Theor. Probability and Math. Statist.
No. 0, XXXX, Pages 000-000

FINITE DIMENSIONAL MODELS FOR RANDOM
MICROSTRUCTURES

MIRCEA GRIGORIU

ABSTRACT. Finite dimensional (FD) models, i.e., deterministic functions of space
depending on finite sets of random variables, are used extensively in applications to
generate samples of random fields Z(x) and construct approximations of solutions
U(z) of ordinary or partial differential equations whose random coefficients depend on
Z(x). FD models of Z(z) and U(x) constitute surrogates of these random fields which
target various properties, e.g., mean/correlation functions or sample properties. We
establish conditions under which samples of FD models can be used as substitutes for
samples of Z(z) and U(x) for two types of random fields Z(x) and a simple stochastic
equation. Some of these conditions are illustrated by numerical examples.

1. INTRODUCTION

Material properties exhibit random spatial fluctuations which can be represented by
scalar-/vector- /matrix-valued random fields {Z(z), € D}, where D C R%, d = 1,2,3,
is a bounded subset specifying the domain of a material specimen. Stresses, strains and
other material responses {U(z), « € D} to boundary conditions and other actions satisfy
ordinary or partial differential equations with random coefficients which depend on Z(z).
Analytical solutions of these stochastic equations are possible in simple cases of limited
practical interest. Generally, numerical methods have to be employed for solution.

The implementation of numerical methods requires to discretize both the physical
and the probability spaces. The finite element/difference methods are the standard tools
for discretizing the physical space. Finite dimensional (FD) models are commonly used
to discretize the probability space. They are deterministic functions of finitely many
arguments of which some are random variables. For example, the material random
field Z(z), which is an uncountable family of random elements indexed by = € D, can
be represented by FD random fields {Z,(x), © € D}, i.e., deterministic functions of
x € D which depend on n random variables (Z1,...,Z,), see [10] for the construction
of these models. We say that Z(x) has infinite stochastic dimension while Z,(z) has
finite stochastic dimension equal to the number n of random variables in its definition.
Denote by U, (z) the solution of the defining equation of U(z) with Z,(x) in place
of Z(z). The random fields U(x) and U, (z), which are complex functionals of Z(z)
and Z,(x), are referred to as analytical/target and numerical/approzimate solutions of
material responses. They differ since Z(x) and Z,,(x) differ. The size of the discrepancy
between U(x) and Uy, (z) depends on that between Z(z) and Z,(z) and the structure of
the defining equation for material responses.
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The discussion is limited to material properties which vary continuously over the
specimen domain, so that the functions describing these properties are elements of the
space of scalar/vector-valued continuous functions C(D) defined on bounded subsets D
of R%, d =1,2,3. To satisfy this requirement, Z(z) is assumed to be homogeneous with
continuous samples, i.e., its samples are elements of C(D) and its statistics are invariant
to space shift. To satisfy physics constraints, Z(z) is assumed to be a non-Gaussian
translation field, i.e., Z(z) = h(G(z)), # € D, where h : C(D) — C(D) is continuous in
the topology induced by the ‘sup’ metric of C'(D) and G(z) is a zero-mean homogeneous
Gaussian field with continuous samples defined on a probability space (Q, F, P). Since h
is continuous, it is measurable from (C(D),C) to (C(D),C), where C is the Borel o-field
generated by the open sets D of C'(D). The probability measures induced by the random
fields G(x) and Z(z) on (C(D),C) are P(G™*(A)) and P(G'(Z7'(A))), AeC.

We establish conditions under which samples of the FD random fields Z,,(z) and U, (),
which can be constructed numerically, can be used as approximations for samples of the
target random fields Z(z) and U(z). To establish these conditions, we examine the weak
and almost sure (a.s) convergences of Z,(z) to Z(z) in the space of continuous functions
C(D). The weak convergence, denoted by Z,, = Z, means for real-valued random fields
that P(sup,ep |Z(x) — Zn(z)| > €) — 0 as n — oo for any £ > 0 so that the probability
measure of the “bad subset” Q,(c) = {w € Q : sup,cp |Z(z,w) — Z,(x,w)| > e} of the
sample space {2 which contains pairs of target and FD samples which differ by more than
¢ in the metric of C(D), is small for sufficiently large n. If Z,, = Z, the subsets ,(¢)
and €, (¢) for large m # n have small measures but, generally, differ. The almost sure
(a.s.) convergence, denoted by Z, *3 Z, implies that once the measure of Q,(¢) gets
small for some ng it remains small and its measure decreases as n > ng increases. This
type of convergence is desirable since it guarantees that the accuracy of the FD models
improves with n. We also examine the convergence of the FD solution U, (x) to U(x) for
a simple stochastic problem, the one-dimensional transport equation.

The paper is organized as follows. Section 2 deals with scalar-valued material random
fields Z(x). Mean square periodic and bounded frequency range fields are discussed
in Sects. 2.1 and 2.2. Finite dimensional (FD) models {Z,(z)} of Z(z) and theorems
for their weak and a.s. convergence to Z(x) are in Sects. 2.1.1-2.1.2 and Sects. 2.2.1-
2.2.2, respectively. Section 2.3 illustrates numerically some of the theoretical results of
Sects. 2.1 and 2.2. Section 3 deals with vector-valued material random fields Z(z) and
follows the structure of Sect. 2. Mean square periodic and bounded frequency range fields
are in Sects. 3.1 and 3.2. Finite dimensional (FD) models {Z,,(z)} of Z(z) and theorems
for their weak and a.s. convergence to Z(x) are in Sects. 3.1.1-3.1.2 and Sects. 3.2.1-
3.2.2, respectively. Section 3.3 applies results of Sects. 3.1-3.2 to construct models for
compliance tensors and present numerical results in Sects. 3.3.1 and 3.3.2. Section 4
examines the response of a simple stochastic differential equation, the one-dimensional
transport equation. Some final comments are in Sect. 5.

2. SCALAR-VALUED MICROSTRUCTURE MODELS

Most of the results in this section related on properties of random fields with finite
variance are available in the literature, e.g., [1, 12, 21]. The presentation of these prop-
erties follows closely these references.

Let Z(z), * € RY be a real-valued random field defined on a probability space
(9, F, P) with zero mean and finite variance. The assumption E[Z(x)] = 0 is not restric-
tive since, if E[Z(z)] # 0, it can be added to the samples of Z(z). If D is a closed and
bounded subset of R? and the correlation function c(z,y) = E[Z(x) Z(y)] is continuous on

D x D and, therefore, square integrable on this subset, then Z(z) =Y -, )\,16/2 & vg ()
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and c(z,y) = Y poq M vk(z) vk(y), where {A;} and {vg(z)} are the eigenvalues and
eigenfunctions of ¢(x,y) in D x D and {&} are uncorrelated random variables with zero
means and unit variances. The series representation of Z(z) converges in mean square
(m.s.) and that of ¢(x,y) converges absolutely and uniformly by Mercer’s theorem [6]
(Sects. IV.1 and IV.3). It is assumed that the real-valued random field Z(z) has the
following properties 1 and 2 and property 3 or 4.

1. Weakly homogeneous, i.e., the correlation function ¢(§) = E[Z(z + §) Z(z)], £ =
(&1,...,&5) € R? depends only on the lag £&. The correlation function c(¢) and the
spectral density s(v), v = (v1,...,vq), provided it exists, are related by [1](Chap. 2)

(2.1) ¢(§) = /Rd e’V dS(v) = /Rd e’V s(v)dv, and s(v) = (2717)d /Rd e 8V ¢(€) dE,

where S(v) is a bounded real-valued measure such that [, dS(v) > 0 for all Borel mea-
surable A C R, If S(v) is absolutely continuous with respect to the Lebesgue measure,
then the spectral density s(v) exists and dS(v) = s(v)dv [1] (Theorem 2.1.2). It is
assumed that S(v) has this property so that the spectral density exists. Since Z(x) is
real-valued, its correlation function and spectral density are real-valued even functions,
so that Eq. 2.1 can be given in the form ¢(§) = [ga cos(§ - v) s(v) dv [1] (Sect. 2.4)

The field Z(z) admits the spectral representation

(2.2) Z(x) = /Rd et AW (v),

where W (v) is a zero-mean, complex-valued process with orthogonal increments whose
first two moments are E[dW (v)] = 0 and E[|dW (v)|?] = E[dW (v)dW (v)*] = dS(v) =
s(v) dv. Since Z(z) is real, the above spectral representation takes the form [1] (Sect. 2.3)

(2.3) Z(x) = /]Rd (cos(v - z)dU(v) — sin(v - z) dV (v)),

as the imaginary part [, (cos(v-x)dV (v) +sin(v-x)dU(v)) of the right side of Eq. 2.2
must vanish, where U(v) and V (v) are zero-mean, real-valued random fields with orthog-
onal increments of moments E[dU(v)] = E[dV (v)] =0, E[dU(v)dV (V)] =0 for all v,/
and E[|dU(v)|?] = E[|dV (v)|*] = dS(v) = s(v) dv, see [11] (Theorem 13).

