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Abstract

The notion of generalization in classical Statistical Learning is often attached to the
postulate that data points are independent and identically distributed (IID) random
variables. While relevant in many applications, this postulate may not hold in general,
encouraging the development of learning frameworks that are robust to non-IID data.
In this work, we consider the regression problem from an Optimal Recovery perspec-
tive. Relying on a model assumption comparable to choosing a hypothesis class, a
learner aims at minimizing the worst-case error, without recourse to any probabilistic
assumption on the data. We first develop a semidefinite program for calculating the
worst-case error of any recovery map in finite-dimensional Hilbert spaces. Then, for
any Hilbert space, we show that Optimal Recovery provides a formula which is user-
friendly from an algorithmic point-of-view, as long as the hypothesis class is linear.
Interestingly, this formula coincides with kernel ridgeless regression in some cases,
proving that minimizing the average error and worst-case error can yield the same
solution. We provide numerical experiments in support of our theoretical findings.
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1 Introduction

Let us place ourselves in a classical scenario where data about an unknown function
fo take the form

vi = fo(x;), ie€[l:m]. ()

The values y; € R and the evaluations points x; € Q C R? are available to the
learner. The goal is to ‘learn’ the function fp from the data (1) by producing a surrogate
function f for fo. Supervised Machine Learning methods compute such an f from
a hypothesis class selected in advance. The performance of a method then depends
on the choice of this hypothesis class: a good class should obviously approximate
functions of interest well. This translates into a small approximation error, which is
one of the constituents towards the total error of a method. Another constituent is the
estimation error. In classical Statistical Learning [27], the latter is often analyzed by
adopting a postulate that the x;’s are independent realizations of a random variable
with an unknown distribution on 2. While relevant in many applications, this postulate
may not hold in general, encouraging the development of learning frameworks that
are robust to non-IID data. In this work, we consider the regression problem from an
Optimal Recovery perspective, without recourse to any probabilistic assumption on
the data. Indeed, in the absence of randomness, an average-case analysis is not possible
anymore. Instead, the learner aims at minimizing the worst-case (prediction) error by
relying on a model assumption comparable to choosing a hypothesis class. We restrict
our attention here to Hilbert spaces and provide the following contributions:

e We develop a numerical framework for calculating the worst-case error in the case
of finite-dimensional Hilbert spaces. In particular, we show that this error can be
computed via a semidefinite program (Theorem 1).

e We show that Optimal Recovery provides a formula which is user-friendly from
an algorithmic point-of-view when the hypothesis class is a linear subspace (The-
orem 2). Interestingly, this formula coincides with kernel ridgeless regression in
some cases (Theorem 3), proving that minimizing the average error and worst-case
error can yield the same solution.

The theoretical findings are verified through some numerical experiments presented
in Sect. 5.

1.1 Why optimal recovery?

The theory of Optimal Recovery was developed in the 70’°s—80’s as a subfield of
Approximation Theory (see the surveys [18, 19]). Its development was shaped by
concurrent developments in the theory of spline functions (see e.g. [5, 10]). Splines
provided a rare example where the theory integrated computations [6]. But, at that
time, algorithmic issues were not the high priority that they have become today and
theoretical questions such as the existence of linear optimal algorithms prevailed (see
e.g. the survey [22]). Arguably, this neglect hindered the development of the topic and
this work can be seen as an attempt to promote an algorithmic framework that sheds
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light on similarities and differences between Optimal Recovery (in Hilbert spaces)
and Statistical Learning. Incidentally, what is sometimes called the spline algorithm
in Optimal Recovery has recently made a reappearance in Machine Learning circles as
minimum-norm interpolation [2, 17, 25], of course with a different motivation. Opti-
mal Recovery also establishes a correspondence between numerical Approximation
Theory and Gaussian process regression from a game-theoretic point-of-view, see e.g.
[21]. We remark that Optimal Recovery is not the only framework dealing with non-
IID data. There are indeed other strands of Machine Learning literature (e.g. Online
Learning [15] and Federated Learning [29]) that investigate learning from non-IID
and/or non-random data. But, to be clear, Optimal Recovery does not rely on any
statistical assumptions and aims at worst-case guarantees rather than average-case
guarantees.

