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A B S T R A C T

Conditions under which samples of continuous stochastic processes 𝑋(𝑡) on bounded time intervals [0, 𝜏] can be
represented by samples of finite dimensional (FD) processes 𝑋𝑑 (𝑡) are augmented such that samples of Slepian
models 𝑆𝑑,𝑎(𝑡) of 𝑋𝑑 (𝑡) can be used as surrogates for samples of Slepian models 𝑆𝑎(𝑡) of 𝑋(𝑡). FD processes are
deterministic functions of time and 𝑑 <∞ random variables. The discrepancy between target and FD samples
is quantified by the metric of the space 𝐶[0, 𝜏] of continuous functions. The numerical illustrations, which
include Gaussian/non-Gaussian FD processes and solutions of linear/nonlinear random vibration problems,
are consistent with the theoretical findings in the paper.
1. Introduction

Slepian models 𝑆𝑎(𝑡) describe the evolution of random processes
𝑋(𝑡) following crossings of specified levels 𝑎 with positive slopes,
referred to as 𝑎-upcrossings. They can be used to (1) characterize
extremes of random processes above specified levels, properties of
excursions of these processes above these levels and other sample
properties of random processes and fields, e.g., extremes of winds,
waves and other natural hazards and of responses of dynamical systems
to random inputs [1–5], (2) estimate extreme responses in random mi-
crostructures [6–10], and (3) assess the performance and/or reliability
of dynamical systems from properties of the length, area and extremes
of excursions of the states of these systems above safe levels [11–14].

Simple analytical approximations are available for extremes of
Gaussian processes. For example, 𝑃

(

sup0≤𝑡≤𝜏{𝑋(𝑡)} ≤ 𝑎
)

≃ 𝑃
(

𝑋(0) ≤
𝑎
)

exp
(

−𝜈(𝑎) 𝜏
)

for a zero-mean, unit-variance, mean square (m.s.)
differentiable stationary Gaussian process 𝑋(𝑡), where 𝜈(𝑎) =

(

𝜎̇∕(2𝜋)
)

exp(−𝑎2∕2) denotes the mean 𝑎-upcrossing of 𝑋(𝑡) and 𝜎̇ is the standard
eviation of 𝑋̇(𝑡) = 𝑑𝑋(𝑡)∕𝑑𝑡 [15] (Chap. 7). These approximations
xtend directly to nonstationary Gaussian processes [15] (Sect. 7.3.1)
nd non-Gaussian translation processes [16] (Chap. 3). They are ac-
urate for relatively large levels 𝑎 [17] (Chap. 7). There are no similar
nalytical approximations for the area, duration and other properties of
xcursions of non-Gaussian processes above levels 𝑎. Moments of these
andom variables are difficult to obtain even for stationary Gaussian
rocesses 𝑋(𝑡), see [18](Sects. 10.8 and 13.4).
Numerical algorithms have been developed to estimate properties

f excursions of stationary Gaussian processes 𝑋(𝑡) above levels 𝑎 via
lepian models 𝑆𝑎(𝑡) [17] (Sect. 10.3). These models consists of sums
f two terms, a regression which depends on a single random variable,
he slope of 𝑋(𝑡) at the upcrossing time, and a residual term, which is a
ero-mean nonstationary Gaussian process quantifying deviations from
he regression term. For example, the lowest order approximation of
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the duration of an excursion of 𝑋(𝑡) above 𝑎 results by using only the
regression component of 𝑆𝑎(𝑡) [13].

Slepian models have been originally developed for ergodic Gaussian
processes via Palm distributions [17] (Chap. 10). They have been
extended to non-ergodic stationary and nonstationary Gaussian pro-
cesses in [1,19,20] by using horizontal windows to define 𝑎-upcrossings
of 𝑋(𝑡) and letting window widths decrease to zero. The approach
is general, i.e., it applies to arbitrary stationary/non-stationary pro-
cesses whose samples satisfy some smoothness conditions, and deliver
a formula for calculating the finite dimensional densities of 𝑆𝑎(𝑡).
The resulting Slepian models have simple expressions for Gaussian
processes but are impractical for non-Gaussian processes.

Our objective is to construct accurate approximations of Slepian
models 𝑆𝑎(𝑡) for non-Gaussian processes 𝑋(𝑡) with continuous samples.
Since the Slepian models 𝑆𝑎(𝑡) of non-Gaussian processes do not seem
to admit analytical expressions as those for Gaussian processes, we con-
struct numerical Slepian models 𝑆𝑑,𝑎(𝑡) by using finite dimensional (FD)
representations 𝑋𝑑 (𝑡) of 𝑋(𝑡). These representations are deterministic
functions of time 𝑡 and finite numbers 𝑑 of random variables, where 𝑑 is
referred to as stochastic dimension. We note that FD random functions,
such as 𝑋𝑑 (𝑡), are essentials for the numerical solution of stochastic
problems since, generally, target processes 𝑋(𝑡) have infinite stochastic
dimensions as uncountable families of random variables indexed by
time 𝑡 [21] (Chaps. 7 and 9).

There are many FD representations which have been designed to
capture various features of target random processes. For example,
truncated Karhunen–Loève (KL) series are FD processes which can
be used to characterize the mean and correlation functions of input
random processes and of outputs of linear dynamical systems to these
inputs. However, they are inadequate for extremes and other sample
properties of non-Gaussian processes. Following are two examples of
FD processes 𝑋𝑑 (𝑡) whose samples can be used as surrogates for samples
of continuous processes 𝑋(𝑡).

The first FD representation of 𝑋(𝑡) is defined by linear interpolations
𝑋𝑑 (𝑡) between values {𝑋(𝑡𝑖)} of this process at the points 0 = 𝑡0 < 𝑡1 <
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⋯ < 𝑡𝑁 = 𝜏 of partitions of [0, 𝜏]. The representation is conceptually
simple, depends on 𝑑 = 𝑁 + 1 random variables and its samples
are guaranteed to approach the samples of 𝑋(𝑡) as the largest time
step of the partition of [0, 𝜏] decreases to zero. Two aspects of the
representation limit its use in applications. Its stochastic dimension
𝑑 = 𝑁+1 is large for partitions with many time steps and increases with
𝜏. In addition, the law of 𝑋𝑑 (𝑡) has to be reconstructed if the partition
{𝑡𝑖} is modified. The second representation views the FD processes 𝑋𝑑 (𝑡)
s elements of subsets of linear spaces spanned by basis functions of
he space 𝐿2[0, 𝜏] of square integrable functions on [0, 𝜏], e.g., the top 𝑑
igenfunctions of the correlation function of 𝑋(𝑡) which are also used to
onstruct truncated Karhunen–Loève (KL) representations. Generally,
his representation is more accurate than the previous one for the same
tochastic dimension, i.e. 𝑑 = 𝑁 + 1. Also, changes in 𝑑 do not require
o reconstruct the law of the process as for the previous representation.
We use the latter FD processes 𝑋𝑑 (𝑡) to represent target non-

aussian processes 𝑋(𝑡) and their Slepian models 𝑆𝑎(𝑡) on bounded
ime intervals [0, 𝜏]. It is assumed that 𝑋(𝑡) is defined on a probability
pace

(

𝛺, , 𝑃
)

and has continuous samples. It is shown that, under
ome conditions, the sequence {𝑋𝑑} of FD processes converges weakly
o 𝑋 as 𝑑 → ∞ in the space 𝐶[0, 𝜏] of real-valued continuous functions,
.e., lim𝑑→∞ sup0≤𝑡≤𝜏 |𝑋𝑑 (𝑡) −𝑋(𝑡)| = 0 in distribution, a convergence
enoted by 𝑋𝑑 ⟹ 𝑋. This means that samples of 𝑋𝑑 (𝑡) can be used
s substitutes for samples of 𝑋(𝑡) on subsets of the sample space 𝛺
f nearly unit probability. The convergence 𝑋𝑑 ⟹ 𝑋 is insufficient
o conclude that the Slepian models 𝑆𝑑,𝑎(𝑡) of 𝑋𝑑 (𝑡) converge weakly
o 𝑆𝑎(𝑡) in 𝐶[0, 𝜏] as 𝑑 → ∞. Additional conditions are established to
ssure that the convergence 𝑆𝑑,𝑎 ⟹ 𝑆𝑎 holds. Under these conditions,
roperties of excursions of 𝑋(𝑡) above 𝑎 can be inferred from samples
f 𝑆𝑑,𝑎(𝑡).
The paper is organized as follows. Finite dimensional representa-

ions 𝑋𝑑 (𝑡) of 𝑋(𝑡) are discussed in Section 2. The section includes the
D representation 𝐵𝑑 (𝑡) of the Brownian motion process 𝐵(𝑡). Slepian
odels for ergodic and non-ergodic processes are reviewed in Section 3.
he main results are in Section 4 which establishes conditions under
hich samples of 𝑋𝑑 (𝑡) and 𝑆𝑑,𝑎(𝑡) can be used as surrogates for samples

of 𝑋(𝑡) and 𝑆𝑎(𝑡). Section 5 presents two sets of numerical examples.
The first deals with Slepian models of Gaussian and non-Gaussian FD
processes. The second constructs Slepian models for the stationary
solutions of linear and nonlinear random vibration problems. It is
shown that samples of 𝑆𝑎(𝑡) can be approximated by samples of 𝑆𝑑,𝑎(𝑡)
under the conditions established in Section 4.

2. Finite dimensional (FD) processes

Let {𝑋(𝑡), 0 ≤ 𝑡 ≤ 𝜏} be a real-valued process with mean 𝐸[𝑋(𝑡)] = 0
and correlation function 𝑐(𝑠, 𝑡) = 𝐸[𝑋(𝑠)𝑋(𝑡)] defined on a probability
space

(

𝛺, , 𝑃
)

. We illustrate the construction of finite dimensional
(FD) processes 𝑋𝑑 (𝑡), 𝑑 = 1, 2,…, for 𝑋(𝑡) by using the basis functions of
the KL series representation of this process. The formulation is applied
to develop FD representations for the Brownian motion process.

2.1. Processes with continuous correlation function

It is assumed that the correlation function of 𝑋(𝑡) is continuous, so
that it is square integrable on [0, 𝜏]2, i.e., ∫[0,𝜏]2 𝑐(𝑠, 𝑡)

2 𝑑𝑠 𝑑𝑡 < ∞. The
eigenvalues {𝜆𝑘}, 𝑘 = 1, 2.…, of the operator 𝜑(𝑡) = ∫ 𝜏0 𝑐(𝑠, 𝑡)𝜑(𝑡) 𝑑𝑡
are positive reals and the eigenfunctions {𝜑𝑘(𝑡)}, 𝑘 = 1, 2.…, of
this operator are orthonormal, i.e., ⟨𝜑𝑘, 𝜑𝑙⟩ = ∫ 𝜏0 𝜑𝑘(𝑡)𝜑𝑙(𝑡) 𝑑𝑡 = 𝛿𝑘𝑙,
where 𝛿𝑘𝑙 = 1 for 𝑘 = 𝑙 and zero otherwise. According to Mercer’s
theorem [22] (Sect 6.2), the series 𝑐(𝑠, 𝑡) = ∑∞

𝑘=1 𝜆𝑘 𝜑𝑘(𝑠)𝜑𝑘(𝑡) converges
absolutely and uniformly in [0, 𝜏]2 and 𝑋(𝑡) admits the Karhunen–Loève
(KL) representation 𝑋(𝑡) =

∑∞
𝑘=1𝑍𝑘 𝜑𝑘(𝑡), where the equality holds in

the mean square (m.s.) sense and {𝑍𝑘} are zero-mean uncorrelated
random variables with variances {𝜆 }.
𝑘

2

Consider the family of FD random processes

𝑋𝑑 (𝑡) =
𝑑
∑

𝑘=1
𝑍𝑘 𝜑𝑘(𝑡), 𝑑 = 1, 2,… , (1)

where the random coefficients {𝑍𝑘} are defined sample-by-sample from
samples of 𝑋(𝑡) by projection, i.e.,

𝑍𝑘(𝜔) = ∫

𝜏

0
𝑋(𝑡, 𝜔)𝜑𝑘(𝑡)𝑑𝑡, 𝑘 ≥ 1, 𝜔 ∈ 𝛺. (2)

Other basis functions can be used to construct FD processes, e.g., other
sets of orthogonal functions or polynomials. The eigenfunctions of the
correlation functions of 𝑋(𝑡) are selected since they minimize the mean
square error and are used frequently in applications.