2. Continuous, i.e., the samples Z(x,w) of Z(zx) are real-valued continuous functions for
almost all w € Q so that almost all samples of Z(z) are members of C'(D).

3. Mean square (m.s.) periodic, i.e., the statistics of Z(x) repeat over bounded rectangles.
A precise definition is in the subsequent subsection. Periodic material properties are
commonly used in mechanics to characterize large or infinite material specimens by their
properties over finite subsets, referred to as unit cells [15] (Chap. 3).

4. Bounded frequency range, i.e., the support of the spectral density s(v) in Eq. 2.1 is a
bounded rectangle D, of R? a common assumption in applications which seems to be
consistent with physics.

2.1. Mean square periodic fields. For simplicity, we limit our discussion to two-
dimensional material specimens in bounded rectangular domains D = [—ay, a1]X[—az, as]
or D =[0,T1] x [0,T»], where T; = 2a;, i = 1,2, whose properties are described by real-
valued, weakly homogeneous random fields Z(x), z € R?, which are periodic in the sense
of the following definition.
Definition 2.1. The random field Z(z) is said to be D- or (T4, Ts)-m.s. periodic if

2
(24) E[(Z(.’El +T1,$2+T2)—Z(£E1,£IJ2)) ] :0, .’E:("El,.’EQ) €R2.

This definition extends directly to real-valued random fields defined on R, d > 2.
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Theorem 2.2. If Z(x) is D-m.s. periodic, then
25)  E[(Z(x1+ ki Th,ms + ko To) — Z(21,22))°] =0, @ = (¢1,25) € R?,
and the correlation function is (Ty,Ty)-periodic, i.e.,
(26) c(61,6) =E[Z(x1+& + kT, 2o+ &+ ko To) Z(x1,22)], €= (&1,6) € R?,
for any integers k1 and ks.
Proof. We have
E[(Z(xl + kT e + ko To) — Z(xl,xg))Q]

= E|:<(Z(Z‘1 +k1 T1,332 +k2T2) — Z(Z‘l + (k‘l — 1) Tl,l‘g + (kj2 — 1)T2))

-+ (Z(Il + (kl — 1)T1,I’2 + (]CQ — 1)T2) — Z(Ihl’g))) :|

=2E[(Z(x1 4+ k1 Ty, o + ko To) — Z(w1 + (k1 — 1) Th, 22 + (ko — 1) Ta)
X (Z(.Z‘l + (kl — 1) T,z + (k‘g — 1) TQ) — Z(xl,l‘g))]
+ E[(Z(!L‘l + (lﬁ — 1) Ty, + (kz — 1) TQ) - Z(l‘l,l'g)
since E[(Z(I]L‘l + k‘l T1,$2 + k’g Tg) - Z(I]Jl + (kl — 1) T17I'2 +
definition of m.s. periodicity. Also, |E[(Z(x1 +k Ty, xo+ ke To)—Z(x1 4+ (k1 — 1) Th, 0+
(ke — 1) T3) (Z(:Cl + (ki — )T 20 + (ke — 1) To) — Z (1, 22) H = 0 by the properties
of Z(x) and the Cauchy-Schwarz inequality. Accordingly, the above equality yields the
recursive formula E[(Z(I’l +k1 Tl, I2+k2 T2)7Z(x17 1’2))2] =F [(Z(Z'1+(k1 — 1) Tl, To+

(ke — 1)T2) — Z(x1, xg))z}, which implies the stated property. Similar arguments yield
the periodicity of the correlation function of Z(x). O

2]7

ko —1)T5))°] = 0 by the

—~  ~—

~— —

The properties in Eqgs. 2.5 and 2.6 extend directly to vector-valued random fields with
m.s. periodic components of the same periods 77 and T3, as shown in a subsequent
subsection. They also hold for matrix-valued random fields since they can be reset as
vector-valued random fields.

Theorem 2.3. If the partial derivatives Oc(€) /01, Oc(€)/0& and 92c(€)/0€1 O, of the
correlation function c(§) = E[Z(x + &) Z(z)] of a weakly homogeneous, D-m.s. periodic
random field Z(x) are continuous in D, then its Fourier series

(27) (&) = suel ™t with sy = /D €) e EdE, €= (61,6) € R,

k,l

4aqas

converges absolutely and uniformly, where Y, | = > 1 ,_ 41 1o, Vin =27/T; = 7/a,,
vig =kvii fori=1,2andk ==+1,%2,... and vy = (v1x,v2,). The Fourier coefficients
{sm} are real-valued and sy = s_k, .

Proof. Under the stated conditions, the Fourier series of the correlation function of Z(z)
converges to ¢(§) absolutely and uniformly and has the form in Eq. 2.7 [19] (Sects. 7.1 to
7.3). That sy; is real-valued follows by calculating the integral in Eq. 2.7 as the sums of the
integrals over D;UD} and DyUDY}, where Dy = (0,a1) x (0, az2), D} = (—a1,0) x (—az,0),
Dy = (0,a1) X (—a2,0), Dy = (—a1,0) x (0,az2). For example, fDluD; c(€) exp(—ivg -
§)d¢ =2 fDl c(&) cos(vg-€) d€, which is real since the correlation function of Z(x) is real-
valued, see also Eq. 2.1. The Fourier coefficient s_j _; corresponding to the frequency
v_g, 1 = (—v1k, —Va,) coincides with sy, as it results by using the change of variables
& = —n in the integral of Eq. 2.7. (]
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This section defines FD models Z,, ,(x) of Z(x), establishes conditions under which
the finite dimensional distributions of Z,, ,(x) converge to those of Z(x), develops criteria
for the tightness of the sequence Z,, ,(z) of FD models and establishes conditions for
the weak convergence of the sequence of fields Z,, ,(z) to Z(z) in the space C(D) of
real-valued continuous functions endowed with the uniform metric.

2.1.1. Finite dimensional (FD) models. The spectral representation of Z(x) in Eq. 2.3
for m.s. periodic random fields takes the form

(2.8) Z(x) = Z (Ui cos(vi - @) — Vig sin(vig - 2)], = € R?,
k,l
where {Uy; } and {Vj,; } are zero-mean uncorrelated random variables with variances {sy; },
see Eq. 2.3. Consider the family of finite dimensional (FD) random fields,
(29) Zm,n(:c) = Z [Ukl COS(VM IE) — Vi sin(ykl . I)}, xr € RZ,
[k|<m,|l|<n

obtained by truncation of the infinite series representation of Z(x) in Eq. 2.8. These
FD models are deterministic functions of x € D which depend on finite sets of random
variables. The random fields Z,, () are weakly homogeneous since E[Z,, ,(z)] = 0 and

Cmn (T, Y) = B[ Zim (@) Zimn(y)] = Z st (cos(vi - ) cos(vi - y)+
[k|<m, |l]<n
(2.10) + sin(vg - ) sin(vg y)) = Z Skl COS (Vkl (x— y))
[k|<m,|l|<n

This correlation function converges absolutely and uniformly to the correlation function
c(€) as m,n — oo by Mercer’s theorem [12] (Sect. 6.2) since the spectral representation
of Z(x) in Eq. 2.9 constitutes a truncated Karhunen-Loéve expansion of Z(z) as the
trigonometric functions of this representation are the eigenfunctions of the correlation
function of Z(x).

The random fields Z(z) and Z,, »(z) in Egs. 2.8 and 2.9 are defined in the second
moment sense, i.e., only their mean and correlation functions are known, unless Z(z) is
Gaussian in which case {Uy;} and {V};} are independent Gaussian variables. If Z(z) is
not Gaussian, {Uy;} and {Vj;} are uncorrelated but dependent non-Gaussian variables
with unknown distributions. For these fields, we construct samples of the random vari-
ables {Uk(w)} and {Vj(w)} from samples Z(z,w), w € £, of Z(x) by projection, i.e.,
(Z(-,w),cos(vg - -)) = Upi(w) [ cos®(vg - @) da, so that
(2.11)

Ukl (w) !

2&1 a9

/ Z(x,w) cos(vg-x)de and Vi (w) = !
D

= Jaras /D Z(z,w) sin(vy ) dz.

This construction pairs target and FD samples, i.e., the samples of Z(z,w) of Z(z) with
the samples Z,, ,,(x,w) of Z,, ,(x), via the samples Uy(w) and Vi(w) of the random
coefficients of FD fields. It can be used for Gaussian and non-Gaussian fields.

