Reclamation, 1946). This complex water policy and 
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management framework hinders precise attribution of streamflow alteration, and future studies could build 
on our efforts by examining joint operations via release data of each reservoir.

This study assessed the cumulative and local impacts of dams on flow frequencies to better understand how 
altered flow frequencies propagate through river networks – a critical need in highly regulated basins. Our 
approach focused on explaining spatiotemporal changes in frequency components of streamflow and could 
help prioritize sites for restoration or environmental flow operations (Palmer & Ruhi, 2019). Studies have 
been conducted to establish frameworks for environmental management of reservoirs (Richter & Thom-
as, 2007; Wang et al., 2015; Yang & Cai, 2011), as environmental flow operations and/or preservation of 
free-flowing tributaries may help restore specific dimensions of flow variability (e.g., at daily and seasonal 
scales). Preserving natural patterns of flow variability, and not just annual flow magnitudes, has shown to 
contribute to native biodiversity conservation, while the contrary (flow “stabilization”) has shown to favor 
biological invasions across the U.S. rivers (e.g., Comte et al., 2021). Because the frequency component of 
streamflow is often strongly coupled with key life histories of riparian and riverine organisms, such as sea-
sonal reproduction and dispersal events (Bain et al., 1988; Lytle & Poff, 2004; Richter et al., 1996), alterations 
in the frequency domain are often ecologically consequential. Thus, the proposed approach could con-
tribute to identifying river reaches and times when alteration of a specific frequency could be particularly 
damaging from an ecological standpoint.

Many other methods exist to quantify human-induced hydrologic changes, such as the Indicators of Hy-
drologic Alteration (IHA; Chalise et al.,  2021; Poff et al.,  2010; Richter et al.,  1996). The IHA method is 
based on 32 hydrologic metrics that describe five different facets of the flow regime, including magnitude, 
duration, timing, and frequency of high and low flow pulses. However, IHA and similar methods often 
require splitting the time series, so that part of it is used as a reference (e.g., pre-dam conditions) against 
which to compare the second part. In contrast, our approach allows localizing changes in amplitudes of 
each targeted frequency in a continuous way, without having to pre-specify a “reference” and an “impact” 
period. Additionally, wavelet-based methods allow targeting multiple frequencies at the same time – from 
multi-annual to seasonal and even diel (if sub-daily data are available), as opposed to the annual focus of 
more traditional approaches. Since our proposed approach is based on the naturalized flow data, however, 
its application is limited by the availability and accuracy of the naturalized flows. Uncertainties in the esti-
mation of naturalized flows could propagate as errors in the wavelet coherence analysis between controlled 
and naturalized flows. Nevertheless, for assessing the impacts of hydrologic alteration on river ecosystems, 
we contend our approach has two key advantages: First, because climate non-stationarity may mean that 
‘static’ hydrologic references from the past are no longer relevant to contemporary alteration (Poff, 2018). 
Second, because focusing on particular frequencies while overlooking others could lead to fundamentally 
underestimating true alteration, particularly if low frequencies (e.g., annual flow cycles) are close to natural 
levels but ‘unexpected’ frequencies are introduced at various time scales (e.g., daily (hydropower), weekly 
(irrigation) or decadal (water supply)) due to the multi-purpose nature of reservoir operations (Kennedy 
et al., 2016; Ruhi et al., 2018), hence highlighting the importance of resolving multiple scales (high and low 
frequency periodicities as related to the application at hand) in the time series.

6.  Summary and Conclusions
This study estimated time-varying alteration in streamflow frequency in the CRB via wavelet coherence 
analysis between the naturalized and controlled streamflow series. Wavelet coherence loss between the nat-
uralized and controlled flows represents the cumulative degree of alteration of the frequencies in stream-
flow propagated from the headwaters. Stations where streamflow showed similar patterns in wavelet co-
herence loss were grouped together, and four clusters were identified for each annual and multi-annual 
frequency band. At most of the stations in UCRB, the frequency component of the streamflow was relatively 
well preserved. Interestingly, the Colorado River after Hoover Dam showed a low degree of alteration in 
the annual frequency despite significant alteration induced by Glen Canyon Dam. In terms of multi-an-
nual frequency, we observed significant levels of alteration downstream of Glen Canyon Dam. However, 
we observed a tendency to recover alteration of the annual frequency signal downstream of Hoover Dam. 
Meanwhile, the San Juan River has been showing a systematic increase in wavelet coherence loss for the 
multi-annual frequency since the completion of Navajo Dam in 1962.
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The Colorado River in the Lower Colorado Basin could be divided into two river segments regarding the 
wavelet coherence loss – (a) from Glen Canyon Dam to Hoover Dam and (b) from Hoover Dam to the basin 
outlet. Wavelet coherence loss between Hoover and Glen Canyon Dam showed a homogeneous fluctuation 
across the segment, and the majority of this pattern was presumed to be caused by the local impact of Glen 
Canyon Dam. The pattern of wavelet coherence loss in the mainstem downstream of Hoover Dam showed 
uniformity in the annual frequency across the segment – we conclude that is “inherited” alteration from 
the Hoover Dam. Further, it also showed a similar pattern in the multi-annual frequency below Hoover 
Dam – we conclude that is “inherited” alteration from Glen Canyon Dam, further exacerbated by Hoover 
operations.

