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ABSTRACT
Subset selection is an integral component of AI systems that is
increasingly affecting people’s livelihoods in applications ranging
from hiring, healthcare, education, to financial decisions. Subset
selections powered by AI-based methods include top-𝑘 analytics,
data summarization, clustering, and multi-winner voting. While
group fairness auditing tools have been proposed for classification
systems, these state-of-the-art tools are not directly applicable to
measuring and conceptualizing fairness in selected subsets. In this
work, we introduce the first comprehensive auditing framework,
FINS, to support stakeholders in interpretably quantifying group
fairness across a diverse range of subset-specific fairness concerns.
FINS offers a family of novel measures that provide a flexible means
to audit group fairness for fairness goals ranging from item-based,
score-based, and a combination thereof. FINS provides one unified
easy-to-understand interpretation across these different fairness
problems. Further, we develop guidelines through the FINS Fair
Subset Chart, that supports auditors in determiningwhichmeasures
are relevant to their problem context and fairness objectives. We
provide a comprehensive mapping between each fairness measure
and the belief system (i.e., worldview) that is encoded within its
measurement of fairness. Lastly, we demonstrate the interpretability
and efficacy of FINS in supporting the identification of real bias
with case studies using AirBnB listings and voter records.
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1 INTRODUCTION
The task of selecting a subset of items (i.e., individuals or objects) is
integral to AI-enabled decision-making systems including problem
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classes such as shortlisting items, returning results for a top-𝑘 query,
data summarization, clustering, multi-winner voting and more.
Subsets are selected to determinewho is interviewed for the job [21],
demarcate congressional districts [52], determine who’s products
are featured in online marketplaces [58], and who is admitted to
a clinical trial [60]. Thus it is imperative we develop solutions to
audit bias that may be created or perpetuated in the selection of a
specified subset. Fairness algorithmic auditing refers to stakeholders
investigating closed-box AI systems for fairness issues. A critical
open problem for algorithmic auditing is the design of measures
that interpretably quantify fairness for a chosen subset.

Motivation: Auditing for Fairness. Subset selection picks or
demarcates a set of items as part of a decision-making process. This
could be a hiring committee creating a shortlist of candidates to in-
terview or a screening portal displaying the best 𝑘 applicants based
on their calculated company fit score [20]. Yet, recent reporting
[22, 49] has revealed that increasingly popular AI-powered recruit-
ing tools often do not select women candidates for recruiter short-
lists due to gaps in employment; a thorny issue that has only grown
more devastating in light of the COVID-19 pandemic [45]. Like-
wise, similar instances of algorithmic hiring discrimination have
occurred with veterans [22, 28] and formerly-incarcerated individ-
uals [22, 28]. Additionally, subset selection tasks such as returning
image results (data summarization), placement of community-based
COVID-19 testing locations (centroid-clustering), and electing gov-
ernment representatives (multi-winner voting) have been shown
to exhibit unfairness towards gender and racial groups [34, 53, 54].
While the development of AI-powered applications for consequen-
tial domains is increasing, no methodology for evaluating the out-
comes of subset selections with respect to fairness exists to date.

State-of-the-Art. The algorithmic bias and discrimination liter-
ature has two general conceptualizations of fairness: (1.) individual
fairness defined as treating similar individuals similarly [23], and
(2.) group fairness stating that groups be treated similarly [50]. The
primary focus of group fairness auditing methodologies has been
on classification systems [5, 7, 18, 24, 31, 31, 36, 41, 51, 56, 61].
Likewise, guidance on choosing fairness notions from a problem
setting and values-based perspective has solely focused on fairness
in classification [32, 43, 47].

For subset selection problems, no auditing framework for dif-
ferent fairness issues currently exists. Further, we lack any subset-
specific guidance rationalizing the applicability of different fairness
objectives. Recent research aiding decision-makers and auditors is
limited to studies analyzing the effect of a bias intervention known
as the Rooney Rule [13, 37] and metrics for the quantification of
the social notions of diversity and inclusion [46]. The Rooney Rule
is an intervention which enforces that the subset has at least one
member of an under-privileged group. Thus, from the auditing per-
spective, no tools exist to support the detection of fairness issues
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in subset selection. This means that to date there are no avenues for
holding unfair subset selectors accountable.

Challenges. The aforementioned auditing toolkits and mea-
sures are not applicable to subset selection. Fairness defined for
classification assumes access to ground-truth information (i.e., the
class assigned to an object) [5, 7, 18, 24, 31, 31, 36, 41, 51, 56, 61].
Subset selection does not have an equivalent notion of ground-truth.
Conceptually, fair top-𝑘 ranking measures [29, 63] are closer to the
problem of subset selection. However, they focus on auditing the
ordering of items, whereas in subsets the selection is evaluated. Fur-
ther, set-based fairness contains additional alternate objectives such
as selecting a subset with a fair scoring of items. Corresponding
auditing methodologies must encompass a wide range of fairness
notions including those that consider fairness based on score.

A second challenge in the design of a subset-specific fair audit-
ing methodology is to create one unified conceptual framework
that can quantify the existing fairness objectives in subset selec-
tion (namely, equal and proportional presence of items) along with
many additional novel fairness notions. The literature on fairness
has prompted a flurry of research designing fair algorithms for
subset selection tasks such as top-𝑘 queries [44, 48, 59, 62], clus-
tering [1, 3, 4, 6, 8, 15, 16, 16, 30, 39, 42, 57], data summarization
[12, 33, 38], and multi-winner voting [10, 14, 40]. However, these
works solve one critical problem, namely, the creation of methods to
achieve exact equal or proportional representation of items or their
scores. The few subset-scoring strategies for equal or proportional
group-representation employ disparate approaches making them
challenging to interpret across fairness problems: risk difference
[44], KL-divergence [12], and the Gini index [14]. Without careful
design, numeric measures for diverse fairness concerns may have
too distinct ranges or interpretations; thus inhibiting meaningful
comparisons of different fairness problems.

Proposed Approach. In this work, we introduce a framework
for auditing subset selections for group fairness, called FINS (short
for Fairness IN Subset selection). FINS is the first auditing tool
designed to quantify critical variants of group fairness in subset
selection tasks spanning problems from top-𝑘 queries, multi-winner
voting, data summarization, to clustering. FINS is agnostic both to
the number of groups defined by the protected attribute and to the
choice and cardinality of protected attributes; working on single
and intersectional attributes [19] alike. Our FINS methodology is
strategically designed to achieve two critical properties. (1.) To
quantify fairness within a compact range [0,1] whereby a value of 0
represents maximum unfairness and 1 indicates the fairness notion
is perfectly satisfied. Further, the value itself represents the positive
outcome received by the least favored group as a proportion of the
most favored group’s positive outcome. (2.) To apply this easy-to-
understand interpretation and metric formulation to a diverse set
of fairness notions for a broad class of subset selection problems. In
this way, we empower auditors to quickly grasp and easily compare
different fairness problems in the audited subset.

