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Conditions under which samples of continuous stochastic processes X(¢) on bounded time intervals [0, 7] can be
represented by samples of finite dimensional (FD) processes X,(r) are augmented such that samples of Slepian
models S, ,(t) of X,(r) can be used as surrogates for samples of Slepian models S,(r) of X(r). FD processes are
deterministic functions of time and d < oo random variables. The discrepancy between target and FD samples
is quantified by the metric of the space C[0,z] of continuous functions. The numerical illustrations, which
include Gaussian/non-Gaussian FD processes and solutions of linear/nonlinear random vibration problems,

are consistent with the theoretical findings in the paper.

1. Introduction

Slepian models S,(t) describe the evolution of random processes
X(t) following crossings of specified levels a with positive slopes,
referred to as a-upcrossings. They can be used to (1) characterize
extremes of random processes above specified levels, properties of
excursions of these processes above these levels and other sample
properties of random processes and fields, e.g., extremes of winds,
waves and other natural hazards and of responses of dynamical systems
to random inputs [1-5], (2) estimate extreme responses in random mi-
crostructures [6-10], and (3) assess the performance and/or reliability
of dynamical systems from properties of the length, area and extremes
of excursions of the states of these systems above safe levels [11-14].

Simple analytical approximations are available for extremes of
Gaussian processes. For example, P(supyc,<.{X(1)} < a) =~ P(X(0) <
a) exp(—v(a)7) for a zero-mean, unit-variance, mean square (m.s.)
differentiable stationary Gaussian process X (¢), where v(a) = (5/(2 71'))
exp(—a?/2) denotes the mean a-upcrossing of X(f) and & is the standard
deviation of X(r) = dX(f)/dt [15] (Chap. 7). These approximations
extend directly to nonstationary Gaussian processes [15] (Sect. 7.3.1)
and non-Gaussian translation processes [16] (Chap. 3). They are ac-
curate for relatively large levels a [17] (Chap. 7). There are no similar
analytical approximations for the area, duration and other properties of
excursions of non-Gaussian processes above levels a. Moments of these
random variables are difficult to obtain even for stationary Gaussian
processes X (1), see [18](Sects. 10.8 and 13.4).

Numerical algorithms have been developed to estimate properties
of excursions of stationary Gaussian processes X (¢) above levels a via
Slepian models S,(r) [17] (Sect. 10.3). These models consists of sums
of two terms, a regression which depends on a single random variable,
the slope of X(r) at the upcrossing time, and a residual term, which is a
zero-mean nonstationary Gaussian process quantifying deviations from
the regression term. For example, the lowest order approximation of
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the duration of an excursion of X (r) above a results by using only the
regression component of .S,(r) [13].

Slepian models have been originally developed for ergodic Gaussian
processes via Palm distributions [17] (Chap. 10). They have been
extended to non-ergodic stationary and nonstationary Gaussian pro-
cesses in [1,19,20] by using horizontal windows to define a-upcrossings
of X(r) and letting window widths decrease to zero. The approach
is general, i.e., it applies to arbitrary stationary/non-stationary pro-
cesses whose samples satisfy some smoothness conditions, and deliver
a formula for calculating the finite dimensional densities of .S,(¢).
The resulting Slepian models have simple expressions for Gaussian
processes but are impractical for non-Gaussian processes.

Our objective is to construct accurate approximations of Slepian
models S,(r) for non-Gaussian processes X (f) with continuous samples.
Since the Slepian models S,(¢) of non-Gaussian processes do not seem
to admit analytical expressions as those for Gaussian processes, we con-
struct numerical Slepian models S, ,(*) by using finite dimensional (FD)
representations X,(f) of X (r). These representations are deterministic
functions of time ¢ and finite numbers d of random variables, where d is
referred to as stochastic dimension. We note that FD random functions,
such as X,(¢), are essentials for the numerical solution of stochastic
problems since, generally, target processes X (¢) have infinite stochastic
dimensions as uncountable families of random variables indexed by
time ¢ [21] (Chaps. 7 and 9).

There are many FD representations which have been designed to
capture various features of target random processes. For example,
truncated Karhunen-Loéve (KL) series are FD processes which can
be used to characterize the mean and correlation functions of input
random processes and of outputs of linear dynamical systems to these
inputs. However, they are inadequate for extremes and other sample
properties of non-Gaussian processes. Following are two examples of
FD processes X () whose samples can be used as surrogates for samples
of continuous processes X (7).

The first FD representation of X () is defined by linear interpolations
X ,(1) between values {X(7;)} of this process at the points 0 =7, < 1, <
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-+ <ty = 7 of partitions of [0, z]. The representation is conceptually
simple, depends on d = N + 1 random variables and its samples
are guaranteed to approach the samples of X(r) as the largest time
step of the partition of [0, 7] decreases to zero. Two aspects of the
representation limit its use in applications. Its stochastic dimension
d = N+1 is large for partitions with many time steps and increases with
7. In addition, the law of X,(r) has to be reconstructed if the partition
{1;} is modified. The second representation views the FD processes X ,(t)
as elements of subsets of linear spaces spanned by basis functions of
the space L?[0, 7] of square integrable functions on [0, 7], e.g., the top d
eigenfunctions of the correlation function of X (¢) which are also used to
construct truncated Karhunen-Loéve (KL) representations. Generally,
this representation is more accurate than the previous one for the same
stochastic dimension, i.e. d = N + 1. Also, changes in d do not require
to reconstruct the law of the process as for the previous representation.

We use the latter FD processes X,(f) to represent target non-
Gaussian processes X (r) and their Slepian models S,(f) on bounded
time intervals [0, 7]. It is assumed that X (¢) is defined on a probability
space (.Q, P,P) and has continuous samples. It is shown that, under
some conditions, the sequence {X,} of FD processes converges weakly
to X as d — oo in the space C[0, r] of real-valued continuous functions,
i.e., lim,_ supy<.<, | X,(t) = X(@)| = 0 in distribution, a convergence
denoted by X, = X. This means that samples of X,(r) can be used
as substitutes for samples of X(f) on subsets of the sample space Q2
of nearly unit probability. The convergence X, = X is insufficient
to conclude that the Slepian models S, (1) of X,(t) converge weakly
to S,() in C[0,7] as d - oo. Additional conditions are established to
assure that the convergence S, , = S, holds. Under these conditions,
properties of excursions of X(r) above a can be inferred from samples
of Sy ().

The paper is organized as follows. Finite dimensional representa-
tions X,(¢) of X(r) are discussed in Section 2. The section includes the
FD representation B,(7) of the Brownian motion process B(t). Slepian
models for ergodic and non-ergodic processes are reviewed in Section 3.
The main results are in Section 4 which establishes conditions under
which samples of X,(7) and S, ,(#) can be used as surrogates for samples
of X(¢) and S,(¢). Section 5 presents two sets of numerical examples.
The first deals with Slepian models of Gaussian and non-Gaussian FD
processes. The second constructs Slepian models for the stationary
solutions of linear and nonlinear random vibration problems. It is
shown that samples of .S,(r) can be approximated by samples of S, ,(7)
under the conditions established in Section 4.

2. Finite dimensional (FD) processes

Let {X(#), 0 <t < 7} be a real-valued process with mean E[X(¢)] = 0
and correlation function ¢(s,) = E[X(s) X(1)] defined on a probability
space (Q,F,P). We illustrate the construction of finite dimensional
(FD) processes X,(t), d = 1,2, ..., for X(¢) by using the basis functions of
the KL series representation of this process. The formulation is applied
to develop FD representations for the Brownian motion process.

2.1. Processes with continuous correlation function

It is assumed that the correlation function of X (¢) is continuous, so
that it is square integrable on [0, 7]?, i.e., /[O,T]Z c(s,n)?dsdt < . The
eigenvalues {4,}, k = 1,2...., of the operator Ag(r) = for c(s, 1) () dt
are positive reals and the eigenfunctions {¢, ()}, k¥ = 1,2...., of
this operator are orthonormal, i.e., (¢, ¢,) = fOT @) () dt = b5y,
where 6, = 1 for k = I and zero otherwise. According to Mercer’s
theorem [22] (Sect 6.2), the series c(s, 1) = ZZ"ZI Ax @i (5) @i (1) converges
absolutely and uniformly in [0, z]> and X (¢) admits the Karhunen-Loé&ve
(KL) representation X (t) = Z,‘:":] Z, ¢, (1), where the equality holds in
the mean square (m.s.) sense and {Z,} are zero-mean uncorrelated
random variables with variances {4,}.
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Consider the family of FD random processes

d

X, 0= Zyop0, d=12,..., ¢))
k=1

where the random coefficients { Z, } are defined sample-by-sample from

samples of X(¢) by projection, i.e.,

Z (o) = / Xt w)p,t)dt, k>1,0 € . (@3]
0

Other basis functions can be used to construct FD processes, e.g., other
sets of orthogonal functions or polynomials. The eigenfunctions of the
correlation functions of X () are selected since they minimize the mean
square error and are used frequently in applications.

We note that (1) the processes {X,(r)} are defined completely,
(2) the samples X,(r,w) and X(1,w) of X,(r) and X(¢) are paired by
construction and (3) the processes X, (¢) have the same mean and corre-
lation functions as the truncated version of the KL series representation
of X(¢). The latter statement follows from the observations that

b b
E[Zk]:E[/ X(t)(pk(t)dt] :/ E[X(®] @ (t)dt =0
and

ElZ,Z)=E [/ ROROIAOIIOLE dt]
[a.b]

=/ , EX() XDl o (s) @, (1) ds dt
la.b)

br b
=/ [/ c(s,t)(p,(l)dt] @ (s)ds
b

=4 / @) @i (s)ds = A; 6y,
a

where the change of order of integration holds by Fubini’s theorem.
Note also that X,(r) converges in m.s. to X(¢) as d — oo by Mercer’s
theorem.

