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FINITE DIMENSIONAL MODELS FOR RANDOM

MICROSTRUCTURES

MIRCEA GRIGORIU

Abstract. Finite dimensional (FD) models, i.e., deterministic functions of space
depending on finite sets of random variables, are used extensively in applications to

generate samples of random fields Z(x) and construct approximations of solutions

U(x) of ordinary or partial differential equations whose random coefficients depend on
Z(x). FD models of Z(x) and U(x) constitute surrogates of these random fields which

target various properties, e.g., mean/correlation functions or sample properties. We

establish conditions under which samples of FD models can be used as substitutes for
samples of Z(x) and U(x) for two types of random fields Z(x) and a simple stochastic

equation. Some of these conditions are illustrated by numerical examples.

1. Introduction

Material properties exhibit random spatial fluctuations which can be represented by
scalar-/vector-/matrix-valued random fields {Z(x), x ∈ D}, where D ⊂ Rd, d = 1, 2, 3,
is a bounded subset specifying the domain of a material specimen. Stresses, strains and
other material responses {U(x), x ∈ D} to boundary conditions and other actions satisfy
ordinary or partial differential equations with random coefficients which depend on Z(x).
Analytical solutions of these stochastic equations are possible in simple cases of limited
practical interest. Generally, numerical methods have to be employed for solution.

The implementation of numerical methods requires to discretize both the physical
and the probability spaces. The finite element/difference methods are the standard tools
for discretizing the physical space. Finite dimensional (FD) models are commonly used
to discretize the probability space. They are deterministic functions of finitely many
arguments of which some are random variables. For example, the material random
field Z(x), which is an uncountable family of random elements indexed by x ∈ D, can
be represented by FD random fields {Zn(x), x ∈ D}, i.e., deterministic functions of
x ∈ D which depend on n random variables (Z1, . . . , Zn), see [10] for the construction
of these models. We say that Z(x) has infinite stochastic dimension while Zn(x) has
finite stochastic dimension equal to the number n of random variables in its definition.
Denote by Un(x) the solution of the defining equation of U(x) with Zn(x) in place
of Z(x). The random fields U(x) and Un(x), which are complex functionals of Z(x)
and Zn(x), are referred to as analytical/target and numerical/approximate solutions of
material responses. They differ since Z(x) and Zn(x) differ. The size of the discrepancy
between U(x) and Un(x) depends on that between Z(x) and Zn(x) and the structure of
the defining equation for material responses.
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The discussion is limited to material properties which vary continuously over the
specimen domain, so that the functions describing these properties are elements of the
space of scalar/vector-valued continuous functions C(D) defined on bounded subsets D
of Rd, d = 1, 2, 3. To satisfy this requirement, Z(x) is assumed to be homogeneous with
continuous samples, i.e., its samples are elements of C(D) and its statistics are invariant
to space shift. To satisfy physics constraints, Z(x) is assumed to be a non-Gaussian
translation field, i.e., Z(x) = h

(
G(x)

)
, x ∈ D, where h : C(D)→ C(D) is continuous in

the topology induced by the ‘sup’ metric of C(D) and G(x) is a zero-mean homogeneous
Gaussian field with continuous samples defined on a probability space

(
Ω,F , P

)
. Since h

is continuous, it is measurable from
(
C(D), C

)
to
(
C(D), C

)
, where C is the Borel σ-field

generated by the open sets D of C(D). The probability measures induced by the random
fields G(x) and Z(x) on

(
C(D), C

)
are P

(
G−1(A)

)
and P

(
G−1(Z−1(A))

)
, A ∈ C.

We establish conditions under which samples of the FD random fields Zn(x) and Un(x),
which can be constructed numerically, can be used as approximations for samples of the
target random fields Z(x) and U(x). To establish these conditions, we examine the weak
and almost sure (a.s) convergences of Zn(x) to Z(x) in the space of continuous functions
C(D). The weak convergence, denoted by Zn =⇒ Z, means for real-valued random fields
that P

(
supx∈D |Z(x)−Zn(x)| > ε

)
→ 0 as n→∞ for any ε > 0 so that the probability

measure of the “bad subset” Ωn(ε) = {ω ∈ Ω : supx∈D |Z(x, ω) − Zn(x, ω)| > ε} of the
sample space Ω which contains pairs of target and FD samples which differ by more than
ε in the metric of C(D), is small for sufficiently large n. If Zn =⇒ Z, the subsets Ωn(ε)
and Ωm(ε) for large m 6= n have small measures but, generally, differ. The almost sure

(a.s.) convergence, denoted by Zn
a.s.→ Z, implies that once the measure of Ωn(ε) gets

small for some n0 it remains small and its measure decreases as n ≥ n0 increases. This
type of convergence is desirable since it guarantees that the accuracy of the FD models
improves with n. We also examine the convergence of the FD solution Un(x) to U(x) for
a simple stochastic problem, the one-dimensional transport equation.

The paper is organized as follows. Section 2 deals with scalar-valued material random
fields Z(x). Mean square periodic and bounded frequency range fields are discussed
in Sects. 2.1 and 2.2. Finite dimensional (FD) models {Zn(x)} of Z(x) and theorems
for their weak and a.s. convergence to Z(x) are in Sects. 2.1.1-2.1.2 and Sects. 2.2.1-
2.2.2, respectively. Section 2.3 illustrates numerically some of the theoretical results of
Sects. 2.1 and 2.2. Section 3 deals with vector-valued material random fields Z(x) and
follows the structure of Sect. 2. Mean square periodic and bounded frequency range fields
are in Sects. 3.1 and 3.2. Finite dimensional (FD) models {Zn(x)} of Z(x) and theorems
for their weak and a.s. convergence to Z(x) are in Sects. 3.1.1-3.1.2 and Sects. 3.2.1-
3.2.2, respectively. Section 3.3 applies results of Sects. 3.1-3.2 to construct models for
compliance tensors and present numerical results in Sects. 3.3.1 and 3.3.2. Section 4
examines the response of a simple stochastic differential equation, the one-dimensional
transport equation. Some final comments are in Sect. 5.

2. Scalar-valued microstructure models

Most of the results in this section related on properties of random fields with finite
variance are available in the literature, e.g., [1, 12, 21]. The presentation of these prop-
erties follows closely these references.

Let Z(x), x ∈ Rd, be a real-valued random field defined on a probability space(
Ω,F , P

)
with zero mean and finite variance. The assumption E[Z(x)] = 0 is not restric-

tive since, if E[Z(x)] 6= 0, it can be added to the samples of Z(x). If D is a closed and
bounded subset of Rd and the correlation function c(x, y) = E[Z(x)Z(y)] is continuous on

D ×D and, therefore, square integrable on this subset, then Z(x) =
∑∞
k=1 λ

1/2
k ξk vk(x)
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and c(x, y) =
∑∞
k=1 λk vk(x) vk(y), where {λk} and {vk(x)} are the eigenvalues and

eigenfunctions of c(x, y) in D×D and {ξk} are uncorrelated random variables with zero
means and unit variances. The series representation of Z(x) converges in mean square
(m.s.) and that of c(x, y) converges absolutely and uniformly by Mercer’s theorem [6]
(Sects. IV.1 and IV.3). It is assumed that the real-valued random field Z(x) has the
following properties 1 and 2 and property 3 or 4.

1. Weakly homogeneous, i.e., the correlation function c(ξ) = E[Z(x + ξ)Z(x)], ξ =
(ξ1, . . . , ξd) ∈ Rd, depends only on the lag ξ. The correlation function c(ξ) and the
spectral density s(ν), ν = (ν1, . . . , νd), provided it exists, are related by [1](Chap. 2)

(2.1) c(ξ) =

∫
Rd
ei ξ·ν dS(ν) =

∫
Rd
ei ξ·ν s(ν) dν, and s(ν) =

1

(2π)d

∫
Rd
e−i ξ·ν c(ξ) dξ,

where S(ν) is a bounded real-valued measure such that
∫

Λ
dS(ν) ≥ 0 for all Borel mea-

surable Λ ⊂ Rd. If S(ν) is absolutely continuous with respect to the Lebesgue measure,
then the spectral density s(ν) exists and dS(ν) = s(ν) dν [1] (Theorem 2.1.2). It is
assumed that S(ν) has this property so that the spectral density exists. Since Z(x) is
real-valued, its correlation function and spectral density are real-valued even functions,
so that Eq. 2.1 can be given in the form c(ξ) =

∫
Rd cos(ξ · ν) s(ν) dν [1] (Sect. 2.4)

The field Z(x) admits the spectral representation

(2.2) Z(x) =

∫
Rd
ei ν·x dW (ν),

where W (ν) is a zero-mean, complex-valued process with orthogonal increments whose
first two moments are E[dW (ν)] = 0 and E[|dW (ν)|2] = E[dW (ν) dW (ν)∗] = dS(ν) =
s(ν) dν. Since Z(x) is real, the above spectral representation takes the form [1] (Sect. 2.3)

(2.3) Z(x) =

∫
Rd

(
cos(ν · x) dU(ν)− sin(ν · x) dV (ν)

)
,

as the imaginary part
∫
Rd
(

cos(ν ·x) dV (ν) + sin(ν ·x) dU(ν)
)

of the right side of Eq. 2.2
must vanish, where U(ν) and V (ν) are zero-mean, real-valued random fields with orthog-
onal increments of moments E[dU(ν)] = E[dV (ν)] = 0, E[dU(ν) dV (ν′)] = 0 for all ν, ν′

and E[|dU(ν)|2] = E[|dV (ν)|2] = dS(ν) = s(ν) dν, see [11] (Theorem 13).

2. Continuous, i.e., the samples Z(x, ω) of Z(x) are real-valued continuous functions for
almost all ω ∈ Ω so that almost all samples of Z(x) are members of C(D).