FINS designs eleven group-based fairness measures, collectively
representing three very different conceptual group fairness goals
in subsets. We categorize the different fairness goals as score-based,
item-based, and item-based while dependent on item score. We refer
to these three goals as flavors of fairness. Further, we are the first
to propose and quantify several fair subset notions; including the

class of fairness notions that are item-based and dependent on item
score in the context of subset selection. These metrics introduce
fairness conceptualizations to the subset selection task aligned with
Calibration [51] and Equality of Opportunity [31] from seminal
work in fair classification.

Effectively utilizing FINS in practice depends on correctly linking
the auditing goal with a relevant FINS metric(s). To tackle this, we
provide guidance via the design of the Fair Subset Chart (FSC for
short); a decision diagram, which guides auditors in selecting a
metric(s) based on how the auditors wish to conceptualize fairness.
The FSC is intentionally sensitive to the auditor’s assumptions about
the data and the task they audit. Utilizing the two worldviews (i.e.,
WAE and WYSIWYG; axiomatic belief systems) proposed in the
seminal work by Friedler et al. [26], we provide the first discussion
of moral belief systems in fair subset selection along with our
proposed mapping of FINS fairness notions to worldviews. Further,
we capture this information in the FSC. We then introduce the
FSC as a tool for determining the worldview of a preconceived
fairness audit. This allows for the determination of worldview in
settings where auditing practitioners may not be familiar with the
conceptual worldview framework created by Friedler et al. [26].

Finally, we demonstrate the broad applicability and the ease-of-
use of our FINS framework along with its ability to diagnose bias
with real-world case studies on AirBnB property listings and North
Carolina voting records. Our contributions include:

(1.) We define a comprehensive set of fairness measures and
conceptual notions based on items, scores, and a combined
approach applicable to a diverse range of subset problems.

(2.) We formulate these diverse FINS measures via a unified
approach, offering auditors one unified easy-to-understand
interpretation.

(3.) We present the FINS Fair Subset Chart as a concise refer-
ence providing guidance to auditors for selecting a fairness
measure(s) appropriate for their task. The chart presents
worldviews and values associated with each measurement
of fairness.

(4.) We package our FINS framework into an open-source pack-
age of diagnostic tools to further research as well as provide
a valuable resource to practitioners.

FINS scope. FINS is designed to evaluate the fair selection of
a subset of items. For fairness measures based on the presence of
different groups in the subset see Section 4. For fairness considering
groups along with a score (utility judgement) associated with items
please see Section 5. For fairness solely based on the relative scoring
of groups in the subset see Section 6. FINS assumes that once a
selection of items is made, all the selected items are un-ordered in
the result set. That is, FINS audits the (binary) choice of items (and
not their rankings). If the subset needs to be ordered, fair ranking
metrics or algorithms could be added as a post-processing step.

2 BACKGROUND AND NOTATION
Subset selection is a ubiquitous task that forms the basis of many
AI systems and human-AI decision-making processes. We focus
our work on auditing the broad problem of selecting a subset of
items (i.e, people, objects or entities) from a larger pool of items. In
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Symbol Representation
𝑋 Pool of items: 𝑥𝑖 ....𝑥 |𝑋 |
𝑆 Audited subset of items
𝐺𝑝 :𝑖 Group (i.e, set) of itemswith value 𝑖 in protected

attribute 𝑝
𝑋𝑎:𝑣 Set of items with value 𝑣 in attribute 𝑎
𝑠𝑥𝑖 Score of item 𝑥𝑖

𝑋𝑙<𝑠𝑥𝑖 <𝑢
Set of items whose score 𝑠𝑥𝑖 is > l and < u

Table 1: Key Notation

particular, we formalize how a subset can be measured for various
group fairness issues.

To conduct fairness analysis of a selected subset 𝑆 = 𝑥1, 𝑥2, ...𝑥 |𝑆 |
against the larger pool of items 𝑋 , each item 𝑥𝑖 is associated with a
set of attributes A. One or more of those attributes are categorical
protected attributes 𝑝𝑖 ∈ P such as gender, race, nationality, or a
combination thereof. We refer to 𝑝 as the protected attribute chosen
by the application, regardless of if it is a single attribute (race) or
combination (race and gender). For each possible value 𝑗 of the
protected attribute 𝑝 , there is a group 𝐺𝑝 :𝑗 composed of items in
𝑋 that have the same value 𝑗 for the protected attribute 𝑝 . For
instance, 𝐺𝑔𝑒𝑛:𝑤𝑜𝑚. is the group of all people items that have the
value woman for the gender protected attribute. If the application
has multiple protected attributes, we recommend and have designed
FINS to support, auditing each attribute independently as well as
their combinations for intersectional fairness [19].

For fairness audits that compare the choice of subset 𝑆 to the
larger pool of items, pool 𝑋 (with |𝑋 | >> |𝑆 |) is assumed to be
given. Likewise, for audits that want to consider a score associated
with each item, we denote this score of 𝑥𝑖 as 𝑠𝑥𝑖 . The key notation
used throughout this work is summarized in Table 1.

3 FINS DESIGN CHOICES
Group fairness is concerned with the fair treatment of groups, yet
"fair“ can be intuited in many ways. We propose a conceptual frame-
work that classifies group fairness measures based on the fairness
goal of the audited task. This allows us to design FINS as a generally
applicable subset auditing framework that unifies fundamentally
different group fairness objectives within one overarching approach.
We categorize these different fairness objectives as representing
different flavors of fairness for subsets. Our framework designs
families of measures for the following flavors of fairness:

(1.) Item-based - i.e, selecting a subset with a fair presence (number
of items) per group. The positive outcome is "presence" (or inclusion)
in the subset. This encompasses audited problems where items may
not have scores associated with them (e.g., some instances of multi-
winner voting or clustering) and problems in which fairness is
desired to be score blind. In short, they answer the question "Are
groups fairly present in the subset?”.

(2.) Item-based dependent on score - i.e., selecting a subset with a
fair presence (number of items) per group while considering the scores
associated with items. Here the positive outcome is also presence
in the subset. This encompasses audited problems where items
have an associated score typically conceptualized as "relevance"

or "utility" (e.g., a top-k query problem or most instances of multi-
winner voting). These measures help auditors answer questions
such as "Are groups fairly present in the subset when considering
an extra constraint on item scores?"

(3.) Score-based - i.e., selecting a subset with a fair scoring of items
per group. Here the positive outcome is derived from the score each
item in the subset has or receives. This includes audited subset
problems where the score is something tangible such as a resource
or distance (e.g., some instances of clustering or subsetting geo-
graphic regions). These measures answer "Are groups fairly scored
in the subset?"

With the fairness flavors in place, we make three strategic design
choices in the FINS framework:

• We propose two auditing entities for every fairness notion.
A group-based metric at the granularity of a group that is a
building block for the corresponding fairness measure which
is quantified across all groups.

• Every fairness measure is formulated as a ratio between the
smallest and largest corresponding group-based metrics. The
value itself represents what proportion of the most favored
group’s positive outcome is received by the least favored group.

• Weassure all measures are easy to explain and human-readable.
Each fairness measure range from 0 to 1 - with the worst
value being 0 and 1 the best value indicating the fairness
notion is perfectly satisfied.

