
RESEARCH ARTICLE

Sparse balance: Excitatory-inhibitory

networks with small bias currents and broadly

distributed synaptic weights

Ramin KhajehID
1*, Francesco Fumarola1,2, LF Abbott1

1 Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University,

New York City, New York, United States of America, 2 Laboratory for Neural Computation and Adaptation,

RIKEN Center for Brain Science, Saitama, Japan

* rk2899@columbia.edu

Abstract

Cortical circuits generate excitatory currents that must be cancelled by strong inhibition to

assure stability. The resulting excitatory-inhibitory (E-I) balance can generate spontaneous

irregular activity but, in standard balanced E-I models, this requires that an extremely strong

feedforward bias current be included along with the recurrent excitation and inhibition. The

absence of experimental evidence for such large bias currents inspired us to examine an

alternative regime that exhibits asynchronous activity without requiring unrealistically large

feedforward input. In these networks, irregular spontaneous activity is supported by a con-

tinually changing sparse set of neurons. To support this activity, synaptic strengths must be

drawn from high-variance distributions. Unlike standard balanced networks, these sparse

balance networks exhibit robust nonlinear responses to uniform inputs and non-Gaussian

input statistics. Interestingly, the speed, not the size, of synaptic fluctuations dictates the

degree of sparsity in the model. In addition to simulations, we provide a mean-field analysis

to illustrate the properties of these networks.

Author summary

A class of models in computational neuroscience that have been successful at describing a

variety of effects in the neocortex involve a tight balance between excitatory, inhibitory

and unrealistically large external input, without which the model cannot produce robust

patterns of activity. In this work, we explore what happens when these inputs are smaller

in size, and we provide an alternative solution for recovering robust network activity. This

solution relies on broadly distributed synaptic strengths and, interestingly, gives rise to

sparse subsets of neurons firing at any given time. Unlike the conventional models, the

networks exhibit nonlinear responses to uniform external input.
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Introduction

A typical cortical pyramidal cell receives thousands of excitatory inputs [1] that, without the

influence of inhibition, would drive extremely high firing rates. It has been suggested that the

inhibition that moderates these rates sets up a balanced condition that causes neurons to oper-

ate in a regime where fluctuations, not the mean, of their inputs drive spiking, resulting in

irregular sequences of action potentials [2–5]. A number of theoretical models have been

developed to address E-I balance and the irregular firing of cortical neurons (see [6] for a

review). In the standard balanced models [7, 8], the input to each neuron has three strong

components—recurrent excitation, recurrent inhibition and feedforward excitation. These

balance automatically as part of the network dynamics, leaving residual fluctuations that drive

neuronal firing at reasonable rates. However, there is no evidence for the strong input compo-

nents predicted by these models [9], and some evidence against them [10–14]. For this reason,

we examine the consequences of removing strong feedforward input in balanced models.

In balanced models, synaptic strengths are drawn independently from two probability dis-

tributions, one for excitation and another for inhibition. For standard recurrent models to

generate spontaneous irregular (chaotic) activity, the synaptic weight distributions must have

a variance of order 1/K, where K is the in-degree, i.e., the number of inputs per neuron from

other cells [8, 15–17]. The excitatory (inhibitory) distributions are only non-zero for non-neg-

ative (non-positive) values, and typically their mean is of the same order as the square-root of

their variance, with both being of order 1=
ffiffiffiffi
K

p
. Summing this mean over the K inputs to each

neuron gives a total input, which is typically inhibitory, of order
ffiffiffiffi
K

p
. This large mean input

must be cancelled and, in conventional models, this is done by adding constant feedforward

excitation that is also of order
ffiffiffiffi
K

p
. This is the large feedforward input that we aim to avoid.

A first question to ask is what happens if the order
ffiffiffiffi
K

p
input is simply left out of the stan-

dard models and replaced by an input of order 1. This results in a constraint on the firing

rates; specifically, the average firing rate in the network must be of order 1=
ffiffiffiffi
K

p
. This implies

that, although there can be irregular spontaneous activity without strong feedforward input, it

involves neurons firing at very low rates. One way around this problem is to note that a small

average firing rate is not incompatible with having individual neurons with significant firing

rates if the activity is sparse. In other words, the average rate can be of order 1=
ffiffiffiffi
K

p
if, as in the

standard models, activity is dense and individual rates are of order 1=
ffiffiffiffi
K

p
, or if individual rates

are of order 1 and the fraction of active neurons is of order 1=
ffiffiffiffi
K

p
. Here, we explore this latter

possibility.

We mentioned above that standard balanced models require synaptic distributions with

variance of order 1/K to generate irregular spontaneous activity. More precisely, the require-

ment is that, for each neuron, the sum of the variances of the strengths of its active inputs must

be of order 1. In the standard model, this is satisfied because the product of K, the order of

magnitude of the number of active inputs, and 1/K, the variance per synapse, is 1. In the sparse

models proposed in the previous paragraph, the number of active inputs is only of order
ffiffiffiffi
K

p
,

so the total variance computed in this way would be
ffiffiffiffi
K

p
=K ¼ 1=

ffiffiffiffi
K

p
, which is not sufficient

to generate robust irregular activity. To solve this problem, we consider distributions of synap-

tic strength with means of order 1=
ffiffiffiffi
K

p
, as in the standard model, but with variances of order

1=
ffiffiffiffi
K

p
, not order 1/K. In this case, the total variance is of order

ffiffiffiffi
K

p
=
ffiffiffiffi
K

p
¼ 1, and irregular

activity is restored.

Another feature of standard balanced models that seems at odds with the data is that they

have attenuated linear responses to input that is uniform across neurons [9, 18]. This linearity

is not present in the networks we study. In summary, the combination of small feedforward
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inputs and broadly distributed synaptic strengths gives rise to a novel E-I regime that exhibits

asynchronous irregular sparse firing. In the following, we illustrate prominent features of this

regime, such as nonlinear responses to feedforward input and non-Gaussian current distribu-

tions, and we highlight the mechanisms that maintain sparsity and distributed firing across

network neurons.