3. Mean square (m.s.) periodic, i.e., the statistics of Z(x) repeat over bounded rectangles.
A precise definition is in the subsequent subsection. Periodic material properties are
commonly used in mechanics to characterize large or infinite material specimens by their
properties over finite subsets, referred to as unit cells [15] (Chap. 3).

4. Bounded frequency range, i.e., the support of the spectral density s(ν) in Eq. 2.1 is a
bounded rectangle Dν of Rd, a common assumption in applications which seems to be
consistent with physics.

2.1. Mean square periodic fields. For simplicity, we limit our discussion to two-
dimensional material specimens in bounded rectangular domains D = [−a1, a1]×[−a2, a2]
or D = [0, T1]× [0, T2], where Ti = 2 ai, i = 1, 2, whose properties are described by real-
valued, weakly homogeneous random fields Z(x), x ∈ R2, which are periodic in the sense
of the following definition.

Definition 2.1. The random field Z(x) is said to be D- or (T1, T2)-m.s. periodic if

(2.4) E
[(
Z(x1 + T1, x2 + T2)− Z(x1, x2)

)2]
= 0, x = (x1, x2) ∈ R2.

This definition extends directly to real-valued random fields defined on Rd, d > 2.
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Theorem 2.2. If Z(x) is D-m.s. periodic, then

(2.5) E
[(
Z(x1 + k1 T1, x2 + k2 T2)− Z(x1, x2)

)2]
= 0, x = (x1, x2) ∈ R2,

and the correlation function is (T1, T2)-periodic, i.e.,

(2.6) c(ξ1, ξ2) = E
[
Z(x1 + ξ1 + k1 T1, x2 + ξ2 + k2 T2)Z(x1, x2)

]
, ξ = (ξ1, ξ2) ∈ R2,

for any integers k1 and k2.

Proof. We have

E
[(
Z(x1 + k1 T1, x2 + k2 T2)− Z(x1, x2)

)2]
= E

[((
Z(x1 + k1 T1, x2 + k2 T2)− Z(x1 + (k1 − 1)T1, x2 + (k2 − 1)T2)

)
+
(
Z(x1 + (k1 − 1)T1, x2 + (k2 − 1)T2)− Z(x1, x2)

))2]
= 2E

[(
Z(x1 + k1 T1, x2 + k2 T2)− Z(x1 + (k1 − 1)T1, x2 + (k2 − 1)T2)

×
(
Z(x1 + (k1 − 1)T1, x2 + (k2 − 1)T2)− Z(x1, x2)

)]
+ E

[(
Z(x1 + (k1 − 1)T1, x2 + (k2 − 1)T2)− Z(x1, x2)

)2]
,

since E
[(
Z(x1 + k1 T1, x2 + k2 T2)− Z(x1 + (k1 − 1)T1, x2 + (k2 − 1)T2)

)2]
= 0 by the

definition of m.s. periodicity. Also,
∣∣E[(Z(x1 +k1 T1, x2 +k2 T2)−Z(x1 +(k1−1)T1, x2 +

(k2 − 1)T2)
(
Z(x1 + (k1 − 1)T1, x2 + (k2 − 1)T2) − Z(x1, x2)

)]∣∣ = 0 by the properties
of Z(x) and the Cauchy-Schwarz inequality. Accordingly, the above equality yields the

recursive formula E
[(
Z(x1+k1 T1, x2+k2 T2)−Z(x1, x2)

)2]
= E

[(
Z(x1+(k1−1)T1, x2+

(k2 − 1)T2) − Z(x1, x2)
)2]

, which implies the stated property. Similar arguments yield
the periodicity of the correlation function of Z(x). �

The properties in Eqs. 2.5 and 2.6 extend directly to vector-valued random fields with
m.s. periodic components of the same periods T1 and T2, as shown in a subsequent
subsection. They also hold for matrix-valued random fields since they can be reset as
vector-valued random fields.

Theorem 2.3. If the partial derivatives ∂c(ξ)/∂ξ1, ∂c(ξ)/∂ξ2 and ∂2c(ξ)/∂ξ1 ∂ξ2 of the
correlation function c(ξ) = E[Z(x + ξ)Z(x)] of a weakly homogeneous, D-m.s. periodic
random field Z(x) are continuous in D, then its Fourier series

(2.7) c(ξ) =
∑
k,l

skl e
i νkl·ξ with skl =

1

4 a1 a2

∫
D

c(ξ) e−i νkl·ξ dξ, ξ = (ξ1, ξ2) ∈ R2,

converges absolutely and uniformly, where
∑
k,l :=

∑
k,l=±1,±2,..., νi,1 = 2π/Ti = π/ai,

νi,k = k νi,1 for i = 1, 2 and k = ±1,±2, . . . and νkl = (ν1,k, ν2,l). The Fourier coefficients
{skl} are real-valued and skl = s−k,−l.

Proof. Under the stated conditions, the Fourier series of the correlation function of Z(x)
converges to c(ξ) absolutely and uniformly and has the form in Eq. 2.7 [19] (Sects. 7.1 to
7.3). That skl is real-valued follows by calculating the integral in Eq. 2.7 as the sums of the
integrals over D1∪D′1 and D2∪D′2, where D1 = (0, a1)×(0, a2), D′1 = (−a1, 0)×(−a2, 0),
D2 = (0, a1) × (−a2, 0), D′2 = (−a1, 0) × (0, a2). For example,

∫
D1∪D′

1
c(ξ) exp(−i νkl ·

ξ) dξ = 2
∫
D1
c(ξ) cos(νkl ·ξ) dξ, which is real since the correlation function of Z(x) is real-

valued, see also Eq. 2.1. The Fourier coefficient s−k,−l corresponding to the frequency
ν−k,−l = (−ν1,k,−ν2,l) coincides with skl, as it results by using the change of variables
ξ = −η in the integral of Eq. 2.7. �
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This section defines FD models Zm.n(x) of Z(x), establishes conditions under which
the finite dimensional distributions of Zm.n(x) converge to those of Z(x), develops criteria
for the tightness of the sequence Zm.n(x) of FD models and establishes conditions for
the weak convergence of the sequence of fields Zm.n(x) to Z(x) in the space C(D) of
real-valued continuous functions endowed with the uniform metric.

2.1.1. Finite dimensional (FD) models. The spectral representation of Z(x) in Eq. 2.3
for m.s. periodic random fields takes the form

(2.8) Z(x) =
∑
k,l

[
Ukl cos(νkl · x)− Vkl sin(νkl · x)

]
, x ∈ R2,

where {Ukl} and {Vkl} are zero-mean uncorrelated random variables with variances {skl},
see Eq. 2.3. Consider the family of finite dimensional (FD) random fields,

(2.9) Zm,n(x) =
∑

|k|≤m,|l|≤n

[
Ukl cos(νkl · x)− Vkl sin(νkl · x)

]
, x ∈ R2,

obtained by truncation of the infinite series representation of Z(x) in Eq. 2.8. These
FD models are deterministic functions of x ∈ D which depend on finite sets of random
variables. The random fields Zm,n(x) are weakly homogeneous since E[Zm,n(x)] = 0 and

cm,n(x, y) = E
[
Zm,n(x)Zm,n(y)

]
=

∑
|k|≤m,|l|≤n

skl
(

cos(νkl · x) cos(νkl · y)+

+ sin(νkl · x) sin(νkl · y)
)

=
∑

|k|≤m,|l|≤n

skl cos
(
νkl · (x− y)

)
.(2.10)

This correlation function converges absolutely and uniformly to the correlation function
c(ξ) as m,n→∞ by Mercer’s theorem [12] (Sect. 6.2) since the spectral representation
of Z(x) in Eq. 2.9 constitutes a truncated Karhunen-Loève expansion of Z(x) as the
trigonometric functions of this representation are the eigenfunctions of the correlation
function of Z(x).

The random fields Z(x) and Zm,n(x) in Eqs. 2.8 and 2.9 are defined in the second
moment sense, i.e., only their mean and correlation functions are known, unless Z(x) is
Gaussian in which case {Ukl} and {Vkl} are independent Gaussian variables. If Z(x) is
not Gaussian, {Ukl} and {Vkl} are uncorrelated but dependent non-Gaussian variables
with unknown distributions. For these fields, we construct samples of the random vari-
ables {Ukl(ω)} and {Vkl(ω)} from samples Z(x, ω), ω ∈ Ω, of Z(x) by projection, i.e.,
〈Z(·, ω), cos(νkl · ·)〉 = Ukl(ω)

∫
D

cos2(νkl · x) dx, so that
(2.11)

Ukl(ω) =
1

2 a1 a2

∫
D

Z(x, ω) cos(νkl·x) dx and Vkl(ω) =
1

2 a1 a2

∫
D

Z(x, ω) sin(νkl·x) dx.

This construction pairs target and FD samples, i.e., the samples of Z(x, ω) of Z(x) with
the samples Zm.n(x, ω) of Zm,n(x), via the samples Ukl(ω) and Vkl(ω) of the random
coefficients of FD fields. It can be used for Gaussian and non-Gaussian fields.

Note also that the random fields Z(x) and Zm,n(x) depend on countable sets of random
variables, the random coefficients {Ukl} and {Vkl}. These sets are infinite for Z(x) and
finite for Zm,n(x). Accordingly, Zm,n(x) can be used in numerical calculations while Z(x)
cannot. The next theorem shows that the finite dimensional distributions of {Zm,n(x)}
converge to those of Z(x) as m.n→∞ under some conditions.