Note also that the random fields Z(x) and Z,, ,,(x) depend on countable sets of random
variables, the random coefficients {Uy;} and {Vj;}. These sets are infinite for Z(z) and
finite for Z,, (). Accordingly, Z,, ,,(x) can be used in numerical calculations while Z(z)
cannot. The next theorem shows that the finite dimensional distributions of {Z,, ,(z)}
converge to those of Z(x) as m.n — oo under some conditions.

Theorem 2.4. If the correlation function of Z(x) is continuous in D x D, the finite
dimensional distributions of Z,, n(x) converge to those of Z(x) as m,n — oo.
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Proof. First note that the correlation function is square integrable since it is continuous
and D is compact. For a fixed arbitrary x € R?, the sequence of random variables Z,,, ,, ()
is m.s. Cauchy by Mercer’s theorem ([6], Sect. IV.2, and [12], Sect. 6.2) so that Z,, ,(z)
converges in m.s. to Z(x) as m,n — oo and, therefore, in distribution by Chebychev’s
inequality. Consider now the random vectors Z,,, := (Zm,n(acl)7 .. .,Zm,n(xp)) and
Z := (Z(x1),...,Z(xp)) corresponding to arbitrary p arguments z1,...,z, € R%. The
m.s. convergence of the components of Z,, , to those of Z implies P (|| Z,,,, — Z|| > €) <
E[|Zmn—Z|]/e = 0 for any & > 0 since E[||Z,n — Z||] — 0 as m,n — oo, which shows
that Z,, ,, converges in probability to Z. This convergence implies the convergence of the
joint distribution of Z,, , to that of Z by the Portmanteau Theorem [2] (Sect. 1.2), so
that the finite dimensional distributions of Z,, ,,(z) converge to those of Z(x). The result
also follows from [20] (Theorem 18.10) which shows that the convergence in probability
of Z,,, to Z implies the convergence of the finite dimensional distributions of Z,, ,, to
those of Z. O

2.1.2. Weak convergence of FD models. We develop a practical criterion (Theorem 2.5)
for checking whether a family {Z,, »(z)} of FD models is tight. If the family of random
fields {Z,,.» ()} is tight and, in addition, its finite dimensional distributions converge to
those of a real-valued m.s.-periodic random field Z(x), then Z,,, converges weakly to
Z in the space of continuous functions C(D) [2] (Theorem 8.1). Under these conditions,
samples of Z,, ,(x) are similar to those of Z(z) on a subset of the sample space Q of
nearly unit measure for sufficiently large (m,n). Theorems 2.6 and 2.7 consider the
special case of Gaussian and translation random fields.

Theorem 2.5. If the series ), 8]16{2 < oo and 3, vkl 5,11/2 < oo are convergent, the
sequence of FD fields {Z, n(2)} in Eq. 2.9 is tight.

Proof. We show that the two conditions of Theorem 8.2 in [2] are satisfied. The first con-
dition requires to show that for £ > 0 there is an a > 0 such that P(|Z,,,(0)| > a) <,

where Zp,1(0) = 3= <1 <n Ukt~ Then, P(|Zmn(0)] > a) < E[| D k| <mali|<n Ukil] /a <

Z|k|gm,|z\gnE[|Ukl|]/a < ngm,mgnE[Uz?l]l/z/a = Z|k|§m,|z\gn 511{2‘1 < Zk,l Sllfa
so that, if Zk,l 5116{2 < 00 there exists an a = Zk,l s}g{Q/e with the required property for
any given € > 0.

The second condition requires to show that for any e, > 0 there exists § > 0 such
that P (W, . (6) > €) < n for all m, n, where Wy, ,,(6) = SUD||z—y( <5 | Zmn(T) = Zmn(y)]
denotes the modulus of continuity of Z,, ,,(x). Since |Z, n(2) — Z . (y)| is equal to

Z (Ukl (cos(vi - @) — cos(V - y)) — Via (sin(vg - ) — sin(vi y)))‘

[k|<m,|l]<n

3 ( 2 Uy sin (v - (& + )/2) sin (v - (= — )/2)

[k|<m,|l|<n

— 2V cos (ukl (x +y)/2) sin (sz (r— y)/2)‘

= ‘ -2 Z sin (v - (x —y)/2) (Ukl sin (v - (¢ 4+ y)/2) 4 Vi cos (ykl-(x+y)/2))‘

[k|<m,|l|<n

<2 > [sin(vr- (@ —)/2)] ([Unl + Vi),

[k|<m,|l|<n
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we have
Winn(d) < sup (2 Z |sin (Vkl (x— y)/Q)‘ (|Ukl| + |Vkl|)>
HCE—ZJHS(s |k|§m,|l|§n
<6 > Nl (Ul + Vial) <6 Il (Uil + [Vial)
[k|<m,|l|<n kel

by using | sin (vir - (z = )/2)| < |vre - (z =) /2] < vl |z =yl < 0 [[vaall, so that

E[Wnn(@®)] _ 0 Xipi<mzn Vel (B|Uki| + E[Vil)
€ o €
_ 8 Seallvmll (BRI + BIVEY?) 20 304, Ivwal 53

3 £

P(Wpn(d) >¢) <

IE > el si{z < 00, then, for given &,7 > 0, the solution of 246 >, ; [Vl si{Q/s =7
gives the required . We conclude that the weak convergence Z,, , = Z holds under
the conditions of the theorem. ]

Criterion for weak convergence: If the conditions of Theorems 2.4 and 2.5 are
satisfied, i.e., (1) the correlation function of Z(x) is continuous and square integrable in
D x D and (2) the series },; , s,lff and 3 (vl s,lcl/2 are convergent, then 7, , = 7
as m,n — 0o [2] (Theorem 8.1). The conditions of Theorem 2.4 relate to properties of
the correlation functions of Z(z). The conditions of Theorem 2.5 relate to the frequencies
and the amplitudes of the constitutive random waves of Z(x). Intuitively, they impose
restrictions on the amplitudes of the high frequency fluctuations of Z(x).

The criterion applies to both Gaussian and non-Gaussian random fields Z(z). The
following two theorems deal with Gaussian fields and continuous mappings of Gaussian
fields, referred to as translation fields.

Theorem 2.6. If Z(x) is Gaussian and satisfies the conditions of Theorems 2.4 and 2.5,
then Zy, n(z) converges almost surely (a.s.) to Z(x) in the metric of C(D) as m,n — oo.

Proof. For Gaussian fields Z(z), the FD models Z,, ,,(z) are sums of independent Gauss-
ian processes, the independent Gaussian processes Uy cos(vy - ) and Vi sin(vg - x).
Under the conditions of Theorems 3 and 4, we have the weak convergence Z,, , = Z
as m,n — oo. This implies the almost sure convergence of Z,, ,, to Z in C(D) by the
It6-Nisio theorem, see [14] (Theorem 2.1.1) and [13]. O

This result implies that the discrepancy between target and FD samples, i.e., samples
of Z(z) and Z,, ., (z), quantified by the sup-norm metric is small on a subset €y of the
sample space ) of nearly unit measure for sufficiently large (m,n), a statement similar
to that under the weak convergence Z,,, = Z. In addition, the a.s. convergence
guarantees that the subset €y increases with (m,n) so that the accuracy of FD models
improves with the truncation level (m,n). This property is illustrated by examples in a
subsequent section dealing with extremes of Z(x).

Theorem 2.7. Let Z(z) = F~' o ®(G(x)), where F is a strictly increasing, continuous
distribution, ® denotes the distribution of the standard normal variables and G(x) is a
real-valued, D-m.s. periodic homogeneous Gaussian field with zero mean, unit variance
and continuous samples. Let G, n(x) be FD dimensional models of G(x) constructed
as in Eq. 2.9. Then, the sequence of FD fields Zy, n(z) = F~1o @(Gmm(x)) converges
a.s. to Z(z) in C(D).
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Proof. That G, ,(x) converges a.s. to G(z) in the space of continuous functions C(D)
follows from the previous theorem. Since the mapping h = F~! o ® from the Gaussian to
the non-Gaussian fields is continuous, the a.s. convergence of Gy, () to G(z) in C(D)
implies the a.s. convergence of Zp, n(z) = h(Gmn(z)) to Z(z) = h(G(x)) in this space
as m,n — oo by the continuous mapping theorem [17] (Theorem 1.10). O

Memoryless mappings of Gaussian function constitute a class of non-Gaussian fields
and processes, referred to as translation random functions [7]. They are completely
defined by the correlation function of their Gaussian image G(x) and the marginal distri-
bution F. The correlation functions and the marginal distributions of translation fields
cannot be selected arbitrarily. They must satisfy compatibility conditions [9] which, gen-
erally, are rather weak as the correlation functions of Z(z) = F~1o®(G(x)) and G(z) are
similar. Also, samples of Z(xz) obtained from D-periodic samples G(x) are D-periodic.