Before proceeding, we note that the term ‘balance’ in ‘sparse balance’ refers to a mechanism

that constrains input currents to be order 1 despite large numbers of afferents to each neuron.

In our model, this constraint is satisfied by sparsity rather than excitatory-inhibitory current

cancellation. Thus, models in the ‘sparse balance’ regime are not really balanced, but we retain

the term because these models are constrained by that same condition that imposes excitatory-

inhibitory balance in the conventional models.

Results

The model

A common simplification for analyzing E-I networks is to consider a single population of

inhibitory units driven by excitatory input from an external source [16, 17]. After analyzing

such purely inhibitory networks, we will show that our results also apply to networks with

both excitatory and inhibitory units. We consider standard ‘rate’ models. The inhibitory net-

works we study have currents xi for i = 1, 2, . . ., N and firing rates ϕ(xi) that obey

tx
dxi
dt

¼ �xi �
XN

j¼1

Jij�ðxjÞ þ I0 ; ð1Þ

where ϕ is a nonlinear function and Jij � 0. We call the variable x a current because it repre-

sents the total current generated by the recurrent synaptic and feedforward inputs in the sec-

ond and third terms on the right side of the above equation, and because it determines the

firing rate through the ‘F-I’ function ϕ(x). We also use the terms ‘response’ or ‘firing rate’ for ϕ
(x) and ‘activity’ for non-zero rates. In our plots, we measure time in units of τx, making it a

dimensionless variable. Connectivity can be all to all (K = N) or we can restrict the connectivity

so that only K < N of the elements in each row of J are non-zero. I0 is a positive bias input that

is identical for all units; it is the feedforward input discussed in the Introduction. Standard bal-

anced models assume the unrealistically large scaling I0 �
ffiffiffiffi
K

p
; we consider, instead, models

with I0 of order 1.

The non-zero elements of J are drawn independently from a distribution with mean

J0=
ffiffiffiffi
K

p
, with J0 an order 1 parameter. We express the variance of this distribution as g2/Kν,

where g is another parameter of order 1, and ν allows us to vary the scaling with K. The stan-

dard scaling is ν = 1, which we call low variance. As we will show, the novel sparse balance

regime we explore comes about from setting ν = 1/2, which we call high variance.

To simplify analysis, synaptic weights in ‘excitatory-inhibitory’ models are sometimes

drawn from non-zero mean Gaussians, even though the resulting synapses are not strictly

sign-constrained. This is a bigger problem in the large variance cases we study because a con-

siderable portion of the Gaussian distribution generates synapses of the wrong sign. For this

reasons, although we discuss an example network with Gaussian weights, we primarily use dis-

tributions with exclusively positive support, such as lognormal and gamma, focusing particu-

larly on gamma-distributed synapses for reasons given below. This specific choice is not

essential; network behavior remains qualitatively the same across a variety of weight distribu-

tions, including binary (S1 Fig) and even Gaussian (S2 Fig).
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We begin (Fig 1) by setting the response nonlinearity ϕ to a rectified hyperbolic tangent,

�ðxÞ ¼
tanhðxÞ x > 0

0 x � 0

(

ð2Þ

or

�ðxÞ ¼
xl x > 0

0 x � 0

(

ð3Þ

focusing, in particular, on the case λ = 0 (Heaviside function), but we also consider λ = 1 (recti-

fied linear), and λ = 2 (rectified quadratic).

Throughout, [�] denotes averages over units, h�i denotes averages over time, and an overline

represents averages across both units and time. For fixed K, the results we present are indepen-

dent of network size N, provided that the networks are large enough. For this reason and

because we are interested in large K, we restrict our studies to the case K = N, but the results

reported extend to partially-connected networks as well (K < N; S3 Fig).

Simulation results

With the usual I0 �
ffiffiffiffi
K

p
bias reduced to an input of order 1, the network behaves very differ-

ently in the low- (ν = 1) and high- (ν = 1/2) variance cases (Fig 1). For low variance, many

units are active, but their responses are small (Fig 1A). In contrast, for high variance, activity

in the network is sparse but individual units exhibit robust responses (Fig 1B). Scaling of the

firing rate as a function of connectivity K can be quantified by computing

�� ¼ ½h�i� ¼
1

N

XN

j¼1

h�ji : ð4Þ

We can break down this average by writing it as the product of f, the fraction of units that are

active (ϕ > 0), and μ, the average firing rate of the active units, �� ¼ fm. In both the low- and

high-variance cases, the average firing rate �� scales as 1=
ffiffiffiffi
K

p
(Fig 1C) but, for low variance, f is

fairly independent of K (Fig 1D) and μ scales as 1=
ffiffiffiffi
K

p
(Fig 1E). The scaling is different for

high variance where f scales closer to 1=
ffiffiffiffi
K

p
(Fig 1D) and μ is relatively independent of K (Fig

1E). Thus, the high-variance case, which we call sparse balance, results in networks in which

activity is sparse but individual units have appreciable responses.

A well-known distinctive feature of standard balanced networks (I0 �
ffiffiffiffi
K

p
and J-vari-

ance * 1/K) is that the average firing rate �� is a linear function of the bias input I0 despite the

presence of a nonlinear response function in the model. This feature extends to the low bias

model (I0 * 1) in the case of low variance but, for high J-variance (� 1=
ffiffiffiffi
K

p
), the average

response �� has a nonlinear dependence on I0 (Fig 1F). In both the low- and high-variance

cases, f is insensitive to I0 (Fig 1G), meaning that the mean firing rate of the active units μ is

also linear for low variance and nonlinear for high variance (Fig 1H). Thus, the restriction to

linear population responses for uniform input does not apply to the sparse balance networks.