Theorem 2.4. If the correlation function of Z(x) is continuous in D × D, the finite
dimensional distributions of Zm,n(x) converge to those of Z(x) as m,n→∞.
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Proof. First note that the correlation function is square integrable since it is continuous
andD is compact. For a fixed arbitrary x ∈ R2, the sequence of random variables Zm,n(x)
is m.s. Cauchy by Mercer’s theorem ([6], Sect. IV.2, and [12], Sect. 6.2) so that Zm,n(x)
converges in m.s. to Z(x) as m,n → ∞ and, therefore, in distribution by Chebychev’s
inequality. Consider now the random vectors Zm,n :=

(
Zm,n(x1), . . . , Zm,n(xp)

)
and

Z :=
(
Z(x1), . . . , Z(xp)

)
corresponding to arbitrary p arguments x1, . . . , xp ∈ Rd. The

m.s. convergence of the components of Zm,n to those of Z implies P
(
‖Zm,n−Z‖ > ε

)
≤

E
[
‖Zm,n−Z‖

]
/ε→ 0 for any ε > 0 since E

[
‖Zm,n−Z‖

]
→ 0 as m,n→∞, which shows

that Zm,n converges in probability to Z. This convergence implies the convergence of the
joint distribution of Zm,n to that of Z by the Portmanteau Theorem [2] (Sect. 1.2), so
that the finite dimensional distributions of Zm,n(x) converge to those of Z(x). The result
also follows from [20] (Theorem 18.10) which shows that the convergence in probability
of Zm,n to Z implies the convergence of the finite dimensional distributions of Zm,n to
those of Z. �

2.1.2. Weak convergence of FD models. We develop a practical criterion (Theorem 2.5)
for checking whether a family {Zm,n(x)} of FD models is tight. If the family of random
fields {Zm,n(x)} is tight and, in addition, its finite dimensional distributions converge to
those of a real-valued m.s.-periodic random field Z(x), then Zm,n converges weakly to
Z in the space of continuous functions C(D) [2] (Theorem 8.1). Under these conditions,
samples of Zm,n(x) are similar to those of Z(x) on a subset of the sample space Ω of
nearly unit measure for sufficiently large (m,n). Theorems 2.6 and 2.7 consider the
special case of Gaussian and translation random fields.

Theorem 2.5. If the series
∑
k,l s

1/2
kl <∞ and

∑
k,l ‖νkl‖ s

1/2
kl <∞ are convergent, the

sequence of FD fields {Zm.n(x)} in Eq. 2.9 is tight.

Proof. We show that the two conditions of Theorem 8.2 in [2] are satisfied. The first con-
dition requires to show that for ε > 0 there is an a > 0 such that P

(
|Zm,n(0)| > a

)
≤ ε,

where Zm,n(0) =
∑
|k|≤m,|l|≤n Ukl. Then, P

(
|Zm,n(0)| > a

)
≤ E

[
|
∑
|k|≤m,|l|≤n Ukl|

]
/a ≤∑

|k|≤m,|l|≤nE
[
|Ukl|

]
/a ≤

∑
|k|≤m,|l|≤nE

[
U2
kl

]1/2
/a =

∑
|k|≤m,|l|≤n s

1/2
kl a ≤

∑
k,l s

1/2
kl a

so that, if
∑
k,l s

1/2
kl <∞ there exists an a =

∑
k,l s

1/2
kl /ε with the required property for

any given ε > 0.
The second condition requires to show that for any ε, η > 0 there exists δ > 0 such

that P
(
Wm,n(δ) > ε

)
≤ η for all m,n, where Wm,n(δ) = sup‖x−y‖≤δ |Zm,n(x)−Zm,n(y)|

denotes the modulus of continuity of Zm,n(x). Since |Zm,n(x)− Zm,n(y)| is equal to∣∣∣∣ ∑
|k|≤m,|l|≤n

(
Ukl

(
cos(νkl · x)− cos(νkl · y)

)
− Vkl

(
sin(νkl · x)− sin(νkl · y)

))∣∣∣∣
=

∣∣∣∣ ∑
|k|≤m,|l|≤n

(
− 2Ukl sin

(
νkl · (x+ y)/2

)
sin
(
νkl · (x− y)/2

)
− 2Vkl cos

(
νkl · (x+ y)/2

)
sin
(
νkl · (x− y)/2

)∣∣∣∣
=

∣∣∣∣− 2
∑

|k|≤m,|l|≤n

sin
(
νkl · (x− y)/2

)(
Ukl sin

(
νkl · (x+ y)/2

)
+ Vkl cos

(
νkl · (x+ y)/2

))∣∣∣∣
≤ 2

∑
|k|≤m,|l|≤n

∣∣ sin (νkl · (x− y)/2
)∣∣ (|Ukl|+ |Vkl|),
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we have

Wm,n(δ) ≤ sup
‖x−y‖≤δ

(
2

∑
|k|≤m,|l|≤n

∣∣ sin (νkl · (x− y)/2
)∣∣ (|Ukl|+ |Vkl|))

≤ δ
∑

|k|≤m,|l|≤n

‖νkl‖
(
|Ukl|+ |Vkl|

)
≤ δ

∑
k,l

‖νkl‖
(
|Ukl|+ |Vkl|

)
by using

∣∣ sin (νkl · (x− y)/2
)∣∣ ≤ |νkl · (x− y)/2| ≤ ‖νkl‖ ‖x− y‖ ≤ δ ‖νkl‖, so that

P
(
Wm,n(δ) > ε

)
≤
E
[
Wm,n(δ)

]
ε

≤
δ
∑
|k|≤m,|l|≤n ‖νkl‖

(
E|Ukl|+ E|Vkl|

)
ε

≤
δ
∑
k,l ‖νkl‖

(
E[U2

kl]
1/2 + E[V 2

kl]
1/2
)

ε
=

2 δ
∑
k,l ‖νkl‖ s

1/2
kl

ε

If
∑
k,l ‖νkl‖ s

1/2
kl <∞, then, for given ε, η > 0, the solution of 2 δ

∑
k,l ‖νkl‖ s

1/2
kl /ε = η

gives the required δ. We conclude that the weak convergence Zm,n =⇒ Z holds under
the conditions of the theorem. �

Criterion for weak convergence: If the conditions of Theorems 2.4 and 2.5 are
satisfied, i.e., (1) the correlation function of Z(x) is continuous and square integrable in

D ×D and (2) the series
∑
k,l s

1/2
kl and

∑
k,l ‖νkl‖ s

1/2
kl are convergent, then Zm,n =⇒ Z

as m,n → ∞ [2] (Theorem 8.1). The conditions of Theorem 2.4 relate to properties of
the correlation functions of Z(x). The conditions of Theorem 2.5 relate to the frequencies
and the amplitudes of the constitutive random waves of Z(x). Intuitively, they impose
restrictions on the amplitudes of the high frequency fluctuations of Z(x).

The criterion applies to both Gaussian and non-Gaussian random fields Z(x). The
following two theorems deal with Gaussian fields and continuous mappings of Gaussian
fields, referred to as translation fields.

Theorem 2.6. If Z(x) is Gaussian and satisfies the conditions of Theorems 2.4 and 2.5,
then Zm.n(x) converges almost surely (a.s.) to Z(x) in the metric of C(D) as m,n→∞.

Proof. For Gaussian fields Z(x), the FD models Zm,n(x) are sums of independent Gauss-
ian processes, the independent Gaussian processes Ukl cos(νkl · x) and Vkl sin(νkl · x).
Under the conditions of Theorems 3 and 4, we have the weak convergence Zm,n =⇒ Z
as m,n → ∞. This implies the almost sure convergence of Zm,n to Z in C(D) by the
Itô-Nisio theorem, see [14] (Theorem 2.1.1) and [13]. �

This result implies that the discrepancy between target and FD samples, i.e., samples
of Z(x) and Zm,n(x), quantified by the sup-norm metric is small on a subset Ω0 of the
sample space Ω of nearly unit measure for sufficiently large (m,n), a statement similar
to that under the weak convergence Zm,n =⇒ Z. In addition, the a.s. convergence
guarantees that the subset Ω0 increases with (m,n) so that the accuracy of FD models
improves with the truncation level (m,n). This property is illustrated by examples in a
subsequent section dealing with extremes of Z(x).

Theorem 2.7. Let Z(x) = F−1 ◦Φ
(
G(x)

)
, where F is a strictly increasing, continuous

distribution, Φ denotes the distribution of the standard normal variables and G(x) is a
real-valued, D-m.s. periodic homogeneous Gaussian field with zero mean, unit variance
and continuous samples. Let Gm,n(x) be FD dimensional models of G(x) constructed
as in Eq. 2.9. Then, the sequence of FD fields Zm,n(x) = F−1 ◦ Φ

(
Gm,n(x)

)
converges

a.s. to Z(x) in C(D).
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Proof. That Gm,n(x) converges a.s. to G(x) in the space of continuous functions C(D)
follows from the previous theorem. Since the mapping h = F−1 ◦Φ from the Gaussian to
the non-Gaussian fields is continuous, the a.s. convergence of Gm,n(x) to G(x) in C(D)
implies the a.s. convergence of Zm,n(x) = h

(
Gm,n(x)

)
to Z(x) = h

(
G(x)

)
in this space

as m,n→∞ by the continuous mapping theorem [17] (Theorem 1.10). �

Memoryless mappings of Gaussian function constitute a class of non-Gaussian fields
and processes, referred to as translation random functions [7]. They are completely
defined by the correlation function of their Gaussian image G(x) and the marginal distri-
bution F . The correlation functions and the marginal distributions of translation fields
cannot be selected arbitrarily. They must satisfy compatibility conditions [9] which, gen-
erally, are rather weak as the correlation functions of Z(x) = F−1◦Φ

(
G(x)

)
and G(x) are

similar. Also, samples of Z(x) obtained from D-periodic samples G(x) are D-periodic.