1.2 Noisy observations

A careful reader may wonder about the possibility of incorporating an error ¢; € R in
the data y; = fy(x;) + e;, which is a common consideration in Machine Learning. We
do not investigate such a scenario in this work, as our main focus is on drawing inter-
esting connections between Optimal Recovery and some of the common Supervised
Learning techniques in the simplest of settings first. Future works! will concentrate on
this inaccurate scenario which, despite some existing results (see [1, 11, 23]), presents
some unsuspected subtleties. For instance, the results from [1] are only valid in the
complex setting and not in the real setting considered here.

2 The optimal recovery perspective
In this section, we recall the general framework of Optimal Recovery and highlight

some novel results, including the computation of worst-case error and the explicit
formula of optimal recovery map.

2.1 The function space
Echoing the theory of Optimal Recovery, we consider the function fy more abstractly
as an element from a normed space F. The output data y;’s, which are evaluations of

fo at the points Xx;’s, can be generalized to linear functionals ¢;’s applied to fj, so that
the data take the form

yvi =4i(fo), iell:m] @)

For convenience, we summarize these data as

y = L(fo) = [€1(f0); ... s tm(fo)] € R™, 3)

1 At the publication time of the current article, a portion of these works is already available, see [13].
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where the linear map L : F — R is called the observation operator. Relevant
situations include the case where F is the space C(£2) of continuous functions on €2,
which is equipped with the uniform norm, and the case where F is a Hilbert space H,
which is equipped with the norm derived from its inner product. It is the latter case
that is the focus of this work. More precisely, after recalling some known results, we
concentrate on a reproducing kernel Hilbert space H of functions defined on €2, so
that the point evaluations at the x;’s are indeed well-defined and continuous linear
functionals on H.

2.2 The model set

Without further information, data by themselves are not sufficient to say anything
meaningful about fy. For example, one could think of all ways to fit a univariate
function through points (x1, y1), ..., (Xm, Ym) € R2 if no restriction is imposed.
Thus, a model assumption for the functions of interest is needed. This assumption
takes the form

foek, “4)

where the model set IC translates an educated belief about the behavior of realistic func-
tions fy. In Optimal Recovery, the set K is often chosen to be a convex and symmetric
subset of F. Here, our relevant modeling assumption is the one that occurs implicitly
in Machine Learning, namely that the functions of interest are well-approximated by
suitable hypothesis classes. In this work, we only consider hypothesis classes that are
linear subspaces V of F. Thus, given an approximation parameter € > 0 (the targeted
approximation error), our model set has the form

K:=1{f e F:dist(f,V) <el, 5)

where dist(f, V) := inf{|| f — v||£, v € V}. In the case 7 = H of a Hilbert space,
this model set reads

K={feH:If=Pvfln=el (©)

where Py f is the orthogonal projection of f onto the subspace V. Such an approx-
imability set was put forward in [3], with motivation coming from parametric PDEs.
When working with this model, it is implicitly assumed that

V Nker(L) = {0}, @)

otherwise the existence of a nonzero v € V Nker(L) would imply that each f; :=
fo + tv, t € R, is both data-consistent (L(f;) = y) and model-consistent (f; € K),
leading to infinite worst-case error by letting + — oco. By a dimension argument, the
assumption (7) forces

n:=dim(V) < m, ()
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i.e., we must place ourselves in an underparametrized regime where there are less
model parameters than datapoints. To make sense of the overparametrized regime, the
model set (5) would need to be refined by adding some boundedness conditions, see
[12] for results in this direction.

2.3 Worst-case errors

With the model set in place, we now need to assess the performance of a learn-
ing/recovery map, which is just a map taking data y € R™ as input and returning an
element f € F as output. Given a model set X, the local worst-case error of such a
map R : R" — Faty e R"is

e (L, R(y) := sup |If — R )
fe,L(f)=y

The global worst-case error is the worst local worst-case error over all y € R that
can be obtained by observing some f € K, i.e.,

errk (L. R i= sup |/ = R (10)

A learning/recovery map R : R™ — F is called locally, respectively globally, optimal
if it minimizes the local, respectively global, worst-case error. These definitions can be
extended to handle not only the full recovery of fy but also the recovery of a quantity
of interest Q( fp). That is, for a map Q : F — Z from F into another normed space
Z, one would define e.g. the global worst-case error of the learning/recovery map
R:R™ — Zas

ey’ (L, R) := sup | Q(f) — R(L(f)z. (11
2 fek

Such a framework is pertinent even if we target the full recovery of fy but with
performance evaluated in a norm )/ - /£ different from the native norm | - ||, as
we can consider Q to be the identity map from F equipped with || - ||z into Z = F
equipped with // - // .