FINS creates one unified interpretation that enables auditors to
quickly grasp and trade-off different fairness concerns in a subset and
use the same toolkit to audit different subset problem types.

4 ITEM-BASED FAIRNESS MEASURES
We now introduce metrics that capture the fairness flavor of item-
based fairness objectives. These notions are only based on the
presence of each group in the subset. Each fairness notion proposed
contains two corresponding metrics at the granularity of the group
and at the granularity of the protected attribute.

4.1 Proposed Statistical Parity and Balance
Measures

Our first two measures, S:Parity and S:Balance quantify how well a
specified subset achieves proportional presence and equal presence
of groups respectively. These are pre-existing fairness concepts in
subset-selection, which we formulate via the FINS design. Neither
metric considers scores of items, making them generally applicable
to all subset selection tasks.

S:Parity Measure. Achieving a proportional presence or repre-
sentation of groups in the specified protected attribute 𝑝 is akin to
satisfying statistical parity [50]. A requirement stipulating items
receive a proportional share of the positive outcome regardless of
their group membership in a protected attribute. S:Parity quantifies
statistical parity for the attribute - as opposed to having a user
compare every group’s selection rate directly.

More precisely, we quantify statistical parity by comparing the
highest group selection rate with the lowest group selection rate.
The group-based metric for S:Parity is the selection rate 𝑆𝑒𝑙𝑒𝑐𝑡𝑅𝑡
of a group 𝐺𝑝 :𝑗 defined as:

𝑆𝑒𝑙𝑒𝑐𝑡𝑅𝑡 (𝐺𝑝 :𝑗 , 𝑆) = |𝑆 ∩𝐺𝑝 :𝑗 |/ |𝐺𝑝 :𝑗 | (1)
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Using 𝑆𝑒𝑙𝑒𝑐𝑡𝑅𝑡 , we design S:Parity as:

S:Parity(𝑆, 𝑝) =
min𝑆𝑒𝑙𝑒𝑐𝑡𝑅𝑡 (𝐺𝑝 :𝑗 , 𝑆)
max𝑆𝑒𝑙𝑒𝑐𝑡𝑅𝑡 (𝐺𝑝 :𝑖 , 𝑆)

, ∀𝐺𝑝 :𝑗 ,𝐺𝑝 :𝑖 (2)

When S:Parity equals 1, then all groups have the same selection
rate. When S:Parity < 1, then the measure quantifies the selection
rate of the least favored group as a proportion of the selection rate
of the most favored group.

S:Parity to Audit for Disparate Impact. If a subset has a low
S:Parity value, it is critical to consider if disparate impact has oc-
curred. Disparate impact is legal theory used in the United States to
determine if unintended discrimination has occurred [2]. Disparate
impact arises when a process has resulted in drastically different
outcomes for different groups, even if no information about the
protected attributes of individuals is known [2]. The measurement
of disparate impact is typically operationalized through the "four-
fifths" or "80%" rule championed by US Equal Employment Opportu-
nity Commission (EEOC). The "80%" rule states that an unprivileged
group must receive a proportion of the positive outcome that is at
least 80% of the proportion received by the most privileged group
[17]. Thus, if S:Parity < 0.80, then disparate impact is present.

S:Balance Measure. The next proposed measure is designed to
quantify how well a subset achieves equal presence of all groups. For
example, having a hiring committee comprised of an equal number
of members from all roles. In contrast to statistical parity, balance
is unaffected by the total number of items per group in the larger
pool of items 𝑋 . We define S:Balance based on the group treatment
measure group proportion 𝑃𝑟𝑜𝑝𝑂𝑓 𝑆 of the subset 𝑆 , which is:

𝑃𝑟𝑜𝑝𝑂𝑓 𝑆 (𝐺𝑝 :𝑗 , 𝑆) = |𝑆 ∩𝐺𝑝 :𝑗 |/ |𝑆 |. (3)

Utilizing 𝑃𝑟𝑜𝑝𝑂𝑓 𝑆 , we define the S:Balance measure as:

S:Balance(𝑆, 𝑝) =
min{𝑃𝑟𝑜𝑝𝑂𝑓 𝑆 (𝐺𝑝 :𝑗 , 𝑆) }
max{𝑃𝑟𝑜𝑝𝑂𝑓 𝑆 (𝐺𝑝 :𝑖 , 𝑆) }

, ∀𝐺𝑝 :𝑗 ,𝐺𝑝 :𝑖 (4)

When S:Balance equals 1, then all groups have an equal presence
in the subset. However, when S:Balance < 1, then the measure
quantifies the ratio between 𝑃𝑟𝑜𝑝𝑂𝑓 𝑆 of the least favored group and
𝑃𝑟𝑜𝑝𝑂𝑓 𝑆 of the most favored group. This offers the interpretation
of what percentage of subset spots held by the most favored group
are held by the least favored group.

4.2 Conditioning S:Parity and S:Balance
S:Parity and S:Balance quantify a fair presence of groups in the
subset. Inspired by conditional statistical parity in fair classification
which allows for including "legitimate factors" in the prediction
[18]; we design simple to understand a variants of S:Parity and
S:Balance called S:Conditioned Parity and S:Conditioned Balance
respectively. These metrics provide auditors with the ability to
condition fairness on on an additional characteristic (i.e., a value in
an attribute that is not the specified protected attribute).

Consider the task of selecting a gender-balanced administrative
committee at a university. S:Balance measures if the committee
achieves gender balance. However, the people on the committee
comprise both students and faculty. S:Conditioned Balance (and its
proportional sibling S:Conditioned Parity) is our proposed innova-
tion to facilitate auditing gender balance for students and faculty
while not decreasing (making worse) the fairness measure due to
there being more faculty on the committee than students.

S:Conditioned Parity. S:Conditioned Parity measures statistical
parity conditional on group members sharing an attribute value
𝑎 : 𝑣 in addition to their group defined by protected attribute 𝑝 .
The group based metric for S:Conditioned Parity is the conditioned
selection rate 𝐶𝑆𝑒𝑙𝑒𝑐𝑡𝑅𝑡 of a group 𝐺𝑝 :𝑗 as:

𝐶𝑆𝑒𝑙𝑒𝑐𝑡𝑅𝑡 (𝐺𝑝 :𝑗 , 𝑆,𝑋, 𝑎, 𝑣) =
|𝑆 ∩𝐺𝑝 :𝑗 ∩𝑋𝑎:𝑣 |
|𝐺𝑝 :𝑗 ∩𝑋𝑎:𝑣 |

(5)

Then using 𝐶𝑆𝑒𝑙𝑒𝑐𝑡𝑅𝑡 , we design S:Conditioned Balance as:

S:Conditioned Parity(𝑆,𝑋, 𝑝, 𝑎, 𝑣) =
min𝐶𝑆𝑒𝑙𝑒𝑐𝑡𝑅𝑡 (𝐺𝑝 :𝑗 , 𝑆,𝑋, 𝑎, 𝑣)
max𝐶𝑆𝑒𝑙𝑒𝑐𝑡𝑅𝑡 (𝐺𝑝 :𝑗 , 𝑆,𝑋, 𝑎, 𝑣) ,

∀𝐺𝑝 :𝑗 ,𝐺𝑝 :𝑖
(6)

The value iteself is the conditioned selection rate of the least fa-
vored group as a proportion of the most favored group’s condi-
tioned selection rate. If the conditioned attribute value is employee:
previous_inter then S:Conditioned Parity audits if all groups are
proportionally present in the subsets when constrained to interns.