2.2. Bounded frequency range fields. Consider a material specimen in D = [−a1, a1]×
[−a2, a2] or D = [0, T1]× [0, T2], where Ti = 2 ai, i = 1, 2, and suppose that a particular
material property is described by a real-valued, zero-mean weakly homogeneous random
field {Z(x), x ∈ R2} defined on a probability space (Ω,F , P ) with correlation and spec-
tral density functions c(ξ) = E[Z(x+ ξ)Z(x)] and s(ν). It is assumed that the random
field Z(x) has the properties 1, 2 and 4 of Sect. 2, i.e., it is homogeneous with continuous
samples and the support Dν = [−ν̄1, ν̄1]×[−ν̄2, ν̄2], 0 < ν̄1, ν̄2 <∞, of its spectral density
s(ν) is a bounded rectangle of R2. Under these assumptions, the samples of Z(x) are
elements of the space of continuous functions C(D) which can be viewed as superposition
of random waves with frequencies in Dν .

The random field Z(x) in this subsection differs essentially from m.s. periodic random
fields. In contrast to m.s. periodic fields which have countably infinite sets of frequencies
in Rd, they have uncountably infinite sets of frequencies in bounded subsets Dν of Rd.
Truncated Fourier series [19] (Sect. 11.12) of samples of Z(x) or truncated Karhunen-
Loève series using eigenfunctions of the correlation function of Z(x) [12] (Sect. 6.2)
can be used to construct FD models for the random field Z(x) considered here. These
constructions do not use the fact that the support Dν of the spectral density of Z(x)
is bounded. In contrast, the FD models of Z(x) of the subsequent subsection use this
feature of the spectral density of Z(x) explicitly.

2.2.1. Finite dimensional (FD) models. The presentation of the results of this subsection,
which are well-known, follows that in [1] (Sect. 2.4) and [21] (Chap. 3). Let {Ikl} denote
a partition of Dν in rectangles with centers {νkl = (ν1,k, ν2,l)}, |k| ≤ m, |l| ≤ n, and sides
∆ν1 ×∆ν2 which decrease with m and n, e.g., ∆ν1 = ν̄1/m and ∆ν2 = ν̄2/n. The FD
models {Zm.n(x)} of Z(x) are based on partitions {Ikl} of the support Dν of the spectral
density of Z(x). We denote these FD models and their frequencies as in the previous
sections dealing with m.s. periodic random fields, i.e., Zm.n(x) and νkl, although they
have different definitions and meanings.

Consider the family of FD models

(2.12) Zm,n(x) =
∑

|k|≤m, |l|≤n

[
∆Ukl cos(νkl · x)−∆Vkl sin(νkl · x)

]
, x ∈ R2,

where ∆Ukl and ∆Vkl are uncorrelated random variables with E
[
∆Ukl

]
= E

[
∆Vkl

]
=

0 and skl = E
[
∆U2

kl

]
= E

[
∆V 2

kl

]
=
∫
Ikl
s(ν) dν ' s(νkl) ∆ν1 ∆ν2, where the latter

approximation holds for small frequency increments. The FD model in this equation has
the same form as that in Eq. 2.9 but, as stated, the random coefficients and frequencies
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differ. The mean and correlation functions of Zm,n(x) are E[Zm,n(x)] = 0 and

cm,n(x, y) = E
[
Zm,n(x)Zm,n(y)

]
=

∑
|k|≤m, |l|≤n

skl cos
(
νkl · (x− y)

)
'

∑
|k|≤m, |l|≤n

s(νkl) cos
(
νkl · (x− y)

)
∆ν1 ∆ν2

which results by considerations as in Eq. 2.10 and shows that Zm,n(x) is a weakly ho-
mogeneous random field. The latter expression of cm,n(x, y) shows that the correlation
function of Zm,n(x) converges to c(ξ) =

∫
Dν

cos(ν · ξ) s(ν) dν as m,n → ∞, ξ ∈ R2, so

that the spectral density of Zm,n(x) converges to that of Z(x). This convergence implies
the convergence of the finite dimensional distributions of Zm,n(x) to those of Z(x) by
arguments as in Theorem 2.4.

2.2.2. Weak convergence of FD models. It is shown that the FD models Zm,n(x) in
Eq. 2.12 converge weakly to Z(x) in C(D) as m,n→∞. There is no additional require-
ment for this convergence, in contrast to the FD models for m.s. periodic random fields
(see Theorem 2.5). Intuition suggests that the FD models Zm,n(x) have this property
since the samples of Z(x) cannot oscillate very fast as their frequencies are confined to
Dν . We prove this statement for random fields Z(x) defined on the real line and outline
the steps of the proof for random fields defined on R2.

Theorem 2.8. Let {Z(x), x ∈ D} be a real-valued weakly homogeneous random field,
where D is a bounded rectangle of R, d = 1, 2. If the spectral density s(ν) has a bounded
support Dν , then the family of FD models in Eq. 2.12 converges weakly to Z(x) in C(D).

Proof. Case d = 1: Then, D = [0, T ] ⊂ R}, 0 < T < ∞, Dν = [−ν̄, ν̄], 0 < ν̄ < ∞, and
the family of FD models of Z(x) has the form

(2.13) Zn(x) =
∑
|k|≤n

[
∆Uk cos(νk x)−∆Vk sin(νk x)

]
,

where {∆Uk} and {∆Vk} are uncorrelated random variables with means and variances
E[∆Uk] = E[∆Vk] = 0 and sk = E[∆U2

k ] = E[∆V 2
k ] =

∫
Ik
s(ν dν) ' s(νk) ∆νk,

where {Ik} is a partition of the frequency band Dν = [−ν̄, ν̄], 0 < ν̄ < ∞, of Z(x)
in equal intervals of size ∆ν = ν̄/n and centers {νk}. Note that Zn(x) is a weakly
homogeneous random field with mean and correlation functions E[Zn(x)] = 0 and
cn(x, y) = E[Zn(x)Zn(y)] =

∑
|k|≤n sk cos

(
νk (x− y)

)
.

We show that the two condition of Theorem 8.2 in [2] are satisfied. The first conditions
requires to find an a > 0 such that P

(
|Zn(0)| > a

)
≤ ε for arbitrary ε > 0. We have

E
[
|Zn(0)|

]
= E

[∣∣∣∣ ∑
|k|≤n

∆Uk

∣∣∣∣] ≤ E[( ∑
|k|≤n

∆Uk

)2]1/2

= E

[ ∑
|k|,|l|≤n

∆Uk ∆Ul

]1/2

=

( ∑
|k|≤n

E
[
∆U2

k

])1/2

=

(∫
Dν

s(ν) dν

)1/2

<∞

by Cauchy-Schwarz inequality and properties of {∆Uk} and Z(x), so that we have

P
(
|Zn(0)| > a

)
≤ E

[
|Zn(0)|

]
/a ≤

( ∫
Dν

s(ν) dν
)1/2

/a ≤ ε, which shows that a =( ∫
Dν

s(ν) dν
)1/2

/ε satisfies this condition.
The second condition requires to show that for any ε, η > 0 there exists δ > 0 such

that P
(
Wn(δ) > ε

)
≤ η for all n, where Wn(δ) = sup|x−y|≤δ |Zn(x)−Zn(y)| denotes the
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modulus of continuity of Zn(x). For arbitrary but fixed arguments x and y, we have

Zn(x)− Zn(y) =
∑
|k|≤n

[
h(νk) ∆Uk + g(νk) ∆Vk

]
,

where h(ν) = −2 sin
(
α νk

)
sin
(
β νk

)
, g(ν) = −2 cos

(
α νk

)
sin
(
β νk

)
, α = (x + y)/2

and β = (x − y)/2. The first term in the expression of Zn(x) − Zn(y) for k ≥ 1, i.e.,∑n
k=1 h(νk) ∆Uk, takes the form

n∑
k=1

h(νk) ∆Uk = h(νn)Un − h(ν1)U0 −
n−1∑
k=1

(
h(νk+1)− h(νk)

)
Uk,

by summation by parts, where U(ν) =
∫
η≤ν dU(η), Uk = U(νk+∆ν/2) and ∆Uk = Uk−

Uk−1. Similar expressions result for the other terms in the expression of Zn(x)− Zn(y).
The absolute value of the above summation for |x− y| ≤ δ, δ > 0, can be bounded by∣∣∣∣ n∑

k=1

h(νn) ∆Un

∣∣∣∣ ≤ |h(νn)| |Un|+ |h(ν1)| |U0|+
n−1∑
k=1

∣∣h(νk+1)− h(νk)
∣∣ ∣∣Uk∣∣

≤ δ ν̄
(
|Un|+ |U0|

)
+
n−1∑
k=1

∣∣h(νk+1)− h(νk)
∣∣ ∣∣Uk∣∣,

where the bound on the above first two terms holds since | sin
(
νk (x− y)/2

)
| ≤ |νk (x−

y)/2|, νk ≤ ν̄ and |x−y| ≤ δ by assumption so that |h(νk)| = |−2 sin
(
α νk

)
sin
(
β νk

)
| ≤

ν̄ δ. Since h(νk+1)− h(νk) = h′(ν∗k) ∆ν, ν∗k ∈ [νk, νk+1], by the mean value theorem and
h′(ν)/2 = −α cos(α ν) sin(β ν)− β sin(α ν) cos(β ν), we have∣∣h(νk+1)− h(νk)

∣∣ ≤ 2 ∆ν
(
|α| |β ν∗k |+ |β|

)
≤ δ∆ν

(
T ν̄ + 1

)
so that ∣∣∣∣ n∑

k=1

h(νk) ∆Uk

∣∣∣∣ ≤ δ ν̄ (|Un|+ |U0|
)

+ δ∆ν
(
T ν̄ + 1

) n−1∑
k=1

∣∣Uk∣∣.
The expectation of

∣∣∑n
k=1 h(νk) ∆Uk

∣∣ is bounded by δ scaled by a strictly positive finite

constant since E[|Uk|] ≤ E[U2
k ]1/2 ≤

( ∫ ν̄
−ν̄ s(ν) dν

)1/2
and

n−1∑
k=1

E[|Uk|] ∆ν ≤
n−1∑
k=1

E[U2
k ]1/2 ∆ν =

n−1∑
k=1

(∫ ν̄

−ν̄
s(ν) dν

)1/2

∆ν ≤ ν̄
(∫ ν̄

−ν̄
s(ν) dν

)1/2

is finite. Similar arguments show that the other terms in the expression of Zn(x)−Zn(y)
admit the same types of bounds so that E

[
Wn(δ)

]
≤ δM for any n, where M > 0 is a

finite constant. The Chebyshev inequality gives P
(
Wn(δ) > ε

)
≤ E

[
Wn(δ)

]
/ε ≤ δM/ε,

so that for given ε, η > 0, there exists δ = ε η/M such that P
(
Wn(δ) > ε

)
≤ η. Since the

conditions of Theorem 8.2 in [2] are satisfied, we conclude that the family of FD models
Zn is tight. Since the finite dimensional distributions of Zn converge to those of Z, the
family {Zn} of FD models converges weakly to Z in C(D) as n→∞.