These above observations imply that the random vectors X, =
(X4@1), ..., X 4(t,)) converge inm.s. to X = (X(t)),..., X(t,)) asd — oo
for any integer m > 1 and times {7;} since, by Mercer’s theorem, the
components of X, converge to those of X in m.s. We conclude that the
finite dimensional distributions of X,(¢) converge to those of X(¢) as
d — oo since X; converges to X in m.s. as d — co, which implies the
convergence in distributions [23] (Theorem 18.10).

2.2. Brownian Motion process

Let {X(¢) = B(t), 0 <t <7}, ¢ > 0, be the standard Brownian motion
process defined on a probability space (2,F, P). The eigenvalues and
eigenfunctions of its correlation function c(s, ) = E[B(s) B(t)] = min(s, )
are

2

T2 (k—1)20
k>1. 3)

and @ (t) = V/2/7 sin((k - 1/2) 7 t/7),

Ak
0<Lt<r,

The eigenfunctions are continuous orthonormal functions which span

the space L2[0, 7] of real-valued square integrable functions [24] (The-

orem 5.1). The eigenvalues {4,}, k = 1,2,..., are non-negative and

converge to zero as k — oo since the correlation function of the

Brownian motion is continuous on [0, 7] [24] (Theorem 5.1).
Consider the family of FD processes (see Eq. (1))

d
Bd(t)=ZZk(pk(t), 0<t<r, d=1,2,.., 4)
k=1
where {¢,} are the top d eigenfunctions, i.e., the eigenfunctions corre-
sponding to the largest d eigenvalues and {Z, } are random coefficients
constructed sample-by-sample from samples B(7,w) of B(r) by projec-
tion, i.e., Z(w) = (B(:, ), p,(-)) = /0r B(t,w) @, (1) dt. These coefficients
are Gaussian variables as integrals of the Brownian motion process B(r)
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and have the same first two moments as the random coefficients of the
corresponding truncated Karhunen-Loéve (KL) representation of B(r)
since E[Z,] =0and E[Z, Z,] = 4 6, which result by calculations sim-
ilar to those of the previous subsection. Accordingly, their correlation
functions E[B,(s) B;(t)] = ZZ=1 A @1(s) @, (1) converge absolutely and
uniformly in [0, 7]? to the correlation function E[B(s) B(#)] by Mercer’s
theorem.

A notable difference between B,(7) in Eq. (4) and the truncated KL
representation of B(z) is that the samples of B(¢) are paired with samples
of B,(t) by construction while those of truncated KL series of B(r) do
not have this property. Pairing samples of target and FD processes is
essential to establish conditions under which samples of B,(f) can be
used as surrogates for samples of B(r). The requisite technical condition
is that the discrepancy between samples of B(f) and B,(t) can be made
as small as desired in the metric of the space of continuous functions
C[0, 7] by increasing the stochastic dimension d.

3. Slepian models for ergodic and non-ergodic processes

Let X(t), ¢+ > 0, be a real-valued stochastic process which has an
a-upcrossing at time + = 0. The evolution of X(r) following an a-
upcrossing, i.e., the conditional process X(¢) | {a — upcrossing at t = 0}
is the Slepian model S,(7), t > 0, corresponding to the a-upcrossing of
X(t) at time 7 = 0.

3.1. Ergodic processes

Suppose X (1), t > 0, is an ergodic process and let {s;} be the times
of the a-upcrossings of an infinitely long sample X(z,w) of X(¢). The
functions {X(s; + s, )}, s > 0, are the defining samples of the Slepian
model S,(s), s > 0. They describe the evolution of X (r) following an a-
upcrossing. For example, samples { X (s;, )} of the derivatives of X(z, )
at the crossing times can be used to construct the empirical distribution
of the slope of X(¢) at these times [17] (Sect 10.3).

This formulation is intuitive and can be used to construct Slepian
models for any ergodic process. Unfortunately, the ergodicity assump-
tion is rather restrictive in applications. For example, consider the
process X(t) = Z, cos(vt) + Z, sin(vt), where Z,, Z, are zero-mean
uncorrelated random variables and v > 0 denotes a frequency. The
process is not ergodic since, e.g., the temporal average of

1+cos2vit) 724 1 —cos2vt)

Xy = 2 1 2

ZZ+ 27, Z, sin2v1)

is limy_, oo (1/T) /OT X2 dt = (ZIZ+Z§)/2 so that it is sample dependent.
Similar arguments hold for the FD representations X ,(¢) of the previous
section so that alternative methods have to be employed to construct
Slepian models for these processes.

3.2. Non-ergodic processes

Slepian models for non-ergodic processes X(r) are constructed by
conditioning on the event of an a-upcrossing. The calculations cannot
be performed directly since the probability of the event of an a-
upcrossing of X (7) at a given time is zero. To implement this approach,
we view crossings as limits of events of non-zero probabilities. For
example, an a-upcrossing can be defined by the limit of the sequence
of events

A,(6) = {there exists ¢ € [0, ] such that X () = a and Xt >0}, 6>0,

()

of non-zero probability. The limit of the conditional process X (¢) | A,(5)
as the width 6 of the horizontal window [0, §] is shrunk to zero defines
the Slepian model S,(r) of X () [19].

Let X(¢) be a real-valued process whose derivative X () = d X (¢)/dt
has finite variance and has continuous samples with probability 1.
Suppose that X(¢) upcrosses a level a at time + = 0 and denote by
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f(xq....,x,la—upcrossing) the density of (X ()),..., X(t,)),0 <1} < - <
t,, conditional on the a-upcrossing event interpreted in the horizontal
window sense. This density has the form [1,19,20]

f(xy,....x,la — upcrossing) = ;irr(l)f(xl, cos Xy | Ag(8))
Iz f@x,....x,.2)dz
- fooozf(a,z)dz

where f(a,x,,...,x,,z) and f(a,z) denote the densities of (X(O),X(tl),
..., X(t,) X(0)) and (X(0), X(0)) and A,(3) is the event of an a-upcrossing
in the horizontal window [0,5]. An alternative form of the above
expression is

(6)

f(xq,...,x,|la — upcrossing) = /oo g(zla) f(xy,....x,la,z)dz, @
0
where
z f(alz)
g(zla) = —g——— (€)]
fo z f(alz)dz

is the density of the slope of X (¢) at the time of its a-upcrossing [1].

The conditional approach outlined in this section is general but
its implementation is impractical when dealing with non-Gaussian
processes since, generally, the functional forms of the joint densities
in Eq. (6) to (8) are not known. Practical results can be obtained for
stationary and nonstationary Gaussian processes [1,20].

3.2.1. Gaussian processes

If X(¢) is a zero-mean, unit-variance stationary Gaussian process,
then X(0) and X(0) are independent Gaussian variables so that f(z |
a) = exp(—=22/Q2 1)) /27w dy, 2 2 0, [§° f(n | @ndy = \[4,/Q2n)
and g(z | a) = z/(2A) exp(—2z2/(24,)), z > 0, where 4, denotes the
variance of X(0). The finite dimensional distributions of X (¢) following
an g-upcrossing at time ¢ = 0, i.e., the finite dimensional distributions
of the Slepian model S,(7), coincides with those of the nonstationary
process

40)

X, =ac@) - /1_2 Z+ K@), t>0, 9
which is the sum of a regression term ac(f) — ¢’(t) Z/4, and a zero-
mean nonstationary Gaussian process K(f) whose correlation function
depends on the correlation function c¢(f) = E[X(s) X (s +1)] of X (7). The
random variable Z is independent of K(¢) and denotes the slope of X (r)
at the crossing time [17] (Sect 10.3). The Slepian model .S,(¢) and X ()
are versions so that they can be defined on different probability spaces.
Similar results are for nonstationary Gaussian processes [1,20].

3.2.2. Non-Gaussian processes

The formulation of Eq. (7) to (8) does not deliver simple functional
forms for the Slepian models S,(r) when dealing with non-Gaussian
processes X(t) since, e.g., X(t) and X(t) are dependent non-Gaussian
variables. We define S,(r) by the subset of samples of X(r) which
upcross a at time ¢+ = 0 in the horizontal window sense, i.e., the
samples of X(r) in A, (). This sample-by-sample construction of S,(z)
is conceptually different from that in [1,20], which uses properties of
Gaussian variables to develop versions of .S, ().

We use samples of specialized FD representations X,(r) of target
processes X () to construct FD representations .S, ,(¢) of Slepian models
S, (1) of X(r). There are at least two reasons for using samples of surro-
gates rather than of target processes. First, it is not possible to generate
samples of time-continuous processes X() since they are uncountable
families of random variables indexed by time ¢ > 0. We can only
generate samples of FD processes, see algorithms for generating samples
of random processes [25] (Sect 5.3). Second, FD representations of
target processes which match only global target statistics, e.g., mean
and correlation functions, are insufficient for estimating extremes. We
need FD processes X, () whose samples are similar to those of X () for
almost all ® € Q in a sense to be defined precisely in a subsequent
section, so that samples of X,(r) and S, ,(¢) can be paired with samples
of X(¢) and S,(7) and constitute accurate surrogates for the samples of
target processes and their Slepian models.
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4. FD Slepian models

Denote by S, ,(r) the Slepian model of X, (#). We show that .S, ,(¥)
can be used as a surrogate/substitute for the Slepian model S,(r) of
target processes X(7) under some conditions. It is assumed that the
target processes X(f) have continuous samples and are defined on
bounded time intervals [0, r]. The analysis involves the following two
steps. First, conditions are established under which samples of X ,(r) can
be used as substitutes for samples of X (¢). This follows from the weak
convergence of X, to X as d — o in the space CI0, z] of continuous
functions. Second, we establish conditions under which samples of
S,(#) can be represented by samples of S, ,(r) so that statistics of,
e.g., excursions of target processes above levels a, can be inferred from
samples of X,(r) and S, ,(¢). The conditions for the weak convergence
of X, to X have to be augmented to assure that samples of S, ,(r) can
be used as surrogates for samples of S, ().