We note that (1) the processes {𝑋𝑑 (𝑡)} are defined completely,
(2) the samples 𝑋𝑑 (𝑡, 𝜔) and 𝑋(𝑡, 𝜔) of 𝑋𝑑 (𝑡) and 𝑋(𝑡) are paired by
construction and (3) the processes 𝑋𝑑 (𝑡) have the same mean and corre-
lation functions as the truncated version of the KL series representation
of 𝑋(𝑡). The latter statement follows from the observations that

𝐸[𝑍𝑘] = 𝐸
[

∫

𝑏

𝑎
𝑋(𝑡)𝜑𝑘(𝑡) 𝑑𝑡

]

= ∫

𝑏

𝑎
𝐸[𝑋(𝑡)]𝜑𝑘(𝑡) 𝑑𝑡 = 0

and

𝐸[𝑍𝑘𝑍𝑙] = 𝐸
[

∫[𝑎,𝑏]2
𝑋(𝑠)𝑋(𝑡)𝜑𝑘(𝑠)𝜑𝑙(𝑡) 𝑑𝑠 𝑑𝑡

]

= ∫[𝑎,𝑏]2
𝐸[𝑋(𝑠)𝑋(𝑡)]𝜑𝑘(𝑠)𝜑𝑙(𝑡) 𝑑𝑠 𝑑𝑡

= ∫

𝑏

𝑎

[

∫

𝑏

𝑎
𝑐(𝑠, 𝑡)𝜑𝑙(𝑡) 𝑑𝑡

]

𝜑𝑘(𝑠) 𝑑𝑠

= 𝜆𝑙 ∫

𝑏

𝑎
𝜑𝑙(𝑡)𝜑𝑘(𝑠) 𝑑𝑠 = 𝜆𝑙 𝛿𝑘𝑙 ,

where the change of order of integration holds by Fubini’s theorem.
Note also that 𝑋𝑑 (𝑡) converges in m.s. to 𝑋(𝑡) as 𝑑 → ∞ by Mercer’s
theorem.

These above observations imply that the random vectors 𝑑 =
(

𝑋𝑑 (𝑡1),… , 𝑋𝑑 (𝑡𝑚)
)

converge in m.s. to  =
(

𝑋(𝑡1),… , 𝑋(𝑡𝑚)
)

as 𝑑 → ∞
for any integer 𝑚 ≥ 1 and times {𝑡𝑖} since, by Mercer’s theorem, the
components of 𝑑 converge to those of  in m.s. We conclude that the
finite dimensional distributions of 𝑋𝑑 (𝑡) converge to those of 𝑋(𝑡) as
𝑑 → ∞ since 𝑑 converges to  in m.s. as 𝑑 → ∞, which implies the
convergence in distributions [23] (Theorem 18.10).

2.2. Brownian Motion process

Let {𝑋(𝑡) = 𝐵(𝑡), 0 ≤ 𝑡 ≤ 𝜏}, 𝜏 > 0, be the standard Brownian motion
process defined on a probability space

(

𝛺, , 𝑃
)

. The eigenvalues and
eigenfunctions of its correlation function 𝑐(𝑠, 𝑡) = 𝐸[𝐵(𝑠)𝐵(𝑡)] = min(𝑠, 𝑡)
are

𝜆𝑘 =
𝜏2

𝜋2 (𝑘 − 1∕2)2
and 𝜑𝑘(𝑡) =

√

2∕𝜏 sin
(

(𝑘 − 1∕2)𝜋 𝑡∕𝜏
)

,

0 ≤ 𝑡 ≤ 𝜏, 𝑘 ≥ 1. (3)

The eigenfunctions are continuous orthonormal functions which span
the space 𝐿2[0, 𝜏] of real-valued square integrable functions [24] (The-
orem 5.1). The eigenvalues {𝜆𝑘}, 𝑘 = 1, 2,…, are non-negative and
converge to zero as 𝑘 → ∞ since the correlation function of the
Brownian motion is continuous on [0, 𝜏]2 [24] (Theorem 5.1).

Consider the family of FD processes (see Eq. (1))

𝐵𝑑 (𝑡) =
𝑑
∑

𝑘=1
𝑍𝑘 𝜑𝑘(𝑡), 0 ≤ 𝑡 ≤ 𝜏, 𝑑 = 1, 2,… , (4)

where {𝜑𝑘} are the top 𝑑 eigenfunctions, i.e., the eigenfunctions corre-
sponding to the largest 𝑑 eigenvalues and {𝑍𝑘} are random coefficients
constructed sample-by-sample from samples 𝐵(𝑡, 𝜔) of 𝐵(𝑡) by projec-
tion, i.e., 𝑍𝑘(𝜔) = ⟨𝐵(⋅, 𝜔), 𝜑𝑘(⋅)⟩ = ∫ 𝜏0 𝐵(𝑡, 𝜔)𝜑𝑘(𝑡) 𝑑𝑡. These coefficients
are Gaussian variables as integrals of the Brownian motion process 𝐵(𝑡)
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and have the same first two moments as the random coefficients of the
corresponding truncated Karhunen–Loève (KL) representation of 𝐵(𝑡)
ince 𝐸[𝑍𝑘] = 0 and 𝐸[𝑍𝑘𝑍𝑙] = 𝜆𝑘 𝛿𝑘𝑙, which result by calculations sim-
lar to those of the previous subsection. Accordingly, their correlation
unctions 𝐸[𝐵𝑑 (𝑠)𝐵𝑑 (𝑡)] =

∑𝑑
𝑘=1 𝜆𝑘 𝜑𝑘(𝑠)𝜑𝑘(𝑡) converge absolutely and

niformly in [0, 𝜏]2 to the correlation function 𝐸[𝐵(𝑠)𝐵(𝑡)] by Mercer’s
heorem.
A notable difference between 𝐵𝑑 (𝑡) in Eq. (4) and the truncated KL

epresentation of 𝐵(𝑡) is that the samples of 𝐵(𝑡) are paired with samples
f 𝐵𝑑 (𝑡) by construction while those of truncated KL series of 𝐵(𝑡) do
ot have this property. Pairing samples of target and FD processes is
ssential to establish conditions under which samples of 𝐵𝑑 (𝑡) can be
sed as surrogates for samples of 𝐵(𝑡). The requisite technical condition
s that the discrepancy between samples of 𝐵(𝑡) and 𝐵𝑑 (𝑡) can be made
as small as desired in the metric of the space of continuous functions
𝐶[0, 𝜏] by increasing the stochastic dimension 𝑑.

3. Slepian models for ergodic and non-ergodic processes

Let 𝑋(𝑡), 𝑡 ≥ 0, be a real-valued stochastic process which has an
𝑎-upcrossing at time 𝑡 = 0. The evolution of 𝑋(𝑡) following an 𝑎-
upcrossing, i.e., the conditional process 𝑋(𝑡) ∣ {𝑎 − upcrossing at 𝑡 = 0}
is the Slepian model 𝑆𝑎(𝑡), 𝑡 ≥ 0, corresponding to the 𝑎-upcrossing of
𝑋(𝑡) at time 𝑡 = 0.

3.1. Ergodic processes

Suppose 𝑋(𝑡), 𝑡 ≥ 0, is an ergodic process and let {𝑠𝑖} be the times
of the 𝑎-upcrossings of an infinitely long sample 𝑋(𝑡, 𝜔) of 𝑋(𝑡). The
functions {𝑋(𝑠𝑖 + 𝑠, 𝜔)}, 𝑠 ≥ 0, are the defining samples of the Slepian
model 𝑆𝑎(𝑠), 𝑠 ≥ 0. They describe the evolution of 𝑋(𝑡) following an 𝑎-
upcrossing. For example, samples {𝑋̇(𝑠𝑖, 𝜔)} of the derivatives of 𝑋(𝑡, 𝜔)
at the crossing times can be used to construct the empirical distribution
of the slope of 𝑋(𝑡) at these times [17] (Sect 10.3).

This formulation is intuitive and can be used to construct Slepian
models for any ergodic process. Unfortunately, the ergodicity assump-
tion is rather restrictive in applications. For example, consider the
process 𝑋(𝑡) = 𝑍1 cos(𝜈 𝑡) + 𝑍2 sin(𝜈 𝑡), where 𝑍1, 𝑍2 are zero-mean
uncorrelated random variables and 𝜈 > 0 denotes a frequency. The
process is not ergodic since, e.g., the temporal average of

𝑋(𝑡)2 =
1 + cos(2 𝜈 𝑡)

2
𝑍2

1 +
1 − cos(2 𝜈 𝑡)

2
𝑍2

2 +𝑍1𝑍2 sin(2 𝜈 𝑡)

is lim𝑇→∞(1∕𝑇 ) ∫ 𝑇0 𝑋(𝑡)2 𝑑𝑡 = (𝑍2
1+𝑍

2
2 )∕2 so that it is sample dependent.

Similar arguments hold for the FD representations 𝑋𝑑 (𝑡) of the previous
section so that alternative methods have to be employed to construct
Slepian models for these processes.

3.2. Non-ergodic processes

Slepian models for non-ergodic processes 𝑋(𝑡) are constructed by
conditioning on the event of an 𝑎-upcrossing. The calculations cannot
be performed directly since the probability of the event of an 𝑎-
upcrossing of 𝑋(𝑡) at a given time is zero. To implement this approach,
e view crossings as limits of events of non-zero probabilities. For
xample, an 𝑎-upcrossing can be defined by the limit of the sequence
f events

𝑎(𝛿) = {there exists 𝑡 ∈ [0, 𝛿] such that 𝑋(𝑡) = 𝑎 and 𝑋̇(𝑡) > 0}, 𝛿 > 0,

(5)

of non-zero probability. The limit of the conditional process 𝑋(𝑡) ∣ 𝐴𝑎(𝛿)
as the width 𝛿 of the horizontal window [0, 𝛿] is shrunk to zero defines
he Slepian model 𝑆𝑎(𝑡) of 𝑋(𝑡) [19].
Let 𝑋(𝑡) be a real-valued process whose derivative 𝑋̇(𝑡) = 𝑑𝑋(𝑡)∕𝑑𝑡

has finite variance and has continuous samples with probability 1.
Suppose that 𝑋(𝑡) upcrosses a level 𝑎 at time 𝑡 = 0 and denote by
 t

3

𝑓 (𝑥1,… , 𝑥𝑛|𝑎−upcrossing) the density of
(

𝑋(𝑡1),… , 𝑋(𝑡𝑛)
)

, 0 < 𝑡1 <⋯ <
𝑡𝑛, conditional on the 𝑎-upcrossing event interpreted in the horizontal
window sense. This density has the form [1,19,20]

𝑓 (𝑥1,… , 𝑥𝑛|𝑎 − upcrossing) = lim
𝛿→0

𝑓 (𝑥1,… , 𝑥𝑛|𝐴𝑎(𝛿))

=
∫ ∞
0 𝑧 𝑓 (𝑎, 𝑥1,… , 𝑥𝑛, 𝑧) 𝑑𝑧

∫ ∞
0 𝑧 𝑓 (𝑎, 𝑧) 𝑑𝑧

, (6)

where 𝑓 (𝑎, 𝑥1,… , 𝑥𝑛, 𝑧) and 𝑓 (𝑎, 𝑧) denote the densities of
(

𝑋(0), 𝑋(𝑡1),
… , 𝑋(𝑡𝑛) 𝑋̇(0)

)

and
(

𝑋(0), 𝑋̇(0)
)

and 𝐴𝑎(𝛿) is the event of an 𝑎-upcrossing
in the horizontal window [0, 𝛿]. An alternative form of the above
expression is

𝑓 (𝑥1,… , 𝑥𝑛|𝑎 − upcrossing) = ∫

∞

0
𝑔(𝑧|𝑎) 𝑓 (𝑥1,… , 𝑥𝑛|𝑎, 𝑧) 𝑑𝑧, (7)

where

𝑔(𝑧|𝑎) =
𝑧 𝑓 (𝑎|𝑧)

∫ ∞
0 𝑧 𝑓 (𝑎|𝑧) 𝑑𝑧

(8)

is the density of the slope of 𝑋(𝑡) at the time of its 𝑎-upcrossing [1].
The conditional approach outlined in this section is general but

ts implementation is impractical when dealing with non-Gaussian
rocesses since, generally, the functional forms of the joint densities
n Eq. (6) to (8) are not known. Practical results can be obtained for
tationary and nonstationary Gaussian processes [1,20].