Perhaps counterintuitively, dealing with the global setting is somewhat easier than
dealing with the local setting, in the sense that globally optimal maps have been
obtained in situations where locally optimal maps have not, e.g. when F = C(2).
Accordingly, it is the local setting which is the focus of this work.

2.4 Computation of local worst-case errors
When F = 'H is a Hilbert space and the approximability model (6) is selected,

determining the local worst-case error of a given map R : R” — H at some y
involves solving
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- P <
ma};i%ize If — RWllx sto If—Pvflin=<e 12)
€

L(f)=y.

This is a nonconvex optimization program, and as such does appear hard to solve at
first sight. However, it is a quadratically constrained quadratic program, hence it is
possible to solve it exactly. Although Gurobi [14] now features direct capabilities to
solve quadratically constrained quadratic programs, we take the route of recasting (12)
as a semidefinite program using the S-lemma [24]. The solution of the recast program
can then be obtained using an off-the-shelf semidefinite solver, at least when the
dimension N = dim(H) of the Hilbert H space is finite. Precisely, with (A, ..., hy)
denoting an orthonormal basis for 7 chosen in such a way that (hy, ..., Ay—_,) is an
orthonormal basis for ker(L) and with H denoting the unitary map x € RY="
Z,i\];lm xihy € ker(L),local worst-case errors can be computed based on the following
observation.

Theorem 1 The local worst-case error of a learning/recovery map R : R™ — H at
y € R™ under the model set (6) can be expressed, with g := R(y), as

172
(L, 8) = [ = Prexciy @I + I Prercr @1 + "] (13)

where h is the unique element in ker(L)* satisfying L(h) =y and c* is the minimal
value of the following program, in which w := Py, 1 (h):

minimize ¢ s.to d >0 and (14)
c,deR

[ H*(dPy. — In)H | H*(dw + Pker(L)(g))] <o
(dw + Prery(@)*H | c+d(Jwllf, —e”) |~

Proof We first justify that there is a unique /# € ker(L)" such that L(h) =y € R™.
To see this, define the linear map L :h eker(L): — L(h) € range(L). Since
ker(L) = ker(L) Nker(L)L = {0}, the map L must be injective. Therefore, we have
dim(range(I:)) = dim(ker(L)L), which equals N — dim(ker(L)) = dim(range(L))
by the rank-nullity theorem, so the map Lisalso surjective. Thus, the claim is justified
by the fact that Lis bijective.

Next, the squared local worst-case error (9) at g = R(y) is

[errl(L, 9)]” = ﬁ“% lIf—gl3  I1Pysfli3, <€ L) =y). (15)
€

Decomposing f and g as f = f'+ f” and g = g’ + ¢"” with f’, g’ € ker(L) and
f".¢" € ker(L)*, the condition L(f) = y reduces to L(f") =y, ie., [’ = his
uniquely determined. The condition || Py, . f ||%{ < €2 then becomes | Py f ’+w||%1 <
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€2. As for the expression to maximize, it separates into

If =gl =If"—g"ll3, +1f —&'ll3
= h—g" 13 + g 15, + 11 £1I3, — 2(f. &) (16)

Up to the additive constant [|h — g”[|3, 4 ||¢'[|7, the maximum in (15) is now

sup /13, —2(f", ¢") sto|Pysf +wl3, <€
f'eker(L)

=infc sto I£/117,~2(f", §')<c when || Py 1 f'+w|7,<€>. (17)
ce

Writing f/ = Hx with x € RV~ this latter constraint reads

— ((Hx, Hx) —2(Hx,g')) = 0
whenever €2 —((PVLHx Py Hx) +2(Py  Hx, w) + [wl3,) > (18)

By the S-lemma, see e.g. [24], (18) is equivalent to the existence of d > 0 such that

— ((Hx, Hx) — 2(Hx, g"))
>d[e* — ((PyLHx, PyiHx) +2(PyiHx, w) + lw|},)] (19

for all x € RN~ or in other words, to the existence of d > 0 such that

(d(x,(H*PyLH)x) — (x, H*Hx))
+2(d(x, H*w) + (x, H*g")) + c +d(|w|}, — €5 = 0 (20)

for all x € RN~ This constraint can be reformulated as a semidefinite constraint

* * * * /7
|:dHPViH H*H| dH*w+ H*g ] o o1

dH*w+ H*g)* [c+d([wl3, — ez)