We also examined the distribution of x values in these networks (Fig 2). In the low-variance

case, these distributions are Gaussian, and both their mean and variance decrease in magni-

tude with K (Fig 2A). The result of these two effects is that the fraction of the x distribution

above threshold (area under the x distribution above x = 0) remains fairly constant as a func-

tion of K, corresponding to the roughly constant fraction of active units (Fig 1D). For high
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Fig 1. Comparison of low- and high-variance networks. A) Cartoon of network dynamics in time. Time is measured in units of τx. Light

(dark) gray corresponds to low (high) firing rates. With low synaptic variance, fluctuations in firing rates are small, and a relatively fixed and

dense subset of units contribute to firing. Right: firing rate traces of five example units (each with a distinct color). Gray arrow indicates the

extent of fluctuations in the network. B) Same as A except for the high-variance model. The network exhibits a small and shifting ensemble

of cells that respond robustly at any given time. The magnitude of fluctuations is increased substantially (right). C) Mean response in both

networks follows a 1=
ffiffiffiffi
K

p
scaling (fits to the data yield �� � 1=K0:503 for high variance and * 1/K0.513 for low variance; J0 is adjusted so that

�� values in the two networks overlaps). D) Fraction of active units (inverse sparsity). High-variance model exhibits a rapid sparsening in K
while, in the low-variance network, this fraction remains roughly constant. E) Mean response of the active subset. The trend in D is flipped:

the low-variance network exhibits a rapidly vanishing μ, which is not the case in the high-variance model. Input current I0 is set to one. F)

Network’s response to the external input current I0 with K = 1000. G) Despite similar �� values, the high-variance network is more sparsely

active by more than twofold. H) Active neurons respond more robustly in the high-variance network than in its low-variance counterpart.

(Model parameters: J0 = 2 for high variance and 1.05 for low variance, g = 2, Jij * gamma, N = K, ϕ = [tanh]+).

https://doi.org/10.1371/journal.pcbi.1008836.g001
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variance (Fig 2B), the distribution is non-Gaussian, and the fraction above threshold drops

with K, again corresponding to the dependence of the average firing-rate response on K (Fig

1D and 1E). The mean of the x distribution for the sparse balance network is insensitive to K
and lies below threshold. The mean of the distribution for low variance is also negative, but it

moves toward zero as K increases.

The results for networks with small input biases and large synaptic-weight variances, shown

in Fig 1 for a rectified hyperbolic tangent nonlinearity, extend to other nonlinear response

functions as well (Fig 3A and 3B). The response in these networks is distributed across almost

all of the units, but at any given time only a sparse distinct subset of units is active (Fig 3C).

This active population constantly changes, and firing rates appear chaotic. The fraction of time

that units are active is skewed toward small values (Fig 3D), indicating that the majority of

units respond infrequently. For all choices of ϕ, the distribution of x is non-Gaussian with only

a small fraction of units above threshold (Fig 3E), consistent with the sparsity of the firing.

Finally, the dynamics in these networks can be characterized by the population-averaged auto-

correlation function of the currents (Fig 3F), which we consider in more detail in a later

section.

The intuitive picture given in the introduction and the simple scaling results for the high-

variance model (ν = 1/2) are based on treating the firing rates as binary, which is only strictly

true if the response is given by a Heaviside function. For a Heaviside, the firing rate of an active

unit is always one, so μ = 1 and the average response is equal to the sparsity, �� ¼ f . For other

nonlinearities, these simple identities are violated to some degree. In the case of the rectified

hyperbolic tangent function in Fig 1, the 1=
ffiffiffiffi
K

p
scaling of �� is dominated by the scaling of f,

and not μ, but both factors have some K dependence. For λ � 2, this is not necessarily the case

and μ can exhibit a non-negligible scaling with K (see S4 Fig). Nevertheless, for K * 103 (Fig

3), the responses in the high-variance case are much sparser and more robust than those of its

low-variance counterpart, and the low-variance model is prone to entering fixed point states

for λ > 1.

The scaling results provided above also extend to a model with Gaussian synapses (S2 Fig).

Although synapses in this model are not sign-constrained, this result shows that it is the high

variance feature that drives the effects we report. Although, as we discuss below, the sign-

Fig 2. Sparse balance yields non-Gaussian dynamics and a subthreshold mean. Distribution of currents x (over time

and units) for gamma-distributed synapses. Dashed lines denote the mean of each distribution, i.e., �x. Area above

threshold (set to zero; solid line) corresponds to the fraction of active units f. A) With low synaptic variance (ν = 1), the

distribution of x is a Gaussian centered around a mean that tends to zero for larger K. B) Same as in A except for high

synaptic variance (ν = 1/2). Note the larger range of the horizontal axis compared to B. The distribution is no longer

Gaussian. �x is relatively insensitive to K and lies below threshold. (Model parameters are g = J0 = 2, I0 = 1, Jij *

gamma, N = K, ϕ = [tanh]+).

https://doi.org/10.1371/journal.pcbi.1008836.g002
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A

B

C

D

E

F

Fig 3. Asynchronous irregular activity in the sparse balance model. A) Responses of network neurons in time for four different

nonlinear response functions: Heaviside step function, rectified tanh, rectified linear, and rectified quadratic. B) Rates ϕ(x) (dark)

superimposed on the currents x (light) for four example units. Cells respond robustly and infrequently across choices of the

response functions. The synchrony index, as defined in [19], is approximately 10−4 for each of the networks shown. C) Fractions of

active neurons, or the inverse sparsity. D) Normalized distributions for the fraction of ON-time, defined as the fraction of

(simulation) time a unit spends above threshold. For better visualization, histograms are smoothened using kernel density

estimation. E) Normalized distributions of x, showing non-Gaussian dynamics. F) Population-averaged autocorrelation functions

of x. At this fixed value of in-degree (K = 1000), all response functions produce qualitatively similar results. (Model parameters: g =

J0 = I0 = 2, Jij * gamma, N = K).

https://doi.org/10.1371/journal.pcbi.1008836.g003
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constrained models we consider have an interesting feature of non-Gaussian input current sta-

tistics, this is not essential to the dynamic regime that characterizes sparse balance. With

Gaussian synapses, which are not sign-constrained, the current distribution is also Gaussian,

in which case the model is solvable using the standard techniques of dynamic mean-field the-

ory [16, 17]. We present results from such a mean-field analysis in a later section.