.2.1. Gaussian processes
If 𝑋(𝑡) is a zero-mean, unit-variance stationary Gaussian process,

hen 𝑋̇(0) and 𝑋(0) are independent Gaussian variables so that 𝑓 (𝑧 ∣
) = exp

(

−𝑧2∕(2 𝜆2)
)

∕
√

2𝜋 𝜆2, 𝑧 ≥ 0, ∫ ∞
0 𝑓 (𝜂 ∣ 𝑎) 𝜂 𝑑𝜂 =

√

𝜆2∕(2𝜋)
and 𝑔(𝑧 ∣ 𝑎) = 𝑧∕(2 𝜆2) exp

(

−𝑧2∕(2 𝜆2)
)

, 𝑧 ≥ 0, where 𝜆2 denotes the
variance of 𝑋̇(0). The finite dimensional distributions of 𝑋(𝑡) following
an 𝑎-upcrossing at time 𝑡 = 0, i.e., the finite dimensional distributions
of the Slepian model 𝑆𝑎(𝑡), coincides with those of the nonstationary
process

𝑋𝑎(𝑡) = 𝑎 𝑐(𝑡) −
𝑐′(𝑡)
𝜆2

𝑍 +(𝑡), 𝑡 ≥ 0, (9)

which is the sum of a regression term 𝑎 𝑐(𝑡) − 𝑐′(𝑡)𝑍∕𝜆2 and a zero-
mean nonstationary Gaussian process (𝑡) whose correlation function
depends on the correlation function 𝑐(𝑡) = 𝐸[𝑋(𝑠)𝑋(𝑠+ 𝑡)] of 𝑋(𝑡). The
random variable 𝑍 is independent of (𝑡) and denotes the slope of 𝑋(𝑡)
at the crossing time [17] (Sect 10.3). The Slepian model 𝑆𝑎(𝑡) and 𝑋𝑎(𝑡)
are versions so that they can be defined on different probability spaces.
Similar results are for nonstationary Gaussian processes [1,20].

3.2.2. Non-Gaussian processes
The formulation of Eq. (7) to (8) does not deliver simple functional

orms for the Slepian models 𝑆𝑎(𝑡) when dealing with non-Gaussian
rocesses 𝑋(𝑡) since, e.g., 𝑋(𝑡) and 𝑋̇(𝑡) are dependent non-Gaussian
ariables. We define 𝑆𝑎(𝑡) by the subset of samples of 𝑋(𝑡) which
pcross 𝑎 at time 𝑡 = 0 in the horizontal window sense, i.e., the
amples of 𝑋(𝑡) in 𝐴𝑎(𝛿). This sample-by-sample construction of 𝑆𝑎(𝑡)
s conceptually different from that in [1,20], which uses properties of
aussian variables to develop versions of 𝑆𝑎(𝑡).
We use samples of specialized FD representations 𝑋𝑑 (𝑡) of target

rocesses 𝑋(𝑡) to construct FD representations 𝑆𝑑,𝑎(𝑡) of Slepian models
𝑎(𝑡) of 𝑋(𝑡). There are at least two reasons for using samples of surro-
ates rather than of target processes. First, it is not possible to generate
amples of time-continuous processes 𝑋(𝑡) since they are uncountable
amilies of random variables indexed by time 𝑡 ≥ 0. We can only
enerate samples of FD processes, see algorithms for generating samples
f random processes [25] (Sect 5.3). Second, FD representations of
arget processes which match only global target statistics, e.g., mean
nd correlation functions, are insufficient for estimating extremes. We
eed FD processes 𝑋𝑑 (𝑡) whose samples are similar to those of 𝑋(𝑡) for
lmost all 𝜔 ∈ 𝛺 in a sense to be defined precisely in a subsequent
ection, so that samples of 𝑋𝑑 (𝑡) and 𝑆𝑑,𝑎(𝑡) can be paired with samples
f 𝑋(𝑡) and 𝑆𝑎(𝑡) and constitute accurate surrogates for the samples of

arget processes and their Slepian models.



M. Grigoriu Probabilistic Engineering Mechanics 69 (2022) 103323

e
s
o

𝛿

a

4

o
(
s
i

p
a
𝐵
𝛥

c
s
h

4. FD Slepian models

Denote by 𝑆𝑑,𝑎(𝑡) the Slepian model of 𝑋𝑑 (𝑡). We show that 𝑆𝑑,𝑎(𝑡)
can be used as a surrogate/substitute for the Slepian model 𝑆𝑎(𝑡) of
target processes 𝑋(𝑡) under some conditions. It is assumed that the
target processes 𝑋(𝑡) have continuous samples and are defined on
bounded time intervals [0, 𝜏]. The analysis involves the following two
steps. First, conditions are established under which samples of 𝑋𝑑 (𝑡) can
be used as substitutes for samples of 𝑋(𝑡). This follows from the weak
convergence of 𝑋𝑑 to 𝑋 as 𝑑 → ∞ in the space 𝐶[0, 𝜏] of continuous
functions. Second, we establish conditions under which samples of
𝑆𝑎(𝑡) can be represented by samples of 𝑆𝑑,𝑎(𝑡) so that statistics of,
.g., excursions of target processes above levels 𝑎, can be inferred from
amples of 𝑋𝑑 (𝑡) and 𝑆𝑑,𝑎(𝑡). The conditions for the weak convergence
f 𝑋𝑑 to 𝑋 have to be augmented to assure that samples of 𝑆𝑑,𝑎(𝑡) can
be used as surrogates for samples of 𝑆𝑎(𝑡).

4.1. Sample properties of 𝑋(𝑡) and 𝑋𝑑 (𝑡)

We establish conditions under which samples of FD processes 𝑋𝑑 (𝑡)
can be used as approximations of samples of 𝑋(𝑡) defined on bounded
time intervals [0, 𝜏]. It is assumed that 𝑋(𝑡) and 𝑋𝑑 (𝑡) have continuous
samples. The discrepancy between the samples of these processes is
measured by the metric sup0≤𝑡≤𝜏 |𝑋(𝑡) −𝑋𝑑 (𝑡)| of the space 𝐶[0, 𝜏] of
real-valued continuous functions. We show that sup0≤𝑡≤𝜏 |𝑋(𝑡) −𝑋𝑑 (𝑡)|
→ 0 weakly as 𝑑 → ∞, a convergence denoted by 𝑋𝑑 ⟹ 𝑋.

4.1.1. Weak convergence of FD processes
For arbitrary 𝜀 > 0, denote by

𝛺𝑑 (𝜀) = {𝜔 ∶ sup
0≤𝑡≤𝜏

|𝑋𝑑 (𝑡, 𝜔) −𝑋(𝑡, 𝜔)| > 𝜀}, 𝜀 > 0, (10)

the subset of 𝛺 in which the discrepancy between samples of 𝑋(𝑡) and
𝑋𝑑 (𝑡) exceeds 𝜀 in the metric of 𝐶[0, 𝜏]. If 𝑋𝑑 ⟹ 𝑋, then [26] (Chaps. 8
and 12)

𝑃
(

𝛺𝑑 (𝜀)
)

→ 0, 𝑑 → ∞, (11)

which means that (1) the samples of 𝑋𝑑 (𝑡) and 𝑋(𝑡) in 𝛺𝑑 (𝜀)𝑐 differ by
less than 𝜀 in the metric of 𝐶[0, 𝜏] and (2) the probability measure of the
‘‘bad’’ subset 𝛺𝑑 (𝜀) of 𝛺 on which these samples differ by at least 𝜀 can
be made as small as desired by increasing 𝑑. Note also that, for fixed
𝑑, the probability 𝑃

(

𝛺𝑑 (𝜀)
)

increases as 𝜀 decreases and that 𝑃
(

𝛺𝑑 (𝜀)
)

can be kept constant if a decrease of 𝜀 is associated with an increase of
𝑑.

Let 𝑋(𝑡) be a zero-mean, weakly stationary process with one-sided
spectral density 𝑔(𝜈) of bounded support [0, 𝜈̄]. Consider the family of
FD processes

𝑋𝑑 (𝑡) =
𝑑
∑

𝑘=1

[

𝛥𝑈𝑘 cos(𝜈𝑘 𝑡) + 𝛥𝑉𝑘 sin(𝜈𝑘 𝑡)
]

, 𝑡 ∈ R, (12)

where 𝜈𝑘 = (𝑘 − 1∕2)𝛥𝜈, 𝛥𝜈 = 𝜈̄∕𝑑, 𝛥𝑈𝑘 and 𝛥𝑉𝑘 are zero-mean
uncorrelated random variables, 𝐸[𝛥𝑈𝑘] = 𝐸[𝛥𝑉𝑘] = 0 and 𝑔𝑘 =
𝐸[𝛥𝑈2

𝑘 ] = 𝐸[𝛥𝑉 2
𝑘 ] = ∫𝐼𝑘 𝑔(𝜈) 𝑑𝜈 ≃ 𝑔(𝜈𝑘)𝛥𝜈 and 𝐼𝑘 = (𝜈𝑘−𝛥𝜈∕2, 𝜈𝑘+𝛥𝜈∕2).

The FD processes 𝑋𝑑 (𝑡) are frequently used in applications to generate
samples of 𝑋(𝑡). Note that 𝑋𝑑 (𝑡) in Eq. (12) has continuous samples and
is weakly stationary since 𝐸[𝑋𝑑 (𝑡)] = 0 and 𝑐𝑑 (𝑠, 𝑡) = 𝐸[𝑋𝑑 (𝑠)𝑋𝑑 (𝑡)] =
∑𝑑
𝑘=1 𝑔𝑘 cos

(

𝜈𝑘 (𝑠 − 𝑡)
)

.

Theorem 1. If 𝑋(𝑡) is a zero-mean, weakly stationary process with contin-
uous samples and one-sided spectral density 𝑔(𝜈) of bounded support [0, 𝜈̄],
𝜈̄ < ∞, then the family of FD processes {𝑋𝑑} in Eq. (12) converges weakly
to 𝑋 in 𝐶[0, 𝜏] as 𝑑 → ∞.

Proof. The complete proof can be found in [27]. We summarize here
the main steps of this proof. Since the finite dimensional distributions
 t

4

of 𝑋𝑑 (𝑡) converge to those of 𝑋(𝑡) (see Section 2.1), it remains to check
the conditions of Theorems 8.1 and 8.2 in [26].

The first condition requires to show that the sequence {𝑋𝑑 (0)} of
random variables is tight, i.e., there exists 𝑎 > 0 such that 𝑃

(

|𝑋𝑑 (0)| >
𝑎
)

≤ 𝜀 for arbitrary 𝜀 > 0. This follows from

𝐸
[

|𝑋𝑑 (0)|
]

= 𝐸
[

|

|

|

|

𝑑
∑

𝑘=1
𝛥𝑈𝑘

|

|

|

|

]

≤ 𝐸
[( 𝑑

∑

𝑘=1
𝛥𝑈𝑘

)2]1∕2

=
(

∫

𝜈̄

0
𝑔(𝜈) 𝑑𝜈

)1∕2
<∞

which holds by the Cauchy–Schwarz inequality and properties of {𝛥𝑈𝑘}
and 𝑋(𝑡). This gives 𝑃

(

|𝑋𝑑 (0)| > 𝑎
)

≤ 𝐸
[

|𝑋𝑑 (0)|
]

∕𝑎 ≤
(

∫ 𝜈̄0 𝑔(𝜈) 𝑑𝜈
)1∕2∕𝑎

≤ 𝜀 by the Chebyshev inequality, so that the condition is satisfied for
𝑎 =

(

∫ 𝜈̄0 𝑔(𝜈) 𝑑𝜈
)1∕2∕𝜀.