Keeping in mind that ¢’ = Pyer(z)g, this is the semidefinite constraint appearing in
(14). Putting everything together, we arrive at the expression for the local worst-case
error announced in (13). O

2.5 Optimal learning/recovery map

Even though it is possible to compute the minimal worst-case error via (13)—(14),
optimizing over g € H to produce the locally optimal recovery map would still
require some work and would in fact be a major overkill. Indeed, for our situation of
interest, some crucial work in this direction has been carried out in [3], and we rely
on it to derive the announced user-friendly formula for the locally (hence globally,
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too) optimal recovery map R°P'. Precisely, when F = H is a (finite- or infinite-
dimensional) Hilbert space and the model set K is given by (6), it was shown in [3]
that, for any input y € R™, the output R°P'(y) € H is the solution f to the convex
minimization program

minh%ize If —Pyfllx subjectto L(f) =Y. (22)
fe

We generalize this result through Theorem 4 in the appendix. It suffices to say for
now that the argument of [3], based on the original expression (9) of the worst-case
error, exploits the fact that f — Py f is orthogonal not only to V but also to ker(L).
Let us point out that R°P'(y) = f is both data-consistent and model-consistent when
y = L(fp) forsome fy € K. Itis also interesting to note that the optimal recovery map
R°P! does not depend on the approximation parameter €. This peculiarity disappears
as soon as observation errors are taken into consideration, see [11].

A computable expression for the minimal local error (9), and in turn for the minimal
global error (10), has also been given in [3]. Without going into details, we only want to
mention that the latter decouples as the product u x € of an indicator u of compatibility
between model and datapoints, which increases as the space V is enlarged, and of the
parameter € of approximability, which decreases as the space V is enlarged. Thus,
the choice of a space V yielding small minimal worst-case errors involves a trade-off
on n = dim(V). This trade-off is illustrated numerically in Sect. 5.2. Alternatively,
viewing the space V as fixed, if we could choose the observation functionals ¢;’s
(which is not the focus here), then the compatibility indicator n would reflect the
quality of these functionals.

Although the description given by of the optimal learning/recovery map is quite
informative, it fails to make apparent the fact the map R°P' is actually a linear map.
This fact can be seen from the theorem below, which states that solving a minimization
program for each y € R™ is not needed to produce R°P'(y). Indeed, one can obtain
R°P(y) by some linear algebra computations involving two matrices which are more
or less directly available to the learner. To define these matrices, we need the Riesz
representers u; € H of the linear functionals ¢; € H*, which are characterized by

Li(f) = {(u;, f) forall f € H.

We also need a (not necessarily orthonormal) basis (vy, ..., v,) for V. The two matri-
ces are the Gramian G € R™*™ of (uy, ..., u,,) and the cross-Gramian C € R"™*"
of (uy,...,uy) and (vy, ..., v,). Their entries are given, for i,i’ € [1 : m] and
j e[l:n], by

(Gi,ir = (ui, uir) = Li(ujr), (23)

Cij= (ui,vj) =4£;(v). (24)

The matrix G is positive definite and in particular invertible (linear independence of the
£;’sis assumed). The matrix C has full rank thanks to the assumption V Nker(L) = {0}.

The result below shows that the output of the optimal learning/recovery map does not
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have to lie in the space V (the hypothesis class), as opposed to the output of algorithms
such as empirical risk minimizations.

Theorem 2 The locally optimal learning/recovery map RP' : R™ — 'H is given in
closed form for each'y € R™ by

m n
R®(y) = ) aimi+ ) bjvj, (25)
i=1 j=I
where the coefficient vectors a € R™ and b € R" are computed as
b=(C'Gc 'O 'c'Gy, (26)
a=G (y—Ch). (27)

Proof Let f = R°P'(y) be the solution to (22). We point out (as already mentioned
or as a special case of (50)) that f — Py f is orthogonal to the space ker(L). This
property completely characterizes f as the element given by (25). Indeed, in view of
ker(L)J- = span{uy, ..., Uy}, we have

m
f — Pvf = Za,-u,- for some a € R"™. (28)
i=1
Taking inner product with vy, ..., v, leads to 0 = C'a. Then, expanding Py f on
(v, ..., vy), we obtain
m n
f:Zaiui—i—ijvj for some b € R". 29)
i=1 j=1
Taking inner product with uy, ..., u, leadstoy = Ga+Cb and in turn to Cc’Gg! y=
CTG~!Cb after multiplying by CTG~!. The latter yields the expression for b given
in (26), while the former yields the expression for a given in (27). O

3 Relation to supervised learning
Supervised learning algorithms take data 'y € R™ as input (while also being aware
of the x;’s) and return functions f € H as outputs, so they can be viewed as learn-

ing/recovery maps R : R” — H. We examine below how some of them compare to
the map R°P' from Theorem 2.