In summary, these simulations illustrate an alternative regime for E-I networks in which

the activity of individual units remains robust, despite the absence of order
ffiffiffiffi
K

p
feedforward

bias inputs. Furthermore, in these networks, mean firing rate exhibits a nonlinear dependence

on bias input. We now analyze in detail the features illustrated in these simulations.

Analysis of sparse balance networks

How does high-variance connectivity support sparse but robust activity with low bias input,

and what is the nature of this activity? Addressing these questions is simplified by considering

a Heaviside response function (Eq (3) with λ = 0; but also see S4 Fig). We consider a general J-
variance scaling, 1/Kν, so that we can compare results to the low-variance ν = 1 case, but we are

primarily interested in the high-variance case ν = 1/2.

We begin the analysis by defining the recurrent synaptic input as

ZiðtÞ ¼
XN

j¼1

Jij �ðxjÞ ; ð5Þ

so that Eq (1) can be written as

tx
dxi
dt

¼ �xiðtÞ � ZiðtÞ þ I0 : ð6Þ

Independent of our choice of the synaptic weight distribution, if we average the equation

above over both neurons and time and use �Z ¼ J0f
ffiffiffiffi
K

p
, we obtain

�x ¼ �J0f
ffiffiffiffi
K

p
þ I0 : ð7Þ

Requiring that the total current �x be of order 1 for large K suggests that the firing rates adjust

so that f � 1=
ffiffiffiffi
K

p
. In addition to the mean, we require that the input fluctuations remain finite

for large K. The total variance of the synaptic input is var(η) = g2 fK1−ν, leading us to conclude

that for large K, only in the high-variance case will fluctuations remain finite and, for the Heav-

iside nonlinearity, ν must be set to 1/2. The total variance is composed of temporal and

‘quenched’ variances. The first of these variances arises from temporal fluctuations due to the

chaotic nature of the dynamics. The quenched variance arises because different units of the

network fluctuate around different time-averaged values. Unless specified otherwise, we use

‘variance’ to refer to the total variance, but in a later section we discuss the scaling of these two

components of variance separately.

From Eq (7), we can write

f ¼ �� ¼
I0 � �x
ffiffiffiffi
K

p
J0

: ð8Þ

In the standard balanced model and in the low-variance case considered above, I0 � �x, so the

mean response is linear in I0. This is no longer true when the synaptic variance is high (ν = 1/

2) because, in this case, I0 and �x are both of order 1. The nonlinear mean response seen in Fig

1F arises because the dependence of �x on I0 is nonlinear. In general, the form of this nonlinear

response reflects the nonlinearity of ϕ, and the sparse balance model can exhibit either
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sublinear or supralinear mean population responses (S5 Fig). For instance, the sublinearity of

the population response observed in Fig 1F reflects the shape of the rectified hyperbolic tan-

gent function and, more generally, the supra/sublinearity of the population response matches

the supra/sublinearity of the response function.

For further analysis, we choose a particular choice of connectivity distribution, non-zero

weights drawn from a gamma distribution, gamma(κ, θ), where κ and θ are the ‘shape’ and

‘scale’ parameters of the gamma distribution in terms of which its mean is κθ, and its variance

is κθ2. To achieve a mean J0=
ffiffiffiffi
K

p
and variance g2/Kν we set

k ¼
J2

0

g2
Kn�1; y ¼

g2

J0

K1=2�n : ð9Þ

For a Heaviside nonlinearity, the sum in Eq (5) is only over active units with ϕ = 1, and the

probability of a unit being active is equal to the sparsity f. This means that of the K non-zero

elements of J for each unit, fK will be active. As a result, assuming small temporal fluctuations

in f (Fig 3C), η is given by the sum of fK random variables drawn independently from the dis-

tribution gamma(κ, θ). The sum of random variables that are gamma-distributed with the

same scale parameter is itself gamma-distributed with that scale parameter and a shape param-

eter equal to the sum of the shape parameters of the variables being summed [20]. Thus,

Z � gammaða; yÞ ð10Þ

with α = fKκ, which has mean

½Z� ¼ ay ¼ fKky ¼ J0f
ffiffiffiffi
K

p
ð11Þ

and variance

varðZÞ ¼ ay
2

¼ fKky
2

¼ g2fK1�n : ð12Þ

Revisiting the result found above, to maintain a finite mean input as K grows, Eq (11) implies

that we must have f � 1=
ffiffiffiffi
K

p
, which implies, from Eq (12), that the fluctuations in the synaptic

input scale as K1/2−ν. Thus, the only solution with finite fluctuations as K grows is the high-var-

iance case, ν = 1/2. For ν = 1/2 and with f � 1=
ffiffiffiffi
K

p
Eqs (11) and (12) show that the distribu-

tion of synaptic inputs is independent of K (S6 Fig); specifically, both the shape (α) and scale

(θ) parameters of the synaptic input distribution are order 1. This feature, which implies that

the distribution of the synaptic input scales as K0, may appear surprising given that the sparse-

ness of network activity is proportional to 1=
ffiffiffiffi
K

p
. We resolve this paradox in a later section.

A naive application of the central limit theorem would suggest that for sufficiently large K,

the synaptic input would be normally distributed even though the underlying connectivity is

non-Gaussian. But this application rests on the assumption that higher moments of the distri-

bution decrease sufficiently rapidly with increasing K, something that is violated in our large-

variance case. Independent of θ, the larger the shape parameter, the closer a gamma distribu-

tion approximates a Gaussian (in particular, the approximation is good for shape parameters

*20 or larger). The shape parameter for the distribution of η, from Eq (10), is

fKk ¼ fJ2
0
g�2Kn � K0. Thus, unless J0 is large or g is small, even for large K, the η distribution

remains non-Gaussian (Fig 2B and S6 Fig). In the low-variance case, with ν = 1 and f of order

1, the shape parameter of the η distribution is *K, which explains the Gaussian distribution of

the total currents in this model (Fig 2A).
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In summary, these analyses show that when feedforward bias input is of order one, large

synaptic variance is required to generate robust fluctuations, with a synaptic weight variance

of order 1=
ffiffiffiffi
K

p
producing order-one input fluctuations.