The second condition requires to show that the sequence {𝑋𝑑 (𝑡)}
of processes is tight, i.e., for any 𝜀, 𝜂 > 0 there exists 𝛿 > 0 such that
𝑃
(

𝑊𝑑 (𝛿) > 𝜀
)

≤ 𝜂 for all 𝑑, where 𝑊𝑑 (𝛿) = sup
|𝑠−𝑡|≤𝛿 |𝑋𝑑 (𝑠) −𝑋𝑑 (𝑡)|

denotes the modulus of continuity of 𝑋𝑑 (𝑡),

𝑋𝑑 (𝑠) −𝑋𝑑 (𝑡) =
𝑑
∑

𝑘=1

[

ℎ(𝜈𝑘)𝛥𝑈𝑘 + 𝑠(𝜈𝑘)𝛥𝑉𝑘
]

,

ℎ(𝜈𝑘) = −2 sin
(

𝛼 𝜈𝑘
)

sin
(

𝛽 𝜈𝑘
)

, 𝑠(𝜈𝑘) = −2 cos
(

𝛼 𝜈𝑘
)

sin
(

𝛽 𝜈𝑘
)

, 𝛼 = (𝑠 +
𝑡)∕2 and 𝛽 = (𝑠 − 𝑡)∕2. It is shown in [27] via summation by parts
that there exists 𝑀 > 0 such that 𝐸

[

𝑊𝑑 (𝛿)
]

≤ 𝛿𝑀 for any 𝑑 and
𝑃
(

𝑊𝑑 (𝛿) > 𝜀
)

≤ 𝐸
[

𝑊𝑑 (𝛿)
]

∕𝜀 ≤ 𝛿𝑀∕𝜀 by the Chebyshev inequality.
This means that for given 𝜀, 𝜂 > 0, we have 𝑃

(

𝑊𝑑 (𝛿) > 𝜀
)

≤ 𝜂 for
𝛿 = 𝜀 𝜂∕𝑀 . Since the conditions of Theorem 8.2 [26] are satisfied, we
conclude that the family of FD processes 𝑋𝑑 is tight. Since the finite
dimensional distributions of 𝑋𝑑 converge to those of 𝑋, the family {𝑋𝑑}
of FD processes converges weakly to 𝑋 in 𝐶[0, 𝜏] as 𝑑 → ∞. ▴

More general results which hold for both stationary and non-
stationary processes are available, as illustrated by the following theo-
rem from [28] (Theorem 3.1), which is stated without proof.

Theorem 2. If the finite dimensional distributions of 𝑋𝑑 (𝑡) converge to those
of 𝑋(𝑡), 𝑋(𝑡) has continuous samples and continuous correlation function
and either (𝑖) or (𝑖𝑖) holds, then

sup
0≤𝑡≤𝜏

|𝑋𝑑 (𝑡) −𝑋(𝑡)| → 0 in distribution as 𝑑 → ∞.

where
(𝑖)

∑∞
𝑘=1

√

𝐸|𝑍2
𝑘 |𝐿𝑘(𝜏) < ∞, where 𝐿𝑘(𝛿) = sup

|𝑠−𝑡|≤𝛿 |𝜑𝑘(𝑠) − 𝜑𝑘(𝑡)|,
∈ [0, 𝜏] and
(𝑖𝑖) There is 𝑀 > 0 such that 𝐸

[

sup0≤𝑡≤𝜏 |𝑋̇𝑑 (𝑡)|
]

≤ 𝑀 for all 𝑑 ≥ 1
nd {𝜑𝑘(𝑡)} are continuously differentiable functions.

.1.2. Brownian Motion process
The previous theorem can be applied to show that the sequence

f FD processes {𝐵𝑑} in Eq. (3) converges weakly and almost surely
a.s.) to the standard Brownian motion 𝐵 in 𝐶[0, 𝜏] as 𝑑 → ∞, i.e., the
equence of random variables sup0≤𝑡≤𝜏 |𝐵𝑑 (𝑡) − 𝐵(𝑡)| converges to zero
n distribution and almost surely as 𝑑 → ∞ [28] (Remark 3.1).
These theoretical observations are supported numerically by the

lots of Figs. 1 and 2. The left and right panels of Fig. 1 show with solid
nd dashed lines five samples of 𝐵(𝑡) and the corresponding samples of
𝑑 (𝑡), 𝑡 ∈ [0, 1], for 𝑑 = 10 and 𝑑 = 20. The recurrence formula 𝐵(𝑡 +
𝑡) = 𝐵(𝑡) +

√

𝛥𝑡𝐺 was used to generated samples of 𝐵(𝑡), where 𝛥𝑡 =
0.001 and 𝐺 denotes a standard Gaussian variable independent of 𝐵(𝑡).
Visual inspection of these plots suggests that the discrepancies between
the samples of 𝐵𝑑 (𝑡) and 𝐵(𝑡) decreases with 𝑑. This observation is
onsistent with the histograms of the error sup0≤𝑡≤1 |𝐵(𝑡, 𝜔) − 𝐵𝑑 (𝑡, 𝜔)|
hown in the left and right panels of Fig. 2 for 𝑑 = 10 and 𝑑 = 20. The
istograms are based on 5000 independent samples of 𝐵(𝑡) and 𝐵𝑑 (𝑡).
As previously stated, other FD models can be constructed for the

arget processes. For example, the process 𝑊 interpolating linearly
𝑁
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Fig. 1. Five samples of 𝐵(𝑡) and corresponding samples of 𝐵𝑑 (𝑡) for 𝑑 = 10 and 𝑑 = 20 (left and right panels).
Fig. 2. Histograms of sup0≤𝑡≤1 |𝐵(𝑡, 𝜔) − 𝐵𝑛(𝑡, 𝜔)| based on 5000 samples of 𝐵(𝑡) and 𝐵𝑑 (𝑡) for 𝑑 = 10 and 𝑑 = 20 (left and right panels).
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etween values of 𝐵 at equally spaced times 0 = 𝑡𝑁0 < ⋯ < 𝑡𝑁𝑖 <
< 𝑡𝑁𝑁 = 1 of [0, 1] constitutes an alternative FD model for 𝐵(𝑡)

n [0, 1]. We prefer the FD model 𝐵𝑑 (𝑡) over 𝑊𝑁 (𝑡) for two reasons.
irst, its functional form is unrelated to time discretization, a features
hich facilitate, e.g., the numerical solution of differential equations
ith Brownian motion inputs. Second, 𝐵𝑑 (𝑡) is more accurate than
𝑁 (𝑡) in metrics of interest. For example, the estimates of the mean
nd standard deviation of the random error sup0≤𝑡≤1 |𝐵(𝑡) − 𝐵𝑑 (𝑡)| are
.3191 (0.2414) and 0.0465 (0.0301) for 𝑑 = 𝑁 − 1 = 10 (𝑑 = 𝑁 − 1 =
0). The corresponding estimates of the mean and standard deviation
f sup0≤𝑡≤1 |𝐵(𝑡) −𝑊𝑁 (𝑡)| are 0.4126 (0.3189) and 0.0697 (0.0465).
he estimates of the probabilities 𝑃

(

sup0≤𝑡≤1 |𝐵(𝑡) − 𝐵𝑑 (𝑡)| > 𝑎
)

and
(

sup0≤𝑡≤1 |𝐵(𝑡) −𝑊𝑁 (𝑡)| > 𝑎
)

are 0.0364 and 0.4712 for 𝑎 = 0.41
nd 𝑑 = 𝑁 − 1 = 10 and are 0.0392 and 0.6264 for 𝑎 = 0.30 and
= 𝑁 − 1 = 20, which shows that the right tail of the distribution
f sup0≤𝑡≤1 |𝐵(𝑡) −𝑊𝑁 (𝑡)| is heavier than that of the distribution of
up0≤𝑡≤1 |𝐵(𝑡) − 𝐵𝑑 (𝑡)|. All estimates are based on 5,000 independent
amples and 10,000 time steps in [0, 1].
Theorems 1 and 2 show that the samples of the FD representations

𝑑 (𝑡) and 𝐵𝑑 (𝑡) of non-Gaussian processes 𝑋(𝑡) and of the Brownian
otion process 𝐵(𝑡) can be used as substitutes for the samples of these
rocesses provided that 𝑑 is sufficiently large. This convergence is
nsufficient to conclude that the samples of the Slepian model 𝑆𝑎(𝑡) of
(𝑡) can be substitutes by those of the Slepian model 𝑆𝑑,𝑎(𝑡) of 𝑋𝑑 (𝑡)
ince it provides no information on the rate at which the samples of
(𝑡) and 𝑋𝑑 (𝑡) change in time.
We have at least two options to construct FD Slepian models for

on-Gaussian processes 𝑋(𝑡). The first is to augment the conditions of

heorems 1 and 2 with requirements assuring that samples of 𝑆𝑑,𝑎(𝑡) 𝑋

5

an be used as substitutes for samples of 𝑆𝑎(𝑡). The other option is to
equire that 𝑋(𝑡) and 𝑋𝑑 (𝑡) have differentiable samples and establish
onditions under which

(

𝑋𝑑 , 𝑋̇𝑑
)

converges weakly to
(

𝑋, 𝑋̇
)

as 𝑑 → ∞
n the space of continuous functions. We develop the first option.

.2. Sample properties of 𝑆𝑎(𝑡) and 𝑆𝑑,𝑎(𝑡)

Consider the random variables 𝑉𝛿 =
(

𝑋(𝛿) − 𝑋(0)
)

∕𝛿 and 𝑉𝑑,𝛿 =
𝑋𝑑 (𝛿) − 𝑋𝑑 (0)

)

∕𝛿, 𝛿 > 0, which constitute approximations of the
erivatives of 𝑋(𝑡) and 𝑋𝑑 (𝑡) at 𝑡 = 0, The processes 𝑋(𝑡) and 𝑋𝑑 (𝑡)
ave at least an 𝑎-upcrossing in [0, 𝛿] if 𝑋(0) < 𝑎 < 𝑋(0) + 𝛿 𝑉𝛿 and
𝑑 (0) < 𝑎 < 𝑋𝑑 (0) + 𝛿 𝑉𝑑,𝛿 . The previous subsection gives conditions
nder which samples of 𝑋(𝑡) and 𝑋𝑑 (𝑡) are similar in the metric of
[0, 𝜏]. This section establishes conditions under which samples of 𝑆𝑎(𝑡)
nd 𝑆𝑑,𝑎(𝑡) are similar in the sense of the same metric.
We first show that, if 𝑋𝑑 converges weakly to 𝑋 in 𝐶[0, 𝜏], the

iscrepancy between the initial conditions
(

𝑋(0), 𝑉𝛿
)

and
(

𝑋𝑑 (0), 𝑉𝑑,𝛿
)

f target and FD processes can be made as small as desired by increasing
he stochastic dimension 𝑑 of 𝑋𝑑 (𝑡), see Theorem 3. Then, we show
hat the probability measure of the subset of samples of 𝑋(𝑡) and 𝑋𝑑 (𝑡)
which upcross 𝑎 simultaneously in [0, 𝛿] can be made as large as desired
by increasing 𝑑, see Theorem 4.

For given 𝜀 > 0 and 𝛿 > 0, denote by

𝑑 (𝜀, 𝛿) = {|𝑋𝑑 (0) −𝑋(0)| ≤ 𝜀} ∩ {|𝑉𝑑,𝛿 − 𝑉𝛿| ≤ 𝜀} (13)

he subset of 𝛺 on which the components of the random vectors
𝑋(0), 𝑉𝛿

)

and
(

𝑋𝑑 (0), 𝑉𝑑,𝛿
)

differ by less than 𝜀. On 𝑑 (𝜀, 𝛿), we have

(0) − 𝜀 ≤ 𝑋𝑑 (0) ≤ 𝑋(0) + 𝜀 and 𝑉𝛿 − 𝜀 ≤ 𝑉𝑑,𝛿 ≤ 𝑉𝛿 + 𝜀 so that
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𝑋𝑑 (𝛿) = 𝑋𝑑 (0) + 𝛿 𝑉𝑑,𝛿 and 𝑋(𝛿) = 𝑋(0) + 𝛿 𝑉𝛿 satisfy the inequalities
(𝛿)−𝜀 (1+𝛿) ≤ 𝑋𝑑 (𝛿) ≤ 𝑋(𝛿)+𝜀 (1+𝛿). For given 𝛿 > 0, the probability
easure of 𝑑 (𝜀, 𝛿) depends on 𝜀 and 𝑑. It can be close to zero for
mall 𝜀 and low stochastic dimension 𝑑. We also note that the inclusion
f the event {|𝑉𝑑,𝛿 − 𝑉𝛿| ≤ 𝜀} in the definition of 𝑑 (𝜀, 𝛿) is essential
or the construction of Slepian models since, otherwise, we may have
(0, 𝜔), 𝑋(𝛿, 𝜔) < 𝑎, so that this sample of 𝑋(𝑡) does not upcross 𝑎 in

0, 𝛿], while 𝑋𝑑 (0, 𝜔) = 𝑋(0, 𝜔) − 𝜀 < 𝑎 and 𝑋𝑑 (𝛿, 𝜔) = 𝑋(𝛿, 𝜔) + 𝜀 > 𝑎 so
hat 𝑋𝑑 (𝑡, 𝜔) upcrosses 𝑎 in [0, 𝛿]. In this case, the discrepancy 𝑉𝑑,𝛿−𝑉𝛿 =
2 𝜀∕𝛿 between the slopes of the target and FD processes can be very
large if 𝛿 ≪ 1.