S:Conditioned Balance. S:Conditioned Balance measures the
fairness notion that the subset should contain an equal number
of items from each group that share a value 𝑣 in an additional
attribute 𝑎. The group-based metrics for S:Conditioned Balance is
the conditioned group proportion 𝐶𝑃𝑟𝑜𝑝𝑂𝑓 𝑆 of the subset:

𝐶𝑃𝑟𝑜𝑝𝑂𝑓 𝑆 (𝐺𝑝 :𝑗 , 𝑆, 𝑝, 𝑎, 𝑣) = |𝑆 ∩𝐺𝑝 :𝑗 ∩𝑋𝑎:𝑣 |/ |𝑆 | (7)

Utilizing 𝐶𝑃𝑟𝑜𝑝𝑂𝑓 𝑆 , we define S:Conditioned Balance as:

S:Conditioned Balance(𝑝, 𝑎 = 𝑣) =
min𝐶𝑃𝑟𝑜𝑝𝑂𝑓 𝑆 (𝐺𝑝 :𝑗 , 𝑆, 𝑎, 𝑣)
max𝐶𝑃𝑟𝑜𝑝𝑂𝑓 𝑆 (𝐺𝑝 :𝑖 , 𝑆, 𝑎, 𝑣))

,

∀𝐺𝑝 :𝑗 ,𝐺𝑝 :𝑖 ∈ 𝑋

(8)

S:Conditioned Balance quantifies, when conditioning on attribute
value pair 𝑎 : 𝑣 , what percentage of spots held by the most favored
group is held by the least favored group.

5 ITEM-BASED AND SCORE DEPENDENT
FAIRNESS MEASURES

The next measures consider an item’s score into the assessment
of fairness. While we continue to cast the positive outcome as
presence in the subset, these measures allow auditors to control for
various score-based factors. Continuingwith ourmethodology, each
proposed fairness notion contains one metric at the granularity of
the group and another at the granularity of the protected attribute.

5.1 Proposed Qualified Parity and Balance
Measures

The new measures S:Qualified Parity and S:Qualified Balance re-
spectively quantify the proportional and equal presence of groups
for group members that are deemed qualified. Conceptually, the
fairness measures align with the fair classification requirement
of Equality of Opportunity [31], in that fairness is dependent on
qualification (in classification this would be a true positive label).
To customize the motivation of Equality of Opportunity for subset
auditing, we operationalize qualification via an auditor-specified
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minimum score value 𝑞. In conjunction with qualification, we con-
sider not only proportional presence but also equal presence. For
instance, 𝑞 might represent a minimum test score that a university
requires, but simply having a score of 𝑞 does not guarantee admis-
sion. 𝑞 might also represent the minimum score for being in the top
𝑥% of the pool, thereby facilitating auditing fair group treatment
scoped to the top 𝑥% of items.

S:Qualified Parity. S:Qualified Parity measures the fairness
concept that all groups should be proportionally present in the subset
when considering items that are qualified. The group based metric
for S:Qualified Parity is the qualified selection rate 𝑄𝑆𝑒𝑙𝑒𝑐𝑡𝑅𝑡 of
a group 𝐺𝑝 :𝑗 defined as:

𝑄𝑆𝑒𝑙𝑒𝑐𝑡𝑅𝑡 (𝐺𝑝 :𝑗 , 𝑆,𝑋,𝑞) =
|𝑆 ∩𝐺𝑝 :𝑗 ∩𝑋𝑠𝑥𝑖 ≥𝑞 |
|𝐺𝑝 :𝑗 ∩𝑋𝑠𝑥𝑖 ≥𝑞 |

. (9)

Then using our ratio-based design, we define S:Qualified Parity as:

S:Qualified Parity(𝑆,𝑋, 𝑝,𝑞) =
min𝑄𝑆𝑒𝑙𝑒𝑐𝑡𝑅𝑡 (𝐺𝑝 :𝑗 , 𝑆,𝑋,𝑞)
max𝑄𝑆𝑒𝑙𝑒𝑐𝑡𝑅𝑡 (𝐺𝑝 :𝑗 , 𝑆,𝑋,𝑞) ,

∀𝐺𝑝 :𝑗 ,𝐺𝑝 :𝑖

(10)

The S:Qualified Parity value is interpreted to represent the least
favored group’s 𝑄𝑆𝑒𝑙𝑒𝑐𝑡𝑅𝑡 as a proportion of the 𝑄𝑆𝑒𝑙𝑒𝑐𝑡𝑅𝑡 of the
most favored group.

S:Qualified Balance. S:Qualified Balance measures the fairness
concept that all groups should be equally present in the subset
when considering items that are qualified. The group based metric
for S:Qualified Balance is the qualified proportion of the subset
𝑄𝑃𝑟𝑜𝑝𝑂𝑓 𝑆 of a group 𝐺𝑝 :𝑗 as:

𝑄𝑃𝑟𝑜𝑝𝑂𝑓 𝑆 (𝐺𝑝 :𝑗 , 𝑆, 𝑞) = |𝑆 ∩𝐺𝑝 :𝑗 ∩𝑋𝑠𝑥𝑖 ≥𝑞 |/ |𝑆 | (11)

This then allows us to define S:Qualified Balance as:

S:Qualified Balance =
min𝐶𝑃𝑟𝑜𝑝𝑂𝑓 𝑆 (𝐺𝑝 :𝑗 , 𝑆, 𝑎, 𝑣)
max𝐶𝑃𝑟𝑜𝑝𝑂𝑓 𝑆 (𝐺𝑝 :𝑖 , 𝑆, 𝑎, 𝑣))

,

∀𝐺𝑝 :𝑗 ,𝐺𝑝 :𝑖 ∈ 𝑋

(12)

The S:Qualified Balance value captures, when considering qualified
group members, what percentage of spots held by the most favored
group is held by the least favored group.

5.2 Calibrated Parity and Balance Measures
Building on themethodology of the previous qualified fair measures,
the proposed S:Calibrated Parity and S:Calibrated Balance metrics
respectively audit a subset for proportional or equal presence of
groups from score bins distributed between the minimum and max-
imum score values. Conceptually these measures are aligned with
calibration, a fairness criteria introduced in probabilistic classi-
fication [51], which requires a classifier produce outcomes that
are independent of protected attributes after controlling for the
estimated likelihood of the classification outcome. There is no es-
timated likelihood of being selected in subset selection, but our
S:Calibrated Parity design captures the sentiment that items with
similar scores should be treated similarly across groups. S:Calibrated
Balance introduces an equal presence version to capture additional
subset-specific fairness objectives. Calibrated fairness is ideal for

subsets with score-based diversity (i.e., a spectrum of scores as op-
posed to "the best" scores), and for analyzing if items with similar
scores are treated similarly regardless of group membership.