2.2. Bounded frequency range fields. Consider a material specimen in D = [—ay, a1]x
[—asz,as] or D = [0,T1] x [0, T3], where T; = 2a;, i = 1,2, and suppose that a particular
material property is described by a real-valued, zero-mean weakly homogeneous random
field {Z(x), = € R?} defined on a probability space (€2, F, P) with correlation and spec-
tral density functions ¢(§) = E[Z(x + &) Z(z)] and s(v). It is assumed that the random
field Z(x) has the properties 1, 2 and 4 of Sect. 2, i.e., it is homogeneous with continuous
samples and the support D, = [—Dy, 71| X [~Da, 2], 0 < 1, s < 00, of its spectral density
s(v) is a bounded rectangle of R?. Under these assumptions, the samples of Z(x) are
elements of the space of continuous functions C'(D) which can be viewed as superposition
of random waves with frequencies in D,,.

The random field Z(x) in this subsection differs essentially from m.s. periodic random
fields. In contrast to m.s. periodic fields which have countably infinite sets of frequencies
in R?, they have uncountably infinite sets of frequencies in bounded subsets D, of R<.
Truncated Fourier series [19] (Sect. 11.12) of samples of Z(z) or truncated Karhunen-
Loeve series using eigenfunctions of the correlation function of Z(x) [12] (Sect. 6.2)
can be used to construct FD models for the random field Z(x) considered here. These
constructions do not use the fact that the support D, of the spectral density of Z(x)
is bounded. In contrast, the FD models of Z(z) of the subsequent subsection use this
feature of the spectral density of Z(x) explicitly.

2.2.1. Finite dimensional (FD) models. The presentation of the results of this subsection,
which are well-known, follows that in [1] (Sect. 2.4) and [21] (Chap. 3). Let {I};} denote
a partition of D, in rectangles with centers {vi = (v1,k,v2,)}, |k| < m, |I| < n, and sides
Av; X Avg which decrease with m and n, e.g., Av; = 1/m and Ave = s /n. The FD
models {Z,, (z)} of Z(x) are based on partitions {Ij;} of the support D, of the spectral
density of Z(x). We denote these FD models and their frequencies as in the previous
sections dealing with m.s. periodic random fields, i.e., Z,, »(x) and vy, although they
have different definitions and meanings.
Consider the family of FD models

(2.12) Zmn(z) = Z [AUM cos(vgy - ) — AVyy sin(vyy x)], r € R?,

[k|<m, [l|<n

where AUy, and AV} are uncorrelated random variables with E[AUM] = E[AVM] =
0 and sy = E[AU,?Z] = E[AV,?I] = flkl s(v)dv ~ s(vgi) Avi Avg, where the latter
approximation holds for small frequency increments. The FD model in this equation has
the same form as that in Eq. 2.9 but, as stated, the random coefficients and frequencies
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differ. The mean and correlation functions of Z,, ,(z) are E[Z,, ,(x)] =0 and

Cm,n(xa y) = E[Zm,n(x) me(yﬂ = Z Skl COS (l/]gl . (1‘ — y))
|k|<m, [l|<n
~ Z s(vkr) cos (sz (x— y)) Avi Avy
|k|<m, [[|[<n

which results by considerations as in Eq. 2.10 and shows that Z,, ,(z) is a weakly ho-
mogeneous random field. The latter expression of ¢, »(x,y) shows that the correlation
function of Z,, ,(x) converges to c¢(§) = fDV cos(v - €) s(v)dv as m,n — oo, £ € R?, so
that the spectral density of Z,, ,,(x) converges to that of Z(x). This convergence implies
the convergence of the finite dimensional distributions of Z,, ,(x) to those of Z(z) by
arguments as in Theorem 2.4.

2.2.2. Weak convergence of FD models. It is shown that the FD models Z,, ,(z) in
Eq. 2.12 converge weakly to Z(z) in C(D) as m,n — oco. There is no additional require-
ment for this convergence, in contrast to the FD models for m.s. periodic random fields
(see Theorem 2.5). Intuition suggests that the FD models Z,, ,(z) have this property
since the samples of Z(x) cannot oscillate very fast as their frequencies are confined to
D,. We prove this statement for random fields Z(z) defined on the real line and outline
the steps of the proof for random fields defined on R2.

Theorem 2.8. Let {Z(z), x € D} be a real-valued weakly homogeneous random field,
where D is a bounded rectangle of R, d = 1,2. If the spectral density s(v) has a bounded
support D,,, then the family of FD models in Eq. 2.12 converges weakly to Z(z) in C(D).

Proof. Case d =1: Then, D =[0,T] CR}, 0< T < 00, D, = [-7,7], 0 < ¥ < 00, and
the family of FD models of Z(x) has the form

(2.13) Zn(x) = Z [AU}, cos(vp z) — AV sin(vg )],

|k|<n

where {AU} and {AV}} are uncorrelated random variables with means and variances
E[AU;] = E[AVi] = 0 and s, = E[AU?] = E[AV?] = fI (vdv) ~ s(v) Avg,

where {I} is a partition of the frequency band D, = [-7,7], 0 < I < o0, of Z(x)
in equal intervals of size Av = U/n and centers {vy}. Note that Z,(x) is a weakly
homogeneous random field with mean and correlation functions E[Z,(z)] = 0 and

en(@,9) = ElZn(2) Za(y)] = Xy <n 5k 08 (v (2 — 9)-
We show that the two condition of Theorem 8.2 in [2] are satisfied. The first conditions
requires to find an a > 0 such that P(|Z,(0)| > a) < ¢ for arbitrary € > 0. We have

Flz o= E{ Z Al } : EK kz<nAUk>T N N E[|k|zl|:<n A0 AUZ} i

[k|<n

_ ( 3 E[AU,?])UZ - (/D s(u)du>1/2 <o

|k[<n

by Cauchy-Schwarz inequality and properties of {AUy} and Z(z), so that we have
P(1Z.(0)] > a) < E[|Z.(0)]]/a < (fD )1/2/a < &, which shows that a =
([p, s(w) du)l/Q/s satisfies this condition.

The second condition requires to show that for any e, > 0 there exists § > 0 such
that P(W,(6) > &) < n for all n, where W,,(8) = SUP|,_y|<s | Zn (%) — Zn(y)| denotes the
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modulus of continuity of Z, (x). For arbitrary but fixed arguments x and y, we have
Zn(z) — Zn(y) = Z [h(vk) AUE + g(vi) AVi],
|k|<n

where h(v) = —2 sin (avy) sin (Bvy), g(v) = —2 cos (avg) sin (Buk), a = (z +y)/2
and 8 = (z — y)/2. The first term in the expression of Z,(z) — Z,(y) for k > 1, i.e.,
> p—q h(vi) AU, takes the form

S W) AU = h(vm) Un — h() Us — 3 (i) — b)) U,
k=1 k=1

by summation by parts, where U(v) = fn<u dU(n), Uy = U(vg +Av/2) and AUy, = Uy, —
Uj_1. Similar expressions result for the other terms in the expression of Z,(z) — Z,(y).

The absolute value of the above summation for |z — y| <, § > 0, can be bounded by

n n—1
> h(vn) AU| < [h(v)| [Un] + [h(v)] Uo] + > [h(vigr) — h(wi)| |Uk|
k=1 k=1
n—1
<6 (|Un| +|Uo|) + Z |h(Vig1) — h(vi) | |Uk|,
=1

where the bound on the above first two terms holds since |sin (v (z — y)/2)| < |vg (z —
Y)/2|, v < 7 and |z —y| < 6 by assumption so that |h(v)| = | -2 sin (avy) sin (Bvy)| <
v 4. Since h(vgt1) — h(vk) = K (V) Av, v} € [vg, Vig41], by the mean value theorem and
W (v)/2 = —a cos(av) sin(Br) — B8 sin(av) cos(Bv), we have

|h(Vi41) = h(vi)| < 2Av (laf |Bvi] +18]) < dAV(Tv +1)

so that .
> h(vk) AU < 6 (U] + [U) + 6 Av(T o +1) > |Us.
k=1 k=1

The expectation of | Sory h(ve) AUk| is bounded by § scaled by a strictly positive finite

constant since E[|U|] < E[UZ]Y/? < (f_DD s(v) dy)1/2 and
n—1 n—1 n—1 o 1/2 7 1/2
S EUAv <Y BURM Av =) </ s(v) dy> Av<i (/ s(v) dl/)
k=1 k=1 k=1 N7 v

is finite. Similar arguments show that the other terms in the expression of Z,(z) — Z,(y)
admit the same types of bounds so that E[Wn(é)] < 6 M for any n, where M > 0 is a
finite constant. The Chebyshev inequality gives P(W,(8) > ¢) < E[W,(8)]/e < 6 M/e,
so that for given ,7 > 0, there exists § = en/M such that P(W,,(8) > ) <. Since the
conditions of Theorem 8.2 in [2] are satisfied, we conclude that the family of FD models
Z, is tight. Since the finite dimensional distributions of Z,, converge to those of Z, the
family {Z,} of FD models converges weakly to Z in C(D) as n — oo.