3.1 Empirical risk minimizations

By design, the outputs f returned by these algorithms belong to a hypothesis space
chosen in advance from the belief that it provides good approximants for real-life
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functions. Since this implicit belief parallels the explicit assumption expressed by the
model set (5), our Optimal Recovery algorithm and empirical risk minimization algo-
rithms are directly comparable, in that they both depend on a common approximation
space/hypothesis class V. With a loss function chosen as a pth power of an £ ,-norm
for p € [1, oo], empirical risk minimization algorithms consist in solving the convex
optimization program

— L P i — 4 st eV. 30
m1?1er7nilze||y (Dlip ;Iy (HOIF stof (30)

In the case p = 2 of the square loss, the solution actually reads

Ry =3 (€707'CTy) vy, (3D

j=1
where the matrix C € R™*” still represents the cross-Gramian introduced in (24).

3.2 Kernel regressions

Kernel regression algorithms usually operate in the setting of Reproducing Kernel
Hilbert Spaces (see next section), but they can be phrased for arbitrary Hilbert spaces,
too. For instance, the traditional kernel ridge regression consists in solving the follow-
ing convex optimization problem

minimize (v — & () + ¥ 1 £13, (32)
fer

for some parameter y > 0. Inthe limit y — 0, one obtains kernel ridgeless regression,
which consists in solving the convex optimization problem

minimize || f |y sto & (f) =yi, i€ [l:m]. (33)
feH

This algorithm fits the training data perfectly and is also known to generalize well in
the presence of noise [17].

The crucial observation we wish to bring forward here is that kernel ridgeless
regression, although not designed with this intention, is also an Optimal Recovery
method. Indeed, (33) appears as the special case of the convex optimization program
(22) with the choice V = {0}. Using Theorem 2, we can retrieve in particular that
kernel ridgeless regression is explicitly given by

m

R ) = 37 (67y) (34)

i=1
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Incidentally, the latter can also be interpreted as the special case where V =
span{uy, ..., Uy}, since f = Rrideeless (y) ig a linear combination of the Riesz repre-
senters uq, . .., Uy that satisfy the observation constraint L ( f ) =Y. In fact, there are
more choices for V that leads to kernel ridgeless regression, as revealed below.

Theorem 3 If the space is V = span{u;, i € I} for some subset I of [1 : m], then the
locally optimal recovery map (22) reduces to kernel ridgeless regression independently

of I.

Proof Let V = span{u;,i € I} for some I C [l : m] and let f be the output of
kernel ridgeless regression. According to the proof of Theorem 2, to prove that f is
the solutlon to (22), we have to verify that f Py f € ker(L)*. Since we already
know that f f Py f € ker(L)" (recall that kernel ridgeless regression is (22)
with {0} i in place of V), it remains to check that Py f € ker(L)*. This simply follows
from Pvf espanfu;,i € I} Cspanfuy, ..., uy} _ker(L)L O

Remark As revealed in [21], the minimization over R of the worst-case relative
error

If = R(L)IH
sup

feH ILfllm 53
coincides with kernel ridge regression. This minimax problem can be generalized
to Banach spaces and interpreted as an adversarial zero-sum game. Thus, with the
addition of our observation, kernel regressions appear to be optimal in a game-theoretic
sense, in a Statistical Learning (average-case) sense, and in an Optimal Recovery
(worst-case) sense.

3.3 Spline models

From an Optimal Recovery point-of-view, the success of (33) can be surprising
because it seems to use only data and no model assumption. In fact, the model
assumption occurs in the objective function being minimized. Procedure (33) favors
data-consistent functions which are themselves small. If one preferred to favor data-
consistent functions which have small derivatives, one would instead consider, say,
the program

mlmmlze ||f(k)||L stto f(x;) =y;, i€[l:m], (36)
fewko.1]

with optimization variable f in the Sobolev space Wé‘ [0, 1]. As it turns out, this
procedure coincides with the Optimal Recovery method that minimizes the worst-
case error over the model set given by K = {f € WX[0, 1] : | f® ., < 1} and its
solution is known explicitly [S]. With k = 2 (where one tries to minimize the strain
energy of a curve constrained to pass through a prescribed set of points), the solution is
acubic spline, see [28] for details. For multivariate functions, the solutions to problems
akin to (36) are also known explicitly: they are thin plate splines [10]. More generally,
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minimum-(semi)norm interpolation problems are what define the concept of abstract
splines [7].