S:Calibrated Parity. S:Calibrated Parity measures the fairness
concept that across the whole distribution of scores, all auditor-
specified score bins should have similar selection rates across groups.
Thus, the group-based metric for S:Calibrated Parity is the bin se-
lection rate 𝐵𝑖𝑛𝑆𝑒𝑙𝑒𝑐𝑡𝑅𝑡 of a group 𝐺𝑝 :𝑗

𝐵𝑖𝑛𝑆𝑒𝑙𝑒𝑐𝑡𝑅𝑡 (𝐺𝑝 :𝑗 , 𝑆,𝑋, 𝑙,𝑢) =
|𝑆 ∩𝐺𝑝 :𝑗 ∩𝑋𝑙<𝑠𝑥𝑖 <𝑢

|
|𝐺𝑝 :𝑗 ∩𝑋𝑎:𝑣 |

(13)

Then using 𝐵𝑖𝑛𝑆𝑒𝑙𝑒𝑐𝑡𝑅𝑡 , we define S:Calibrated Parity as:

S:Calibrated Parity(𝑆,𝑋, 𝑝, 𝑙𝑘 ,𝑢𝑘 ) =

min(
min𝐵𝑖𝑛𝑆𝑒𝑙𝑒𝑐𝑡𝑅𝑡 (𝐺𝑝 :𝑗 , 𝑆,𝑋, 𝑙𝑘 ,𝑢𝑘 )
max𝐵𝑖𝑛𝑆𝑒𝑙𝑒𝑐𝑡𝑅𝑡 (𝐺𝑝 :𝑖 , 𝑆,𝑋, 𝑙𝑘 ,𝑢𝑘 )

),

∀𝐺𝑝 :𝑗 ,𝐺𝑝 :𝑖∀𝑘 bins represented by 𝑙𝑘 ,𝑢𝑘

(14)

The inner expression calculates the ratio between the highest and
the lowest 𝐵𝑖𝑛𝑆𝑒𝑙𝑒𝑐𝑡𝑅𝑡 from the bin. This is performed over all bins.
The smallest such ratio is called the S:Calibrated Parity value. This
value captures, when considering the bin where the difference in
group selection rates is largest, what percentage of spots held by
the most favored group is held by the least favored group.

S:Calibrated Balance. S:Calibrated Balance measures the fair-
ness concept that across the whole distribution of scores, for any
auditor-specified score bin the subset should have the same num-
ber of items from each group. Thus, the group-based metric for
S:Calibrated Balance is the bin proportion of the subset𝐵𝑖𝑛𝑃𝑟𝑜𝑝𝑂𝑓 𝑆

for a group 𝐺𝑝 :𝑗 :

𝐵𝑖𝑛𝑃𝑟𝑜𝑝𝑂𝑓 𝑆 (𝐺𝑝 :𝑗 , 𝑆, 𝑙,𝑢) = |𝑆 ∩𝐺𝑝 :𝑗 ∩𝑋𝑙<𝑠𝑥𝑖 <𝑢
|/ |𝑆 | (15)

Then using the FINS ratio-based design, we define S:Calibrated
Balance as:

S:Calibrated Balance(𝑆,𝑋, 𝑝, 𝑙𝑘 ,𝑢𝑘 ) =

min(
min𝐵𝑖𝑛𝑃𝑟𝑜𝑝𝑂𝑓 𝑆 (𝐺𝑝 :𝑗 , 𝑆, 𝑙,𝑢)
max𝐵𝑖𝑛𝑃𝑟𝑜𝑝𝑂𝑓 𝑆 (𝐺𝑝 :𝑖 , 𝑆, 𝑙,𝑢))

),

∀𝐺𝑝 :𝑗 ,𝐺𝑝 :𝑖 ∈ 𝑋∀𝑘 bins represented by 𝑙𝑘 ,𝑢𝑘

(16)

S:Calibrated Balance captures what percentage of spots held by
the most favored group is held by the least favored group when
considering the score bin where the difference in the number of
items in the subset per group is largest.

5.3 Proposed Group Fair Relevance Measure
Unlike prior measures which haven both equal or proportional
variations, we design S:Relevance Parity to audit a subset for group
presence that is strictly proportional to the average score of the
group. This represents the fairness concept that groups should be
represented proportional to their average score (i.e., score-based
relevance). While it does not capture individual fairness [23], it
does have similar sentiment-based underpinnings, in that we design
S:Relevance Parity to audit if similar groups are treated similarly.

The group-based metric for S:Relevance Parity is the relevance
rate 𝑅𝑒𝑙𝑅𝑡 for a group 𝐺𝑝 :𝑗 :
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𝑅𝑒𝑙𝑅𝑡 (𝐺𝑝 :𝑗 , 𝑆) =
|𝑆 ∩𝐺𝑝 :𝑗 |

(∑∀𝑥𝑖 ∈𝐺𝑝 :𝑗 𝑠𝑥𝑖 / |𝐺𝑝 :𝑗 |)
(17)

Employing our ratio-based design, we define S:Relevance Parity as:

S:Relevance Parity(𝑆, 𝑝) =
min𝑅𝑒𝑙𝑅𝑡 (𝐺𝑝 :𝑗 , 𝑆,𝑋 )
max𝑅𝑒𝑙𝑅𝑡 (𝐺𝑝 :𝑗 , 𝑆,𝑋 ) ,

∀𝐺𝑝 :𝑗 ,𝐺𝑝 :𝑖

(18)

The S:Relevance Parity value is interpreted to represent the least
favored group’s relevance rate as the proportion of the relevance
rate of the most favored group.

6 SCORE-BASED FAIRNESS METRICS
The next measures, unlike prior measures, quantify a subset’s fair
scoring of items. The conceptualization and thus measurement of
fairness is not based on the presence of each group in the subset,
but rather the scores each group has in the subset. In this case, the
score is less likely to be a value of relevance or utility and more
likely to be a distance or resource quantity. For instance, when
subsetting a geographic region into communities for community-
based COVID-19 testing, the scores might be the distance of each
household to the testing center.

This notion is conceptually aligned with a fair centroid-based
clustering objective, called socially fair k-means [30] or equitable
group representation [1], where the algorithmic goal is to create
clusters that have a similar average objective function value for
every group. Our work is complimentary to these works, in that our
S:Score Parity can be used to audit this objective. We also propose a
equal-score version named S:Score Balance.

6.1 Proposed Score Parity and Balance Measures
The proposed S:Score Parity and S:Score Balance, respectively, audit
a subset for proportional or equal group scoring.