Theorem 3. If 𝑋𝑑 converges weakly to 𝑋 in 𝐶[0, 𝜏] as 𝑑 → ∞, then
(𝑖) 𝑃

(

𝑑 (𝜀, 𝛿)𝑐
)

→ 0 as 𝑑 → ∞ for any 𝜀, 𝛿 > 0.

(𝑖𝑖) 𝑃
(

𝑑 (𝜀, 𝛿)𝑐
)

→ 0 as 𝑑 → ∞ and 𝛿 → 0 for any 𝜀 > 0 if, in
addition, 𝑋(𝑡) and 𝑋𝑑 (𝑡) are m.s. differentiable and 𝑋̇𝑑 (0) converges to
𝑋̇(0) in m.s.

Proof. Note first that the probability of 𝑑 (𝜀, 𝛿)𝑐 on which at least one
of the initial conditions of the target and FD processes differ by more
than 𝜀 can be bounded by

𝑃
(

𝑑 (𝜀, 𝛿)𝑐
)

≤ 𝑃
(

|𝑋𝑑 (0) −𝑋(0)| > 𝜀
)

+ 𝑃
(

|𝑉𝑑,𝛿 − 𝑉𝛿| > 𝜀
)

,

and that the first term converges to zero as 𝑑 → ∞ by the weak
convergence of 𝑋𝑑 to 𝑋. It remains to show that 𝑃

(

|𝑉𝑑,𝛿 − 𝑉𝛿| > 𝜀
)

can be made as small as desired.
For (𝑖), we have

|𝑉𝑑,𝛿 − 𝑉𝛿| ≤ |𝑋𝑑 (𝛿) −𝑋(𝛿)|∕𝛿 + |𝑋𝑑 (0) −𝑋(0)|∕𝛿 ≤ (2∕𝛿)

× sup
0≤𝑡≤𝜏

|𝑋𝑑 (𝑡) −𝑋(𝑡)|,

so that 𝑃
(

|𝑉𝑑,𝛿 − 𝑉𝛿| > 𝜀
)

≤ 𝑃
(

(2∕𝛿) sup0≤𝑡≤𝜏 |𝑋𝑑 (𝑡) −𝑋(𝑡)| > 𝜀
)

→ 0 as
→ ∞ for any 𝜀, 𝛿 > 0 by the weak convergence of the family of FD
rocesses 𝑋𝑑 to 𝑋.
For (𝑖𝑖), note that the m.s. discrepancy between 𝑉𝑑,𝛿 and 𝑉𝛿 can be

ounded by
[(

𝑉𝑑,𝛿 − 𝑉𝛿
)2] ≤ 4

{

𝐸
[(

𝑉𝑑,𝛿 − 𝑋̇𝑑 (0)
)2] + 𝐸

[(

𝑋̇𝑑 (0) − 𝑋̇(0)
)2]

+ 𝐸
[(

𝑋̇(0) − 𝑉𝛿
)2] },

the first and third terms converge to zero as 𝛿 → 0 for any 𝑑 ≥ 1
by the m.s. differentiability of 𝑋𝑑 (𝑡) and 𝑋(𝑡), and the second term
approaches zero as 𝑑 → ∞ by the postulated m.s. convergence of the
family of random variables 𝑋̇𝑑 (0) to 𝑋̇(0). This implies the convergence
𝑃
(

|𝑉𝑑,𝛿 − 𝑉𝛿| > 𝜀
)

→ 0 as 𝑑 → ∞ and 𝛿 → 0 and, therefore,
𝑃
(

𝑑 (𝜀, 𝛿)𝑐
)

→ 0 as 𝑑 → ∞ and 𝛿 → 0 for any 𝜀 > 0. ▴

The pairs of samples 𝑋(𝑡, 𝜔) and 𝑋𝑑 (𝑡, 𝜔) of 𝑋(𝑡) and 𝑋𝑑 (𝑡) in𝑑 (𝜀, 𝛿)
have similar initial conditions, since the discrepancies between the
corresponding samples of

(

𝑋(0), 𝑉𝛿
)

and
(

𝑋𝑑 (0), 𝑉𝑑,𝛿
)

are within 𝜀.
Yet, they may not upcross 𝑎 in [0, 𝛿] simultaneously. We show that
the probability measure of the subset of 𝛺 containing target and FD
samples which do not upcross 𝑎 in [0, 𝛿] simultaneously can be made
as small as desired under some conditions. The sets

𝑈 (𝑎, 𝛿) ={𝑋(0) < 𝑎 < 𝑋(𝛿)} = {𝑋(0) < 𝑎 < 𝑋(0) + 𝛿 𝑉𝛿 , 𝑉𝛿 ≥ 0} and

𝑈𝑑 (𝑎, 𝛿) ={𝑋𝑑 (0) < 𝑎 < 𝑋𝑑 (𝛿)} = {𝑋𝑑 (0) < 𝑎 < 𝑋𝑑 (0) + 𝛿 𝑉𝑑,𝛿 , 𝑉𝑑,𝛿 ≥ 0}

define the events of at least an 𝑎-upcrossing of 𝑋(𝑡) and 𝑋𝑑 (𝑡) in [0, 𝛿].
For a sufficiently small 𝛿, 𝑋(𝑡) and 𝑋𝑑 (𝑡) are likely to have a single 𝑎-
upcrossing in [0, 𝛿] if these processes have, e.g., differentiable samples.
On 𝑈 (𝑎, 𝛿) ∩𝑈𝑑 (𝑎, 𝛿), 𝑎-upcrossings of 𝑋(𝑡) in [0, 𝛿] are accompanied by
𝑎-upcrossings of 𝑋𝑑 (𝑡) in this horizontal window. The pairs of samples
of 𝑋(𝑡) and 𝑋𝑑 (𝑡) with this property are also samples of the Slepian
models 𝑆𝑎(𝑡) and 𝑆𝑑,𝑎(𝑡). On

(

𝑈 (𝑎, 𝛿) ∩ 𝑈𝑑 (𝑎, 𝛿)
)𝑐 , at least one of the

conditions 𝑋(0) < 𝑎 < 𝑋(𝛿) and 𝑋𝑑 (0) < 𝑎 < 𝑋𝑑 (𝛿) is not satisfied.

For example, suppose that a sample 𝑋(𝑡, 𝜔) of 𝑋(𝑡) upcrosses 𝑎 in [0, 𝛿].
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Then 𝑋(𝑡, 𝜔) is also the sample 𝑆𝑎(𝑡, 𝜔) of 𝑆𝑎(𝑡). Since 𝑋𝑑 (𝑡, 𝜔) does not
upcross 𝑎 in [0, 𝛿], 𝑆𝑑,𝑎(𝑡, 𝜔) does not exist so that the target Slepian
sample 𝑆𝑎(𝑡, 𝜔) has no FD pair.

Theorem 4. If the random vector
(

𝑋(0), 𝑋(𝛿)
)

has a density 𝑓 (⋅, ⋅) with
no atoms, then 𝑃

(

𝑈𝑑 (𝑎, 𝛿)𝑐 ∣ 𝑈 (𝑎, 𝛿)
)

∼ 𝑂(𝜀) on 𝑑 (𝜀, 𝛿) for any 𝜀 > 0,
0 < 𝛿 < 1 and 𝑑 ≥ 1.

Proof. On 𝑑 (𝜀, 𝛿), the complement of 𝑈𝑑 (𝑎, 𝛿) satisfies the inequality

𝑈𝑑 (𝑎, 𝛿)𝑐 = {𝑋𝑑 (0) > 𝑎} ∪ {𝑋𝑑 (𝛿) < 𝑎} ⊆ {𝑋(0) > 𝑎 − 𝜀}

∪ {𝑋(𝛿) < 𝑎 + 𝜀 (1 + 𝛿)}

so that

𝑈𝑑 (𝑎, 𝛿)𝑐 ∩ 𝑈 (𝑎, 𝛿) ⊆ {𝑎 − 𝜀 < 𝑋(0) < 𝑎,𝑋(𝛿) > 𝑎}

∪ {𝑋(0) < 𝑎, 𝑎 < 𝑋(𝛿) < 𝑎 + 𝜀 (1 + 𝛿)}

since 𝑈𝑑 (𝑎, 𝛿)𝑐 is bounded by a union of the events {𝑋(0) > 𝑎 − 𝜀} and
{𝑋(𝛿) < 𝑎 + 𝜀 (1 + 𝛿)}. The subset 𝑈𝑑 (𝑎, 𝛿)𝑐 ∩ 𝑈 (𝑎, 𝛿) of 𝑑 (𝜀, 𝛿) consists
of samples 𝑋(𝑡, 𝜔) of 𝑋(𝑡) which upcross 𝑎 in [0, 𝛿] while their FD pairs
𝑋𝑑 (𝑡, 𝜔) do not upcross this level in [0, 𝛿]. We have

𝑃
(

𝑈𝑑 (𝑎, 𝛿)𝑐 ∩ 𝑈 (𝑎, 𝛿)
)

≤ 𝑃
(

𝑎 − 𝜀 < 𝑋(0) < 𝑎,𝑋(𝛿) > 𝑎
)

+ 𝑃
(

𝑋(0) < 𝑎 − 𝜀, 𝑎 < 𝑋(𝛿) < 𝑎 + 𝜀 (1 + 𝛿)
)

and

𝑃
(

𝑎 − 𝜀 < 𝑋(0) < 𝑎,𝑋(𝛿) > 𝑎
)

= ∫

𝑎

𝑎−𝜀
𝑑𝑥 ∫

∞

𝑎
𝑑𝑦 𝑓 (𝑥, 𝑦)

≤ ∫

𝑎

𝑎−𝜀
𝑑𝑥 ∫

∞

−∞
𝑑𝑦 𝑓 (𝑥, 𝑦)

= ∫

𝑎

𝑎−𝜀
𝑓𝑋(0)(𝑥) 𝑑𝑥 ∼ 𝑂(𝜀)

𝑃
(

𝑋(0) < 𝑎 − 𝜀, 𝑎 < 𝑋(𝛿) < 𝑎 + 𝜀 (1 + 𝛿)
)

= ∫

𝑎+𝜀 (1+𝛿)

𝑎
𝑑𝑥 ∫

𝑎

−∞
𝑑𝑦 𝑓 (𝑥, 𝑦)

≤ ∫

𝑎+𝜀 (1+𝛿)

𝑎
𝑑𝑦 ∫

∞

−∞
𝑑𝑥 𝑓 (𝑥, 𝑦) = ∫

𝑎+𝜀 (1+𝛿)

𝑎
𝑓𝑋(𝛿)(𝑦) 𝑑𝑦 ∼ 𝑂(𝜀),

where 𝑓𝑋(0) and 𝑓𝑋(𝛿) denote the densities of 𝑋(0) and 𝑋(𝛿). The above
bounds show that, on 𝑑 (𝜀, 𝛿) with arbitrary 𝜀 > 0, 0 < 𝛿 < 1 and
𝑑 ≥ 1, we have 𝑃

(

𝑈𝑑 (𝑎, 𝛿)𝑐∩𝑈 (𝑎, 𝛿)
)

∼ 𝑂(𝜀) and, therefore, 𝑃
(

𝑈𝑑 (𝑎, 𝛿)𝑐 ∣
𝑈 (𝑎, 𝛿)

)

∼ 𝑂(𝜀). ▴

In summary, Theorem 4 show that (1) the subset 𝑑 (𝜀, 𝛿) on which
the initial conditions for the target and FD Slepian models differs by
less than a given 𝜀 > 0 nearly fills the sample space 𝛺 for any 𝛿 > 0
provided that the stochastic dimension 𝑑 is sufficiently large and (2) the
fraction of samples of 𝑋𝑑 (𝑡) and 𝑋(𝑡) in 𝑑 (𝜀, 𝛿) which do not upcross
𝑎 simultaneously in [0, 𝛿] is of order 𝜀 > 0 for any 0 < 𝛿 < 1 and
𝑑 ≥ 1. This means that for given 𝜀 > 0, which controls the discrepancy
between the initial conditions for the Slepian models 𝑆𝑑,𝑎(𝑡) and 𝑆𝑎(𝑡),
and given 𝛿 > 0, which defines the width of the horizontal window
used to calculate 𝑎-upcrossings of 𝑋𝑑 (𝑡) and 𝑋(𝑡), samples of 𝑆𝑑,𝑎(𝑡) can
be used as surrogates for samples of 𝑆𝑎(𝑡) provided that the stochastic
dimension 𝑑 is sufficiently large for the following two reasons. First,
the subset 𝑑 (𝜀, 𝛿) on which the initial conditions for the target and FD
Slepian models differs by less that a given 𝜀 > 0 nearly fills the sample
space 𝛺 for any 𝛿 > 0. Second, subsets 𝑑 (𝜀, 𝛿) of sufficiently large
stochastic dimensions, the fraction of samples of 𝑋𝑑 (𝑡) and 𝑋(𝑡) which
do not upcross 𝑎 simultaneously in [0, 𝛿] is of order 𝜀 > 0. Since most
of the samples of 𝑋(𝑡) and 𝑋𝑑 (𝑡) are similar in the metric of 𝐶[0, 𝜏] by
the weak convergence 𝑋𝑑 ⟹ 𝑋 and upcross 𝑎 simultaneously in [0, 𝛿],
most of samples of 𝑆𝑎(𝑡) and 𝑆𝑑,𝑎(𝑡) can be paired and are similar.