4.1. Sample properties of X (t) and X ,(t)

We establish conditions under which samples of FD processes X ,(1)
can be used as approximations of samples of X (r) defined on bounded
time intervals [0, 7]. It is assumed that X (r) and X,(¢) have continuous
samples. The discrepancy between the samples of these processes is
measured by the metric supy,, |X (1) — X,(1)| of the space C[0,7] of
real-valued continuous functions. We show that supy,, | X(#) — X, (1|
— 0 weakly as d — o, a convergence denoted by X, = X.

4.1.1. Weak convergence of FD processes
For arbitrary € > 0, denote by

Q&) ={w: sup |[X,;t,w)— X(t,w)| > €}, >0, (10)

0<t<r
the subset of 2 in which the discrepancy between samples of X(¢) and
X (1) exceeds ¢ in the metric of C[0, z]. If X; = X, then [26] (Chaps. 8
and 12)

P(24(€) >0, d— oo, an

which means that (1) the samples of X,(r) and X () in 2,(¢) differ by
less than ¢ in the metric of C[0, 7] and (2) the probability measure of the
“bad” subset £2,(¢) of 22 on which these samples differ by at least ¢ can
be made as small as desired by increasing d. Note also that, for fixed
d, the probability P(£,()) increases as ¢ decreases and that P(£,(¢))
can be kept constant if a decrease of ¢ is associated with an increase of
d.

Let X(¢) be a zero-mean, weakly stationary process with one-sided
spectral density g(v) of bounded support [0, v]. Consider the family of
FD processes

d

X () = Y [AU; cos(vy 1) + AV sin(v; 1)]. 1 ER, 12)
k=1

where v, = (k — 1/2)4v, Av = v/d, AU, and AV, are zero-mean

uncorrelated random variables, E[AU,] = E[4V,] = 0 and g, =

E[AU}] = E[AV?] = [, 80 dv = g(v) Avand I, = (v, = 4v/2,v, +4v/2).
The FD processes X ,(f) are frequently used in applications to generate
samples of X(¢). Note that X,(¢) in Eq. (12) has continuous samples and
is weakly stationary since E[X,(#)] = 0 and c,(s,7) = E[X,(s) X;()] =
ZZ=1 gk cos(v (s —1)).

Theorem 1. If X(¢) is a zero-mean, weakly stationary process with contin-
uous samples and one-sided spectral density g(v) of bounded support [0, V],
V < oo, then the family of FD processes {X,} in Eq. (12) converges weakly
to X in C[0,7] as d — oo.

Proof. The complete proof can be found in [27]. We summarize here
the main steps of this proof. Since the finite dimensional distributions
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of X,() converge to those of X(r) (see Section 2.1), it remains to check
the conditions of Theorems 8.1 and 8.2 in [26].

The first condition requires to show that the sequence {X,(0)} of
random variables is tight, i.e., there exists a > 0 such that P(|X 4(0)] >
a) < ¢ for arbitrary £ > 0. This follows from

lgAUk ] < E[(é‘i AUk>2] .

v 1/2
= </ g(v)dv> < 00
0

which holds by the Cauchy-Schwarz inequality and properties of {4U, }
and X (7). This gives P(|X,(0)| > a) < E[1X,0)[]/a < (/) e dv)*/a
< & by the Chebyshev inequality, so that the condition is satisfied for
a= (fov g(v) dv)l/z/e.

The second condition requires to show that the sequence {X,(t)}
of processes is tight, i.e., for any ,7 > 0 there exists 6 > 0 such that
P(W,(8) > €) < n for all d, where W,(8) = supj,_,j<s | X4(s) — X4 (1)
denotes the modulus of continuity of X ,(7),

E[1X,0)]] = E[

d
X () = Xg(0) = Y [h(v) AU + s(vy) AVy],
k=1

h(v) = =2 sin(av;) sin(Bv;), s(v) = =2 cos(avy) sin(Bv,), @ = (s +
t)/2 and f = (s — t)/2. It is shown in [27] via summation by parts
that there exists M > 0 such that E[W,(5)] < 6 M for any d and
P(W,(6) > €) < E[W,(8)]/e < 6 M/e by the Chebyshev inequality.
This means that for given e,7 > 0, we have P(W,(5) > &) < n for
6 = en/M. Since the conditions of Theorem 8.2 [26] are satisfied, we
conclude that the family of FD processes X, is tight. Since the finite
dimensional distributions of X,; converge to those of X, the family { X}
of FD processes converges weakly to X in C[0,7] as d — 0. A

More general results which hold for both stationary and non-
stationary processes are available, as illustrated by the following theo-
rem from [28] (Theorem 3.1), which is stated without proof.

Theorem 2. If the finite dimensional distributions of X ;(r) converge to those
of X(t), X(¢) has continuous samples and continuous correlation function
and either (i) or (ii) holds, then

sup |X,(t) = X(#)| = 0 in distribution as d — oo.
0<t<t

where

(OPX ;/E|Z,f| Ly(7) < oo, where Li(6) = supj,_q<s |04(s) — 91 (1],
6 €[0,7] an

(ii) There is M > 0 such that E[supyc,<, | X,(0|] < M foralld > 1
and {¢, (1)} are continuously differentiable functions.

4.1.2. Brownian Motion process

The previous theorem can be applied to show that the sequence
of FD processes {B,} in Eq. (3) converges weakly and almost surely
(a.s.) to the standard Brownian motion B in C[0,7] as d — oo, i.e., the
sequence of random variables supy,, |B,(t) — B(?)| converges to zero
in distribution and almost surely as d — oo [28] (Remark 3.1).

These theoretical observations are supported numerically by the
plots of Figs. 1 and 2. The left and right panels of Fig. 1 show with solid
and dashed lines five samples of B(f) and the corresponding samples of
B,(1), t € [0,1], for d = 10 and d = 20. The recurrence formula B(r +
At) = B(1) + \/EG was used to generated samples of B(t), where At =
0.001 and G denotes a standard Gaussian variable independent of B(r).
Visual inspection of these plots suggests that the discrepancies between
the samples of B,(r) and B(r) decreases with d. This observation is
consistent with the histograms of the error sup,,<; |B(t,®) — B,(t, ®)|
shown in the left and right panels of Fig. 2 for d = 10 and d = 20. The
histograms are based on 5000 independent samples of B(t) and B, (7).

As previously stated, other FD models can be constructed for the
target processes. For example, the process W) interpolating linearly



M. Grigoriu Probabilistic Engineering Mechanics 69 (2022) 103323
1.5 T T T T 15 T T T T
—~ —
+~ 1 -~ 1
SN— N
R 3
q Mk q
g
=2 sl [ ﬂ‘{fv;\:'\__:“ W =2 e
— m '\/‘T’ lt S
= [ UM i St
~— ) 4. {{ ﬂk \L)N A ~
q A }‘% ! A
50 il W w0
) <
A g
® 05+ \\ 4 T 05
wn 0 W N
vt
1 L L L L =
0 0.2 0.4 0.6 0.8 1
t
Fig. 1. Five samples of B(r) and corresponding samples of B,(r) for d =10 and d =20 (left and right panels).
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Fig. 2. Histograms of sup., | B(t,®) — B,(t,®)| based on 5000 samples of B(t) and B,(r) for d = 10 and d =20 (left and right panels).

between values of B at equally spaced times 0 = 1 < - < N <

- < tfll’, = 1 of [0,1] constitutes an alternative FD model for B(r)
in [0, 1]. We prefer the FD model B,(r) over Wy (t) for two reasons.
First, its functional form is unrelated to time discretization, a features
which facilitate, e.g., the numerical solution of differential equations
with Brownian motion inputs. Second, B,(r) is more accurate than
Wy (@) in metrics of interest. For example, the estimates of the mean
and standard deviation of the random error sup,; |B(t) — B,(t)| are
0.3191 (0.2414) and 0.0465 (0.0301) ford =N-1=10(d=N-1=
20). The corresponding estimates of the mean and standard deviation
of supy,<; |B(t) — Wy (1)| are 0.4126 (0.3189) and 0.0697 (0.0465).
The estimates of the probabilities P(supy,<; |B(t) — B;(1)| > a) and
P(supye<; |B(t) = Wy ()| > a) are 0.0364 and 0.4712 for a = 041
and d = N —1 = 10 and are 0.0392 and 0.6264 for a = 0.30 and
d = N — 1 = 20, which shows that the right tail of the distribution
of supp.<; |B(t) — Wy (1)| is heavier than that of the distribution of
Supp<<1 |B(t) — B;(1)|. All estimates are based on 5,000 independent
samples and 10,000 time steps in [0, 1].

Theorems 1 and 2 show that the samples of the FD representations
X4(1) and B,(r) of non-Gaussian processes X(¢) and of the Brownian
motion process B(t) can be used as substitutes for the samples of these
processes provided that d is sufficiently large. This convergence is
insufficient to conclude that the samples of the Slepian model S,(r) of
X (1) can be substitutes by those of the Slepian model S, ,(r) of X,(t)
since it provides no information on the rate at which the samples of
X (1) and X,(7) change in time.

We have at least two options to construct FD Slepian models for
non-Gaussian processes X (7). The first is to augment the conditions of
Theorems 1 and 2 with requirements assuring that samples of S, ,(r)

can be used as substitutes for samples of S,(¢). The other option is to
require that X(¢) and X,(¢) have differentiable samples and establish
conditions under which (X, X,;) converges weakly to (X, X) asd — oo
in the space of continuous functions. We develop the first option.