S:Score Parity. S:Score Parity measures the concept that the
group-total score in the subset should be proportional to the number
of items per group in the subset. The group-based metric for S:Score
Parity is the average subset score 𝐴𝑣𝑔𝑆𝑐𝑜𝑟𝑒𝐼𝑛𝑆 of a group 𝐺𝑝 :𝑗 :

𝐴𝑣𝑔𝑆𝑐𝑜𝑟𝑒𝐼𝑛𝑆 (𝐺𝑝 :𝑗 , 𝑆) =
∑

∀𝑥𝑖 ∈𝑆∩𝐺𝑝 :𝑗 𝑠𝑥𝑖

|𝐺𝑝 :𝑗 |
(19)

This allows us to define S:Score Parity as:

S:Score Parity(𝑆, 𝑝) =
min𝐴𝑣𝑔𝑆𝑐𝑜𝑟𝑒𝐼𝑛𝑆 (𝐺𝑝 :𝑗 , 𝑆)
max𝐴𝑣𝑔𝑆𝑐𝑜𝑟𝑒𝐼𝑛𝑆 (𝐺𝑝 :𝑗 , 𝑆)

, ∀𝐺𝑝 :𝑗 ,𝐺𝑝 :𝑖 (20)

The S:Score Parity value captures the least favored group’s average
subset score as a proportion of the average subset score of the most
favored group.

S:Score Balance S:Score Balance measures the fairness concept
that the group-total scores in the subset should be equal. The group-
based metric for S:Score Balance is the proportion of the subset
total score 𝑃𝑟𝑜𝑝𝑆𝑐𝑜𝑟𝑒𝐼𝑛𝑆 of a group 𝐺𝑝 :𝑗 :

𝑃𝑟𝑜𝑝𝑆𝑐𝑜𝑟𝑒𝐼𝑛𝑆 (𝐺𝑝 :𝑗 , 𝑆) =
∑

∀𝑥𝑖 ∈𝑆∩𝐺𝑝 :𝑗 𝑠𝑥𝑖∑
∀𝑥𝑘 ∈𝑆 𝑠𝑥𝑘

(21)

Thus, using our ratio-based design, we define S:Score Balance as:

S:Score Balance(𝑆, 𝑝) =
min𝑃𝑟𝑜𝑝𝑆𝑐𝑜𝑟𝑒𝐼𝑛𝑆 (𝐺𝑝 :𝑗 , 𝑆)
max𝑃𝑟𝑜𝑝𝑆𝑐𝑜𝑟𝑒𝐼𝑛𝑆 (𝐺𝑝 :𝑗 , 𝑆)

, ∀𝐺𝑝 :𝑗 ,𝐺𝑝 :𝑖 (22)

(c.)

(a.)

(b.)Summaries

W* W* M M* M* W* W M M* W* W W*

WM* W M*

MM* W* M

WM* W* M

Figure 1: Dataset from [34] of 12 images for the query "child-
care worker" and three, to be audited, summaries of 4 images.
Labels are from [34], W denotes gender = woman, M denotes
gender = man, and * denotes multiple_ppl = yes.

(a.) (b.) (c.)
S:Balance (gender) 1 .33 1
S:Conditioned Bal. (gender, multiple_ppl= yes) 0 1 1
S:Balance (gender X multiple_ppl) 0 0 1

Table 2: Audit results of summaries 𝑎, 𝑏, and 𝑐 from Figure 1.

The S:Score Balance value represents the total score of the least
favored group as a percentage of the most favored group’s total
score.

7 AUDITOR GUIDANCE FOR UTILIZING FINS
When utilizing our FINS framework auditors have two critical deci-
sions to make. First, how to define a group in their audit. Second,
what fairness measure(s) to utilize. Here we provide guidance on
how to effectively make these decisions. Further, we present the
first discussion of the values and assumptions beneath fair subset
selection metrics. Our metric choice guidance, expressed as a de-
cision diagram, facilitates understanding the conceptualization of
fairness and its corresponding assumptions in a fairness audit.

7.1 Defining Groups
In many cases how to partition items into groups is clear to auditors
based on the application. For instance, settings with one protected
attribute and no other attributes yield groups that partition the
protected attribute 𝑝 . However, cases in which there are multiple
protected and/or other attributes may require more consideration.

Example. We now illustrate via an example how the fairness
audit performed using a given measure is incumbent on the choice
of group definition. Figure 1 illustrates a data summarization task
with 12 images for the search “childcare worker”. The dataset is
from Kay et al. [34] which studied Google Image search results for
gender representation proportional to real-world representation of
various occupational queries.

Every image is labeled by human participants [34] for the pro-
tected attribute gender = {woman,man} and an additional attribute
multiple_people = {yes, no}. We audit each data summary of 4
items for gender balance (whereby we quantify the objective of
having an equal presence of both genders in the subset). Table 2
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Figure 2: Worldviews proposed by Friedler et al. [26], which
we describe in the context of subset selection.

illustrates how the definition of groups affects the fairness notion.
We consider three different audits applied to the three potential
subsets (a.), (b.) and (c.) in Figure 1.

The first audit defines groups using the gender protected at-
tribute, we see that both subsets (a.) and (c.) exhibit gender bal-
ance. The second audit defines groups using the gender protected
attribute while conditioning on multiple_people = yes (concep-
tually this seeks gender balance when multiple people are in the
image). In Table 2, we see that both subsets (b.) and (c.) exhibit
conditioned gender balance. The third audit redefines the protected
attribute to be 𝑝 = gender 𝑋 multiple_people. In Table 2 we see
that only subset (c.) is perfectly fair in this regard.

This illustrates that three different approaches yield three dif-
ferent evaluations. Critically, the example shows employing condi-
tioned balance where groups are defined by the protected attribute
𝑝 and by sharing a value 𝑣 in attribute 𝑎 is not the same as re-
defining groups from a combination of the protected attribute 𝑝
and attribute 𝑎 (i.e., 𝑝 𝑋 𝑎). This leads to two takeaways. First, in
the case of multiple protected attributes, we recommend auditing
for both all protected attributes independently and their combined
intersection. When groups account for an additional attribute value
through conditioned fairness this choice should answer the question
– which entities must be treated fairly?

7.2 Choosing a Fairness Measure via the
Guidance of the FINS Fair Subset Chart

The FINS framework encompasses numerous strategies of auditing
subsets for fairness. To aid auditors in selecting themost appropriate
fairness measure with the problem they are auditing, we design the
FINS Fair Subset Chart (FSC for short). The FSC in Figure 3 provides
a few targeted questions about the audit setting and fairness goal to
derive the recommendation of a specificmetric. This allows auditors
with potentially multiple fairness goals to navigate their many
choices and quickly discover an apppropriate fairness measure(s).

The FSC explicitly avoids guidance in the form of pairing dif-
ferent subset selection tasks (e.g., multi-winner voting or top-𝑘
selection) to specific measures. Instead, we design the chart to (1.)
determine the fairness flavor applicable for the audited problem
and (2.) recommend a metric(s) based on how the auditors are
conceptualizing fairness. This allows for a values-based audit as
opposed to an overly prescriptive and potentially misaligned rigid

framework. Implicit in the choice of how to measure fairness is a
moral perspective on what fairness even means in a data-driven
context. Seminal work in fair classification by Friedler et al. [26]
proposed that fairness (and thus judgments on fairness) in data-
driven decisions encodes values and assumptions about the world
the data models. They present two axiomatic belief systems termed
worldviews [26]: "What You See is What You Get" (WYSIWYG)
and "We’re All Equal" (WAE). We describe WYSIWYG and WAE in
Figure 2. Few works discuss and link classification specific fairness
constraints to worldviews [26, 32, 47]. In fact, we are the first to
pursue this critical discussion in the context of subset selection. We
do so by utilizing the FSC to explicitly highlight the worldviews
corresponding to FINS fair auditing measures. Thus, in addition to
serving as an auditor’s guidance in metric choice, the FSC also cap-
tures our proposed mapping of FINS fairness measures to Friedler
et al.’s worldviews [26]. It is thus a simple yet powerful means to
discern the worldview of a fairness audit, without any assumed or
necessitated familiarity with Friedler et al.’s [26] conceptual frame-
work.