5. Numerical illustrations

Two sets of examples are presented. The first constructs Slepian

models for FD processes with stochastic dimension 𝑑 = 4 which have
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Fig. 3. Gaussian process: Histogram of 𝑋̇(𝑡), 𝑡 = 0, conditional on 𝑎-upcrossing in [0, 𝛿] and samples of 𝑆𝑎(𝑡) for 𝑎 = 4 (left and right panels).
independent Gaussian and dependent non-Gaussian coefficients {𝑍𝑘}.
The second set examines the stationary solution of a linear oscillator
subjected to a non-Gaussian process and of a nonlinear oscillator sub-
jected to Gaussian white noise. It is shown that these processes satisfy
the conditions of the above theorems so that it is expected that samples
of 𝑋𝑑 (𝑡) and 𝑆𝑑,𝑎(𝑡) can be used as substitutes for samples of 𝑋(𝑡) and
𝑆𝑎(𝑡). This observation is consistent with the numerical illustrations
presented in this section.

5.1. Slepian models for FD Gaussian and non-Gaussian processes

Let

𝑋(𝑡) = 𝑍1 cos(𝜈 𝑡) +𝑍2 sin(𝜈 𝑡) +𝑍3 cos(3 𝜈 𝑡) +𝑍4 sin(3 𝜈 𝑡) (14)

be a real-valued FD process with stochastic dimension 𝑑 = 4. We
consider two versions of this process corresponding to coefficients {𝑍𝑘}
which are independent 𝑁(0, 1) and coefficients {𝑍𝑘} which are zero-
mean, unit-variance dependent non-Gaussian variables. The two target
processes 𝑋(𝑡) are FD processes with 𝑑 = 4 and random coefficients
(𝑍1, 𝑍2, 𝑍3, 𝑍4) of known distributions.

The following algorithm is used to generate samples of the Slepian
models 𝑆𝑎(𝑡) and of their slopes at the initial time. The index 𝑑 is
dropped for simplicity since 𝑋(𝑡) = 𝑋𝑑 (𝑡) and 𝑆𝑎(𝑡) = 𝑆𝑑,𝑎(𝑡). For
small 𝛿 > 0, we generate samples of

(

𝑋(0), 𝑋(𝛿)
)

, which result from
samples of

(

𝑍1, 𝑍2, 𝑍3, 𝑍4
)

, and retain the first 𝑛 samples satisfying the
condition 𝑋(0) < 𝑎 < 𝑋(𝛿), where 𝑛 is a specified sample size. The
selected samples of

(

𝑍1, 𝑍2, 𝑍3, 𝑍4
)

are subsequently used to produce
samples of 𝑋(𝑡) which exhibit 𝑎-upcrossings in [0, 𝛿]. They are the
defining samples of 𝑆𝑎(𝑡). The corresponding samples of 𝑋̇(0) = 𝜈

(

𝑍2+
3𝑍4

)

are used to construct histograms of the slope of 𝑋(𝑡), 𝑡 = 0, at
𝑎-upcrossings.

5.1.1. Independent Gaussian coefficients
The numerical results in Fig. 3 are for a time interval [0, 𝜏], 𝜏 = 10,

𝑛𝑡 = 200 time steps, 𝜈 = 1, 𝑎 = 4 and 𝛿 = 𝛥𝑡 = 𝜏∕𝑛𝑡. Smaller values of 𝛿
have not change results. The left panel of the figure shows a histogram
of 𝑋̇(𝑡) at the times of 𝑎-upcrossings based on 𝑛 = 1000 samples. The
solid line is the Rayleigh density of this conditional random variable,
which is known for stationary Gaussian processes, see [17] (Sect 10.3).
The right panel shows samples of 𝑆𝑎(𝑡) corresponding to 𝑎-upcrossings
of 𝑋(𝑡) at 𝑡 = 0.

5.1.2. Dependent non-Gaussian coefficients
Let 𝑌 (𝑡) =

(

𝐴 cos(𝜈 𝑡) + 𝐵 sin(𝜈 𝑡)
)3, where 𝐴 and 𝐵 are indepen-

dent 𝑁(0, 1) variables. This process has the functional form of 𝑋(𝑡) in
Eq. (14) with coefficients 𝑍̃1 = (3∕4)

(

𝐴3+𝐴𝐵2), 𝑍̃2 = (3∕4)
(

𝐴2 𝐵+𝐵3),
𝑍̃3 = (1∕4)

(

𝐴3−3𝐴𝐵2) and 𝑍̃4 = (1∕4)
(

3𝐴2 𝐵−𝐵3). These coefficients
are uncorrelated but dependent random variables, as functions of the

Gaussian variables 𝐴 and 𝐵, and non-Gaussian, as nonlinear functions
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of 𝐴 and 𝐵. Consider the process 𝑋(𝑡) in Eq. (14) whose random coef-
ficients {𝑍𝑘} are obtained from {𝑍̃𝑘} by scaling, i.e., 𝑍𝑘 = 𝑍̃𝑘∕Std[𝑍𝑘],
𝑘 = 1,… , 4, so that they have unit variances.

The plots in Fig. 4 are similar to those in Fig. 3. They are for a time
interval [0, 𝜏], 𝜏 = 10, 𝑛𝑡 = 200 time steps, 𝜈 = 1, 𝑎 = 4 and 𝛿 = 𝛥𝑡 = 𝜏∕𝑛𝑡.
The left panel of Fig. 4 shows a histogram of 𝑋̇(𝑡) conditional on 𝑎-
upcrossings in [0, 𝛿] which is constructed from 𝑛 = 1000 samples. The
solid line is the Rayleigh density of this conditional random variable
corresponding to stationary Gaussian processes, see [17] (Sect 10.3).
As expected, this density differs significantly from the histogram of
the slope of this non-Gaussian process at the 𝑎-upcrossing time. The
right panel shows samples of 𝑆𝑎(𝑡) corresponding to 𝑎-upcrossings of
𝑋(𝑡) in [0, 𝛿]. The ranges of the Slepian processes in Figs. 3 and 4
differ since, although the coefficients {𝑍𝑘} are uncorrelated and have
the same means and variances, their joint distributions differ signifi-
cantly. The coefficients {𝑍𝑘} are independent Gaussian and dependent
non-Gaussian variables in Figs. 3 and 4.

Construction of FD Slepian models: As noted, the target and
FD processes coincide so that 𝑋(𝑡) = 𝑋𝑑 (𝑡) and 𝑆𝑎(𝑡) = 𝑆𝑑,𝑎(𝑡), the
functional form of 𝑋(𝑡) is given by Eq. (14) and the distribution of
the random coefficients {𝑍𝑘} is known. Large sets of samples of these
coefficients can be generated efficiently since they are independent
Gaussian variables or nonlinear functions of independent Gaussian
variables.

Samples {𝑍𝑘(𝜔)} of {𝑍𝑘} can be mapped into samples 𝑋(𝑡, 𝜔) of 𝑋(𝑡)
by elementary calculations via Eq. (14). The subset of these samples
with the property 𝑋(0, 𝜔) < 𝑎 < 𝑋(𝛿, 𝜔) are the corresponding samples
of 𝑆𝑎(𝑡), where 𝛿 > 0 denotes the width of the horizontal window used
to define 𝑎-upcrossings of 𝑋(𝑡).

5.2. Target and FD Slepian models for dynamical system states

The first target process 𝑋(𝑡) is the solution of a linear dynamical
system subjected to a polynomial of a Gaussian process. The second
process 𝑋(𝑡) is the solution of an Itô stochastic differential equation
driven by Brownian motion. We construct FD processes 𝑋𝑑 (𝑡) for 𝑋(𝑡),
Slepian models 𝑆𝑎(𝛼) and 𝑆𝑑,𝑎(𝛼) for 𝑋(𝑡) and 𝑋𝑑 (𝑡) and assess the
accuracy of the FD Slepian models 𝑆𝑑,𝑎(𝛼), where 𝛼 = 𝑡 − 𝑡0 ≥ 0 and
𝑡0 denotes the time from which 𝑋(𝑡) can be assumed to be stationary.

5.2.1. Linear dynamical systems
Let 𝑋(𝑡), 𝑡 ≥ 0, be the solution of

𝑋̈(𝑡) + 2 𝜁 𝜈0 𝑋̇(𝑡) + 𝜈2𝑜 𝑋(𝑡) = 𝑌 (𝑡)2, 𝑡 ≥ 0, (15)

with zero initial conditions 𝑋(0) = 0 and 𝑋̇(0) = 0, where 𝜁 ∈ (0, 1),
𝜈0 > 0, 𝑌 (𝑡) is the stationary solution of

√

2 𝜌 𝑑𝐵(𝑡), 𝜌 > 0, 𝑡 ≥ 0, (16)
𝑑𝑌 (𝑡) = −𝜌 𝑌 (𝑡) 𝑑𝑡 +
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nd 𝐵(𝑡), 𝑡 ≥ 0, denotes the standard Brownian motion. The solution
f the latter equation for the initial condition 𝑌 (0) ∼ 𝑁(0, 1) assumed
o be independent of 𝐵(𝑡) is a stationary Gaussian process with mean
[𝑌 (𝑡)] = 0 and correlation function 𝐸[𝑌 (𝑠) 𝑌 (𝑡)] = exp(−𝜌 |𝑠 − 𝑡|). The
tationary solution 𝑋(𝑡) of Eq. (15) is a non-Gaussian process which can
ave large skewness and kurtosis coefficients [25] (Example 7.23).
Various methods can be used to construct FD processes 𝑋𝑑 (𝑡) of 𝑋(𝑡).

or example, these processes can be obtained by projecting samples of
(𝑡) on the eigenfunctions of the correlation function of the stationary
olution of Eq. (15). The correlation function of 𝑋(𝑡) can be obtained
umerically or as the Fourier transform of the spectral density of
his process, which is given by the product of the spectral density of
(𝑡)2 and the frequency response function of the defining equation of
(𝑡) [15] (Section 5.2.2). FD processes 𝑋𝑑 (𝑡) can also be obtained from
D representations 𝐵𝑑 (𝑡) of the Brownian motion process 𝐵(𝑡) by solving
q. (16) with 𝐵𝑑 (𝑡) in place of 𝐵(𝑡) to obtain an FD model 𝑌𝑑 (𝑡) of 𝑌 (𝑡)
nd, then, solving Eq. (15) with 𝑌𝑑 (𝑡) in place of 𝑌 (𝑡).
An alternative method is used. We construct FD processes 𝑌𝑑 (𝑡) of

(𝑡) and develop corresponding FD processes of the input 𝑌 (𝑡)2, FD
rocesses for the solution 𝑋𝑑 (𝑡) of Eq. (15) to 𝑌𝑑 (𝑡)2 and Slepian models
𝑑,𝑎(𝑡). Then, we show that the families of FD processes 𝑋𝑑 (𝑡) and
lepian models 𝑆𝑑,𝑎(𝑡) converge weakly to 𝑋(𝑡) and 𝑆𝑎(𝑡) in 𝐶[0, 𝜏] as
𝑑 → ∞. The FD processes 𝑌𝑑 (𝑡) have the form

𝑌𝑑 (𝑡) =
𝑑
∑

𝑘=1
𝑍𝑘 𝜑𝑘(𝑡), 0 ≤ 𝑡 ≤ 𝜏, (17)

here 𝜑𝑘(𝑡) are the eigenfunctions of the stationary correlation function
f 𝑌 (𝑡) in [0, 𝜏] and the samples of the random coefficients {𝑍𝑘} are ob-
ained by projecting samples of 𝑌 (𝑡) on the basis functions {𝜑1,…𝜑𝑑},
ee Eq. (2). Note that the large sets of samples of the random coef-
icients {𝑍𝑘} can be obtained efficiently since they result from input
amples, i.e., samples of 𝑌 (𝑡). The remainder of this subsection provides
echnical details and numerical results.