Case d = 2: The weak convergence of the family Zm,n(x) of FD models in Eq. 2.12
results by similar arguments. For the first condition of Theorem 8.2 in [2], note that

E
[
|Zm,n(0)|

]
= E

[∣∣∣∣ ∑
|k|≤m, |l|≤n

∆Ukl

∣∣∣∣] ≤ E[( ∑
|k|≤m, |l|≤n

∆Ukl

)2]1/2

=

( ∑
|k|≤m, |l|≤n

E
[
∆U2

kl

])1/2

=

(∫
Dν

s(ν) dν

)1/2

<∞
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by Cauchy-Schwarz inequality and properties of {∆Ukl} and Z(x), so that we have

P
(
|Zm,n(0)| > a

)
≤ E

[
|Zm,n(0)|

]
/a ≤

( ∫
Dν

s(ν) dν
)1/2

/a ≤ ε, which shows that a =( ∫
Dν

s(ν) dν
)1/2

/ε satisfies this condition.
For the second condition, we need to show that for any ε, η > 0 there exists δ > 0 such

that P
(
Wm,n(δ) > ε

)
≤ η for all m,n, where Wm,n(δ) = sup‖x−y‖≤δ |Zm,n(x)−Zm,n(y)|

denotes the modulus of continuity of Zm,n(x). For arbitrary but fixed x, y ∈ R2, we have

Zm,n(x)− Zm,n(y) =
∑

|k|≤m, |l|≤n

[
h(νkl) ∆Ukl + g(νkl) ∆Vkl

]
,

where h(ν) = −2 sin
(
ν·(x+y)/2

)
sin
(
ν·(x−y)/2

)
and g(ν) = −2 cos

(
ν·(x+y)/2

)
sin
(
ν·

(x − y)/2
)
. That the expectation E

[
Wm,n(δ)

]
of the modulus of continuity can be

bounded by δ scaled with a strictly positive finite constant results by arguments similar
to those of Theorem 2.8. The calculations are lengthier since the single summation for
the case d = 1 is replaced with the double summation

∑
k=1,...m, l=1,...,n h(νkl) ∆Ukl. �

We conclude with the observations that, if Z(x) is a Gaussian field, the weak con-
vergence Zm,n =⇒ Z implies the a.s. convergence of Zm,n(x) to Z(x) in the space of
continuous functions C(D) by Theorem 2.6. If Z(x) is the translation random field in
Theorem 2.7 and the spectral density of its Gaussian image G(x) has a bounded support
Dν , then Zm,n(x) converges a.s. to Z(x) in the space of continuous functions C(D).

2.3. Numerical illustrations. The numerical illustration of the statements of the theo-
rems in the previous sections is challenging since the discrepancy supx∈D |Zm,n(x)−Z(x)|
between target and FD samples cannot be calculated exactly for the following two rea-
sons. First, the samples of the random fields Zm,n(x) and Z(x) can only be calculated at
large but finite sets of points xi ∈ D, i = 1, . . . , I . Since maxi=1,...,I |Zm,n(xi)−Z(xi)| ≤
supx∈D |Zm,n(x) − Z(x)| a.s., we can only obtained lower bounds on the discrepancy
between target and FD samples. These bounds are likely to be tight for sufficiently large
I < ∞ since Zm,n(x) and Z(x) have continuous samples. Second, the algorithms for
generation target and FD samples can handle large but finite sets of frequencies, e.g.,
the set of frequencies {νkl}, |k| ≤ M , |l| ≤ N , with large M,N < ∞ corresponding to
truncations of the representation of Eq. 2.8 for m.s. periodic fields and to fine discretiza-
tions of Dν as used in Eq. 2.12 for fields with bounded frequency range. The samples for
large (M,N) and fine discretizations of Dν are viewed as actual samples of Z(x).

Example 2.9. Let {Z(x), x ∈ D = [0, l]} be a real-valued Gaussian field defined on the
real line with spectral density s(ν) = 1(−ν̄ ≤ ν ≤ ν̄)/(2 ν̄), 0 < ν̄ < ∞, and correlation
function c(ξ) = E

[
Z(x + ξ)Z(x)

]
= sin

(
ν̄ |ξ|

)
/
(
ν̄ |ξ|

)
. According to Theorem 2.8. the

family of FD models Zn(x) in Eq. 2.13 converges weakly to Z(x) in the space of continuous
functions C(D) as n → ∞. Since Z(x) is Gaussian, Zn(x) also converges a.s. to Z in
C(D) by Theorem 2.6.

The plots of Figs. 1 and 2 show histograms of the error supx∈D |Z(x) − Zn(x)| and
scatter plots of

(
supx∈D |Z(x)|, supx∈D |Zn(x)|

)
based on 1000 independent samples of

these fields for several values of n. The plots are for ν̄ = 22 and the samples of Z(x) are
approximated by samples of a discrete spectral representation of this field corresponding
to a partition {Jr}, r = 1, . . . , N , of [0, ν̄] in N = 5000 equal intervals. The FD models
Zn(x) are given by Eq. 3.10 and correspond to coarse partitions {Ik} of [0, ν̄] with n = 5,
n = 8 and n = 10. The frequencies {νk} are the centers of {Ik} and the samples
of the random coefficients {∆Uk} and {∆Vk} are given by the sums of the samples of
the corresponding random coefficients of Z(x) in the intervals {Jr} which are included
in Ik, so that {∆Uk} and {∆Vk} have the correct properties and are paired with the
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Figure 1. Histograms of supx∈[0,l] |Z(x)−Zn(x)| for ν̄ = 22, and n = 5,

8 and 10 (left, middle and right panels)
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Figure 2. Scatter plots of
(

supx∈[0,l] |Z(x)|, supx∈[0,l] |Zn(x)|
)

for ν̄ =

22, and n = 5, 8 and 10 (left, middle and right panels)

target samples. The plots show that the samples of Zn(x) approximate accurately the
corresponding samples of Z(x) even for small values of n.

3. Vector-valued microstructure models

Let Z(x), x ∈ Rd, be a zero-mean Rq-valued random field with correlation function
c(ξ) = E[Z(x + ξ)Z(x)′], an (q, q)-matrix for each ξ ∈ Rd. As previously, it is assumed
that Z(x) is weakly homogeneous with continuous samples which is m.s. periodic or
consists of superposition of waves with bounded frequencies.

The relationship between the correlation functions cii(ξ) and the spectral densities
sii(ν) of the individual components Zi(x), i = 1, . . . , q, of Z(x) is given by Eq. 2.1.
As for scalar-valued fields, it is assumed that the spectral distributions of the random
fields Zi(x) are absolutely continuous with respect to the Lebesgue measure so that
their spectral densities exist. It turns out that the correlation functions cij(ξ) and the
corresponding spectral densities sij(ν), i 6= j, satisfy similar relationships, i.e.,

(3.1) cij(ξ) =

∫
Rd
e
√
−1 ν·ξ sij(ν) dν and sij(ν) =

1

(2π)d

∫
Rd
e−
√
−1 ξ·ν cij(ξ) dξ,

where sij(ν) =
[
s1(ν)−

√
−1 s2(ν)− (1−

√
−1)

(
sii(ν)+sjj(ν)

)]
, s1(ν) and s2(ν) denote

the spectral densities of the random fields Zi(x) + Zj(x) and
√
−1Zi(x) + Zj(x) [4]

(Sect. 8.1), and the imaginary unit
√
−1 is written explicitly to avoid confusion with

the indices of the components of Z(x). The above relationships coincides with those of
Eq. 2.1 for i = j. Generally, the spectral densities sij(ν) are complex-valued such that
sij(ν) = s∗ji(ν), which follows from Eq. 3.1 and the property

cij(ξ) = E
[
Zi(x+ ξ)Zj(x)

]
= E

[
Zj(x)Zi(x+ ξ)

]
= E

[
Zj(x− ξ)Zi(x)

]
= cji(−ξ)
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of the correlation functions of weakly homogeneous random fields. Similar arguments
show that sij(ν) = sji(−ν) and sij(ν)∗ = sij(−ν). The latter relationship implies that
the real and the imaginary parts of sij(ν) are even and odd functions.