In Figure 3, the metrics in our FINS framework are marked by
our proposed variations of equal or proportional fairness goals
(blue and red regions), are binned by the fairness flavor as define in
Section 3 (yellow row) and by Friedler et al.’s worldviews (grey row).
Below, we discuss the mapping between metric-choice guidance
provided in the FSC to fairness flavors and worldviews.

Score-based andWYSIWYG. The FSC suggests these measures
when items have an associated score and auditors seek to measure
if a subset has a group-fair scoring. This is particularly applicable
to problems where the score of an item represents a resource or a
distance. As fairness is conceptualized through scores, these metrics
embody the “WYSIWYG” worldview proposed by Friedler et al. [26].

Item-based, score dependent and WYSIWYG.The FSC rec-
ommends these measures when items have an associated score and
auditors seek to measure fairness that accounts for the item associ-
ated score. To the best of our knowledge, our framework is the first
to propose fairness measures conceptually aligned with Equality
of Opportunity [31], Calibration [51], and Conditional Statistical
Parity [18] (all previously formulated for classification) that have
equal and proportional presence formats. These measures are ap-
plicable to settings in which the auditor seeks to consider fairness
while also considering utility or relevance of items. The choice to
factor item score into the measurement of fairness is indicative of
"WYSIWYG" [26] as this is an explicit use (and thus conviction) in
the construct space. As there are many ways to account for item
score, the FSC asks auditors to choose how to incorporate the score
and whether "fair" embodies proportional or equal group presence.

Item-based and WAE. The FSC points to these measures when
the items do not have an associated score and when auditors thus
chose not to factor item scores into the measurement of fairness.
These measures are applicable to almost all settings as they do not
require scores to be available or be associated apriori with the items.
This lack of scores and/or explicit score-blindness is indicative of
the "WAE" worldview, [26] as the measurement of fairness does
not utilize the construct space. Here the FSC asks auditors if they
would like to condition on an additional attribute value and to
choose between proportional and equal group presence.
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Figure 3: Fair Subset Chart (FSC): guidance for auditors to choose measure(s) applicable to their problem setting and audit goals.
FSC highlights the corresponding fairness flavor and worldview [26] of each notion.

Broad Applicability. We note that the same subset can be
audited with multiple metrics whereby each metric assesses for a
different fairness issue. In fact, our framework is designed to allow
for consistent interpretation across different measures. Thus, we
recommend that the FSC be used not as a choice of one fairness
concept but rather as a set of applicable possibilities.

8 EXPERIMENTAL EVALUATION VIA CASE
STUDIES

We illustrate the use of the FSC and our proposed metrics through
case studies with AirBnB listings and North Carolina voter registra-
tion records; both examining whether our measures indicate any
bias and demonstrating their interpretability.

8.1 AirBnB Case Study
As AirBnB hosts can have multiple listings (sometimes hundreds
in the same locality), there is increasing concern among "mom and
pop" hosts that the platform is advantaging hosts that are clearly
running large businesses, because commercial hosts generate more
revenue for the company [11]. In this vein, we aim to understand
the following fairness questions in AirBnB data with regards to
the selection of the top 50 listings in each locality:

q1: Does the top-50 subset advantage professional hosts over
other hosts relative to how popular their listings are?

q2: Does the top-50 subset advantage professional host over
other hosts for listings that are comparably popular?

To conduct the above audit, we used AirBnB datasets from
three diverse regions for the localities of Bangkok, Berlin, and
New Zealand1. We utilize the "reviews per month" variable as each
listing’s associated popularity score. We only consider listings with
> 0 reviews per month. The sizes of our datasets are Bangkok
|𝑋 | = 10, 418, Berlin |𝑋 | = 14, 716, and New Zealand |𝑋 | = 34, 042
listings. Based on prior multi-listing AirBnB analysis [35], we create
three host categories: single (host has one property), small (two
or three properties), and professional (four or more properties).

Guided by the FSC, we see that both questions are concernedwith
fairness that considers scores (i.e., popularity). To address question
q1, we employ S:Relevance Parity to quantify if hosts are selected
relative to how popular they are. To address q2, we employ qualified
fairness in both its proportional and equal presence versions to
quantify if qualified (i.e., highly popular) listings are treated fairly
across host types. To measure "highly popular", we set 𝑞 to be the
average score for the locality. Figure 4 presents S:Relevance Parity,
S:Qualified Parity, and S:Qualified Balance, and their corresponding
group-based metrics for the three localities.

Studying question q1, we see that the S:Relevance Parity mea-
sures of all localities are << 1. This indicates that the selection of
listings is not proportional to the average popularity of the host

1Downloaded from http://insideairbnb.com/get-the-data.html.

 http://insideairbnb.com/get-the-data.html
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Figure 4: AirBnB locality subsets evaluated for relevance
parity, qualified parity, and qualified balance alongwith their
group-based measures for host groups.

type. Ideally, the relevance rates would be similar across host types
indicating host-group listings are selected proportional to their
average popularity. Instead, in Bangkok, professional hosts are
over-selected compared to their popularity. The S:Relevance Parity
value illustrates that small hosts have a relevance rate roughly 25%
of professional hosts. In Berlin and New Zealand, single hosts
are over-selected compared to their average popularity. Yet the rel-
evance rates are relatively closer, yielding higher S:Relevance Parity
measures than Bangkok. We observe, that on the whole, listings
are not selected relative to their group’s popularity.

Studying question q2, we examine both S:Qualified Parity and
S:Qualified Balance. Examining S:Qualified Parity, Bangkok and New
Zealand have higher values indicating that across popular listings
different hosts have a more comparable chance of being selected.
This is further illustrated by the relative similarity of the qualified
select rates of each host group. However, in Berlin, the S:Qualified
Parity value is around .28. This indicates the selection rate of the
least favored group (small hosts in this case) is only 28% of the
qualified selection rate of professional hosts, the group with the
largest qualified selection rate. Thus, if proportional presence of
popular listings is the fairness objective, this is closer to being
achieved in Bangkok and New Zealand than in Berlin.

Finally, we examine S:Qualified Balance to answer if popular list-
ings are equally present in the subset across host groups. Largely,
this objective is not achieved. In Bangkok and Berlin, popular
professional hosts make up a larger share of the subset compared
to popular small hosts. The S:Qualified Balance values indicate that
this unfairness is greatest in Bangkok where popular professional
hosts have only 20% of the spots in the campaign held by popu-
lar small hosts. S:Qualified Balance is a higher .66 in Berlin. New
Zealand resembles Bangkok in terms of unfairness but the qualified
proportions of the subset S indicates that in New Zealand single
hosts are over-represented compared to professional hosts. Thus,
equal presence of popular listings is not achieved.