Sparse activity arises from network dynamics

We noted in the previous section that the distribution of synaptic inputs is independent of K,

and yet the mean network firing rate ��, which is linked to the total current x and ultimately to

the distribution of synaptic input, varies as 1=
ffiffiffiffi
K

p
. Network currents (x) are generated through

Eq (6), which involves low-pass filtering of the synaptic input. This suggests that the response

sparseness is related not to the distribution of synaptic inputs but rather to their dynamics.

To explore these dynamics, we consider the population-averaged autocorrelation function

of η,

RZðtÞ ¼ ½hðZiðtÞ � hZiiÞðZiðt þ tÞ � hZiiÞi� ð13Þ

which captures the extent to which η at time t + τ is related to η at time t. Rη is a decaying func-

tion of the lag τ (Fig 4A), and its decay defines a correlation time-scale denoted by τη. One way

to define this correlation time-constant is by considering the normalized area underneath the

autocorrelation function,

tZ ¼
1

RZð0Þ

Z 1

0

dtRZðtÞ ð14Þ

We characterize the dynamics of η using the dimensionless constant β = τx/τη, and find that

β increases logarithmically with K, an increase that does not occur in the low-variance (Fig 4B)

or for conventional balanced networks. As K increases, the temporal fluctuations in η becomes

more rapid, although their variance (the temporal variance) remains constant. This makes it

increasingly harder for x to keep up with the fluctuations, due to the low-pass filtering in Eq

(6), leading to a decrease in the temporal variance of x. As a result, the fraction of x above

Fig 4. Time-scale of fluctuations adjusts to maintain sparse activity. A) Population-averaged autocorrelation

function of the synaptic input normalized by its zero-lag value. Note the faster decay of the autocorrelation for

increasing K. B) The decorrelation rate β is constant in the low-variance network but increases logarithmically with K
in the sparse balance model, resembling the (inverted) trends of sparsity (Fig 1D). C) β (solid) and the ratio var(x)/var

(η) (dashed) in the high-variance model plotted on the same panel, aligned to different y-axes. var(�) refers to the total

variance; similar result is obtained for the temporal variance. Error bars indicate SEM, averaged over 10 random

realizations of the connectivity. (Model parameters: J0 = 2 for high variance and 1.05 for low variance, g = 2, I0 = 1, Jij
* gamma, N = K, ϕ = [tanh]+).

https://doi.org/10.1371/journal.pcbi.1008836.g004
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threshold decreases and the overall activity decreases with K. Thus, interestingly, it is the

dynamics of the recurrent synaptic inputs, not their size, that leads to sparse activity at large K.

To show that the speed of fluctuations in η, but not their size, leads to a narrowing of the x
distribution for increasing K, we examine the ratio var(η)/var(x) (Fig 4C). This quantity,

which is the ratio of the total input (η) variance to the total output (x) variance for the low-pass

filter in Eq (6), characterizes the dampening of high-frequency response and thus should be

larger for faster input fluctuations even if their size remains constant. Similar to β and consis-

tent with the argument above, we observe that var(η)/var(x) exhibits a logarithmic growth

with K. Thus, the more rapid temporal fluctuations in η lead to a reduction of the temporal

variance of x and, consequently, to a smaller fraction of activity above threshold, which

matches the behavior of the mean response and sparsity.

The quenched variance, which characterizes the width of the distribution of time-averages

in the network, is the same for the total current x and the synaptic input η because Eq 6 only

affects the temporal component of the fluctuations. As a result, the behavior of var(η)/var(x)

discussed above is purely due to differences in the time-scale of fluctuations in η and x. The

quenched variance of x varies as � 1=
ffiffiffiffi
K

p
in the high-variance model (S7 Fig). When �x < 0,

this supports sparse firing because time-averages of x become more narrowly distributed

around �x and are thus forced below threshold with increasing K.

As stated earlier, one consequence of the speedup in fluctuation dynamics with K is a reduc-

tion in the total variance of x. In order for the mean response to scale as 1=
ffiffiffiffi
K

p
, this reduction,

relative to �x, the mean of x, must scale appropriately with K. In the Methods, we use a mean-

field analysis to show, for the case of a Heaviside response function and Gaussian connectivity,

that this scaling is, to leading order, varðxÞ=�x2 � 1=logK.

Altogether, these results highlight how the time-scale of synaptic fluctuations dynamically

adjust to maintain sparse activity.

Mean-field analysis

In this section, we present the results of a dynamic mean-field analysis of the sparse balance

regime. To make this computation tractable, we consider a network with synapses drawn from

a Gaussian distribution. This is useful for the mean-field analysis because the resulting synaptic

input and the total current also become Gaussian distributed. As mentioned earlier, this net-

work is not purely inhibitory because, with both synaptic mean and variance of order 1=
ffiffiffiffi
K

p
, a

substantial number of synapses will be positive. Nevertheless, this is an instructive example as

it highlights that the large scaling of synaptic variance together with order 1 input current are

the drivers of the results we report.

Using standard techniques of dynamic mean-field theory (see Methods; [16, 17, 21]), we

calculated mean-field approximations for the mean response �� (Fig 5A), fraction of active neu-

rons f (Fig 5B), and the autocorrelation function of the synaptic input Rη(τ) (Fig 5C), which

was then used to compute the decorrelation rate β (Fig 5D). The theory is in good agreement

with numerical simulations and captures the rapid falloff of the mean response and fraction

active as well as the logarithmic increase of β with K.

Sparse balance in an E-I network

Finally, we illustrate that all of the features we have discussed for a purely inhibitory network

are present in mixed excitatory-inhibitory networks for two choices (gamma and lognormal)

of the connectivity distribution (Fig 6). These networks exhibit asynchronous irregular activity

with chaotic responses of individual units (Fig 6A and 6B) and constant population activity
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(Fig 6C). Responses are sparse across the population: roughly 10% of excitatory and 20–30% of

inhibitory units are active at any given time (Fig 6C). Individual units show sporadic response

for both E and I cells in time (Fig 6B) with spatiotemporal variability that is purely internally

generated.