The components Zi(x) of Z(x) admit the spectral representations (see Eqs. 2.2-2.3)

(3.2) Zi(x) =

∫
Rd
e
√
−1 ν·x dWi(ν), i = 1, . . . , q, x ∈ Rd,

where Wi(ν) is a complex-valued field with orthogonal increments whose first two mo-
ments are E[dWi(ν)] = 0 and E[|dWi(ν)|2] = sii(ν) dν. The increments of these random
fields are related by E[dWi(ν) dWj(η)∗] = sij(ν) δ(ν − η) dν so that the correlation func-
tion of Zi(x) and Zj(x), i 6= j, has the form

cij(ξ) = E

∫
R2 d

(
e
√
−1 ν·(x+ξ) dWi(ν)

)(
e
√
−1 η·x dWi(η)

)∗
=

∫
Rd
e
√
−1 ν·ξ sij(ν) dν,

which coincides with that of Eq. 3.1. Since the random fields Zi(x) are real-valued, they
also admit the representation

(3.3) Zi(x) =

∫
Rd

(
cos(ν · x) dUi(ν)− sin(ν · x) dVi(ν)

)
, i = 1, . . . , q, x ∈ Rd,

where Ui(ν) and Vi(ν) are zero-mean, real-valued random fields with orthogonal in-
crements of moments E[dUi(ν) dUi(ν

′)] = E[dVi(ν) dVi(ν
′)] = sii(ν) δ(ν − ν′) dν and

E[dUi(ν) dVi(ν
′)] = 0, i = 1, . . . , q, see Eq. 2.3. The moments of the increments

of these processes corresponding to distinct components result by direct calculations
under the condition of homogeneity and are E[dUi(ν) dUj(ν

′)] = E[dVi(ν) dVj(ν
′)] =

R[sij(ν)] δ(ν − ν′) dν and E[dUi(ν) dVj(ν
′)] = −E[dVi(ν) dUj(ν

′)] = −I[sij(ν)] δ(ν −
ν′) dν, see also [16] (Problem 9, p. 180), where R[sij(ν)] and I[sij(ν)] denote the real
and the imaginary parts of sij(ν). The correlation function of distinct components of
Z(x) results from Eq. 3.3 by using the properties of the random fields Ui(ν) and Vi(ν).
It has the expression

(3.4) cij(ξ) = E
[
Zi(x+ ξ)Zj(x)

]
=

∫
Rd

(
cos(ν · ξ)R[sij(ν)]− sin(ν · ξ) I[sij(ν)]

)
dν,

since
∫
Rd
(

cos(ν · ξ) I[sij(ν)] + sin(ν · ξ)R[sij(ν)]
)
dν = 0. The result is in agreement

with Eq. 3.1 since
∫
Rd
(

cos(ν · ξ) I[sij(ν)] + sin(ν · ξ)R[sij(ν)]
)
dν = 0 by the properties

of sij(ν). The formula of Eq. 3.4 simplifies to cij(ξ) =
∫
Rd cos(ν · ξ) sij(ν) dν if sij(ν) is

real-valued, e.g., the correlation functions for i = j.

3.1. Mean square periodic fields. The discussion is limited to two-dimensional spec-
imens, i.e., d = 2, so that Z(x) is a q-dimensional random vector at each x ∈ R2. We
say that the vector-valued random field Z(x) is D = [−a1, a1] × [−a2, a2]- or (T1, T2)-
m.s. periodic, Tr = 2 ar for r = 1, 2, if

(3.5) E
[
‖Z(x1 + T1, x2 + T2)− Z(x1, x2)‖2

]
= 0, x = (x1, x2) ∈ R2.

The definition implies that Z(x) is (T1, T2)-m.s. periodic if its components {Zi(x)} are
(T1, T2)-m.s. periodic random fields, see Eq. 2.4. Accordingly, the samples of {Zi(x)}
can be represented by superpositions of waves with frequencies νkl =

(
ν1,k, ν2,l

)
, where

νr,1 = 2π/Tr, νr,k = k νr,1, r = 1, 2 and k is an integer. This property can be generalized
such that different components of Z(x) have different periodicities.
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Arguments as in Theorem 2.2 show that the correlations cij(ξ) = E
[
Zi(x+ ξ)Zj(x)

]
between the components of Z(x) are D-periodic functions since∣∣E[Zi(x1 + ξ1 + T1, x2 + ξ2 + T2)Zj(x1, x2)]− E[Zi(x1 + ξ1, x2 + ξ2)Zj(x1, x2)]

=
∣∣E[(Zi(x1 + ξ1 + T1, x2 + ξ2 + T2)− Zi(x1 + ξ1, x2 + ξ2)

)
Zj(x1, x2)

]∣∣
≤ E

[(
Zi(x1 + ξ1 + T1, x2 + ξ2 + T2)− Zi(x1 + ξ1, x2 + ξ2)

)2]1/2
E
[
Zj(x1, x2)2

]1/2
,

and E
[(
Zi(x1+ξ1+T1, x2+ξ2+T2)−Zi(x1+ξ1, x2+ξ2)

)2]
= 0. If the partial derivatives

∂cij(ξ)/∂ξ1, ∂cij(ξ)/∂ξ2 and ∂2cij(ξ)/∂ξ1 ∂ξ2 of cij(ξ) are continuous in D, then cij(ξ)
admits the convergent Fourier series representation

(3.6) cij(ξ) =
∑
kl

sij,kl e
√
−1 νkl·ξ with sij,kl =

1

4 a1 a2

∫
D

cij(ξ), ξ ∈ R2,

by Theorem 2.3.

3.1.1. Finite dimensional (FD) models. The spectral representation in Eq. 3.3 takes the
form

(3.7) Zi(x) =
∑
k,l

[
Ui,kl cos(νkl · x)− Vi,kl sin(νkl · x)

]
, x ∈ R2, i = 1, . . . , q,

where {Ui,kl} and {Vi,kl} are zero-mean random variables with the same properties as
the increments of {Ui(ν} and {Vi(ν)} in Eq. 3.3. Consider the family of FD random
fields

(3.8) Zi,(m,n)(x) =
∑

|k|≤m,|l|≤n

[
Ui,kl cos(νkl · x)− Vi,kl sin(νkl · x)

]
, x ∈ R2,

obtained by truncation of the infinite series representation of Zi(x) in Eq. 3.7, where the
summation is over k = ±1,±2, . . . ,±m and l = ±1,±2, . . . ,±n, see Eqs. 2.8 and 2.9.
For simplicity, we use the same truncation levels for the components of Z(x) although
different truncation levels may yield more accurate representations [10]. The random
fields Zi,(m,n)(x) are weakly homogeneous since their mean and correlation functions are
E[Zi,(m,n)(x)] = 0 and

cij,(m,n)(x, y) = E
[
Zi,(m,n)(x)Zj,(m,n)(y)

]
=

∑
|k|≤m,|l|≤n

[
R[sij,kl] cos

(
νkl · (x− y)

)
− I[sij,kl] sin

(
νkl · (x− y)

)]
.(3.9)

The correlation functions become cij,(m,n)(x, y) =
∑
|k|≤m,|l|≤n sij,kl cos

(
νkl · (x − y)

)
if the spectral densities {sij(ν)}, i 6= j, are real-valued. If the correlation function
cij(ξ) = E[Zi(x+ ξ)Zj(x)] of Z(x) is continuous and square integrable on D ×D, then
cij,(m,n)(x, y) converges absolutely and uniformly to cij(ξ) by Mercer’s theorem, see [1],
Sect.3.3, [5], Appendix 2 and Sect.6-4, and [12], Sect.6.2.

3.1.2. Weak convergence of FD models. The statements of Theorems 2.4 to 2.6 for real-
valued random fields extend directly to vector-valued fields. The mean square conver-
gence E

[
‖Zn(x)−Z(x)‖2

]
→ 0 in these theorems is equivalent to the m.s. convergence of

the components of Z(x), i.e., E
[(
Zi,(m,n)(x)− Zi(x)

)2]→ 0, i = 1, . . . , q, as m,n→∞.

Similar arguments hold for arbitrary sets of spatial coordinates x1, . . . , xp ∈ Rd of ar-
bitrary size p since {Zn(xj), j = 1, . . . , p} and {Z(xj), j = 1, . . . , p} can be recast
into p q-dimensional random vectors so that the finite dimensional distributions of Zn
converge to those of Z(x) as m,n→∞.
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The tightness of the sequence of vector-valued random fields Zm,n(x) follows from the
tightness of the real-valued random fields {Zi,(m,n)(x)}, i.e., the components of Z(x).

For the first condition of Theorem 8.2 in [2], we have ‖Zm,n(0)‖ ≤
∑d
i=1 |Zi,(m,n)(0)|

so that E
[
‖Zm,n(0)‖

]
≤
∑d
i=1E

[
|Zi,(m,n)(0)|

]
and the latter summation is finite if the

components of Zm,n(x) satisfy the conditions of Theorem 2.5. For the second condition
of Theorem 8.2, note that

Wm,n(δ) = sup
‖x−y‖≤δ

‖Zm,n(x)− Zm,n(y)‖

≤
d∑
i=1

sup
‖x−y‖≤δ

|Zi,(m,n)(x)− Zi,(m,n)(y)| =
d∑
i=1

Wi,(m,n)(δ),

where {Wi,(m,n)(δ)} denote the moduli of continuity of the components {Zi,(m,n)(x)} of

Zm.n(x). Since E
[
Wm,n(δ)

]
≤
∑d
i=1E

[
Wi,(m,n)(δ)

]
and the latter expectations are finite

if the components of Zm,n(x) satisfy the conditions of Theorem 2.5, we conclude that
the family of vector-valued FD models {Zm,n(x)} is tight if their components satisfy the
conditions of Theorem 2.5. If in addition the finite dimensional distributions of Zm,n(x)
converge to those of Z(x), then Zm,n =⇒ Z as m,n → ∞. If Z(x) is Gaussian, we also
have the a.s. convergence of Zm,n to Z in the space of continuous functions C(D).