4.2. Sample properties of S,(t) and S, ,(t)

Consider the random variables V; = (X(6) — X(0))/6 and V,; =
(X4(8) — X4(0))/8, 5 > 0, which constitute approximations of the
derivatives of X(r) and X,(t) at + = 0, The processes X () and X, (1)
have at least an a-upcrossing in [0, 6] if X(0) < a < X(0) + 6V, and
X,4(0) < a < X,4(0) + 6V, 5. The previous subsection gives conditions
under which samples of X() and X,(¢) are similar in the metric of
C[0, ]. This section establishes conditions under which samples of .S, ()
and S, ,(t) are similar in the sense of the same metric.

We first show that, if X, converges weakly to X in C[0, 7], the
discrepancy between the initial conditions (X(0),V;) and (X,(0),V, ;)
of target and FD processes can be made as small as desired by increasing
the stochastic dimension d of X,(r), see Theorem 3. Then, we show
that the probability measure of the subset of samples of X(¢) and X ,(¢)
which upcross a simultaneously in [0, 5] can be made as large as desired
by increasing d, see Theorem 4.

For given £ > 0 and 6 > 0, denote by

Ag(€,0) = {1X40) - XO)| <e}n{|Vys - Vsl <€} (13)

the subset of 2 on which the components of the random vectors
(X(0),V;) and (X4(0),V, ;) differ by less than e. On A4(e, 5), we have
X(0)—¢ < X;0) < X0 +eand Vz —e < V;5 < Vs + ¢ so that
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X,(8) = X;(0)+ 6V, 5 and X(6) = X(0) + 6 V; satisfy the inequalities
X(6)—e(1+6) < X4(6) < X(6)+¢€ (1+46). For given 6 > 0, the probability
measure of A,(e,5) depends on ¢ and d. It can be close to zero for
small € and low stochastic dimension d. We also note that the inclusion
of the event {|V,; — V;| < ¢} in the definition of .4,(¢,6) is essential
for the construction of Slepian models since, otherwise, we may have
X(0,w), X(6,w) < a, so that this sample of X(¢) does not upcross a in
[0, 6], while X;(0,w) = X(0,w) — € < a and X,;(6,®) = X(6,w) +¢€ > a soO
that X, (7, w) upcrosses a in [0, §]. In this case, the discrepancy V, ;—V; =
2¢/56 between the slopes of the target and FD processes can be very
large if 6 < 1.

Theorem 3. If X,; converges weakly to X in C[0,7] as d > o, then
(i) P(A4(£,6)°) > 0 as d - oo for any €,6 > 0.

(i) P(Ay(e,6)) —» 0 asd — oo and 6 — 0 for any £ > 0 if, in
addition, X () and X,(r) are m.s. differentiable and X ,(0) converges to
X(0) in m.s.

Proof. Note first that the probability of A,(e, 5)° on which at least one
of the initial conditions of the target and FD processes differ by more
than ¢ can be bounded by

P(Ay(e,8)°) < P(|X400) = X(O0)| > €) + P(|Vy5 = V5| > &),

and that the first term converges to zero as d — oo by the weak
convergence of X, to X. It remains to show that P(|V, ;- V;| > ¢)
can be made as small as desired.

For (i), we have

Vs — Vsl < 1X408) — X(©)I/6 + X 4(0) — X(0)]/8 < (2/8)
X sup | X () — X@),

0<i<r
so that P(|V, 5 — V5| > €) < P((2/68) supyei<; 1 X4(t) = X(0)] > €) — 0 as
d — oo for any €,6 > 0 by the weak convergence of the family of FD
processes X, to X.
For (i), note that the m.s. discrepancy between V, ; and V; can be
bounded by

E[(Vys - Vs)z] <4 {E[(Vas - Xd(o))zl +E[(X4(0) - X(O))z]
+ E[(X0-v;)7 ).

the first and third terms converge to zero as 6 — 0 for any d > 1
by the m.s. differentiability of X,(r) and X(¢), and the second term
approaches zero as d — oo by the postulated m.s. convergence of the
family of random variables X ,(0) to X(0). This implies the convergence
P(|Vy5—Vsl > €) - 0asd — oo and § — 0 and, therefore,
P(Ay(e,6)°) > 0asd — oo and 5 — 0 for any £ > 0. &

The pairs of samples X (z, ») and X (7, w) of X(r) and X,(¢) in A,(¢,5)
have similar initial conditions, since the discrepancies between the
corresponding samples of (X(0),V;) and (X4(0),V, ;) are within e.
Yet, they may not upcross a in [0,5] simultaneously. We show that
the probability measure of the subset of 2 containing target and FD
samples which do not upcross « in [0, 5] simultaneously can be made
as small as desired under some conditions. The sets

U(a,6) ={X(0) < a < X(8)} = {X(©0) < a< X(©0)+5V;,V; >0} and
Uy(a,8) ={X,4(0) < a < X4(8)} = {X400) < a < Xg(0)+ 5V, 5,Vy5 >0}

define the events of at least an a-upcrossing of X (¢) and X,(¢) in [0, §].
For a sufficiently small 5, X(r) and X,(¢) are likely to have a single a-
upcrossing in [0, 5] if these processes have, e.g., differentiable samples.
On U(a,8)NUy(a, 8), a-upcrossings of X(¢) in [0, §] are accompanied by
a-upcrossings of X (1) in this horizontal window. The pairs of samples
of X(r) and X,(r) with this property are also samples of the Slepian
models S,(r) and S, ,(#). On (U(a,5) N Uy(a, 5))6, at least one of the
conditions X(0) < a < X(§) and X,(0) < a < X,(8) is not satisfied.
For example, suppose that a sample X (7, w) of X () upcrosses a in [0, §].
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Then X (1, w) is also the sample .S, (7, w) of S,(#). Since X,(f,w) does not
upcross a in [0,6], S, ,(t,®) does not exist so that the target Slepian
sample S, (¢, w) has no FD pair.

Theorem 4. If the random vector (X(0), X()) has a density f(-,-) with
no atoms, then P(Uy(a,8)¢ | U(a,8)) ~ O(e) on Ay(e,8) for any £ > 0,
O0<é<landd > 1.

Proof. On A,(g, 6), the complement of U,(a, §) satisfies the inequality

Uy(a.8) = {X,(0)> a} U (X,(3) <a) C {X(©0)> a—¢)
U{XO6)<a+e(l+8))

so that

Uy(a,6)°NnU(a,6) C{a—e < X(0)<a,X(6)>a}
U{X0)<a,a<X(@)<a+e(l+6)}

since U,(a,6)° is bounded by a union of the events {X(0) > a — ¢} and
{X(6) < a+e(1+6)}. The subset U,(a,5)° NU(a,s) of A,(e,5) consists
of samples X (7, w) of X (f) which upcross a in [0, 5] while their FD pairs
X 4(t,w) do not upcross this level in [0, §]. We have

P(Uy(a,8)°nU(a.8)) < P(a—e < X(0) < a,X(8)>a)
+ P(X(0O)<a-ea<X(@) <a+e(l+56))

and

P(a—£<X(O)<a,X(5)>a)=/a dx /oodyf(x,y)

S/ dx/ dy f(x,y)

= / fx(o)(x) dx ~ O(¢)

a+e (146) a
P(X(O)<a—£,a<X(5)<a+s(1+5)):/ dx/ dy f(x,y)

a+e (1+68) 0 a+e (1+68)
< / dy / dx f(x, ) = / Frxe () dy ~ OG),
a — a

where fy, and fy denote the densities of X(0) and X (). The above
bounds show that, on A,(e,5) with arbitrary e > 0, 0 < 6 < 1 and
d > 1, we have P(U,(a,8)°nU(a, 5)) ~ O(e) and, therefore, P(U,(a,6)° |
U(a,8)) ~ O(e). A

In summary, Theorem 4 show that (1) the subset A,(e, ) on which
the initial conditions for the target and FD Slepian models differs by
less than a given £ > 0 nearly fills the sample space 2 for any § > 0
provided that the stochastic dimension d is sufficiently large and (2) the
fraction of samples of X,(r) and X(¢) in .A,(¢, §) which do not upcross
a simultaneously in [0, 6] is of order e > 0 for any 0 < 6 < | and
d > 1. This means that for given £ > 0, which controls the discrepancy
between the initial conditions for the Slepian models S, ,(r) and S,(?),
and given § > 0, which defines the width of the horizontal window
used to calculate a-upcrossings of X, (¢) and X (r), samples of S, ,(t) can
be used as surrogates for samples of S,(r) provided that the stochastic
dimension d is sufficiently large for the following two reasons. First,
the subset .4,(¢, §) on which the initial conditions for the target and FD
Slepian models differs by less that a given & > 0 nearly fills the sample
space 2 for any § > 0. Second, subsets .A,(e,§) of sufficiently large
stochastic dimensions, the fraction of samples of X,(¢) and X (r) which
do not upcross a simultaneously in [0, 6] is of order £ > 0. Since most
of the samples of X (r) and X,(¢) are similar in the metric of C[0, r] by
the weak convergence X, => X and upcross a simultaneously in [0, 5],
most of samples of S,(7) and S, ,(t) can be paired and are similar.

5. Numerical illustrations

Two sets of examples are presented. The first constructs Slepian
models for FD processes with stochastic dimension d = 4 which have
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Fig. 3. Gaussian process: Histogram of X(t), ¢ = 0, conditional on a-upcrossing in [0, 8] and samples of S,(t) for a = 4 (left and right panels).

independent Gaussian and dependent non-Gaussian coefficients {Z, }.
The second set examines the stationary solution of a linear oscillator
subjected to a non-Gaussian process and of a nonlinear oscillator sub-
jected to Gaussian white noise. It is shown that these processes satisfy
the conditions of the above theorems so that it is expected that samples
of X,(r) and S, ,(r) can be used as substitutes for samples of X(¢) and
S,(1). This observation is consistent with the numerical illustrations
presented in this section.