Remark When observation error is present, exact interpolation conditions should not
be enforced, so it is natural to substitute (22) by a regularized problem similar to (32)
but with || f — Py f ||%{ acting as a reguralizer instead of || f ||%{. This has already been
proposed in [16] under the name Generalized Regularized Least-Squares, of course
with a different motivation than Optimal Recovery. In fact, a more general regularized
problem where || f — Py f ||%{ gives way to a squared seminorm also appeared in [9].
Such inverse-problem inspired techniques have been applied to statistical learning e.g.
in [8], which studied the consistency properties of the associated estimators.

4 Optimal recovery in reproducing kernel Hilbert spaces

We consider in this section the case where 7 = H is a Hilbert space of functions
defined on a domain € R? for which point evaluations are continuous linear func-
tionals. In other words, we consider a reproducing kernel Hilbert space H g, where
K : Q x Q — R denotes the kernel characterized, for any x € €2, by

fx)=(K(x,-), f) forall f e Hg. 37

In this way, the Riesz representers of points evaluations at x;’s take the form u; =
K (x;, +). Thus, the Gramian of (23) has entries

G i=(K(xi,-), K(x;r,))=K(x;,x;), i,i" € [1 :m]. (38)
As for the cross-Gramian of (24), it has entries
Cij=v;(x), iel[l:m], jell:n], 39)

where (vq, ..., v,) represents a basis for the space V. Some possible choices of K
and V are discussed below.

4.1 Choosing the kernel

A kernel that is widely used in many learning problems is the Gaussian kernel given,
for some parameter o > 0, by

o Ix —x'||> '
K(x,x') =exp e ) X, X € R%. (40)
o
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The associated infinite-dimensional Hilbert space, explicitly characterized in [20], has
orthonormal basis {¢y, @ € Ng}, where

2o+ 2
b (X)= (1/o?)a1++aa exp(— x| ) a1 ay

apl oyl 202 J1 “0

4.2 Choosing the approximation space

Since a learning/recovery procedure uses both data and model (maybe implicitly),
its performance depends on the interaction between the two. In Optimal Recovery,
and subsequently in Information-Based Complexity [26], it is often assumed that the
model is fixed and that the user has the ability to choose evaluation points in a favorable
way. From another angle, one can view the evaluation points as being fixed but the
model could be chosen accordingly. For the applicability of Theorem 2, it is perfectly
fine to select an approximation space V depending on X, ..., X;;, so long as it does
not depend on yi, ..., yn. Thus, one possible choice for the approximation space
consists of V = span{K (x;, -), i € I} for some subset / C [1 : m]. However, we have
seen in Theorem 3 that such a choice invariably leads to kernel ridgeless regression.
Another choice for the approximation space is inspired by linear regression, which
uses the space span{1, x1, ..., x4}. We do not consider this space verbatim, because
its elements (or any polynomial function, for that matter, see [20]) do not belong to the
reproducing kernel Hilbert space with Gaussian kernel. Instead, we modify it slightly
by multiplying with a decreasing exponential and by allowing for degrees k higher
than one, so as to consider the space

V = span{¢y, a1 + -+ + g < k}, (42)
which has dimension n = (d;“k). We ignore the coefficients of ¢, in numerical exper-
iments, which has no effects on the test error. These ¢,’s are the so-called ‘Taylor
features’ used in approximation of the Gaussian kernel [4].

5 Experimental validation
5.1 Comparison of worst-case errors

We first compare worst-case errors for the optimal recovery map (OR) described
in Theorem 2 and for empirical risk minimizations defined in (30). They are only
considered with p = 1 (ERM1) and p = 2 (ERM?2). The algorithms OR, ERM1, and
ERM2 all operate with a specific space V (as a hypothesis class), so direct comparisons
can be made by selecting the same V for all these algorithms. According to Theorem 1,
when H is a finite-dimensional Hilbert space, the computation of their worst-case
errors is performed by semidefinite programming. Here, we restrict ourselves to the
case where V is a randomly generated n-dimensional subspace of H = ijv , with
n =20and N = 200. The observation operator L is also randomly generated by taking
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(a) ERM1 and ERM2 with constraint f € V. (b) ERM1 and ERM2 with constraint f € K.