roperty 1. The processes 𝑌 (𝑡), 𝑌 (𝑡)2 and 𝑋(𝑡) have continuous samples
lmost surely

roof. The increment 𝑌 (𝑡 + ℎ) − 𝑌 (𝑡) is a zero-mean Gaussian variable
ith variance 2

(

1−exp(−𝜌 |ℎ|)
)

so that 𝐸
[(

𝑌 (𝑡+ℎ)−𝑌 (𝑡)
)𝛼] ≤ 𝑐 ℎ1+𝛽 for

= 4, 𝛽 = 2 and 𝑐 = 12 𝜌2. Since 𝑌 (𝑡) is separable, almost all samples of
(𝑡) are continuous in any finite time interval [29] (Proposition 4.2).
ince 𝑌 (𝑡)2 is a continuous mapping of 𝑌 (𝑡) and 𝑋(𝑡) is obtained from
(𝑡)2 by integration, these processes also have continuous samples. ▴

roperty 2. The FD processes 𝑌𝑑 (𝑡) and 𝑌𝑑 (𝑡)2 converge weakly and a.s. to
(𝑡) and 𝑌 (𝑡)2 in 𝐶[0, 𝜏] as 𝑑 → ∞

roof. We show as in the proof of Theorem 3 that {𝑌𝑑 (𝑡)} satisfies the

onditions of Theorem 12.3 in [26]. Note first that the sequence of
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random variables {𝑌𝑑 (0) =
∑𝑑
𝑘=1𝑍𝑘 𝜑𝑘(0)} is tight since

𝑃
(

|𝑌𝑑 (0)| > 𝑎
)

≤
𝐸
[

𝑌𝑑 (0)2
]

𝑎2
≤
𝐸
[

𝑌 (0)2
]

𝑎2
= 1
𝑎2

so that for any 𝜀 > 0 there is an 𝑎 = 1∕
√

𝜀 for which 𝑃
(

|𝑌𝑑 (0)| > 𝑎
)

≤ 𝜀
for all 𝑑 ≥ 1.

Since 𝑌𝑑 (𝑠) − 𝑌𝑑 (𝑡) =
∑𝑑
𝑘=1𝑍𝑘 𝜓𝑘(𝑠, 𝑡) ∼ 𝑁

(

0,
∑𝑑
𝑘=1 𝜆𝑘 𝜓𝑘(𝑠, 𝑡)

2) with
𝜓𝑘(𝑠, 𝑡) = 𝜑𝑘(𝑠) − 𝜑𝑘(𝑡) and 𝜆𝑘 = 𝐸[𝑍2

𝑘 ], we have

𝐸
[(

𝑌𝑑 (𝑠) − 𝑌𝑑 (𝑡)
)4] =3

( 𝑑
∑

𝑘=1
𝜆𝑘 𝜓𝑘(𝑠, 𝑡)2

)2

≤3
( ∞
∑

𝑘=1
𝜆𝑘 𝜓𝑘(𝑠, 𝑡)2

)2
= 12

(

1 − 𝑒𝜌 |𝑠−𝑡|
)2

≤12
(

𝜌 |𝑠 − 𝑡|
)2 = 12 𝜌2 (𝑠 − 𝑡)2 =

(

ℎ(𝑠) − ℎ(𝑡)
)2,

where ℎ(𝑠) =
√

12 𝜌2 𝑠 is a continuous increasing function, i.e., 𝐸
[(

𝑌𝑑 (𝑠)
𝑌𝑑 (𝑡)

)𝛾 ] ≤
(

ℎ(𝑠) − ℎ(𝑡)
)𝛼 for 𝛾 = 4 and 𝛼 = 2. We conclude that 𝑌𝑑

onverges weakly to 𝑌 in 𝐶[0, 𝜏] as 𝑑 → ∞. Since these processes are
aussian, we also have a.s. convergence by the Itô-Nisio lemma [30].
his implies the weak and almost sure convergence of 𝑌𝑑 (𝑡)2 to 𝑌 (𝑡)2
y the continuous mapping theorem [26]. ▴

roperty 3. The FD processes 𝑋𝑑 (𝑡) converge weakly and a.s. to 𝑋(𝑡) in
[0, 𝜏] as 𝑑 → ∞

roof. The solutions of the oscillator in Eq. (15) to 𝑌 (𝑡)2 and 𝑌𝑑 (𝑡)2 are

(𝑡) = ∫

𝑡

0
𝜙(𝑡 − 𝑠) 𝑌 (𝑠)2 𝑑𝑠 and 𝑋𝑑 (𝑡) = ∫

𝑡

0
𝜙(𝑡 − 𝑠) 𝑌𝑑 (𝑠)2 𝑑𝑠 (18)

here 𝜙(𝑢) = exp(−𝜁 𝜈0 𝑢) sin
(

𝜈𝑑 𝑢
)

∕𝜈𝑑 and 𝜈𝑑 = 𝜈0
√

1 − 𝜁2. The discrep-
ancy between 𝑋(𝑡) and 𝑋𝑑 (𝑡) can be bounded by

|𝑋(𝑡) −𝑋𝑑 (𝑡)| ≤ ∫

𝑡

0
|𝜙(𝑡 − 𝑠)| |𝑌 (𝑠)2 − 𝑌𝑑 (𝑠)2| 𝑑𝑠

≤ 1
𝜈𝑑 ∫

𝑡

0
|𝑌 (𝑠)2 − 𝑌𝑑 (𝑠)2| 𝑑𝑠

so that

sup
0≤𝑡≤𝜏

|𝑋(𝑡) −𝑋𝑑 (𝑡)| ≤
1
𝜈𝑑 ∫

𝜏

0
|𝑌 (𝑠)2 − 𝑌𝑑 (𝑠)2| 𝑑𝑠

≤ 𝜏
𝜈𝑑

sup
0≤𝑡≤𝜏

|𝑌 (𝑡)2 − 𝑌𝑑 (𝑡)2|.

his implies that 𝑋𝑑 converges weakly and a.s. to 𝑋 in 𝐶[0, 𝜏] as 𝑑 →
∞ by Property 2. Similar arguments hold for the stationary solutions
which result from Eq. (18) in which the integration interval is extended
from [0, 𝑡] to (−∞, 𝑡]. ▴

The above properties show that the conditions of Theorems 4 and
5 are satisfied so that 𝑃

(

 (𝜀, 𝛿)𝑐
)

can be made as small as desired by
𝑑



M. Grigoriu Probabilistic Engineering Mechanics 69 (2022) 103323

u
s
s

𝜁
s

o
𝑑
o

c

𝑋
[
p
𝑆
T
H

Fig. 5. Ten samples of 𝑌 (𝑡) (solid lines) and 𝑌𝑑 (𝑡) (dashed lines) for 𝑑 = 10, 40 and 80 (left, middle and right panels).
Fig. 6. Histograms of the error sup0≤𝑡≤𝜏 |𝑌 (𝑡) − 𝑌𝑑 (𝑡)| for 𝑑 = 10, 40 and 80 (left, middle and right panels).
i
s
f
[
0
t
𝑋
a
g
𝑆
F
𝛿
s
𝑋
n
𝑆

o
t
p
S
u
t
d

a
c
a
{
o
𝜃
c
t
𝑋
𝑋
o

5

increasing 𝑑 and, on 𝑑 (𝜀, 𝛿) most of the samples of 𝑋(𝑡) and 𝑋𝑑 (𝑡)
pcross 𝑎 simultaneously in [0, 𝛿]. Accordingly, we expect that the
amples of 𝑆𝑑,𝑎(𝑡) can be used as surrogates for samples of 𝑆𝑎(𝑡) for
ufficiently large 𝑑 since the fraction of samples 𝑋(𝑡) and 𝑋𝑑 (𝑡) which
do not upcross 𝑎 simultaneously in [0, 𝛿] is of order 𝜀 > 0, which can
be selected arbitrarily small.

The following numerical results are for 𝜌 = 0.12, 𝜏 = 10, 𝜈0 = 3,
= 0.28 and 𝑎 = 1.3. The statistics are based on 100,000 independent
amples of 𝑌 (𝑡), 𝑌𝑑 (𝑡), 𝑋(𝑡) and 𝑋𝑑 (𝑡) generated at a time step 𝛥𝑡 = 0.01.
The 𝑎-upcrossings of 𝑋(𝑡) and 𝑋𝑑 (𝑡) are recorded in the horizontal
window [𝑡0, 𝑡0 + 𝛿] with 𝑡0 = 5. These values 𝑡0 and 𝛿 assure that
𝑋(𝑡), 𝑡 ≥ 𝑡0, can be viewed as stationary and that the width of the
horizontal window is adequate for the frequency content of 𝑋(𝑡). Since
𝑋𝑑 converges a.s. to 𝑋 in 𝐶[0, 𝜏] as 𝑑 → ∞ by the a.s. convergence of
𝑌𝑑 and 𝑌 2

𝑑 to 𝑌 and 𝑌 2, it is expected that the FD representations 𝑋𝑑 (𝑡)
f 𝑋(𝑡) and 𝑆𝑑,𝛿(𝑡) of 𝑆𝑎(𝑡) will improve with the stochastic dimension
. This theoretical statement is in agreement with the numerical results
f Figs. 5 to 9.
Fig. 5 shows with solid and dashed lines ten samples of 𝑌 (𝑡) and the

orresponding samples of 𝑌𝑑 (𝑡). Histograms of the error sup0≤𝑡≤𝜏 |𝑌 (𝑡) −
𝑌𝑑 (𝑡)| are in Fig. 6 for 𝑑 = 10, 40 and 80 (left, middle and right panels).
The plots show that the accuracy of 𝑌𝑑 (𝑡) improves with its stochastic
dimension 𝑑 in agreement with the above theoretical arguments. Note
that the histograms are at different scales.

The plots of Figs. 7 and 8 are similar to those of Figs. 5 and 6
but are for the solutions 𝑋(𝑡) and 𝑋𝑑 (𝑡) of Eq. (15) to 𝑌 (𝑡) and 𝑌𝑑 (𝑡).
They show with solid and dashed lines ten samples of 𝑋(𝑡) and the
corresponding samples of 𝑋𝑑 (𝑡) defined by Eq. (18) and histograms of
the error sup0≤𝑡≤𝜏 |𝑋(𝑡) −𝑋𝑑 (𝑡)| for 𝑑 = 10, 40 and 80 (left, middle
and right panels). The accuracy of 𝑋𝑑 (𝑡) improves with its stochastic
dimension 𝑑 in agreement with the above theoretical arguments. For
example, the ranges of the histograms in Fig. 8 are [0, 0.45], [1, 12]×10−3
and [0.5, 2.5] × 10−3 for 𝑑 = 10, 40 and 80.