Responses are robust and shared across the entire population as opposed to a fixed subset

of units. We characterize this feature by considering the distribution of ON-time fraction, i.e.,

the fraction of time individual cells spend above threshold (Fig 6D). This quantity shows a

wide and skewed distribution across both E and I populations. The majority of units spend

very little time above the threshold, with only a few (5% of E, 20% of I cells with lognormal; 2%

of E, 15% of I cells with gamma) spending more than half the time above threshold, and none

responding at all times. We note that gamma and lognormal synaptic distributions produce

similar activity patterns across the population.

Discussion

We have uncovered a novel regime of E-I networks that exhibits asynchronous irregular activ-

ity without the need for unrealistically large external input currents. We have done so by tak-

ing advantage of widely distributed synapses that generate fluctuations that would otherwise

be minuscule in the absence of large feedforward currents. We highlighted a number of prop-

erties including sparse activity, non-Gaussian dynamics and a nonlinear population response.

Additionally, we showed that the speed, not the size, of input fluctuations is the driver of sparse

network activity. Using dynamic mean-field theory, we computed the steady-state distribution

and temporal correlations of the recurrent input in a network with normally-distributed

BA

DC

Fig 5. Comparison between network simulations and dynamic mean-field theory (DMFT). Mean response (A) and

fraction active (B) as functions of in-degree K. A crucial feature of the sparse balance model is the rapid decay of mean

response and sparsity, but not the mean active response (Fig 1E), with increasing K. C) Autocorrelation of the synaptic

input Rη(τ), normalized by its zero-lag value, exhibits more rapid decorrelation for larger K. D) β grows logarithmically

as a function of K. Blue data points illustrate averages over 10 random realizations of the connectivity; SEM error bars

fall roughly within the size of data points. Crosses indicate self-consistent solutions to Eqs (23)–(25) and show good

agreement with the simulation results. (Model parameters: J0 = 3, g = 2, I0 = 1, Jij * Gaussian, ϕ = [tanh]+).

https://doi.org/10.1371/journal.pcbi.1008836.g005
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synapses. In general, this work further demonstrates the important role of synaptic variance in

the dynamics of recurrent networks.

Robust network responses with small input currents are especially interesting in light of the

fact that experiments suggest that the feedforward component of the input in cortical circuits

is comparable in strength to the total synaptic input (see [9] for a review). For example, [10]

and [11] observed that the voltage response with cortex silenced was smaller (about a third)

Fig 6. Asynchronous irregular activity in an E-I network with small input current. A) Responses of 500 excitatory (red) and 500

inhibitory (blue) units in two networks, one with lognormal (left) and the other with gamma (right) weight distributions. Responses

are sparse and distributed across the population. B) Rates (dark) superimposed on the currents (light) for four example cells from

each population. Response is infrequent as fluctuations occasionally push the current above threshold. C) Fraction of active units for

individual populations (red and blue) and across the entire network (gray). The inhibitory population is more active than its

excitatory counterpart. D) Fraction of (simulation) time units spend above threshold for each population and connectivity

distribution. This distribution is wide and skewed. Both choices of the connectivity distribution produce qualitatively similar results.

(Model parameters: g = 1, JEE = JIE = 1, JEI = 2, JII = 1.2, IE = 2, II = 1, NE = NI = 3000, K = 600, ϕ = [tanh]+).

https://doi.org/10.1371/journal.pcbi.1008836.g006
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than the response with cortex intact, not larger as would be predicted for the standard bal-

anced state. Additional evidence for small feedforward current stems from experiments in the

primary visual cortex of mice in which optogenetic silencing of intracortical excitatory input

isolated the feedforward (thalamic) component of the net excitation [13, 14]. The reported tha-

lamic currents (60–150 pA) would, for a typical membrane resistance (* 200 MO), induce a

depolarization of 12–30 mV, comparable to the typical distance to threshold (* 10–20 mV)

and thus of order 1 [9, 13, 14]. Similar results have been reported in the auditory cortex [22].

Pharmacological silencing of intracortical activity in olfactory cortex (piriform) revealed that

odor-evoked feedforward currents (* 60 pA) originating from the olfactory bulb also generate

depolarizations (* 12 mV) comparable to the typical distance to threshold [12].

To provide a more quantitative link to these experimental findings, it is useful to define

w ¼ �x=I0, referred to as the ‘balanced index’ [9]. The ratio χ captures the relative contribution

of the feedforward input I0 to the mean of the total current �x. The aforementioned experiments

suggest a χ of order 1. In both the standard balanced and the low-variance networks result in

w � 1=
ffiffiffiffi
K

p
. In the sparse balance model, widely distributed synapses together with small input

currents yield a χ of order 1 in agreement with experimental findings in cortex.

The mean of the total current in the sparse balance model, �x, comprised of the feedforward

input and the mean recurrent input, lies well below threshold. One consequence of this, as

mentioned above, is that the net input and the feedforward input have comparable contribu-

tions to the mean response. This results in a nonlinear population response to uniform input

that is absent in the standard balanced regime where the strength of the feedforward input is

much larger than the net input. Nonlinear mean responses are known to be necessary for a

variety of cortical computations such as response normalization and surround suppression in

visual cortex [9, 18, 23–25] and concentration invariance in olfactory cortex [26–28]. In the

sparse balance model, the shape of this nonlinear population response depends on the choice

of neuronal response function.

Small input currents impose a constraint on the mean response. To ensure this constraint is

carried over to the sparsity, but not the mean response of the active neurons, we considered

widely distributed synapses through an unconventional scaling of synaptic variance. To ensure

sign-constrained synapses, it is natural to use a heavy-tailed synaptic distribution. Models that

address the role of heavy-tailed connectivity distributions are timely because it has been shown

that the distribution of synaptic efficacies in cortex are compatible with a lognormal fit [1, 29,

30]. Experiments and modeling studies have also suggested that strong synapses in the tail of

such distributions, although less frequent, can have a strong influence on postsynaptic firing

and network dynamics [31–34].