If Z(x) is not Gaussian, we proceed as in Theorem 2.7 by considering translation ran-
dom fields Z(x) defined by Zi(x) = F−1

i ◦Φ
(
Gi(x)

)
, i = 1, . . . , q, where Fi are continuous

cumulative distribution functions, Φ is the distribution of the standard normal variable
and Gi(x) are zero-mean, unit-variance homogeneous Gaussian fields with correlation
functions ζij(ξ) = E

[
Gi(x + ξ)Gj(x)

]
. It is assumed that the vector-valued random

field G(x) =
(
G1(x), . . . , Gq(x)

)
is D-m.s. periodic with continuous samples and that

the sequence of vector-valued FD Gaussian fields with components Gi,(m;n)(x) converges

a.s. to Gi(x) in C(D) so that the FD models Zi,(m,n)(x) = F−1
i ◦Φ

(
Gi,(m,n)(x)

)
converge

a.s. in C(D) to Zi(x) as m,n→∞ by the continuous mapping theorem.

3.2. Bounded frequency range fields. It is assumed that the spectral densities of the
components Zi(x) of the Rq-valued random field Z(x) have the same bounded support
Dν = [−ν̄1, ν̄1]× [−ν̄2, ν̄2], 0 < ν̄1, ν̄2 <∞, see Sect. 2.2.1. Consider a partition of Dν in
small rectangles {Ikl} with sides ∆ν1 ×∆ν2 and centers {νkl}, |k| ≤ m, |l| ≤ n, whose
measures decrease with m and n. This partition is used to construct FD models Zm,n(x)
of Z(x) and show that they converge weakly to Z(x) as the partition of Dν is refined.

3.2.1. Finite dimensional (FD) models. We construct FD models of Z(x) component-
by-component based on the approach in Eq. 2.12. The FD models for the components
of Z(x) are defined by

(3.10) Zi,(m,n)(x) =
∑

|k|≤m, |l|≤n

[
∆Ui,kl cos(νkl · x)−∆Vi,kl sin(νkl · x)

]
, x ∈ R2,

where E[∆Ui,kl] = E[∆Vi,kl] = 0,

E[∆Ui,kl ∆Uj,pq] = E[∆Vi,kl ∆Vj,pq] =

∫
Ikl

R[sij(ν)] dν ' R[sij(νkl)] ∆ν1 ∆ν2 and

E[∆Ui,kl ∆Vj,pq] = −E[∆Vi,kl ∆Uj,pq] = −
∫
Ikl

I[sij(ν)] dν ' I[sij(νkl)] ∆ν1 ∆ν2.

The latter approximations hold for sufficiently fine partitions of Dν , i.e., sufficiently large
m and n.
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3.2.2. Weak convergence of FD models. Arguments as in Sect. 3.1.2 show that the se-
quence of Rq-valued FD fields Zm,n(x) converges weakly to Z(x) in the space of con-
tinuous functions defined on D if the components of Zm,n(x) converge weakly to those
of Z(x) in C(D) as m,n → ∞. The weak convergence of the real-valued random fields
Zi,(m,n)(x) to Zi(x) holds by Theorem 2.8.

In summary, the theorems of the previous sections show that the family of FD models
constructed for real- and vector-valued m.s.-periodic random fields Z(x) may or may
not converge weakly in C(D) depending on the amplitudes of the constitutive harmonics
of Z(x). In contrast, the FD models of real- and vector-valued random fields Z(x)
with spectral densities of bounded support converge weakly to Z(x). These theorems
are consistent with our intuition. For example, the FD models may be incapable to
characterize accurately the samples of m.s.-periodic random fields if their high frequency
components have sizable amplitudes. On the other hand, the samples of random fields
with bounded frequencies are much smoother than those of m.s.-periodic fields since their
constitutive waves have bounded frequencies. The FD models of these fields are expected
to be accurate even for relatively low truncation levels (m,n).

3.3. Compliance/stiffness tensor. Let A(x), x ∈ D, be the compliance tensor of
a linear elastic random material in a bounded subset D of R2 which is defined on a
probability space (Ω,F , P ). The matrix-valued random field A(x) can be viewed as an
infinite family of (p, p)-symmetric, positive definite random matrices indexed by x ∈ D.
Since A(x) can be recast into a vector-valued random field, previous developments on the
construction of FD models for vector-valued random fields and the weak/a.s. convergence
of these models apply to matrix-valued random fields, such as A(x).

To satisfy physical constraints, the matrix-valued random field A(x) must be positive
definite in the sense that infx∈D{ζ ′A(x) ζ} > 0 almost surely (a.s.) for all ζ ∈ Rp. The
requirement ζ ′A(x) ζ > 0, ∀ζ ∈ Rp, a.s. at each x ∈ D is insufficient since, although
Ωx = {ω ∈ Ω : ζ ′A(x, ω) ζ ≤ 0} ∈ F is an event with P

(
Ωx
)

= 0 for ∀ζ ∈ Rp, ζ 6= 0, and
each x ∈ D, the uncountable union ∪x∈DΩx of events {Ωx} may not be in F and, if it
is, its probability may not be zero, see Example 3.12 in [8].

3.3.1. Probabilistic models. Two physically consistent models of A(x) are briefly dis-
cussed. The first, referred to as the eigenvalue/rotation model, ensembles A(x) from
translation fields developed for the eigenvalues and the eigenvectors of the correlation
function of A(x). The second, referred to as the triangular matrix model, represents
A(x) by the product of a triangular matrix-valued random field with its transposition.

Eigenvalue/rotation random fields: Let {Λk(x, ω)} and {Vk(x, ω)} denote the eigenvalues
and eigenvectors of a sample A(x, ω) of A(x) at a fixed but arbitrary x ∈ D, i.e., the
solutions of det

(
A(x, ω) − Λk(x, ω) I

)
= 0 and A(x, ω)Vk(x, ω) = Λk(x, ω)Vk(x, ω),

k = 1, . . . , p, where I denotes the identity matrix. If infx∈D{Λk(x, ω)} > 0 for almost all
samples of A(x), then infx∈D{ζ ′A(x, ω) ζ} > 0 a.s. for ζ ∈ Rp arbitrary.

The random field A(x) admits the representation A(x) = V (x) Λ(x)V (x)′, where
V (x) = [V1(x), . . . , Vp(x)] is an (p, p) matrix whose columns are the eigenvectors {Vk(x)}
and Λ(x) is an (p, p) diagonal matrix whose non-zero entries are the eigenvalues {Λk(x)}.
The eigenvectors {Vk(x)} of A(x) define the rotation fields {Θk(x)} for the principal
directions of A(x) at each x ∈ D.

The random fields {Λk(x)} and {Θk(x)} are continuous functions of the entries of A(x)
so that they are dependent random elements defined on the probability space (Ω,F , P )
of A(x). If A(x) has continuous samples, then the real-valued random fields {Λk(x)} and
{Θk(x)} have continuous samples. Since the samples of the random fields {Λk(x)} and
{Θk(x)} must take values in bounded intervals, these fields are non-Gaussian.
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Triangular matrix random fields: The random field A(x) admits the decomposition
A(x) = L(x)L(x)′ at each x ∈ D since it is symmetric and positive definite, where
L(x) is a lower triangular matrix. If almost all samples of the real-valued random fields
Lii(x), i = 1, . . . , p, are positive, then A(x) is a.s. positive definite at each x ∈ D. The
constraints and the construction on these fields is similar to that of the random fields of
the previous model. Various algorithms can be used to construct L(x). For example,

(3.11) Lij(x) =
Aij(x)−

∑j−1
s=1 Ais(x)Ajs(x)

Ajj(x)−
∑j−1
s=1 Ajs(x)2

=:
hij
(
A(x)

)
gij
(
A(x)

) , 1 ≤ j ≤ i ≤ m,

by the Cholesky decomposition, where the convention
∑0
r=1Air(x)Ajr(x) = 0 is used

[8] (Sect. 5.2). This shows that the real-valued random fields {Lij} are dependent with
continuous samples.

3.3.2. Random compliance tensor for 2D specimens. Let A(x), x ∈ D ⊂ R2, be the
compliance tensor of a two-dimensional linear elasticity problem and denote by Σ(x) =[
Σ11(x),Σ22(x),Σ12(x)

]′
and S(x) =

(
[S11(x), S22(x), S12(x)

]′
the vector-valued stress

and strain random fields. The stress-strain relationship has the form
(3.12)

S(x) =

 S11(x)
S22(x)
S12(x)

 =

 A11(x) A12(x) A13(x)
A12(x) A22(x) A23(x)
A13(x) A23(x) A33(x)

 Σ11(x)
Σ22(x)
Σ12(x)

 = A(x) Σ(x), x ∈ D,

where {A(x), x ∈ D} is an a.s. symmetric, positive definite matrix-valued random field,
which means that almost all samples of A(x) are symmetric, positive definite matrices
in D.