Case d = 2: The weak convergence of the family Z,, ,(z) of FD models in Eq. 2.12
results by similar arguments. For the first condition of Theorem 8.2 in [2], note that

g snlel(, 5, o))"

|k|<m, |l[|[<n [k|<m, |l|<n

= ( > E[AU,?I])UQ = (/Vs(z/)dz/>1/2 < 00

[k[<m, [l|<n

E“Zm,n(o)u = E|:
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by Cauchy-Schwarz inequality and properties of {AUy} and Z(z), so that we have
P(|Zmn(0)] > a) < E[|Znn(0)]]/a < (‘[Du s(v) du)1/2/a < &, which shows that a =

(fDu s(v)dv) 1/2/5 satisfies this condition.

For the second condition, we need to show that for any €, > 0 there exists § > 0 such
that P(Wm,n(é) > 6) < n for all m, n, where Wy, ,(6) = SUD||3—y| <5 | Zn(x) = Zy o (Y)]
denotes the modulus of continuity of Z,, ,(z). For arbitrary but fixed z,y € R?, we have

Zm,n (l’) - Zm,n (y) - Z [h(l/kl) AZ’Jkl + g(Vkl) Avkl] ’

[k|<m, |l|<n

where h(v) = =2 sin (v-(z4y)/2) sin (v-(z—y)/2) and g(v) = =2 cos (v-(z+y)/2) sin (v-
(x —y)/2). That the expectation E[Wp,,(6)] of the modulus of continuity can be
bounded by § scaled with a strictly positive finite constant results by arguments similar
to those of Theorem 2.8. The calculations are lengthier since the single summation for
the case d = 1 is replaced with the double summation Zk:L_ h(vg) AUy O

.m, l=1,...;.n

We conclude with the observations that, if Z(x) is a Gaussian field, the weak con-
vergence Z,,, = Z implies the a.s. convergence of Z,, ,(z) to Z(z) in the space of
continuous functions C'(D) by Theorem 2.6. If Z(z) is the translation random field in
Theorem 2.7 and the spectral density of its Gaussian image G(z) has a bounded support
D,, then Z,, ,(x) converges a.s. to Z(x) in the space of continuous functions C(D).

2.3. Numerical illustrations. The numerical illustration of the statements of the theo-
rems in the previous sections is challenging since the discrepancy sup,cp | Zmn(x)—Z ()|
between target and FD samples cannot be calculated exactly for the following two rea-
sons. First, the samples of the random fields Z,, ,,(z) and Z(z) can only be calculated at
large but finite sets of points x; € D, i =1,...,I. Since max;=1,. 1 |Zmn(x:) — Z(z;)| <
SUP,ep | Zmn(x) — Z(x)| a.s., we can only obtained lower bounds on the discrepancy
between target and FD samples. These bounds are likely to be tight for sufficiently large
I < oo since Zy, n(z) and Z(x) have continuous samples. Second, the algorithms for
generation target and FD samples can handle large but finite sets of frequencies, e.g.,
the set of frequencies {vg;}, [k] < M, |I] < N, with large M, N < oo corresponding to
truncations of the representation of Eq. 2.8 for m.s. periodic fields and to fine discretiza-
tions of D, as used in Eq. 2.12 for fields with bounded frequency range. The samples for
large (M, N) and fine discretizations of D, are viewed as actual samples of Z(x).

Example 2.9. Let {Z(x), x € D = [0,]} be a real-valued Gaussian field defined on the
real line with spectral density s(v) = 1(—v < v < p)/(27), 0 < I < oo, and correlation
function ¢(¢) = E[Z(z + £) Z(x)] = sin (7]¢])/(7¢]). According to Theorem 2.8. the
family of FD models Z,,(z) in Eq. 2.13 converges weakly to Z(x) in the space of continuous
functions C(D) as n — oo. Since Z(z) is Gaussian, Z,(x) also converges a.s. to Z in
C(D) by Theorem 2.6.

The plots of Figs. 1 and 2 show histograms of the error sup,cp |Z(x) — Z,(x)| and
scatter plots of (sup,cp |Z(2)|,sup,ep |Zn(z)|) based on 1000 independent samples of
these fields for several values of n. The plots are for 7 = 22 and the samples of Z(x) are
approximated by samples of a discrete spectral representation of this field corresponding
to a partition {J.}, r =1,..., N, of [0,7] in N = 5000 equal intervals. The FD models
Z,(x) are given by Eq. 3.10 and correspond to coarse partitions {Ij} of [0, 7] with n = 5,
n = 8 and n = 10. The frequencies {vy} are the centers of {I;} and the samples
of the random coefficients {AU} and {AV}} are given by the sums of the samples of
the corresponding random coefficients of Z(x) in the intervals {J,} which are included
in Iy, so that {AUx} and {AV,} have the correct properties and are paired with the




12 MIRCEA GRIGORIU

Histogram

Histogram
Histogram

05 1 15 2 25 3 35 o 02 04 06 08 1 12 14 0 002 004 006 008 01 012 014 016

supg<i<1 [X (1) — Xa(t)] supy<i<1 [ X (8) — X (1) supy<r<1 [X (1) = Xa(t)]

FIGURE 1. Histograms of sup ¢ |Z(2)—Zn(z)| for 7 = 22, and n = 5,
8 and 10 (left, middle and right panels)
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FIGURE 2. Scatter plots of (Sng,-e[o,l] |Z(2)], supgeqo, | Zy(x)]) for v =
22, and n = 5, 8 and 10 (left, middle and right panels)

target samples. The plots show that the samples of Z,(x) approximate accurately the
corresponding samples of Z(z) even for small values of n.

3. VECTOR-VALUED MICROSTRUCTURE MODELS

Let Z(z), z € RY, be a zero-mean R%-valued random field with correlation function
c(&) = E[Z(z + &) Z(z)'], an (g, ¢)-matrix for each ¢ € R, As previously, it is assumed
that Z(x) is weakly homogeneous with continuous samples which is m.s. periodic or
consists of superposition of waves with bounded frequencies.

The relationship between the correlation functions ¢;;(§) and the spectral densities
s;i(v) of the individual components Z;(z), i = 1,...,q, of Z(z) is given by Eq. 2.1.
As for scalar-valued fields, it is assumed that the spectral distributions of the random
fields Z;(x) are absolutely continuous with respect to the Lebesgue measure so that
their spectral densities exist. It turns out that the correlation functions ¢;;(§) and the
corresponding spectral densities s;;(v), i # j, satisfy similar relationships, i.e.,

1

(3.1)  ¢y(§) = /Rd V1" s (v)dy and si;(v) = @ e eTVTIEV ¢,5(6) de,

where s;;(v) = [s1(v) = vV=152(v) — (1 = v/=1) (835 () +5;;(v))], s1(v) and s2(v) denote
the spectral densities of the random fields Z;(z) + Z;(z) and v—1Z;(z) + Z;(x) [4]
(Sect. 8.1), and the imaginary unit /—1 is written explicitly to avoid confusion with
the indices of the components of Z(x). The above relationships coincides with those of
Eq. 2.1 for i = j. Generally, the spectral densities s;;(v) are complex-valued such that

*

sij(v) = s%;(v), which follows from Eq. 3.1 and the property

cij(§) = E[Zi(z +€) Z;(2)] = E[Z(x) Zi(z + €)] = E[Z;(x — §) Zi(2)] = ¢;i(=€)
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of the correlation functions of weakly homogeneous random fields. Similar arguments
show that s;;(v) = s;;(—v) and s;;(v)* = s;;(—v). The latter relationship implies that
the real and the imaginary parts of s;;(v) are even and odd functions.