Our choice of the gamma distribution, as opposed to the lognormal, was motivated by its

analytical tractability. This choice was convenient because with Heaviside units the synaptic

currents are also distributed according to a gamma distribution. The central limit theorem

does not apply to the synaptic input distributions we used, so they remain non-Gaussian even

for large in-degree. Furthermore, the scaling of variance we considered results in effectively

sparse connectivity in which the majority of synapses are weak and neuronal activity is heavily

influenced by a minority of strong synapses. Related to this idea, recent modeling work has

demonstrated that networks with power-law synaptic weights exhibit self-sustained activity

[34]. In these ‘Cauchy networks’, the variance of the connectivity is infinite for finite K, and

network behavior is dominated by large tails in the weight distribution. A similar connectivity

distribution in spiking models exhibits nonlinear response and high firing rates in response to

input currents [35]. In another modeling study, a lognormal distribution of synaptic weights

in a network of spiking neurons gave rise to self-sustained asynchronous firing in the absence
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of any bias input current [32]. Together with these results, our model highlights the degree to

which synaptic variance and heterogeneity in connectivity can compensate for the absence of

large input currents and sustain rich network dynamics.

The emergence of sparse activity in our model is interesting given that only a small fraction

of cortical cells, particularly in the superficial layers, are active in response to many stimulus or

spontaneously (see [36] for a review). The fraction of active neurons in our model is predicted

to be � 1=
ffiffiffiffi
K

p
. Pyramidal cells receive *7000 excitatory synapses [1], but when we account

for the average number of synapses per connection, *4 [37, 38] and the number of non-intra-

cortical synapses, the in-degree suggested for our model is K * 103. This implies a sparsity of

order 3%, a reasonable value.

In our model, the time-scale of the synaptic input, not its distribution, adjusts to maintain

the degree of sparsity in the network. As K increases, fluctuations of the synaptic input speed

up and, because the unit dynamics is a low-pass filter of the synaptic input, the distribution of

x narrows and the amount of activity above threshold is reduced in a manner consistent with

the constraint on the mean rate. Changes in sparsity are made possible by changes in the auto-

correlation time-scale, and this phenomenon appears to apply generally. This feature high-

lights the flexibility of recurrent dynamics in adjusting not only the mean and variance of the

distribution of its firing rates, but also their correlation time-scales.

Mean-field theory is an important tool for understanding network behavior. We examined a

dynamic mean-field theory in the sparse balance model with Gaussian-distributed synapses.

Although this model is not strictly sign-constrained, the scaling of the mean response, sparsity

and fluctuation speeds, match those of the model with gamma-distributed synapses, demonstrat-

ing that the driver of these effects is high synaptic variance together with small input current.

The theory accurately predicted steady-state and temporal correlation of the network dynamics.

One prominent theory that addresses the issue of bias input is the stabilized supralinear net-

work (SSN) [9, 25, 39]. Important features of SSNs include supralinear neuronal response

function, small bias current, and weak synaptic coupling. These models have been extensively

and successfully used to describe steady-state responses in sensory cortex. Our model differs

from the SSN in that it generates chaotic activity, has strong synaptic coupling [40] and has

widely distributed synaptic weights. With a supralinear response function (λ > 1), the large

synaptic variance endows our model with a higher degree of chaos than standard strongly-cou-

pled networks; without this large degree of heterogenity in the weights, responses are suscepti-

ble to resting at fixed points [16]. This degree of chaos may aid in the learning of functional

trajectories [41–45].

We examined a model with random connectivity, but it would be interesting to investigate

stimulus selectivity in sparse balance networks with structured connections. The large degree

of variability in the synapses could route stimulus information along particular paths across

network neurons. Structured connectivity is of particular interest given compelling evidence

that the recurrent contribution of the synaptic input, not just the feedforward component,

exhibits selectivity [12–14]. We believe that the variance of connectivity, in addition to its

mean structure, is important to consider for addressing the way feedforward and recurrent

components shape selective responses.

Methods

Dynamic mean-field theory for the sparse balance model with Gaussian

synapses

We consider the dynamic mean field theory for a single population of neurons in the sparse

balance state. Synapses in the model are drawn from negative-mean Gaussians, specifically
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with mean J2
0
=
ffiffiffiffi
K

p
and variance g2=

ffiffiffiffi
K

p
. Although this model resembles a purely inhibitory

network, given the broad distribution of synapses the neurons are not strictly sign-con-

strained. The analytical match to the theory, for ϕ set to rectified tanh, is presented in Fig 5.

The equation describing the full model can be written as

dxiðtÞ
dt

¼ �xiðtÞ � ZiðtÞ þ I0 ; ZiðtÞ ¼
XN

j¼1

Jij �ðxjÞ : ð15Þ

The mean-field model involves averages over both temporal fluctuations, denoted by h�i, and

quenched fluctuations, denoted by [�].

We begin by calculating the mean and quenched variance of the synaptic input η using

standard mean-field approximations. The mean of η is [hηi] = K[J][hϕi] = J0

ffiffiffiffi
K

p
½h�i�. The

quenched variance of η is

½hZi
2
� � ½hZi�

2
¼

X

j

X

k

JijJikh�jih�ki

" #

�
X

j

Jij h�ji

" #2

¼ K½J2�½h�i
2
� þ ðK2 � KÞ½J�2

½h�i�
2

� K2½J�2
½h�i�

2
:

ð16Þ

Inserting ½J2� � g2=
ffiffiffiffi
K

p
and ½J�2

¼ J2
0
=K gives

½hZi
2
� � ½hZi�

2
� g2

ffiffiffiffi
K

p
½h�i

2
� : ð17Þ

Define

m ¼ ½h�i� ; q ¼ ½h�i
2
� ; ð18Þ

which are the mean-field approximations for the mean and quenched fluctuations of the

response ϕ. Additionally, define the autocorrelation function of x as

sðtÞ ¼ ½hxðtÞxðt þ tÞi� � u2 ; ð19Þ

where u is the mean-field approximation for the mean of the total current, �x, namely

u ¼ I0 � J0

ffiffiffiffi
K

p
m : ð20Þ

A similar calculation to Eq (16) shows that the autocorrelation of the synaptic input Rη(τ) is

related to that of the responses through

RZðtÞ ¼ ½hðZðtÞ � hZiÞðZðt þ tÞ � hZiÞ�

¼ g2
ffiffiffiffi
K

p
ð½h�ðxðtÞÞ�ðxðt þ tÞÞi� � qÞ ;

ð21Þ

which is used when calculating the temporal correlations in the model. Our goal is to compute

m, q, and σ(τ) self-consistently. Other quantities of interest, such as Rη(τ), the decorrelation

rate β and the fraction of active neurons f will fall out of the solution naturally, as we shown

below.