Figure 3. A sample of A11(x) (right panel) and corresponding samples
of A11,(m,n)(x) for (m,n) = (5, 5) and (20, 20) (left and middle panels)

For a numerical illustration, we construct the random field A(x) from a lower triangu-
lar matrix-valued random field L(x) whose non-zero entries are real-valued random fields
defined on D = [−a1, a1] × [−a2, a2]. In addition, the random fields Lii(x) on the diag-
onal of L(x) have positive samples. The following algorithm has been used to construct
L(x). First, we construct the vector-valued Gaussian field G(x) = [G1(x), . . . , G6(x)]′

via the linear transformation G(x) = aN(x), where N(x) = [N1(x), . . . , N6(x)]′ is ho-
mogeneous Gaussian field with independent zero-mean, unit-variance components with
spectral densities sr(ν) ∝ 1(ν ∈ Dν) exp

[
− (ν2

1 − 2 ρr ν1 ν2 + ν2
2)/
(
2 (1− ρ2

r)
)]

, |ρr| < 1,
for r = 1, . . . , 6, with the bounded support Dν = [−ν̄1, ν̄1] × [−ν̄2, ν̄2], 0 < ν̄1, ν̄2 < ∞.
Second, the first three components, or any other three components, of the Gaussian field
G(x) are mapped into, e.g., Beta translation fields {L11(x), L22(x), L33(x)} with samples
in bounded intervals of (0,∞). The latter three components of G(x) can be left unchanged
or modified arbitrarily. The compliance tensor is defined by A(x) = L(x)L(x)′, where
the non-zero entries of L(x) are Lrr(x), r = 1, 2, 3, L21(x) = G4(x), L31(x) = G5(x) and
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L32(x) = G6(x). It satisfies physical constraints in the sense that the random variable
infx∈D ζ

′A(x) ζ > 0 a.s. for all ζ ∈ R3 \ {0}.
The FD models {Nr,(m,n)(x)} and {Gr,(m,n)(x)} of {Nr(x)} and {Gr(x)} result from

Eqs. 2.12 and 3.10. They converge weakly to {Nr(x)} and {Gr(x)} in C(D) as m,n→∞
by Theorem 2.8 and considerations in Sect. 3.2.2. Since the fields are Gaussian, the
above weak convergence implies the a.s. convergence of {Nr,(m,n)(x)} and {Gr,(m,n)(x)}
to {Nr(x)} and {Gr(x)} in the space of continuous functions C(D) by the Itô-Nisio
theorem [13], see also Theorem 2.6. These properties persists for the matrix-valued
random fields L(x) and A(x) by the continuous mapping theorem, see also Theorem 2.7.
Accordingly, it is expected that the samples of the FD models of the compliance field
A(x) are similar to those of this field for sufficiently large m and n.

The following numerical values are for ν̄1 = ν̄2 = 5, ρr = 0.1 : 0.1 : 0.6, a1 = 5,
a2 = 10 and γ = {γij} with entries γii = 1 and γij = 0.7, i 6= j. The supports of the
Beta distributions for {L11(x), L22(x), L33(x)} are (1, 4), (2, 6) and (1, 3) and their shape
parameters are equal to one. The right panel of Fig. 3 shows a sample of A11(x), i.e., a
sample of a discrete version of the spectral representation of the random fields {Nr(x)},
r = 1, . . . , 6, constructed from a partition of Dν in equal rectangles {Ikl} with sides
ν̄i/100, i = 1, 2, see Eq. 3.10. Further refinements have not been used since they result
in insignificant changes in the samples of these fields. The left and middle panels of this
figure show the corresponding samples of the FD models A11,(m,n)(x) which are based on
partitions of Dν in rectangles of sizes ν̄i/5, i = 1, 2 and ν̄i/20, i = 1, 2. Visual inspection
of the plots suggests that the accuracy of the FD models improves with (m,n) as they
can capture additional high frequency details of the target samples. This observation
is consistent with the weak and a.s convergence of the FD models of A(x). The errors
supx∈D |Aij(x)−Aij,(m,n)(x)| for the samples A11,m.n(x) in the figure decrease from 14.36
for (m,n) = (5, 5) to 7.91 for (m,n) = (20, 20).

The random field {A(x), x ∈ D} in the above illustration is completely defined by the
marginal distributions of the real-valued random fields {Lij(x)}, the mapping G(x) =
aN(x) and the correlation functions of the components of N(x). The model can match
exactly specified marginal distributions but not joint distributions. The results of Sect. 3
can be used to construct FD models for general positive definite, matrix-valued non-
Gaussian fields of the type in [18] and prove that they converge weakly/a.s. to these
target non-Gaussian fields.

4. Response of random microstructure

Consider a material specimen in a bounded subset D of Rd whose properties are de-
scribed by a scalar-/vector-/matrix-valued random field {Z(x), x ∈ D}. The specimen
is subjected to some actions and boundary conditions which, for simplicity, are assumed
to be deterministic. The material response is a random field U(x) which satisfies a sto-
chastic differential equation whose coefficients depend on Z(x), so that it is a functional
of Z(x). Analytical solutions of these stochastic equations are possible in few special
cases [3]. Generally, only numerical approximations of U(x) can be obtained based on
FD models of Z(x). The numerical solutions are useful if they converge in some sense to
the target solutions U(x), e.g., in the sense of the theorems of the previous sections.

We consider a simple stochastic problem, the one-dimensional transport equation for
materials whose properties vary continuously in space according to a real-valued random
field Z(x), x ∈ R. Let {Zn(x)} be a family of FD models of Z(x) and denote by U(x) and
Un(x) the solutions of the transport equation with material properties described by Z(x)
and Zn(x). We show that, if Zn converges a.s. to Z in the space of continuous functions
C(D), then Un also converges a.s. to U in C(D) under some conditions. This means that
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samples of Un(x) can be used as substitutes for samples of U(x) for sufficiently large n
and that extremes of U(x) can be inferred from samples of Un(x).

The random fields U(x) and Un(x) satisfy the one-dimensional stochastic transport
differential equations

d

dx

(
Z(x)

dU(x)

dx

)
= 0, x ∈ D = (0, l), U(0) = α, U(l) = β and(4.1)

d

dx

(
Zn(x)

dUn(x)

dx

)
= 0, x ∈ D = (0, l), Un(0) = α, Un(l) = β,(4.2)

where Z(x) denotes the random conductivity field and Zn(x) is an FD model of this field.
It is assumed that almost all samples of the random fields Z(x) and Zn(x) take values
in bounded intervals of (0,∞) and are differentiable, so that the strong solutions of the
above equations exist and are

U(x) = α+ (β − α) I(x)/I(l), where I(x) =

∫ x

0

dy/Z(y) and(4.3)

Un(x) = α+ (β − α) In(x)/In(l), where In(x) =

∫ x

0

dy/Zn(y).(4.4)

Since U(x) and Un(x) take values in bounded intervals, they have finite moments.

Theorem 4.1. If almost all samples of the random fields Z(x) and Zn(x) are differen-
tiable with values in bounded intervals of (0,∞) and Zn converges a.s. to Z in C(D) as
n→∞, then Un converges a.s. to U in C(D) as n→∞.

Proof. The discrepancy between the integrals I(x) and In(x) can be bounded by

|I(x)− In(x)| =
∣∣∣∣ ∫ x

0

dy

Z(y)
−
∫ x

0

dy

Zn(y)

∣∣∣∣ =

∣∣∣∣ ∫ x

0

Zn(y)− Z(y)

Z(y)Zn(y)
dy

∣∣∣∣
≤
∫ x

0

∣∣∣∣Zn(y)− Z(y)

Z(y)Zn(y)

∣∣∣∣ dy ≤ sup
y∈D
|Zn(y)− Z(y)|

∫ l

0

dy

Z(y)Zn(y)
, x ∈ R.

Since Zn(x) converges a.s. to Z(x) in the space of continuous functions as n → ∞ and∫ l
0
dy/(Z(y)Zn(y)) is bounded a.s. by assumption, then supx∈D |I(x)−In(x)| → 0 almost

surely in C(D) as n→∞.
The discrepancy between the exact and the FD solutions can be bounded by

|U(x)− Un(x)|/(β − α) ≤ In(l) |I(x)− In(x)|+ In(x) |In(l)− I(l)|
I(l) In(l)

≤
[

2

I(l)

∫ l

0

dy

Z(y)Zn(y)

]
sup
y∈D
|Zn(y)− Z(y)|.

Since the term in the square brackets is bounded a.s. and Zn converges a.s. to Z in C(D),
then Un(x) converges a.s. to U(x) in the space of continuous functions. �

Example 4.2. Let Z(x) = a + (b − a)F−1 ◦ Φ
(
G(x)

)
= h

(
G(x)

)
, x ∈ D = [0, l], be

a translation random field, where F denotes a standard Beta distribution with support
(0, 1) and shape parameters (p, q) and G(x) is homogeneous, zero-mean, unit-variance,
and one-sided spectral density g(ν) ∝ 1(0 ≤ ν ≤ ν̄) (λ2 + ν)−2, 0 ≤ ν ≤ ν̄ < ∞. Since
the spectral density of G(x) has bounded support, the FD models Gn(x) converge a.s. to
G(x) in C(D) as n→∞ so do the corresponding FD models Zn(x) = h

(
Gn(x)

)
of Z(x),

see Theorems 2.5-2.7.
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Figure 4. Histogram of supx∈R |U(x) − Un(x)| for λ = 8, ν̄ = 20 and
n = 10 and n = 40 (left and right panels)

As previously discussed, samples of Z(x) cannot be obtained exactly. They are gener-
ated from a representation of the type in Eq. 2.12 for a very fine partition of the frequency
band [0, ν̄] in N equal intervals. The FD models Zn(x) are also based on this equation
but correspond to coarse partitions of [0, ν̄] in n� N equal intervals. The plots of Fig. 4
are for N = 5000 and (λ, ν̄) = (8, 20). The left and right panels of this figure show
histograms of the discrepancy supx∈D |U(x) − Un(x)| between target and FD solution
samples for n = 10 and n = 40. Note that the histograms are drawn at different scales.
The samples and the histograms show that the FD models are satisfactory even for small
values of n, and that their accuracy improves with n.

5. Comments

Analytical solutions of stochastic problems are available in few cases which, generally,
are of limited practical interest. Numerical methods have to be employed to solve most
stochastic problems encountered in applications. These methods require to discretize the
physical space, e.g., by using the finite difference/element methods, and the probability
space, e.g., by using finite dimensional (FD) models. It was assumed that the material
properties vary continuously in space so that the random fields Z(x) describing these
properties and their FD models have continuous samples. We have considered two types
of random fields for material properties, mean square periodic fields and fields whose
spectral densities have bounded supports.

The focus was on the accuracy of FD models of random material properties Z(x).
We have also examined the accuracy of FD-based approximations of material responses
U(x). Conditions were established under which samples of FD material models and
corresponding material responses can be used as substitutes for samples of Z(x) and
U(x). These theoretical results have been illustrated by numerical examples quantifying
the discrepancy between target and FD samples.
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