The components Z;(x) of Z(x) admit the spectral representations (see Egs. 2.2-2.3)

(3.2) Zi(gc):/ VT AW(v), i=1,...,q, x€R%
Rd

where W;(v) is a complex-valued field with orthogonal increments whose first two mo-
ments are E[dW;(v)] = 0 and E[|dW;(v)|?] = s;;(v) dv. The increments of these random
fields are related by E[dW;(v) dW;(n)*] = s;;(v) §(v —n) dv so that the correlation func-
tion of Z,;(x) and Z;(x), i # j, has the form

@ = [ (e anm) (¢ Tranm) = [ e s w

which coincides with that of Eq. 3.1. Since the random fields Z;(x) are real-valued, they
also admit the representation

(3.3) Zi(x) = /]Rd (cos(v-a)dU;(v) —sin(v-z)dV;(v)), i=1,...,q, z€ RY,

where U;(v) and V;(v) are zero-mean, real-valued random fields with orthogonal in-
crements of moments E[dU;(v)dU;(v")] = E[dV;(v)dV;(v")] = si(v)d(v — V') dv and
EldU;(v)dV;(v")] = 0, i = 1,...,q, see Eq. 2.3. The moments of the increments
of these processes corresponding to distinct components result by direct calculations
under the condition of homogeneity and are E[dU;(v)dU;(v")] = E[dV;(v)dV;(V')] =
Rlsij(v)] (v — V') dv and E[dU;(v)dV;(V')] = —E[dV;(v)dU; (V)] = —ZI[si;(v)]é(v —
V') dv, see also [16] (Problem 9, p. 180), where R[s;;(v)] and Z[s;;(r)] denote the real
and the imaginary parts of s;;(v). The correlation function of distinct components of
Z(x) results from Eq. 3.3 by using the properties of the random fields U;(v) and V;(v).
It has the expression

B4) O = B2+ 9 0] = [ ((costv ) Rlsy )] = sin(y - Tlsi ()] )

since [gq (cos(v - &) Z[s;;(v)] + sin(v - ) R[s;;(v)]) dv = 0. The result is in agreement
with Eq. 3.1 since [p, (cos(v-€) Z[s;;(v)] + sin(v - §) R[si;(v)]) dv = 0 by the properties
of s4j(v). The formula of Eq. 3.4 simplifies to ¢;;(§) = [pa cos(v - §) s45(v) dv if 545(v) is
real-valued, e.g., the correlation functions for i = j.

3.1. Mean square periodic fields. The discussion is limited to two-dimensional spec-
imens, i.e., d = 2, so that Z(x) is a g-dimensional random vector at each x € R?. We
say that the vector-valued random field Z(z) is D = [—ay,a1] X [—ag,az]- or (T1,Tz)-
m.s. periodic, T} = 2a, for r =1, 2, if

(35) E[HZ(xl +T1,1‘2+T2)—Z($1,1‘2)H2] =0, x= ($1,$2) ERZ.

The definition implies that Z(z) is (Th,T%2)-m.s. periodic if its components {Z;(x)} are
(Ty,Tz)-m.s. periodic random fields, see Eq. 2.4. Accordingly, the samples of {Z;(x)}
can be represented by superpositions of waves with frequencies vy = (Vl,k, 1/271), where
vp1 =2m/Ty, Vp g = kvp, 7 = 1,2 and k is an integer. This property can be generalized
such that different components of Z(z) have different periodicities.
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Arguments as in Theorem 2.2 show that the correlations ¢;;(¢) = E[Z;(z + §) Z;(z)]
between the components of Z(x) are D-periodic functions since

|ElZi(z1 4+ & + Th, 220 + & + To) Zj(21,22)] — E[Zi(21 + &, 22 + &) Zj(21, 32)]

=|E[(Zi(x1 + & + Ty, 22+ &+ To) — Zi(y + &1, 22 + &) Z;(w1, 22)]|

SE[(Zi(w1+ &+ T, w04+ &+ To) — Zi(w1 + &1, 22 + 52))2] vz E|Zj(x1, 172)2]1/2»
and E[(Zi(xl +& 4T, 20+ 8+ Th)— Zi(x1+£1, 22 +§2))2] = 0. If the partial derivatives
0cij(€)/0&1, Deij(€)/0& and D2¢i;(€)/0&1 O, of ¢;5(€) are continuous in D, then ¢;;(€)

admits the convergent Fourier series representation

1
(36) () =D sijm V=TV wyith sy =
Kl

4(11 as

/Cij(€)7 £ eR?
D

by Theorem 2.3.

3.1.1. Finite dimensional (FD) models. The spectral representation in Eq. 3.3 takes the
form

(3.7) Zi(x) = Z [Ui,kl cos(vg - x) — Vi g sin(vp x)], reR? i=1,...,q,
k.l

where {U; 1} and {V; s} are zero-mean random variables with the same properties as
the increments of {U;(v} and {V;(v)} in Eq. 3.3. Consider the family of FD random
fields

(38) Zi,(m,n) (l’) = Z [Uz‘,kl COS(I/M . ZL’) — VLM Sil’l(l/kl . ZL’)], x € RQ,

[k|<m,|l|<n

obtained by truncation of the infinite series representation of Z;(x) in Eq. 3.7, where the
summation is over k = +1,+2,...,+m and | = +1,+2,...,4+n, see Egs. 2.8 and 2.9.
For simplicity, we use the same truncation levels for the components of Z(x) although
different truncation levels may yield more accurate representations [10]. The random
fields Z; (m,n)(z) are weakly homogeneous since their mean and correlation functions are
E[Zi,(mm)(x)] =0 and

Cij,(m,n) (I, y) =F [Zz,(m,n) (I‘) Zj,(m,n) (y)}

(3.9 = Z {R[smkl} cos (Vi - (. —y)) — Z[sij ) sin (v - (z — ) |

k| <m,|l|<n

The correlation functions become ¢;j,(m,n) (2, y) = Z\klﬁmll\in Sij.kl COS (I/kl (x — y))
if the spectral densities {s;;(v)}, i # j, are real-valued. If the correlation function
¢ij(§) = E|Zij(x+ &) Zj(x)] of Z(x) is continuous and square integrable on D x D, then
Cij,(m,n) (T, y) converges absolutely and uniformly to c¢;;(§) by Mercer’s theorem, see [1],
Sect.3.3, [5], Appendix 2 and Sect.6-4, and [12], Sect.6.2.

3.1.2. Weak convergence of FD models. The statements of Theorems 2.4 to 2.6 for real-
valued random fields extend directly to vector-valued fields. The mean square conver-
gence E[||Z,(z) — Z(z)||?] — 0 in these theorems is equivalent to the m.s. convergence of
the components of Z(x), i.e., E[(Zi’(m)n)(x) — Zi(x))2] —0,i=1,...,q, as m,n — oo.
Similar arguments hold for arbitrary sets of spatial coordinates zi,...,z, € R¢ of ar-
bitrary size p since {Z,(z;), 7 = 1,...,p} and {Z(x;), j = 1,...,p} can be recast
into p¢-dimensional random vectors so that the finite dimensional distributions of Z,
converge to those of Z(x) as m,n — oco.
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The tightness of the sequence of vector-valued random fields Z,, ,,(x) follows from the
tightness of the real-valued random fields {Z; (y, n)()}, i.e., the components of Z(x).

For the first condition of Theorem 8.2 in [2], we have ||Z,, ,(0)| < Zle |Z; () (0)]
so that E[[|Znn(0)]] < Z?:1 E[|Zi (m,n)(0)]] and the latter summation is finite if the
components of Z,, ,(x) satisty the conditions of Theorem 2.5. For the second condition
of Theorem 8.2, note that

Wmm((s) = sup ”Zm,n(x) - Zm,n<y)||
lz—ylI<é

d

d
< Z sup |Zi,(m,n) (.Z') - Zi,(m,n)(y)| = Z Wi,(m,n) (6)7
i—1 lz—yll<s =1

where {W; (mn)(9)} denote the moduli of continuity of the components {Z; (,;,.n)(2)} of
Zm.n(z). Since E[Wy, ,(0)] < 2?21 E[W; (m.n)(0)] and the latter expectations are finite

if the components of Z,, () satisfy the conditions of Theorem 2.5, we conclude that
the family of vector-valued FD models {Z,, ,,(x)} is tight if their components satisfy the
conditions of Theorem 2.5. If in addition the finite dimensional distributions of Z,, ,(z)
converge to those of Z(z), then Z,, , = Z as m,n — oo. If Z(x) is Gaussian, we also
have the a.s. convergence of Z,, ,, to Z in the space of continuous functions C(D).

If Z(z) is not Gaussian, we proceed as in Theorem 2.7 by considering translation ran-
dom fields Z(z) defined by Z;(z) = F;* o®(Gi(z)),i=1,...,q, where F; are continuous
cumulative distribution functions, ® is the distribution of the standard normal variable
and G;(x) are zero-mean, unit-variance homogeneous Gaussian fields with correlation
functions (;;(§) = E[Gi(z + £) G;(z)]. It is assumed that the vector-valued random
field G(z) = (G1(%),...,Gq(x)) is D-m.s. periodic with continuous samples and that
the sequence of vector-valued FD Gaussian fields with components G; (,n) () converges
a.s. to Gi(x) in C(D) so that the FD models Z; (, n)(z) = Ft 0 ®(G; (m,n)(x)) converge
a.s. in C(D) to Z;(x) as m,n — oo by the continuous mapping theorem.