5.1. Slepian models for FD Gaussian and non-Gaussian processes

Let
X(t)=Z, cos(vt)+ Z, sin(vt) + Z3 cos(3vt) + Z, sin(3vit) 14)

be a real-valued FD process with stochastic dimension d = 4. We
consider two versions of this process corresponding to coefficients { Z, }
which are independent N(0,1) and coefficients {Z,} which are zero-
mean, unit-variance dependent non-Gaussian variables. The two target
processes X (1) are FD processes with d = 4 and random coefficients
(Z,,Z,, Z5, Z,) of known distributions.

The following algorithm is used to generate samples of the Slepian
models S,(r) and of their slopes at the initial time. The index d is
dropped for simplicity since X(t) = X,(r) and S, (1) = S,,(#). For
small 6 > 0, we generate samples of (X 0), X (5)), which result from
samples of (Z,, Z,, Z3, Z,), and retain the first n samples satisfying the
condition X(0) < a < X(5), where n is a specified sample size. The
selected samples of (Z|, Z,, Z;, Z,) are subsequently used to produce
samples of X(r) which exhibit a-upcrossings in [0,5]. They are the
defining samples of S,(¢). The corresponding samples of X(0) = v (Z, +
3 Z4) are used to construct histograms of the slope of X(¢), r = 0, at
a-upcrossings.

5.1.1. Independent Gaussian coefficients

The numerical results in Fig. 3 are for a time interval [0, 7], = = 10,
n, = 200 time steps, v =1, a = 4 and § = At = 7 /n,. Smaller values of §
have not change results. The left panel of the figure shows a histogram
of X(¢) at the times of a-upcrossings based on n = 1000 samples. The
solid line is the Rayleigh density of this conditional random variable,
which is known for stationary Gaussian processes, see [17] (Sect 10.3).
The right panel shows samples of S,(7) corresponding to a-upcrossings
of X(r) att=0.

5.1.2. Dependent non-Gaussian coefficients

Let Y(t) = (A cos(vt) + B sin(vt))3, where A and B are indepen-
dent N (0, 1) variables. This process has the functional form of X(¢) in
Eq. (14) with coefficients Z; = (3/4) (A3+A B?), Z, = (3/4) (A2 B+B?),
Zy=(1/4)(A3-3 AB?*) and Z, = (1/4) (3 A> B— B*). These coefficients
are uncorrelated but dependent random variables, as functions of the
Gaussian variables A and B, and non-Gaussian, as nonlinear functions

of A and B. Consider the process X (7) in Eq. (14) whose random coef-
ficients { Z,} are obtained from {Z,} by scaling, i.e., Z, = Z,/Std[Z,],
k =1,...,4, so that they have unit variances.

The plots in Fig. 4 are similar to those in Fig. 3. They are for a time
interval [0, 7], r = 10, n, = 200 time steps, v=1,a=4and 6 = A&t = 7 /n,.
The left panel of Fig. 4 shows a histogram of X(f) conditional on a-
upcrossings in [0, 5] which is constructed from n = 1000 samples. The
solid line is the Rayleigh density of this conditional random variable
corresponding to stationary Gaussian processes, see [17] (Sect 10.3).
As expected, this density differs significantly from the histogram of
the slope of this non-Gaussian process at the a-upcrossing time. The
right panel shows samples of S,(r) corresponding to a-upcrossings of
X (1) in [0,6]. The ranges of the Slepian processes in Figs. 3 and 4
differ since, although the coefficients {Z,} are uncorrelated and have
the same means and variances, their joint distributions differ signifi-
cantly. The coefficients { Z, } are independent Gaussian and dependent
non-Gaussian variables in Figs. 3 and 4.

Construction of FD Slepian models: As noted, the target and
FD processes coincide so that X(f) = X,(r) and S,(1) = S,,(@), the
functional form of X(r) is given by Eq. (14) and the distribution of
the random coefficients {Z, } is known. Large sets of samples of these
coefficients can be generated efficiently since they are independent
Gaussian variables or nonlinear functions of independent Gaussian
variables.

Samples { Z,(w)} of { Z, } can be mapped into samples X (¢, w) of X (¢)
by elementary calculations via Eq. (14). The subset of these samples
with the property X (0, ) < a < X(5, w) are the corresponding samples
of S,(1), where § > 0 denotes the width of the horizontal window used
to define a-upcrossings of X (z).

5.2. Target and FD Slepian models for dynamical system states

The first target process X(r) is the solution of a linear dynamical
system subjected to a polynomial of a Gaussian process. The second
process X() is the solution of an Itd stochastic differential equation
driven by Brownian motion. We construct FD processes X ,() for X(¢),
Slepian models S,(a) and S, ,(a) for X() and X,(r) and assess the
accuracy of the FD Slepian models S, ,(«), where a =t — ¢, > 0 and
t, denotes the time from which X (r) can be assumed to be stationary.

5.2.1. Linear dynamical systems
Let X(¢), t > 0, be the solution of
XO+20v XO+V X0 =Y®? 120, 15)

with zero initial conditions X(0) = 0 and X(0) = 0, where ¢ € (0,1),
vp > 0, Y () is the stationary solution of

dY() = —pY(@)dt + \/2pdB({t), p>0, (20, 16)
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t

Fig. 4. Non-Gaussian process: Histogram of X(r), t =0, conditional on a-upcrossing in [0,5] and samples of S,(r) for a = 4 (left and right panels).

and B(1), t > 0, denotes the standard Brownian motion. The solution
of the latter equation for the initial condition Y (0) ~ N(0, 1) assumed
to be independent of B(¢) is a stationary Gaussian process with mean
E[Y(#)] = 0 and correlation function E[Y(s) Y (¢)] = exp(—p|s —¢|). The
stationary solution X (¢) of Eq. (15) is a non-Gaussian process which can
have large skewness and kurtosis coefficients [25] (Example 7.23).

Various methods can be used to construct FD processes X () of X (7).
For example, these processes can be obtained by projecting samples of
X (t) on the eigenfunctions of the correlation function of the stationary
solution of Eq. (15). The correlation function of X(f) can be obtained
numerically or as the Fourier transform of the spectral density of
this process, which is given by the product of the spectral density of
Y(t)> and the frequency response function of the defining equation of
X (1) [15] (Section 5.2.2). FD processes X,(¢) can also be obtained from
FD representations B, () of the Brownian motion process B(t) by solving
Eq. (16) with B,(?) in place of B(¢) to obtain an FD model Y,(¢) of Y (r)
and, then, solving Eq. (15) with Y,(¢) in place of Y (?).

An alternative method is used. We construct FD processes Y, (¢) of
Y(r) and develop corresponding FD processes of the input Y ()2, FD
processes for the solution X, (f) of Eq. (15) to Y,(f)> and Slepian models
S,4®. Then, we show that the families of FD processes X,(f) and
Slepian models S, ,(t) converge weakly to X(¢) and S,(¢) in C[0, 7] as
d — 0. The FD processes Y, () have the form

d
Y=Y Ziop), 0<t<r, a7
k=1

where ¢, (1) are the eigenfunctions of the stationary correlation function
of Y(r) in [0, ] and the samples of the random coefficients { Z, } are ob-
tained by projecting samples of Y (r) on the basis functions {¢,, ... ¢},
see Eq. (2). Note that the large sets of samples of the random coef-
ficients {Z,} can be obtained efficiently since they result from input
samples, i.e., samples of Y (7). The remainder of this subsection provides
technical details and numerical results.

Property 1. The processes Y (t), Y (1)> and X (t) have continuous samples
almost surely

Proof. The increment Y (¢ + h) — Y (¢) is a zero-mean Gaussian variable
with variance 2 (1-exp(—p |h])) so that E[(Y(t+h)—Y(t))a] < ¢ h'*# for
a=4, p=2and c = 12 p?. Since Y(¢) is separable, almost all samples of
Y (¢) are continuous in any finite time interval [29] (Proposition 4.2).
Since Y(¢)? is a continuous mapping of Y(¢) and X (t) is obtained from
Y (t)> by integration, these processes also have continuous samples. a

Property 2. The FD processes Y,(t) and Y, (1)* converge weakly and a.s. to
Y () and Y(1)? in C[0,7] as d — o

Proof. We show as in the proof of Theorem 3 that {Y,(r)} satisfies the
conditions of Theorem 12.3 in [26]. Note first that the sequence of

random variables {Y,(0) = Zi=1 Z, ¢, (0)} is tight since

E[Y,(0)%] B E[y©?] 1

P(Y,0) > a) € =5 < ——— =

so that for any & > 0 there is an a = 1/+/¢ for which P(|Y,(0)| > a) <¢
for all d > 1.

Since Y, (s) = Y,() = X4_, Zywi(s.0) ~ N(0, X4, A wi(s,0)?) with
wi(s,1) = @ (s) — @, (1) and 4, = E[Z}], we have

d 2
E[(Y(5) - Y,0)*] =3 ( A y/k(s,t)2>
k=1

o 2
<3 <Z A l//k(s,t)2> =12 (1 - e"'“")z
k=1
<12 (pls—1l)’ =122 (s = 1> = (h(s) - (1)),
where h(s) = 1/12 p2 s is a continuous increasing function, i.e., E [(Yd(s)
- Yd(t))y] < (h(s) = h(n))® for y = 4 and a = 2. We conclude that Y,
converges weakly to Y in C[0, 7] as d — oo. Since these processes are
Gaussian, we also have a.s. convergence by the It6-Nisio lemma [30].