Fig.1 Optimal recovery and empirical risk minimization maps with p = 1 and p = 2

the m = 50 Riesz representers u; € H as vectors whose entries are independent and
uniformly distributed on [0, 1]. The observation vector y € R™ is obtained by applying
L to arandomly generated fo € H satisfying || fo — Py follx < €0 := 0.2. Figure 1a,
which corresponds to a particular realization of V, L, and fy and to an approximation
parameter € varying from €g to €; := 0.205, confirms that OR yields the smallest
worst-case errors. It also hints at a quasi-linear dependence of the worst-case errors
on € and suggests that ERM2 yields smaller worst-case errors than ERM1.

In contrast, keeping the same realization of V, L, and f as above, Fig. 1b suggests
that ERM1 yields smaller worst-case errors than ERM2 when the standard empirical
risk minimization (30) is enhanced by replacing the overdemanding constraint f € V
by the constraint f € IC, i.e., | f — Py f|l1 < €. Although the performances are now
very close for all algorithms, it has to be noted that in this case running ERM1 and
ERM2 requires an a priori knowledge of € while running OR does not.

5.2 Test errors for non-1ID data

In this subsection, we implement the optimal recovery map on two real-world regres-
sion datasets, namely Years Prediction and Energy Use. Both of these open-access
datasets are widely used for algorithm evaluation and are available on UCI Machine
Learning Repository. We focus on the reproducing kernel Hilbert space H x associated
with Gaussian kernel throughout this experiment. The space V is spanned by a subset
of Taylor features of order k = 1, see (42), so that dim(V') goes up to d + 1, where
d is the number of features in the datasets. The basis are generated as described in
(23) and (24). To be specific, instances in C are the Taylor features described in (41)
evaluated on the observations and instances in G are the kernel function evaluated on
the observation pairs. To choose the optimal kernel width, we conduct a grid search.
Furthermore, to make the data non-IID, we sort both datasets according to their 5-th
feature in a descending order and then select the top 70% as the training set and the
bottom 30% as the test set. Note that one can sort by any feature to create the same
non-IID condition. Recall by Theorem 2 that the optimal recovery map depends on
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Years Prediction Energy Use
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(a) Test error comparison on Years Prediction (b) Test error comparison on Energy Use

Fig.2 Optimal recovery and two benchmark regression algorithms on two benchmark datasets

the Hilbert space Hx and the subspace V. Therefore, it is natural to compare it to
kernel ridgeless regression (34) (in Hg) and Taylor features regression (31) (in V).
The test error comparison is presented in Fig. 2. Due to the size of Years Prediction
dataset, we do not perform kernel ridgeless regression on the full dataset, so we ran-
domly subsample a 5000 subset of the data and repeat the experiment for 40 Monte
Carlo simulations to average out the randomness. Therefore, error bars are presented
in Fig. 2a to show the statistical significance. We observe that the optimal recovery
map shows promising performance on both datasets. On Years Prediction dataset,
Optimal Recovery outperforms kernel ridgeless regression for all dim(V'). On Energy
Use dataset, it outperforms kernel ridgeless regression after dim (V') = 2. Also, Taylor
features regression in the space V is consistently inferior to the optimal recovery map.
The U-shape Optimal Recovery curve in Fig. 2a demonstrates the trade-off between
the compatibility indicator u and the approximability parameter €.

6 Conclusion

Generalization guarantees in Statistical Learning are based on the postulate of IID
data, the pertinence of which is not guaranteed in all learning environments. In this
work, we considered the regression problem (with non-random data) in Hilbert spaces
from an Optimal Recovery point-of-view, where the learner aims at minimizing the
worst-case error. We first formulated a semidefinite program for calculating the worst-
case error of any recovery map in finite-dimensional Hilbert spaces. Then, we provided
a closed-form expression for optimal recovery map in the case where the hypothesis
class V is a linear subspace of any Hilbert space. The formula coincides with ker-
nel ridgeless regression when V = {0} in a reproducing kernel Hilbert space. Our
numerical experiments showed that, when dim(V) > 0, Optimal Recovery has the
potential to outperform kernel ridgeless regression in the test mean squared error. Our
main focus was to provide an algorithmic perspective to Optimal Recovery, whose
theory was initiated in the 70’s—80’s. Our findings revealed interesting connections
with current Machine Learning methods. There are many directions to consider in the
future, including:
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(1) learning the hypothesis space V from the data (instead of incorporating domain
knowledge);
(ii) developing Optimal Recovery with noise/error in the observations;
(iii) studying the overparametrized regime dim(V) > m;
(iv) investigating the case where the hypothesis class V is not a linear space.
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Appendix