3.2. Bounded frequency range fields. It is assumed that the spectral densities of the
components Z;(x) of the R?-valued random field Z(z) have the same bounded support
D, = [-1, 1] X [=a, 2], 0 < Iy, U5 < 00, see Sect. 2.2.1. Consider a partition of D, in
small rectangles {Ij;} with sides Av; x Avs and centers {vg}, |k| < m, |l] < n, whose
measures decrease with m and n. This partition is used to construct FD models Z,,, ,,(x)
of Z(x) and show that they converge weakly to Z(z) as the partition of D, is refined.

3.2.1. Finite dimensional (FD) models. We construct FD models of Z(z) component-
by-component based on the approach in Eq. 2.12. The FD models for the components
of Z(x) are defined by

(3.10) Zi,(m,n) (.’L‘) = Z [AUi7kl COS(VM x) — AVqul Sin(l/kl . x)}, X € RQ,
[k|<m, [l|<n

where E[AU; 1] = E[AV; ] = 0,

E[AUi’kl AUj}pq] = E[A‘/;’kl A‘/}"pq] = / R[S”(V)] dv ~ R[Sij (Vkl)] Al/l AVQ and
Iy

E[AU@M A‘/]}Pq} = 7E[AV;’M AUjmq} = — / I[Sij(l/)] dv ~ I[sij(ukl)] Alll AI/Q.
I

The latter approximations hold for sufficiently fine partitions of D, , i.e., sufficiently large
m and n.
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3.2.2. Weak convergence of FD models. Arguments as in Sect. 3.1.2 show that the se-
quence of Ri-valued FD fields Z,, ,,(x) converges weakly to Z(x) in the space of con-
tinuous functions defined on D if the components of Z,, ,(z) converge weakly to those
of Z(x) in C(D) as m,n — co. The weak convergence of the real-valued random fields
Z; (mn) () to Z;(x) holds by Theorem 2.8.

In summary, the theorems of the previous sections show that the family of FD models
constructed for real- and vector-valued m.s.-periodic random fields Z(z) may or may
not converge weakly in C'(D) depending on the amplitudes of the constitutive harmonics
of Z(x). In contrast, the FD models of real- and vector-valued random fields Z(z)
with spectral densities of bounded support converge weakly to Z(z). These theorems
are consistent with our intuition. For example, the FD models may be incapable to
characterize accurately the samples of m.s.-periodic random fields if their high frequency
components have sizable amplitudes. On the other hand, the samples of random fields
with bounded frequencies are much smoother than those of m.s.-periodic fields since their
constitutive waves have bounded frequencies. The FD models of these fields are expected
to be accurate even for relatively low truncation levels (m,n).

3.3. Compliance/stiffness tensor. Let A(z), * € D, be the compliance tensor of
a linear elastic random material in a bounded subset D of R? which is defined on a
probability space (2, F, P). The matrix-valued random field A(x) can be viewed as an
infinite family of (p, p)-symmetric, positive definite random matrices indexed by = € D.
Since A(z) can be recast into a vector-valued random field, previous developments on the
construction of FD models for vector-valued random fields and the weak/a.s. convergence
of these models apply to matrix-valued random fields, such as A(z).

To satisfy physical constraints, the matrix-valued random field A(z) must be positive
definite in the sense that inf,cp{¢’ A(z) ¢} > 0 almost surely (a.s.) for all ¢ € RP. The
requirement ¢’ A(z)¢ > 0, V¢ € RP, a.s. at each x € D is insufficient since, although
Qp ={we Q: ¢ A(z,w)( <0} € Fis an event with P(Q,) = 0 for V¢ € RP, { # 0, and
each z € D, the uncountable union U,cp$, of events {{2,} may not be in F and, if it
is, its probability may not be zero, see Example 3.12 in [8].

3.3.1. Probabilistic models. Two physically consistent models of A(x) are briefly dis-
cussed. The first, referred to as the eigenvalue/rotation model, ensembles A(z) from
translation fields developed for the eigenvalues and the eigenvectors of the correlation
function of A(x). The second, referred to as the triangular matrix model, represents
A(x) by the product of a triangular matrix-valued random field with its transposition.

Figenvalue/rotation random fields: Let {Ag(z,w)} and {Vi(z,w)} denote the eigenvalues
and eigenvectors of a sample A(z,w) of A(z) at a fixed but arbitrary = € D, i.e., the
solutions of det (A(z,w) — Ap(z,w)I) = 0 and A(z,w) Vi(z,w) = Ap(z,w) Vi(z,w),
k=1,...,p, where I denotes the identity matrix. If inf,cp{Ax(z,w)} > 0 for almost all
samples of A(z), then inf,ep{¢’ A(z,w)(} > 0 a.s. for ¢ € RP arbitrary.

The random field A(z) admits the representation A(z) = V(z)A(z) V(z)', where
V(z) = [Vi(z),...,Vp(z)] is an (p, p) matrix whose columns are the eigenvectors {Vi(z)}
and A(z) is an (p, p) diagonal matrix whose non-zero entries are the eigenvalues {Ag(z)}.
The eigenvectors {Vi(x)} of A(x) define the rotation fields {O(z)} for the principal
directions of A(z) at each z € D.

The random fields {Ag(z)} and {O(z)} are continuous functions of the entries of A(x)
so that they are dependent random elements defined on the probability space (2, F, P)
of A(z). If A(x) has continuous samples, then the real-valued random fields {Ay(z)} and
{©k(x)} have continuous samples. Since the samples of the random fields {Ax(x)} and
{Ok(z)} must take values in bounded intervals, these fields are non-Gaussian.
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Triangular matriz random fields: The random field A(z) admits the decomposition
A(z) = L(z) L(x)" at each x € D since it is symmetric and positive definite, where
L(z) is a lower triangular matrix. If almost all samples of the real-valued random fields
Li(x),i=1,...,p, are positive, then A(x) is a.s. positive definite at each € D. The
constraints and the construction on these fields is similar to that of the random fields of
the previous model. Various algorithms can be used to construct L(xz). For example,
i1 y

(311) Lz](ilf) — AZJ (SC) ZS:l‘i{;S(m) Ajs(m) — hl] (A(.’I}))’ 1 S,] < i < m,

Ajj (@) = 3oim1 Ajs(2)? 9i3 (A(@))
by the Cholesky decomposition, where the convention 22:1 Air(x) Ajr(z) = 0 is used
[8] (Sect. 5.2). This shows that the real-valued random fields {L;;} are dependent with
continuous samples.

3.3.2. Random compliance tensor for 2D specimens. Let A(x), x € D C R2, be the
compliance tensor of a two-dimensional linear elasticity problem and denote by X(x) =
[211(1“),222(3:),212(33)]/ and S(z) = ([511(33),522(33),512(35)]/ the vector-valued stress
and strain random fields. The stress-strain relationship has the form

(3.12)

Sy1(x) An(z) Ap(z) A(z) 11 (z)
S(x)=| Sa2(x) | = | Ar2(z) Az(z) Ap(z) Yoo(z) | = A(z)X(z), =€ D,
Sia(x) Az(z)  Ags(z) Asz(z) Ei2(z)

where {A(z), € D} is an a.s. symmetric, positive definite matrix-valued random field,
which means that almost all samples of A(x) are symmetric, positive definite matrices
in D.

FIGURE 3. A sample of A;;(x) (right panel) and corresponding samples

(
of A1, (mn)(x) for (m,n) = (5,5) and (20, 20) (left and middle panels)

For a numerical illustration, we construct the random field A(x) from a lower triangu-
lar matrix-valued random field L(z) whose non-zero entries are real-valued random fields
defined on D = [—ay,a1] X [—ag,as]. In addition, the random fields L;;(z) on the diag-
onal of L(z) have positive samples. The following algorithm has been used to construct
L(z). First, we construct the vector-valued Gaussian field G(z) = [G1(z),...,Gs(z)]
via the linear transformation G(z) = a N(x), where N(x) = [Ny(x),..., Ng(x)]’ is ho-
mogeneous Gaussian field with independent zero-mean, unit-variance components with
spectral densities s,.(v) < 1(v € D,) exp [ — (v —2p, 1 va+v3)/(2(1 = p2)], lpr| < 1,
for r = 1,...,6, with the bounded support D, = [—1, 7] X [—Da, D2, 0 < Iy, Uy < 00.
Second, the first three components, or any other three components, of the Gaussian field
G(z) are mapped into, e.g., Beta translation fields {L11(x), L22(x), L3s(x)} with samples
in bounded intervals of (0, 00). The latter three components of G(z) can be left unchanged
or modified arbitrarily. The compliance tensor is defined by A(x) = L(z) L(x)’, where
the non-zero entries of L(z) are L,.(z), r = 1,2,3, Lo (x) = G4(z), Ls1(z) = G5(z) and
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Lss(x) = Gg(z). Tt satisfies physical constraints in the sense that the random variable
inf,ep ¢’ A(x) ¢ > 0 a.s. for all ¢ € R3\ {0}.