This implies the weak and almost sure convergence of Y,(r)* to Y (¢)
by the continuous mapping theorem [26]. A

Property 3. The FD processes X ,(t) converge weakly and a.s. to X (1) in
Cl0,r] as d - o

Proof. The solutions of the oscillator in Eq. (15) to Y(#)? and Y,(¢)’ are

t t
X0 = / Pt —95)Y(s)*ds and X (1) = / Gt — )Y, (s)* ds 18)
0 0

where ¢(u) = exp(=¢ vou) sin(v, u) /vy and v; = vy /1 — ¢2. The discrep-
ancy between X(¢) and X,(r) can be bounded by

t
IX() - X001 < /0 [t = ) Y (5)* = Yy(s)*| ds

t
<L / V(s Yy(s|ds
Va Jo

so that
1 T
sup | X (1) — X,()] < — / Y (s)* = Y (s)%| ds
0<t<t Vd Jo
<= sup [Y(0? =Y (02,
Va 0<t<t

This implies that X, converges weakly and a.s. to X in C[0,7z] as d —
oo by Property 2. Similar arguments hold for the stationary solutions
which result from Eq. (18) in which the integration interval is extended
from [0, ] to (—oo,1]. A

The above properties show that the conditions of Theorems 4 and
5 are satisfied so that P(Ad (e, 6)"‘) can be made as small as desired by
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Samples: Y (t) & Yq(t)

Samples: Y (t) &

Samples: Y (t) & Yy(t)

Fig. 5. Ten samples of Y () (solid lines) and Y,(r) (dashed lines) for d = 10, 40 and 80 (left, middle and right panels).
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Fig. 6. Histograms of the error sup,., |Y (1) — Y, (1| for d = 10, 40 and 80 (left, middle and right panels).

increasing d and, on A,(e,5) most of the samples of X(¢) and X,(1)
upcross a simultaneously in [0,5]. Accordingly, we expect that the
samples of S, ,(7) can be used as surrogates for samples of S,(7) for
sufficiently large d since the fraction of samples X(r) and X,(r) which
do not upcross a simultaneously in [0, 5] is of order £ > 0, which can
be selected arbitrarily small.

The following numerical results are for p = 0.12, = = 10, v, = 3,
¢ = 0.28 and a = 1.3. The statistics are based on 100,000 independent
samples of Y (?), Y,(1), X(r) and X,(¢) generated at a time step 4 = 0.01.
The a-upcrossings of X(r) and X,(r) are recorded in the horizontal
window [ty,7, + 6] with 7, = 5. These values 7z, and 6 assure that
X, t > 1), can be viewed as stationary and that the width of the
horizontal window is adequate for the frequency content of X (7). Since
X, converges a.s. to X in C[0,7] as d - oo by the a.s. convergence of
Y, and de to Y and Y?, it is expected that the FD representations X, ()
of X(r) and S, 5(t) of S,(t) will improve with the stochastic dimension
d. This theoretical statement is in agreement with the numerical results
of Figs. 5 to 9.

Fig. 5 shows with solid and dashed lines ten samples of Y (¢) and the
corresponding samples of Y, (#). Histograms of the error sup,,, |Y(?) -
Y, ()| are in Fig. 6 for d = 10, 40 and 80 (left, middle and right panels).
The plots show that the accuracy of Y,(¢) improves with its stochastic
dimension d in agreement with the above theoretical arguments. Note
that the histograms are at different scales.

The plots of Figs. 7 and 8 are similar to those of Figs. 5 and 6
but are for the solutions X (r) and X,(¢) of Eq. (15) to Y(¢) and Y,(1).
They show with solid and dashed lines ten samples of X(r) and the
corresponding samples of X,(r) defined by Eq. (18) and histograms of
the error supy,<, |X(#) — X, (t)| for d = 10, 40 and 80 (left, middle
and right panels). The accuracy of X,(r) improves with its stochastic
dimension d in agreement with the above theoretical arguments. For
example, the ranges of the histograms in Fig. 8 are [0,0.45], [1, 12]x 1073
and [0.5,2.5] x 1073 for d = 10, 40 and 80.

The solid and dashed lines in Fig. 9 are the subset of samples of
X (1) and X,(¢) which upcross a = 1.3 through the horizontal window
[tg. 1y + 6] with 6§ = 10 4¢ for d = 10, 40 and 80 (left, middle and right
panels). They constitute the samples of the Slepian models .S,(«) and
S,;.(@). These samples are shown in Fig. 9 for d = 10, 40 and 80.
The defining samples of S,(a) and S, ,(«) nearly coincide for d > 40.
However, the Slepian models S,() and S, ,(«) differ for d = 10 since,

if a sample X (7, w) of X (r) upcrosses a in [t,, + 6], the corresponding
sample of X,(t,w) of X,(r) may not upcross a in this time interval. The
fractions of samples of X,() which upcross and do not upcross a in
[tg.ty + 6] when X (¢) upcrosses a in this time interval are 0.4444 and
0.5556. In contrast, these fractions are 1 and O for d > 40. This shows
that the relatively small discrepancy between the samples of X(¢) and
X, (1) for d = 10 illustrated and quantified in the left panels of Figs. 5
and 6, which may not be relevant for estimating moments and other
global properties of X(z), is insufficient to guarantee that samples of
S,;4(t) can be used as substitutes for samples of S,(t). The plots of
Fig. 10 show plots as in Fig. 9 but for a horizontal window of size
& = 54t rather than 6 = 104t. As expected, the number of Slepian
samples is smaller for this window since fewer samples of X (r) and
X,(1) upcross a in [0,6 = 5 4t]. Also, the samples of S,(t) and S, ,(t)
nearly originate at a for all stochastic dimensions and the samples of
S,.4(t) for d = 40,80 coincide with those of (7).

Construction of FD Slepian models: Consider a samples Y (,®)
of the input process Y(r) defined by Eq. (16) and denote by X(z,w)
the solution of Eq. (15) to this samples. The samples of X(¢) with the
property X(t),w) < a < X(t, + 6,w) are the samples S,(t,w) of the
Slepian model S,(t), t > ¢, i.e., the subset of samples of X(r) which
upcross a in the time interval [t,f, + ], where ¢, > 0 is an arbitrary
time and 6 > 0 denotes the width of the horizontal window used to
define a-upcrossings of X(¢) and X (1)

The FD pairs X,(t,w) and S, ,(7, ) of the samples X (¢, w) and S, (¢, w)
are constructed in three steps. First, samples {Z,(w)} of the random
coefficients {Z,} of the FD representation Y,(r) of Y(r) in Eq. (17)
are obtained by projecting the samples Y (s,w) on the basis functions
{@(1)}. Second, the resulting samples of { Z, } are mapped into samples
of X,(t,w) = ZZJ:] Z (@) Z;(w) 0,,(1), where the deterministic functions
0, = fo’ ¢t — 5) @i (s) p,(s)ds can be precalculated and stored. The
construction of these samples involves elementary calculations. Third,
the subset of samples of X,(r) with the property X,(fy,w) < a <
X,(ty + 6,w) defines the samples S, ,(#,w) of the FD Slepian model of
X ,(1), which are the pairs of the samples S,(7,w) of the Slepian model
of X(t).

5.2.2. Nonlinear dynamical systems
Suppose that the target process X (¢) is a component of the vector-
valued stationary solution of a stochastic differential equation subjected
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Samples: X (t) & X,(t)

Fig. 7. Ten samples of X(r) (solid lines) and X,(r) (dashed lines) for d = 10, 40 and 80 (left, middle and right panels).
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Fig. 10. Slepian models S,(a) (solid lines) and S, (@) (dashed lines), @ =1 —t,, of X(r) and X,(r) for a = 1.3 for d = 10, 40 and 80 (left, middle and right panels) and 6 =5 4r.

to Gaussian white noise, which is interpreted as the formal derivative
of the Brownian motion B(f). We construct FD representations X ()
of X(#) and Slepian models S,(a) and S, ,(«) for X(1) and X,(t) by
following the approach in the previous example and show that samples
of X() and S,(r) can be substituted by samples of X,(r) and S, (1)
under some conditions. FD representations X ,(r) of X (¢) are constructed
from solutions of Eq. (19) with B,(¢) in place of B(r), where B,(r) are
FD processes of the type in Eq. (4), which converge weakly and a.s. to
B in the space of continuous functions, see Theorem 3. We first show
that the solutions X, () converges weakly and a.s. to X (#) in the space of
continuous functions. Then, we show that the conditions of Theorem 4
are satisfied for the numerical versions of Slepian models so that FD
Slepian processes can be used as surrogates for target Slepian processes.

10

For simplicity, the arguments are restricted to real-valued diffu-
sion processes. The extension to vector-valued diffusion processes is
direct [25] (Chap. 7). Let X (¢) be a real-valued diffusion process defined
by the It6 stochastic differential equation

dX(®) = a(X@,1)dt+b(X(®).1)dB@), X©O0)=X, (€07, (19)

where X, is a random variable independent of the Brownian motion
process B(1). We assume that the drift and diffusion coefficients, a and b,
are such that Eq. (19) has a unique strong solution [25] (Sect 4.7.1.1).

The solution of Eq. (19) can be obtained by driving this equation
with colored rather than white Gaussian noise provided that it is
interpreted in the Stratonovich sense [31]. The standard approximation
of B(t) is the FD process Wy (1) which interpolates linearly between
values of B(r) at the points of a partition 0 = )/ < - <V < .. <
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tﬁ’, = 7 of [0,7]. The process Wy (¢) has continuous samples of finite
variation on compacts whose derivatives are piecewise continuous. The
sequences of processes { Wy } converges to B a.s. and uniformly in [0, 7]
as the partition is refined, i.e., maxls,-SN(th - tﬁl) —0as N - oo [25]
(Sect 4.7.1.2).