Below, we generalize the result of [3] in two directions. For the first direction, instead
of assuming that the target function fj itself is well approximated by elements of a set
V, we assume that it is some linear transform 7" applied to fj that is well approximated.
This translates in the modification (44) of the approximability set. The novelty occurs
not for invertible transforms, but for noninvertible ones (e.g. when T represents a
derivative, as in (36)). For the second direction, instead of attempting to recover fy in
full, we assume that we only need to estimate a quantity Q( fo) depending on fy, such
as its integral. Although we focus on the extreme situations where Q is the identity
or where Q is a linear functional, the case of an arbitrary linear map Q is covered.
Leaving the introduction of the transform 7 aside, one useful consequence of the
result below is that knowledge of (a basis for) the space V is not needed, since only
the values of the ¢; (v;)’s and Q(v;)’s are required to form (Q o ROPYH(y).

Theorem 4 Let F, H, Z be three normed spaces, H being a Hilbert space, and let V

be a subspace of 'H. Consider a linear quantity of interest Q : F — Z and a linear
map T : F — H. Fory € R™, define R°P'(y) € F as a solution to

minimize |[Tf — Py(Tf)|ln stoL(f) =Y. 43)
feF

Then the learning/recovery map Q o R%P' : R™ — Z is locally optimal over the model
set

K={feF dist(Tf,V) < ¢} (44)
in the sense that, for any z € Z,

sup Q)= QoR™(Hllz=  sup  [10(f) —zllz. (45
FeK.L(f)=y Fek.L(f)=y

2 Some results can now be found in [13], in particular, the article [13] uncovers a principled way to choose
the parameter of a Tikhonov-like regression.
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Proof Let us introduce the compatibility indicator

Q)=

u ’ . (46)
ueker(L)\{0) dist(Tu, V)

W=

Giveny € R, let f = R°P!(y) denote the solution to (43). We shall establish (45) by
showing on the one hand that

sup 10(H—0(Dlz < u[>=IT f=Py (T HIZ]? (47)
fe
L(f)=y

and on the other hand that, for any z € Z.

sup 10(f)—zllz = u[e=IT f=Pv(T H1I3,]". (48)
L(f)=y

Let us start with (47). Considering an arbitrary u € ker(L), notice that the quadratic
expression ¢ € R given by

IT(f + tw)—Py (T (f +tu)|3, = IT f—Py (T f)II3, +26(T f
—Py(T f), Tu—Py(Tu)) + O@1?) (49)

is miminized at the point # = 0. This forces the linear term (T’ f — Py (T f ), Tu —
Py (Tu)) to vanish, in other words

(Tf—Py(Tf), Tuy=0 foranyu € ker(L). (50)

Now, considering f € K such that L(f) = y written as f = f + u for some
u € ker(L), the fact that f € K reads

e 2 IT(f +w—Py(T(f +w)ll, = IT f=Py(T DI, + I Tu=Py (Tw)]|7451)
Rearranging the latter gives

dist(Tu, V) < [T f=Pv(T H)I13,]""”. (52)

Itremains to take the definition (46) into account in order to bound || Q ( f)— Q( f )Mz =
|Q(u)|| z and arrive at (47).

Turning to (48), we consider u € ker(L) such that

1Q@W) |z = pdist(Tu, V), (53)
I Tu—=Py (Twll3 = [=IT f=Pv (T HII,]">. (54)
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It is clear that f* := f + u both satisfy L(f*) =y, while f* € K follows from

ITfE—Py(TfH)3, = I(T f—Py (T £)) £ (Tu—Py(Tuw))|13,
= IT f=Py(T H)I? + ITu—Py(Tw)|}, = €*. (55

Therefore, for any z € Z,

sup 1Q(f)—zllz = max{| Q(f ")zl z, 1Q(f )=zl z}

fek
L(f)=y
1
> E(IIQ(fJF)—zIIz +10(f )zl z})
1
> §||Q(f+_f_)||2 =0l z. (56)
Taking (53) and (54) into account finishes to prove (48). O
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