The FD models { N, (1,.n)(2)} and {G,. (0 (2)} of {N,(z)} and {G,(z)} result from
Egs. 2.12 and 3.10. They converge weakly to {N,(z)} and {G,(z)} in C(D) as m,n — oo
by Theorem 2.8 and considerations in Sect. 3.2.2. Since the fields are Gaussian, the
above weak convergence implies the a.s. convergence of {N,. (m, »)(2)} and {G} () ()}
to {N,(x)} and {G,(z)} in the space of continuous functions C(D) by the It6-Nisio
theorem [13], see also Theorem 2.6. These properties persists for the matrix-valued
random fields L(z) and A(z) by the continuous mapping theorem, see also Theorem 2.7.
Accordingly, it is expected that the samples of the FD models of the compliance field
A(z) are similar to those of this field for sufficiently large m and n.

The following numerical values are for 77 = 5 = 5, p, = 0.1 : 0.1 : 0.6, a; = 5,
as = 10 and v = {v;;} with entries v;; = 1 and ~;; = 0.7, ¢ # j. The supports of the
Beta distributions for {L11 (), Laa(x), Lsz(x)} are (1,4), (2,6) and (1, 3) and their shape
parameters are equal to one. The right panel of Fig. 3 shows a sample of A;q(x), i.e., a
sample of a discrete version of the spectral representation of the random fields {N,.(z)},
r = 1,...,6, constructed from a partition of D, in equal rectangles {Iy;} with sides
7;/100, ¢ = 1,2, see Eq. 3.10. Further refinements have not been used since they result
in insignificant changes in the samples of these fields. The left and middle panels of this
figure show the corresponding samples of the FD models Ay (, »)(2) which are based on
partitions of D, in rectangles of sizes 7;/5, i = 1,2 and 7;/20, i = 1, 2. Visual inspection
of the plots suggests that the accuracy of the FD models improves with (m,n) as they
can capture additional high frequency details of the target samples. This observation
is consistent with the weak and a.s convergence of the FD models of A(x). The errors
SUpP,e p |Aij (%) = Ayj (m,n) ()] for the samples A1 . (2) in the figure decrease from 14.36
for (m,n) = (5,5) to 7.91 for (m,n) = (20, 20).

The random field {A(z), € D} in the above illustration is completely defined by the
marginal distributions of the real-valued random fields {L;;(z)}, the mapping G(z) =
a N(z) and the correlation functions of the components of N(z). The model can match
exactly specified marginal distributions but not joint distributions. The results of Sect. 3
can be used to construct FD models for general positive definite, matrix-valued non-
Gaussian fields of the type in [18] and prove that they converge weakly/a.s. to these
target non-Gaussian fields.

4. RESPONSE OF RANDOM MICROSTRUCTURE

Consider a material specimen in a bounded subset D of R¢ whose properties are de-
scribed by a scalar-/vector-/matrix-valued random field {Z(z), « € D}. The specimen
is subjected to some actions and boundary conditions which, for simplicity, are assumed
to be deterministic. The material response is a random field U(z) which satisfies a sto-
chastic differential equation whose coefficients depend on Z(x), so that it is a functional
of Z(x). Analytical solutions of these stochastic equations are possible in few special
cases [3]. Generally, only numerical approximations of U(x) can be obtained based on
FD models of Z(z). The numerical solutions are useful if they converge in some sense to
the target solutions U(x), e.g., in the sense of the theorems of the previous sections.

We consider a simple stochastic problem, the one-dimensional transport equation for
materials whose properties vary continuously in space according to a real-valued random
field Z(z), z € R. Let {Z,(z)} be a family of FD models of Z(x) and denote by U(z) and
U, (z) the solutions of the transport equation with material properties described by Z(z)
and Z,(x). We show that, if Z,, converges a.s. to Z in the space of continuous functions
C(D), then U, also converges a.s. to U in C(D) under some conditions. This means that
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samples of U, (x) can be used as substitutes for samples of U(x) for sufficiently large n
and that extremes of U(z) can be inferred from samples of U, (z).

The random fields U(z) and Uy, (x) satisfy the one-dimensional stochastic transport
differential equations

(4.1) % (Z(x) dUdf)> =0, zeD=(0,0), U0 =a, Ul)=p4 and

(4.2) i(zm»ﬂﬁﬂ)—a reD=(0.0), Un0)=a, Un(l)=p.

where Z(z) denotes the random conductivity field and Z,(x) is an FD model of this field.
It is assumed that almost all samples of the random fields Z(z) and Z,,(z) take values
in bounded intervals of (0,00) and are differentiable, so that the strong solutions of the
above equations exist and are

(4.3) Ul)=a+(8—a)l(x)/I(l), where I(z)= /090 dy/Z(y) and
(4.4) Un(z) =a+ (8 —a) L, (x)/I,(), where I,(x)= /(f dy/Zn(y).

Since U(x) and U, (x) take values in bounded intervals, they have finite moments.

Theorem 4.1. If almost all samples of the random fields Z(x) and Z,(z) are differen-
tiable with values in bounded intervals of (0,00) and Z, converges a.s. to Z in C(D) as
n — oo, then Uy, converges a.s. to U in C(D) as n — oo.

Proof. The discrepancy between the integrals I(x) and I,,(x) can be bounded by
(

e ntol=| [ 555 ﬁﬁéﬂ#f%iﬁ\

Zn(y) — Z(y
OV R ‘/ reR.

<

0

Since Z, () converges a.s. to Z(z) in the space of continuous functions as n — oo and

fé dy/(Z(y) Zn(y)) is bounded a.s. by assumption, then sup,¢p |I(x) —I(x)| — 0 almost
surely in C(D) as n — oo.
The discrepancy between the exact and the FD solutions can be bounded by

1) 1(2) = T ()| + (@) |1 (D) = 1()
V() = Un(@)|/(8 =) < Oyt

2 [t dy
< L(l)/o Z(y)m} ;gg\zn(y)*z(y)l-

Since the term in the square brackets is bounded a.s. and Z,, converges a.s. to Z in C(D),
then U, (x) converges a.s. to U(x) in the space of continuous functions. O

Example 4.2. Let Z(z) = a+ (b—a) F~' o ®(G(z)) = h(G(z)), z € D = [0,1], be
a translation random field, where F' denotes a standard Beta distribution with support
(0,1) and shape parameters (p,¢) and G(x) is homogeneous, zero-mean, unit-variance,
and one-sided spectral density g(v) < 1(0 < v <) (M2 +v)72,0 < v < ¥ < co. Since
the spectral density of G(z) has bounded support, the FD models G,,(z) converge a.s. to
G(z) in C(D) as n — oo so do the corresponding FD models Z, (z) = h(G,(x)) of Z(z),
see Theorems 2.5-2.7.
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FIGURE 4. Histogram of sup,cp |U(z) — U,(x)| for A = 8, 7 = 20 and
n =10 and n = 40 (left and right panels)

As previously discussed, samples of Z(x) cannot be obtained exactly. They are gener-
ated from a representation of the type in Eq. 2.12 for a very fine partition of the frequency
band [0, 7] in N equal intervals. The FD models Z,(z) are also based on this equation
but correspond to coarse partitions of [0, 7] in n < N equal intervals. The plots of Fig. 4
are for N = 5000 and (\,7) = (8,20). The left and right panels of this figure show
histograms of the discrepancy sup,¢p |U(z) — Up(x)| between target and FD solution
samples for n = 10 and n = 40. Note that the histograms are drawn at different scales.
The samples and the histograms show that the FD models are satisfactory even for small
values of n, and that their accuracy improves with n.

5. COMMENTS

Analytical solutions of stochastic problems are available in few cases which, generally,
are of limited practical interest. Numerical methods have to be employed to solve most
stochastic problems encountered in applications. These methods require to discretize the
physical space, e.g., by using the finite difference/element methods, and the probability
space, e.g., by using finite dimensional (FD) models. It was assumed that the material
properties vary continuously in space so that the random fields Z(x) describing these
properties and their FD models have continuous samples. We have considered two types
of random fields for material properties, mean square periodic fields and fields whose
spectral densities have bounded supports.

The focus was on the accuracy of FD models of random material properties Z(x).
We have also examined the accuracy of FD-based approximations of material responses
U(x). Conditions were established under which samples of FD material models and
corresponding material responses can be used as substitutes for samples of Z(x) and
U(z). These theoretical results have been illustrated by numerical examples quantifying
the discrepancy between target and FD samples.
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