The Wong-Zakai theorem [31] states that the solution Yy (7) of the
differential equation

dYy(t) = a* (Y (), 1) dt + b(Yy (1), 1) dWy (1), Yy(0)=X,, t€[0,7],
(20)

with

@00 = alrn) = 5 b 2o @1

converges to X (7) a.s. and uniformly in [0,1] as N — oo. The defining
equation of Yy (¢) results from Eq. (19) by correcting its drift via
Eq. (21) and by replacing the Brownian motion in Eq. (20) with Wy (?).
Since Eq. (20) is of the Stratonovich type, ordinary calculus can be used
to solve for Yy ().

We first show that the solution X ,(¢) of Eq. (20) with B,(7) in place
of Wy (1), i.e., the equation

dX () = a* (X (), 1) di + b(X4(1), 1) dBy(t),  X4(0) = X,
t €[0,7], or, equivalently,
X (1) =a*(X40,1) + b(X4(0),1) By(1), X40)=X,, 1€[0,7], (22)

with a* given by Eq. (21) and B, (1) = dBy(t)/dt = ¥}_, Z; ¢, (1), also
converges to X(7) a.s. and uniformly in [0, 1] as d — co. We prefer the
FD process B,(?) since it is more efficient than W), as discussed in
Section 4.1.2. That the solution X,(r) has the stated properties results
from the fact that the FD process B,(t) satisfies the four conditions of
the Wong-Zakai theorem in [31]. We now state these conditions and
show that they are satisfied for = = 1 without loss of generality.

Condition 1. For almost all , B,(t,w) - B(t,w) for all t € [0,1] and its
samples are continuous of bounded variation.

Since the basis functions {¢,(r)} are continuous and differentiable,
almost all samples of B,(t) are continuous and of bounded variation.
For a fixed time ¢, B,(?) is the sum ZLI Z, @ (1) of the independent
Gaussian variables {Z, ¢, (1}, k = 1,...,d, which converges in m.s. to
the random variable B(f) ~ N(0,7). Since this convergence implies
the convergence in probability and the convergence in probability is
equivalent to the almost sure convergence for sums of independent
random variables by the Lévy theorem [32] (Theorem 7.3.2), we have
B,(t) = B(r) for all t € [0, 1].

Condition 2. Condition 1 and there exists k(w) > 0 and ny(w) both finite
such that |B,(t, w)| < k(w) a.s. for all n > ny(w) and all ¢ € [0, 1].

Since B,(1) and B(r) have continuous samples, we can find /,;(w) > 0
and /(w) finite such that supy,<| | B;(t, w)| < I,(w) and supy,<| | B(t, w)| <
I(w) for almost all samples. The convergence of the samples of B,(t) to
those of B(¢) in the metric of C[0,1] (see Condition 4 below) means
that for almost all @ € £ and given ¢ > 0, there exists ny(w) such that
SUPg</<1 |By(t. ) — B(t,w)| < € for n > ny(w) so that supy,<; |B,(t, ®)| <
SUPo<i<1 | By (t, @) — B(t, w)| + supy,<; |B(t,w)| < € + l(w) := k(w) for
n > ng(w).

Condition 3. Condition 2 and B,(t,w) has piecewise continuous deriva-
tives.
The basis functions {¢, ()} are continuous and differentiable and so

is By(1).

Condition 4. Condition 3 and B,(t,w) — B(t,w) uniformly in [0, 1]. This
follows from the almost sure convergence of B, to B in C[0,1] as d — oo.

11
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We conclude that the solution X,(r) of Eq. (22) converges a.s. and
uniformly in [0, 1] to the solution X(¢) of Eq. (19) as d — o so that
samples of X,(r) can be used as substitutes for samples of X () for a
sufficiently large stochastic dimension.

Let X(#), t+ > 0, be a vector-valued process defined by the It

differential equation

dX(t)=a(X(®)dt +bdB(), 120, (23)

where X(f) = [X,(t) = Y(#), X5(1) = Y(z)]’, a(X®) = [X,0, - (X)) -
o X 2(1)]/, b= 0, tho], are two-dimensional column vectors and Y (¢)
is the solution of

YO +pY0)+u' (Y) = W), 120, 24

driven by a zero mean Gaussian white noise W () with one-sided
spectral density g(v) = gy, v > 0. The derivative u'(y) of u(y) defines
the elastic restoring force of the oscillator. The density of the stationary
solution X(r) of Eq. (23) has the expression

2
2 2p X
f) = f(x1,x)=¢ exp<—£ u(xl)> exp<—% 72>,
0 0

x=(x],X,) € R2, (25)

where ¢ > 0 is a normalization constant [25] (Example 7.42). If the
initial condition X(0) has the density f(x) in Eq. (25), the solution
X(t) of Eq. (23) is a stationary process with the marginal density f(x).
Note also that X,(f) = X(¢) is a zero-mean Gaussian variable with finite
variance r g,/(2 p) which is independent of X, (t) = X ().

Let X,(¢) be the solution of Eq. (23) with B,(7) in place of B(r). The
differential equations of X(r) and X,(r) have the same form since the
input B(?) is additive. The above considerations show that the solution
X ,4(1) of Eq. (23) with B,(z) in place of B(r) converges a.s. and uniformly
in any bounded interval to X(r) as d — oo so that samples of X,(¢) can
be used as surrogates for samples of X(¢) provided that the stochastic
dimension is sufficiently large.

Since X, converges weakly to X, we have P(A,(e,6)°) — 0 as
d — oo for any &,56 > 0 by Theorem 3 so that the initial conditions of
S,(1) and S, ,(t) differ by less than ¢ for almost all samples as d — co.
The distribution of the stationary solution X (¢) of Eq. (23) is continuous
by Eq. (25) so that the probability that a-upcrossings of X () in [0, 6],
0 < 6 < 1, are accompanied by a-upcrossings of X, () with nearly unit
probability for sufficiently large d, see Theorem 4. These observations
suggest that samples of X,(t) and S, ,(f) can be used as surrogates for
samples of X (¢r) and S,(r) for sufficiently large d and that the accuracy
of these FD representations improves with their stochastic dimensions.

The following numerical results are for p = 0.5, u/(x) = ax + fx°,
a = p =1, gy =1, zero initial conditions, stochastic dimension d = 20,
40 and 60, a time interval [0, 10] and 100,000 independent samples of
X(t). Fig. 11 shows with solid and dashed lines ten samples of X(7)
and the corresponding samples of X,(r) in the time interval [0, 10].
The left, middle and right panels of Fig. 12 show histograms of the
discrepancy supy.<, |X(t) — X;(t)| for d = 20, 40 and 60. Note that
the histograms have different scales. The plots of these figures show
visually and quantitatively that the accuracy of the FD processes X ,(t)
improves with d in the metric of the space of continuous functions
C[0, 7] in agreement with theoretical considerations.

The left, middle and right panels of Fig. 13 show with solid and
dashed lines the samples of the Slepian models S,(a) and S, (), a =
t—ty, for d = 20, 40 and 60 for « = 3.5 and 7, = 5. Of the samples of S,(a)
corresponding to those in the previous two figures, i.e., the samples of
X(t) which upcross a in the time interval [t,.7, + 6], 6 = 34t, only a
fraction of 0.1579 samples of X,(r) have this property for d = 20. This
fraction increases to 0.5789 and 0.7895 for d = 40 and 60 and is nearly
unity for d = 100. For 6 = At these fractions are 0, 0.2857, 0.7143 and
nearly 1 for d = 20, 40, 60 and 100. The plots of Fig. 14 are those of
Fig. 13 for a horizontal window of size 6 = 4t, rather than 6 = 3 Ar. The
numbers of samples of X(r) and X,() which upcross « in this shorter
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Fig. 12. Histograms of the error sup)... |X(t) — X, (1| for d =20, 40 and 60 (left, middle and right panels).
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Fig. 14. Samples of S,(«) and S, () (solid and dashed lines), a =1 —1,, for d =20, 40 and 60 (left, middle and right panels) or & = 4r.

window decreases and the Slepian samples originate at approximately
a=3.5.

Construction of FD Slepian models: Consider a samples B(z, ) of
the input B(¢) to Eq. (23) and denote by X(#,®) the solution of this
equation to this input. The samples of X (r) with the property X (¢,, ) <
a < X(ty+ 6, w) for times r > ¢, are the samples .S,(«, w) of the Slepian
model S,(«), where a =1 — 1.

The FD pairs X,(t,w) and S, ,(a,®) of the samples X(z,») and
S,(a, ) are constructed in three steps. First, samples {Z,(w)} of the
random coefficients {Z,} of the FD representation B,(f) of B(r) in
Eq. (4) are obtained by projecting the input samples B(t, w) on the basis
functions {¢, (1)} in this equations. Note that large sets of samples of
{Z,} can be obtained with a negligible computational effort. Second,
the resulting input samples are mapped into samples of X ,(¢) by solving

12

Eq. (22). The calculation of samples of X,(r) is computationally more
demanding than in the previous example since their functional form is
unknown. They have to be obtained by numerical integration. Third,
the subset of samples of X,(r) with the property X,(f),w) < a <
X,(ty + 6, w) defines the samples S, ,(a, ) of the FD Slepian model of
X ;(t) which correspond to the samples .S, («, @) of the Slepian model of
X(@).