While we used CRB as a case study, our method allowed the quantification of time-varying alteration in the 
frequency domain, and the partitioning of anthropogenic from climate factors. Our approach is transferable 
to other highly regulated basins and could help better understand the propagation of dam-induced flow al-
teration, a critical need in the light of reoperation of existing infrastructure. Correspondingly, we emphasize 
the need of estimation of naturalized flows for large, regulated basins based on past releases, storages, and 
consumptive use. Because we had a naturalized flows dataset for a long period (Prairie & Callejo, 2005), we 
were able to analyze flow alteration at a multi-annual frequency band, which is influenced predominantly 
by water management. Simulating naturalized flow has been a challenge because of the limited information 
of human withdrawal and water management in addition to the absence of observed data for validation 
(Terrier et al., 2021). As a result, the naturalized flow data is currently available only for a small number of 
catchments in the United States. We contend that government and private agencies responsible for reservoir 
operations should coordinate and continue to make naturalized flows data available to support analyses 
such as ours. Future research evaluating streamflow frequency alteration could be improved by taking small 
dams and weirs into account – owing to their numbers, they often have substantial cumulative impacts 
(Couto & Olden, 2018). In addition, one may consider investigating streamflow alteration at finer temporal 
and frequency scales – with awareness of the tradeoff between time and frequency resolutions.
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Appendix A

Figure A1.  Wavelet coherence analysis between naturalized flow and controlled flow at the downstream of Glen Canyon Reservoir. Each subplot represents 
the wavelet power spectrum of the naturalized flow (a), wavelet power spectrum of the controlled flow (b), wavelet coherence spectrum between naturalized 
and controlled flow series (c), standardized monthly mean flow of the naturalized flow (d), standardized monthly mean flow of the controlled flow (e), and the 
scale-averaged wavelet coherence between naturalized and controlled flow series for annual and multi-annual frequency bands (f). The dashed line at 1987 
indicates the beginning of the period of analysis for our study.
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Figure A2.  Wavelet power spectrum of the naturalized streamflow (a) and the controlled streamflow (b) at stations 
of Cluster-3 from the annual frequency analysis. Black contours in the spectra represent the 95% confidence level 
compared to red noise. The solid white line is the cone of influence, where zero padding has affected the variance. Red 
colors indicate higher local powers, whereas lower local powers are displayed in blue colors. The vertical dashed line 
indicates the year of 1987.
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Figure A3.  Wavelet power spectrum of the naturalized streamflow (a) and the controlled streamflow (b) at stations of Cluster-4 from the annual frequency 
analysis.
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Figure A4.  Wavelet power spectrum of the naturalized streamflow (a) and the controlled streamflow (b) at stations 
of Cluster-2 from the multi-annual frequency analysis. The scale-averaged wavelet power is also presented for both 
naturalized flow (c) and controlled flow (d) at these stations.
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Figure A5.  Wavelet power spectrum of the naturalized streamflow (a) and the controlled streamflow (b) at stations of Cluster-3 from the multi-annual 
frequency analysis. The scale-averaged wavelet power is also presented for both naturalized flow (c) and controlled flow (d) at these stations.
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Figure A6.  Wavelet power spectrum of the naturalized streamflow (a) and the controlled streamflow (b) at stations 
of Cluster-4 from the multi-annual frequency analysis. The scale-averaged wavelet power is also presented for both 
naturalized flow (c) and controlled flow (d) at these stations.
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Data Availability Statement
Observed flow data may be obtained from U.S. Geological Survey  (2020): Available at <http://waterda-
ta.usgs.gov/nwis/>. NWIS Site Numbers are available in Table 1. Naturalized flow data may be obtained 
from U.S. Bureau of Reclamation  (2020): Available at <https://www.usbr.gov/lc/region/g4000/Natural-
Flow/NaturalFlows1906-2018_20200110.xlsx>. Dams data may be obtained from U.S. Army Corps of Engi-
neers  (2020): Available at <https://nid.sec.usace.army.mil/ords/f?p=105:19:12463373659661::NO:::>. The 
data files corresponding to AZ, CA, CO, NM, NV, UT, WY were used in this study.
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