8.2 NC Voter Records Case Study
Utilizing voter registration records from the state of North Carolina,
we study the following fairness questions:
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Figure 5: The 10 precincts in Burke County with the lowest
S:Score Parity values, and the 𝐴𝑣𝑔𝑆𝑐𝑜𝑟𝑒𝑖𝑛𝑆 for racial groups.
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Figure 6: The S:Parity per precinct in Burke County and the
𝑆𝑒𝑙𝑒𝑐𝑡𝑅𝑡 for political party group.
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Figure 7: The S:Balance per precinct in Burke County and
the 𝑃𝑟𝑜𝑝𝑜 𝑓 𝑆 for political party groups.

q1: Do certain race groups have further to travel to reach their
precinct’s polling place?

q2: Do subsetted precinct regions exhibit indication of gerry-
mandering (i.e., bias towards a particular political party)?

To conduct the above audit, we used voter records from Burke
County NC 2, which contain race and political party attributes
2Dataset from: https://www.ncsbe.gov/results-data/voter-registration-data
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for every voter. To measure how far an individual must travel
to reach their designated polling place, we used the US Census
GeoCoding API [9, 55] to geocode to longitude and latitude both
each individual’s address and the address of each precinct’s polling
location. Then for every individual, we calculated a distance score
as the euclidean norm between their address and corresponding
polling place. After removing all addresses that could not be geo-
coded and individuals registered as deceased, our Burke County
dataset includes 42, 938 voter records for 32 precincts.

Guided by the FSC, we see q1 is concernedwith fairnessmeasures
not based on fair scoring (i.e, distance to polls) per group. We thus
employ S:Score Parity since we are interested in average distances
between comparable. For q2, since the auditing problem does not
associate scores with voters (distance is no longer relevant here)
and gerrymandering bias is entirely dependent on the presence of
political party voters in each precinct,the FSC recommends S:Parity
and S:Balance. We note that S:Parity and S:Balance are related to two
different types of gerrymandering - namely cracking and packing.

Cracking entails selecting district subsets such that a specific
political party is a minority in each subset [27]. Interestingly, this
is akin to achieving S:Parity close to 1 for most districts, since
this indicates statistical parity or proportional representation is
achieved. Thus, if all political parties are represented proportionally
(i.e, S:Parity is perfectly achieved), then the minority party in the
state is a minority in all districts. It is thus unlikely to win and that
district becomes less competitive for the majority. Packing on the
other hand is to select district subsets so that the one party has
a severe advantage in one or a handful of districts, and a severe
disadvantage in all the other districts [27]. The party is "packed"
into one or two districts. This can be detected utilizing S:Balance . If
all districts are unbalanced (S:Balance close to 1) and one party has
an advantage in a few districts, but a disadvantage in the rest then
packing could be at play. On the whole, gerrymandering must be a
trend across district subsets, simply analyzing one district does not
yield any significant evaluation. For our audit, we treat precincts
as selected subsets and examine all precincts in Burke County.

Studying question q1, Figure 5 displays the S:Score Parity of the
10 precincts with the lowest S:Score Parity values 3. For this set of
precincts, we observe that S:Score Parity < .5 indicating a substantial
difference in distance to polling places across racial groups. The
value of S:Score Parity indicates the average distance of the group
with the smallest travel as a percentage of the average distance
of the group with the most travel. For instance, for precinct 0019,
which has S:Score Balance = .25, this indicates that multi-racial
voters have 25% of the average distance that black voters have to
reach their polling place. This is followed by white voters with the
second lowest average score (travel distance). Across the precincts,
S:Score Parity highlights significant differences in travel distance to
polling centers across racial groups.

Studying question q2, we scope our dataset to political
party = {democrat, republican }, Figure 6 shows S:Parity across
precincts. When auditing for cracking, we look for consistently
high S:Parity values across precincts. On the whole, we see a large
number of precincts with these values > .75. However, we also see
some precincts where S:Parity is much lower – indicting select rates

3See https://github.com/KCachel/FINS-Experiments for all precinct results.

that are vastly different between democrats and republicans. We
observe that there is not an overarching trend indicating cracking
is at play. This study demonstrates the use of S:Parity to audit for
this type of bias (or lack thereof).

Figure 7 shows S:Balance across precincts. In auditing for packing
we would expect to see S:Balance values to be consistently very low.
On the whole, we see multiple but not a majority of precincts with
low S:Balance values. Thus cracking does not immediately appear
to be an issue. However, if we examine the group-based measure,
proportion of S, for the low S:Balance precincts ( < .5) we see that
almost all have significantly more republicans than democrats
except for precinct 0031, where there are more democrats. This
corresponds to the second component of packing - i.e., one party
having a majority in all but one district. With our observations we
can conclude that there is not a strong enough trend for packing.
However, if republicans had a stronger majority of voters in all
districts, our proposed measures would have detected this bias.

9 RELATEDWORK
We approach subset selection from the perspective of algorithmic
auditing (i.e., interpretable diagnosis of different fairness issues),
while prior work designs algorithms to achieve fair outcomes. The
first line of related research is algorithms that place items into the
subset such that the subset has a fair presence of groups. In this
instance, being in the set is a positive outcome.

These include fair top-𝑘 queries [44, 48, 59, 62], multi-winner
voting [10, 14, 40], clustering [3, 3, 4, 6, 15, 16, 16, 39, 57], and data
summarization [12, 33, 38]. We can classify these works into three
categories, methods that achieve a exact form of (1.) proportional
(to the dataset) group presence in the subset [3, 4, 8, 15, 39, 40],
(2.) equal group presence [16, 33, 38] or (3) employ lower or upper
bound quotas on the number of items per group [6, 10, 12, 14, 16,
25, 44, 48, 57, 59, 62]. The later can potentially achieve either (1.),
(2.), or something else application-desired. To the best of our knowl-
edge these algorithms do not consider the subset-based fairness
conceptualizations we propose of calibrated, qualified, conditioned,
or relevance fairness which we model with proportional and equal
presence.

The second line of related work is clustering algorithms that
feature fairness characteristics related to our proposed S:Score Par-
ity measure [1, 30, 42]. These algorithms are designed to select
multiple subsets (i.e, a clustering) with the objective that groups
have similar clustering costs. Our work differs in that we define
a fairness concept akin to this objective that is broadly applicable
(i.e., interpretable and usable beyond integration into the objective
function of centroid-clustering). Also, we provide a complementary
novel fairness notion for equal group-based scores in a subset.

10 CONCLUSION
In this work we present the first comprehensive auditing frame-
work, FINS, for evaluating subset selections for differing notions of
group fairness. Our FINS framework yields a powerful open-source
diagnostic toolkit generally applicable to any subset selection prob-
lem in which an understanding of bias is needed. FINS is available
as a python library at https://github.com/KCachel/fins or via PyPi
at https://pypi.org/project/finsfairauditing/.

https://github.com/KCachel/FINS-Experiments
https://github.com/KCachel/fins
https://pypi.org/project/finsfairauditing/
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