The total current can be decomposed into

xðtÞ ¼ u þ gK1=4 ffiffiffiqp z þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s0 � g2
ffiffiffiffi
K

p
q

q

xðtÞ : ð22Þ

The first term represents the mean total input, z is a static random variable that embodies the

influence of quenched disorder, and ξ is a time-dependent variable with no quenched variance.

We have used σ0 as a shorthand for σ(0), which is the total variance of x. With g2
ffiffiffiffi
K

p
q as the
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quenched variance of x (or equivalently that of η), the prefactor s0 � g2
ffiffiffiffi
K

p
q is the remaining

temporal variance of x.

There are two crucial differences between the expression above and that of the standard bal-

anced models. First, unlike the mean-field decomposition in the standard balanced state, the

input current I0, which enters u, is order 1. Second, the quenched variance is g2
ffiffiffiffi
K

p
q as

opposed to g2q. This follows form the fact that the variance of the connectivity is
ffiffiffiffi
K

p
larger in

our model than in the conventional balanced state. These two differences result in distinct scal-

ing properties of the mean-field variables (Fig 5).

From Eqs (18) and (20), we obtain

u ¼ �J0

ffiffiffiffi
K

p
Z 1

�1

Dz0 �ðu þ
ffiffiffiffiffi
s0

p
z0Þ þ I0 ; ð23Þ

and

q ¼ ½h�i
2
� ¼

Z 1

�1

Dz
Z 1

�1

Dx �ðu þ gK1=4 ffiffiffi
q

p
z þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s0 � g2
ffiffiffiffi
K

p
q

q

xÞ

� �2

: ð24Þ

where integrals over temporal and quenched components of x are expressed as Gaussian inte-

grals with Dz ¼ e�z2=2=
ffiffiffiffiffiffi
2p

p
and likewise for Dz0 and Dξ. Given σ0, which remains to be found,

the two equations above can be solved for u and q self-consistently.

In calculating σ0 and the full autocorrelation function of the dynamics, it is helpful to first

define δx = x − u and form the correlated variables dxðtÞ ¼
ffiffiffiffiffiffi
jsj

p
z þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 � jsj

p
x and

dxðt þ tÞ ¼
ffiffiffiffiffiffi
jsj

p
z þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 � jsj

p
x

0
, assuming σ � 0. Then, it is straightforward to show that

€sðtÞ ¼ sðtÞ � g2
ffiffiffiffi
K

p
½h�ðxðtÞÞ�ðxðt þ tÞÞi�

¼ s � g2
ffiffiffiffi
K

p
Z 1

�1

Dz
Z 1

�1

Dx �ðu þ
ffiffiffiffiffiffi
jsj

p
z þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s0 � jsj

q

xÞ

� �2

;

ð25Þ

with initial conditions σ(0) = σ0 and _s ¼ ds=dt ¼ 0 at τ = 0. Together, Eqs (23), (24) and (25)

form a closed system that can be used to determine u, q and σ(τ), and consequently m and

Rη(τ).
Solutions to Eqs (23)–(25) are computed numerically by evolving the dynamics of σ in time

for an initial choice of u and σ0. Using the bisection algorithm, σ0 (and as a result u) is itera-

tively adjusted until the solution σ ceases to violate the conditions of the autocorrelation func-

tion, _s � 0 and σ � 0 for all τ. Alternatively, σ0, but not the full autocorrelation, could be

determined through arguments that rely on conservation of energy in Eq (25) (see [16, 17,

21]). The converged values for u and σ0 can be used to calculate m (Fig 5A) and the fraction of

active neurons (Fig 5B) using

m ¼
I0 � u
J0

ffiffiffiffi
K

p ; f ¼
1

2
1 þ erf

u
ffiffiffiffiffiffiffi
2s0

p

 ! !

: ð26Þ

The expression for m follows from Eq (20), while f is obtained by performing an average over

the distribution of x, a Gaussian with mean u and total variance σ0. Additionally, with q
obtained from Eq (24), we can insert σ(τ) into the right-hand-side of Eq (25) and solve for
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Rη(τ) (Fig 5C) using Eq (21). Lastly, β (Fig 5D) is calculated from

b ¼
RZð0Þ

Z 1

0

dtRZðtÞ

:
ð27Þ

For a Heaviside step function, �� ¼ f , and thus both �� and f scale as � 1=
ffiffiffiffi
K

p
. From the

expression for f in Eq (26) and using the asymptotic form of the error function, it follows that,

to leading order, juj=
ffiffiffiffiffi
s0

p
�

ffiffiffiffiffiffiffiffiffiffiffi
logK

p
.

Numerical simulations

Numerical simulations of the network were performed using Euler integration with τx = 1,

time-steps less than 0.05, and simulation time of T = 1000 or longer. Other network parame-

ters are included in the figure captions. The code (written in Julia v1.3.0) is publicly available

at https://github.com/raminkhajeh/sparse-balance.

The mean-field equations were implemented in Julia. Integrals over Gaussian random vari-

ables were carried out using adaptive quadrature. The dynamic equation for σ(τ) was evolved

using the Tsitouras 5/4 Runge-Kutta method. The integral underneath the autocorrelation

function, used in the definition of β, was carried out using trapezoidal integration.
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