6. Comments

Analytical formulations are available for the Slepian models of
stationary and non-stationary Gaussian processes X (¢). The resulting
Slepian models are versions of the processes defined by the trajectories
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of X () following a-upcrossings, i.e., crossings of a of X(¢) with positive
slopes. The extension of these formulations to non-Gaussian processes
X (1) seems to be impractical. This paper has developed Slepian models
for continuous processes X (¢) by using finite dimensional (FD) represen-
tations X ,(7) of X(¢), i.e., deterministic functions of time and sets of d <
co random variables. The Slepian models S,(7) and S, ,(t) characterize
the evolution of X () and X,(7) following their a-upcrossings.

It was noted that most stochastic problems do not admit analytical
solutions and that numerical solutions of these problems are possible
only if the random processes in their definitions are FD processes. The
types of FD representations depends on the objective of the analysis,
e.g., FD representations given by truncated KL series characterize ac-
curately the mean and correlation functions of target processes but not
their sample property. The class of FD processes X, () and their Slepian
models S, ,(r) in the paper are such that their samples, which can be
generated by standard algorithms, can be used as surrogates for the
samples of X (r) and S, ().

Conditions have been established under which FD and target pro-
cesses have similar samples on bounded time intervals [0, 7] in the sense
of the metric of the space C[0, z] of continuous functions. Under these
conditions, samples of X,(r) can be used as substitutes for samples X (¢).
These conditions have been augmented to assure that samples of S, ,(1)
can be used as surrogates for samples of S,(r) for sufficiently large
stochastic dimensions d.

Two sets of examples have been presented to illustrate the construc-
tion of Slepian models and examine consistency with the theoretical
considerations in the paper. The first set includes Gaussian and non-
Gaussian FD processes with the same functional form and first two
moments which depend on d = 4 Gaussian and d = 4 non-Gaussian
random variables. The target processes X (¢) in the second set of exam-
ples are solutions of linear and nonlinear random vibration problems
with non-Gaussian and Gaussian inputs so that they are non-Gaussian.
It was shown that the processes X (¢) satisfy the conditions under which
target and FD processes and their Slepian models have similar samples.
The numerical illustrations are consistent with theoretical predictions.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The work reported in this paper has been partially supported by
the National Science Foundation, USA under the grant CMMI-2013697.
This support is gratefully acknowledged.

References

[1]1 M. Grigoriu, Reliability of daniels systems subject to quasistatic and dynamic
nonstationary Gaussian load processes, Probab. Eng. Mech. 4 (3) (1989) 128-134.
M. Grigoriu, G. Samorodnitsky, Reliability of dynamic systems in random
environment by extreme value theory, Probab. Eng. Mech. 38 (2014) 54-69.
O. Karpa, A. Naess, Extreme value statistics of wind speed data by the ACER
method, J. Wind Eng. Ind. Aerodyn. 112 (2013) 1-10.

[2]

[3]

13

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Probabilistic Engineering Mechanics 69 (2022) 103323

L.L. Yang, K. Gurley, D. Prevatt, Probabilistic modeling of wind pressure on
low-rise buildings, J. Wind Eng. Ind. Aerodyn. 114 (2013) 18-26.

A. Naess, V. Moe, Efficient path integration methods for nonlinear dynamic
systems, Probab. Eng. Mech. 15 (2) 221-231.

M. Grigoriu, Response statistics for random heterogeneous microstructures, SIAM,
J. Uncertain. Quantif. 2 (1) (2014).

J. Guilleminot, A. Noshadravan, C. Soize, R.G. Ghanem, A probabilistic model
for bounded elasticity tensor random fields with applications to polycrystalline
microstructures, Comput. Methods Appl. Mech. Engrg. 200 (2011) 1637-1648.

M. Ostoja-Starzewski, X. Wang, Stochastic finite elements as a bridge between
random material microstructure and global response, Comput. Methods Appl.
Mech. Engrg. 168 (1999) 35-49.

C. Soize, Non-Gaussian positive-definite matrix-valued random fields for elliptic
stochastic partial differential equations, Comput. Methods Appl. Mech. Engrg.
195 (2006) 26-64.

S. Torquato, Thermal conductivity of disordered heterogeneous media form the
microstructure, Rev. Chem. Eng. 4 (3&4) (1987) 151-204.

M.L Adhikari, S. Friswell, G. Litak, H.H. Khodaparast, Design and analysis of
vibration energy harvesters based on peak response statistics, Smart Mater.
Struct. 25 (2016) 065009.

M. Grigoriu, W.LT. Uy, Discussion of extreme events: Mechanisms and prediction
by M. Farazmand and T. P. Sapsis, ASME, Appl. Mech. Rev..

G. Lindgren, I. Rychlik, Slepian Models and Regression Approximations in
Crossing and Extreme Value Theory, Technical Report Technical Report No. 282,
Department of Statistics University of North Carolina Chapel Hill, North Carolina,
1990.

I. Petromichelakis, A.F. Psaros, I.A. Kougioumtzoglou, Stochastic response de-
termination and optimization of a class of nonlinear electromechanical energy
harvesters: A Wiener path integral approach, Probab. Eng. Mech. 53 (2018)
116-125.

T.T. Soong, M. Grigoriu, Random Vibration of Mechanical and Structural
Systems, Prentice Hall, Englewood Cliffs, N.J., 1993.

M. Grigoriu, Applied Non-Gaussian Processes: Examples, Theory, Simulation,
Linear Random Vibration, and MATLAB Solutions, Prentice Hall, Englewoods
Cliffs, NJ, 1995.

M.R. Leadbetter, G. Lindgren, H. Rootzén, Extremes and Related Properties of
Random Sequences and Processes, Springer-Verlag, New York, 1983.

H. Cramer, M.R. Leadbetter, Stationary and Related Stochastic Processes, John
Wiley & Sons, Inc. New York, 1967.

Mark Kac, David Slepian, Large excursions of Gaussian processes, Ann. Math.
Stat. 40 (4) (1959).

T. Gadrich, R.J. Adler, Slepian models for non-stationary Gaussian processes, J.
Appl. Probab. 30 (1) (1993) 98-111.

M. Grigoriu, Stochastic Systems. Uncertainty Quantification and Propagation, in:
Springer Series in Reliability Engineering, Springer, London Heidelberg New York
Dordrecht, 2012, ISBN: 978-1-4471-2326-9, (eBook).

D.B. Hernandez, Lectures on Probability and Second Order Random Fields, World
Scientific, London, 1995.

AW. Van Der Vaart, Asymptotic Statistics, Cambridge University Press,
Cambridge, 1998.

I. Gohberg, S. Goldberg, Basic Operator Theory, Birkhéduser, Boston, 1980.

M. Grigoriu, Stochastic Calculus. Applications in Science and Engineering,
Birkhéuser, Boston, 2002.

P. Billingsley, Convergence of Probability Measures, John Wiley & Sons Inc.,
New York, 1968.

M. Grigoriu, Finite dimensional models for random microstructures, Theory
Probab. Math. Statist. 106 (2022) 121-142.

H. Xu, M. Grigoriu, Finite dimensional models for extremes of Gaussian and non-
Gaussian processes, Probab. Eng. Mech. 68 (2022) http://dx.doi.org/10.1016/j.
probengmech.2022.103199.

E. Wong, B. Hajek, Stochastic Processes in Engineering Systems, Springer-Verlag,
New York, 1985.

K. Itd, M. Nisio, On the convergence of sums of independent Banach space valued
random variables, Osaka J. Math. (1968) 35-48.

E. Wong, M. Zakai, On the convergence of ordinary integrals to stochastic
integrals, Ann. Math. Stat. 36 (1965) 1560-1564.

S.I. Resnick, A Probability Path, Birkhduser, Boston, 1998.


http://refhub.elsevier.com/S0266-8920(22)00073-X/sb1
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb1
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb1
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb2
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb2
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb2
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb3
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb3
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb3
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb4
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb4
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb4
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb5
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb5
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb5
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb6
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb6
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb6
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb7
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb7
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb7
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb7
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb7
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb8
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb8
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb8
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb8
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb8
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb9
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb9
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb9
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb9
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb9
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb10
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb10
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb10
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb11
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb11
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb11
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb11
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb11
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb12
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb12
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb12
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb13
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb13
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb13
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb13
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb13
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb13
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb13
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb14
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb14
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb14
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb14
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb14
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb14
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb14
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb15
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb15
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb15
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb16
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb16
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb16
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb16
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb16
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb17
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb17
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb17
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb18
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb18
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb18
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb19
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb19
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb19
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb20
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb20
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb20
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb21
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb21
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb21
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb21
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb21
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb22
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb22
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb22
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb23
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb23
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb23
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb24
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb25
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb25
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb25
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb26
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb26
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb26
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb27
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb27
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb27
http://dx.doi.org/10.1016/j.probengmech.2022.103199
http://dx.doi.org/10.1016/j.probengmech.2022.103199
http://dx.doi.org/10.1016/j.probengmech.2022.103199
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb29
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb29
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb29
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb30
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb30
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb30
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb31
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb31
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb31
http://refhub.elsevier.com/S0266-8920(22)00073-X/sb32

	Finite dimensional (FD) Slepian models for non-Gaussian processes
	Introduction
	Finite dimensional (FD) processes
	Processes with continuous correlation function
	Brownian Motion process

	Slepian models for ergodic and non-ergodic processes
	Ergodic processes
	Non-ergodic processes
	Gaussian processes
	Non-Gaussian processes


	FD Slepian models
	Sample properties of X(t) and Xd(t)
	Weak convergence of FD processes
	Brownian Motion process

	Sample properties of Sa(t) and Sd,a(t)

	Numerical illustrations
	Slepian models for FD Gaussian and non-Gaussian processes
	Independent Gaussian coefficients
	Dependent non-Gaussian coefficients

	Target and FD Slepian models for dynamical system states
	Linear dynamical systems
	Nonlinear dynamical systems


	Comments
	Declaration of competing interest
	Acknowledgments
	References