The solid and dashed lines in Fig. 9 are the subset of samples of
(𝑡) and 𝑋𝑑 (𝑡) which upcross 𝑎 = 1.3 through the horizontal window
𝑡0, 𝑡0 + 𝛿] with 𝛿 = 10𝛥𝑡 for 𝑑 = 10, 40 and 80 (left, middle and right
anels). They constitute the samples of the Slepian models 𝑆𝑎(𝛼) and
𝑑,𝑎(𝛼). These samples are shown in Fig. 9 for 𝑑 = 10, 40 and 80.
he defining samples of 𝑆𝑎(𝛼) and 𝑆𝑑,𝑎(𝛼) nearly coincide for 𝑑 ≥ 40.

owever, the Slepian models 𝑆𝑎(𝛼) and 𝑆𝑑,𝑎(𝛼) differ for 𝑑 = 10 since, v

9

f a sample 𝑋(𝑡, 𝜔) of 𝑋(𝑡) upcrosses 𝑎 in [𝑡0, 𝑡0 + 𝛿], the corresponding
ample of 𝑋𝑑 (𝑡, 𝜔) of 𝑋𝑑 (𝑡) may not upcross 𝑎 in this time interval. The
ractions of samples of 𝑋𝑑 (𝑡) which upcross and do not upcross 𝑎 in
𝑡0, 𝑡0 + 𝛿] when 𝑋(𝑡) upcrosses 𝑎 in this time interval are 0.4444 and
.5556. In contrast, these fractions are 1 and 0 for 𝑑 ≥ 40. This shows
hat the relatively small discrepancy between the samples of 𝑋(𝑡) and
𝑑 (𝑡) for 𝑑 = 10 illustrated and quantified in the left panels of Figs. 5
nd 6, which may not be relevant for estimating moments and other
lobal properties of 𝑋(𝑡), is insufficient to guarantee that samples of
𝑑,𝑎(𝑡) can be used as substitutes for samples of 𝑆𝑎(𝑡). The plots of
ig. 10 show plots as in Fig. 9 but for a horizontal window of size
= 5𝛥𝑡 rather than 𝛿 = 10𝛥𝑡. As expected, the number of Slepian
amples is smaller for this window since fewer samples of 𝑋(𝑡) and
𝑑 (𝑡) upcross 𝑎 in [0, 𝛿 = 5𝛥𝑡]. Also, the samples of 𝑆𝑎(𝑡) and 𝑆𝑑,𝑎(𝑡)
early originate at 𝑎 for all stochastic dimensions and the samples of
𝑑,𝑎(𝑡) for 𝑑 = 40, 80 coincide with those of 𝑆𝑎(𝑡).
Construction of FD Slepian models: Consider a samples 𝑌 (𝑡, 𝜔)

f the input process 𝑌 (𝑡) defined by Eq. (16) and denote by 𝑋(𝑡, 𝜔)
he solution of Eq. (15) to this samples. The samples of 𝑋(𝑡) with the
roperty 𝑋(𝑡0, 𝜔) < 𝑎 < 𝑋(𝑡0 + 𝛿, 𝜔) are the samples 𝑆𝑎(𝑡, 𝜔) of the
lepian model 𝑆𝑎(𝑡), 𝑡 ≥ 𝑡0, i.e., the subset of samples of 𝑋(𝑡) which
pcross 𝑎 in the time interval [𝑡0, 𝑡0 + 𝛿], where 𝑡0 > 0 is an arbitrary
ime and 𝛿 > 0 denotes the width of the horizontal window used to
efine 𝑎-upcrossings of 𝑋(𝑡) and 𝑋𝑑 (𝑡)
The FD pairs 𝑋𝑑 (𝑡, 𝜔) and 𝑆𝑑,𝑎(𝑡, 𝜔) of the samples 𝑋(𝑡, 𝜔) and 𝑆𝑎(𝑡, 𝜔)

re constructed in three steps. First, samples {𝑍𝑘(𝜔)} of the random
oefficients {𝑍𝑘} of the FD representation 𝑌𝑑 (𝑡) of 𝑌 (𝑡) in Eq. (17)
re obtained by projecting the samples 𝑌 (𝑡, 𝜔) on the basis functions
𝜑𝑘(𝑡)}. Second, the resulting samples of {𝑍𝑘} are mapped into samples
f 𝑋𝑑 (𝑡, 𝜔) =

∑𝑑
𝑘,𝑙=1𝑍𝑘(𝜔)𝑍𝑙(𝜔) 𝜃𝑘𝑙(𝑡), where the deterministic functions

𝑘𝑙(𝑡) = ∫ 𝑡0 𝜙(𝑡 − 𝑠)𝜑𝑘(𝑠)𝜑𝑙(𝑠) 𝑑𝑠 can be precalculated and stored. The
onstruction of these samples involves elementary calculations. Third,
he subset of samples of 𝑋𝑑 (𝑡) with the property 𝑋𝑑 (𝑡0, 𝜔) < 𝑎 <
𝑑 (𝑡0 + 𝛿, 𝜔) defines the samples 𝑆𝑑,𝑎(𝑡, 𝜔) of the FD Slepian model of
𝑑 (𝑡), which are the pairs of the samples 𝑆𝑎(𝑡, 𝜔) of the Slepian model
f 𝑋(𝑡).

.2.2. Nonlinear dynamical systems
Suppose that the target process 𝑋(𝑡) is a component of the vector-

alued stationary solution of a stochastic differential equation subjected
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Fig. 7. Ten samples of 𝑋(𝑡) (solid lines) and 𝑋𝑑 (𝑡) (dashed lines) for 𝑑 = 10, 40 and 80 (left, middle and right panels).
Fig. 8. Histograms of the error sup0≤𝑡≤𝜏 |𝑋(𝑡) −𝑋𝑑 (𝑡)| for 𝑑 = 10, 40 and 80 (left, middle and right panels).
Fig. 9. Slepian models 𝑆𝑎(𝛼) (solid lines) and 𝑆𝑑,𝑎(𝛼) (dashed lines), 𝛼 = 𝑡 − 𝑡0, of 𝑋(𝑡) and 𝑋𝑑 (𝑡) for 𝑎 = 1.3 for 𝑑 = 10, 40 and 80 (left, middle and right panels) and 𝛿 = 10𝛥𝑡.
Fig. 10. Slepian models 𝑆𝑎(𝛼) (solid lines) and 𝑆𝑑,𝑎(𝛼) (dashed lines), 𝛼 = 𝑡 − 𝑡0, of 𝑋(𝑡) and 𝑋𝑑 (𝑡) for 𝑎 = 1.3 for 𝑑 = 10, 40 and 80 (left, middle and right panels) and 𝛿 = 5𝛥𝑡.
s
d
b

𝑑

w
p
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w
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o

o Gaussian white noise, which is interpreted as the formal derivative
f the Brownian motion 𝐵(𝑡). We construct FD representations 𝑋𝑑 (𝑡)
f 𝑋(𝑡) and Slepian models 𝑆𝑎(𝛼) and 𝑆𝑑,𝑎(𝛼) for 𝑋(𝑡) and 𝑋𝑑 (𝑡) by
ollowing the approach in the previous example and show that samples
f 𝑋(𝑡) and 𝑆𝑎(𝑡) can be substituted by samples of 𝑋𝑑 (𝑡) and 𝑆𝑑,𝑎(𝑡)
nder some conditions. FD representations 𝑋𝑑 (𝑡) of 𝑋(𝑡) are constructed
rom solutions of Eq. (19) with 𝐵𝑑 (𝑡) in place of 𝐵(𝑡), where 𝐵𝑑 (𝑡) are
FD processes of the type in Eq. (4), which converge weakly and a.s. to
𝐵 in the space of continuous functions, see Theorem 3. We first show
that the solutions 𝑋𝑑 (𝑡) converges weakly and a.s. to 𝑋(𝑡) in the space of
continuous functions. Then, we show that the conditions of Theorem 4
are satisfied for the numerical versions of Slepian models so that FD
Slepian processes can be used as surrogates for target Slepian processes.
 v

10
For simplicity, the arguments are restricted to real-valued diffu-
ion processes. The extension to vector-valued diffusion processes is
irect [25] (Chap. 7). Let 𝑋(𝑡) be a real-valued diffusion process defined
y the Itô stochastic differential equation

𝑋(𝑡) = 𝑎
(

𝑋(𝑡), 𝑡
)

𝑑𝑡 + 𝑏
(

𝑋(𝑡), 𝑡
)

𝑑𝐵(𝑡), 𝑋(0) = 𝑋0, 𝑡 ∈ [0, 𝜏], (19)

here 𝑋0 is a random variable independent of the Brownian motion
rocess 𝐵(𝑡). We assume that the drift and diffusion coefficients, 𝑎 and 𝑏,
re such that Eq. (19) has a unique strong solution [25] (Sect 4.7.1.1).
The solution of Eq. (19) can be obtained by driving this equation

ith colored rather than white Gaussian noise provided that it is
nterpreted in the Stratonovich sense [31]. The standard approximation
f 𝐵(𝑡) is the FD process 𝑊𝑁 (𝑡) which interpolates linearly between
alues of 𝐵(𝑡) at the points of a partition 0 = 𝑡𝑁 < ⋯ < 𝑡𝑁 < ⋯ <
0 𝑖
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𝑡𝑁𝑁 = 𝜏 of [0, 𝜏]. The process 𝑊𝑁 (𝑡) has continuous samples of finite
variation on compacts whose derivatives are piecewise continuous. The
sequences of processes {𝑊𝑁} converges to 𝐵 a.s. and uniformly in [0, 𝜏]
as the partition is refined, i.e., max1≤𝑖≤𝑁 (𝑡𝑁𝑖 − 𝑡𝑁𝑖−1) → 0 as 𝑁 → ∞ [25]
(Sect 4.7.1.2).

The Wong–Zakai theorem [31] states that the solution 𝑌𝑁 (𝑡) of the
ifferential equation

𝑌𝑁 (𝑡) = 𝑎∗
(

𝑌𝑁 (𝑡), 𝑡
)

𝑑𝑡 + 𝑏
(

𝑌𝑁 (𝑡), 𝑡
)

𝑑𝑊𝑁 (𝑡), 𝑌𝑁 (0) = 𝑋0, 𝑡 ∈ [0, 𝜏],

(20)

with

𝑎∗(𝑦, 𝑡) = 𝑎(𝑦, 𝑡) − 1
2
𝑏(𝑦, 𝑡)

𝜕𝑏(𝑦, 𝑡)
𝜕𝑦

(21)

converges to 𝑋(𝑡) a.s. and uniformly in [0, 1] as 𝑁 → ∞. The defining
equation of 𝑌𝑁 (𝑡) results from Eq. (19) by correcting its drift via
Eq. (21) and by replacing the Brownian motion in Eq. (20) with 𝑊𝑁 (𝑡).
ince Eq. (20) is of the Stratonovich type, ordinary calculus can be used
o solve for 𝑌𝑁 (𝑡).
We first show that the solution 𝑋𝑑 (𝑡) of Eq. (20) with 𝐵𝑑 (𝑡) in place

f 𝑊𝑁 (𝑡), i.e., the equation

𝑋𝑑 (𝑡) = 𝑎∗
(

𝑋𝑑 (𝑡), 𝑡
)

𝑑𝑡 + 𝑏
(

𝑋𝑑 (𝑡), 𝑡
)

𝑑𝐵𝑑 (𝑡), 𝑋𝑑 (0) = 𝑋0,

𝑡 ∈ [0, 𝜏], or, equivalently,

𝑋̇𝑑 (𝑡) = 𝑎∗
(

𝑋𝑑 (𝑡), 𝑡
)

+ 𝑏
(

𝑋𝑑 (𝑡), 𝑡
)

𝐵̇𝑑 (𝑡), 𝑋𝑑 (0) = 𝑋0, 𝑡 ∈ [0, 𝜏], (22)

ith 𝑎∗ given by Eq. (21) and 𝐵̇𝑑 (𝑡) = 𝑑𝐵𝑑 (𝑡)∕𝑑𝑡 =
∑𝑛
𝑘=1𝑍𝑘 𝜑̇𝑘(𝑡), also

onverges to 𝑋(𝑡) a.s. and uniformly in [0, 1] as 𝑑 → ∞. We prefer the
D process 𝐵𝑑 (𝑡) since it is more efficient than 𝑊𝑁 , as discussed in
ection 4.1.2. That the solution 𝑋𝑑 (𝑡) has the stated properties results
rom the fact that the FD process 𝐵𝑑 (𝑡) satisfies the four conditions of
he Wong–Zakai theorem in [31]. We now state these conditions and
how that they are satisfied for 𝜏 = 1 without loss of generality.

ondition 1. For almost all 𝜔, 𝐵𝑑 (𝑡, 𝜔) → 𝐵(𝑡, 𝜔) for all 𝑡 ∈ [0, 1] and its
amples are continuous of bounded variation.

Since the basis functions {𝜑𝑘(𝑡)} are continuous and differentiable,
lmost all samples of 𝐵𝑑 (𝑡) are continuous and of bounded variation.
or a fixed time 𝑡, 𝐵𝑑 (𝑡) is the sum

∑𝑑
𝑘=1𝑍𝑘 𝜑𝑘(𝑡) of the independent

aussian variables {𝑍𝑘 𝜑𝑘(𝑡)}, 𝑘 = 1,… , 𝑑, which converges in m.s. to
he random variable 𝐵(𝑡) ∼ 𝑁(0, 𝑡). Since this convergence implies
he convergence in probability and the convergence in probability is
quivalent to the almost sure convergence for sums of independent
andom variables by the Lévy theorem [32] (Theorem 7.3.2), we have
𝑑 (𝑡)

a.s.
⟶ 𝐵(𝑡) for all 𝑡 ∈ [0, 1].

ondition 2. Condition 1 and there exists 𝑘(𝜔) > 0 and 𝑛0(𝜔) both finite
uch that |𝐵𝑑 (𝑡, 𝜔)| ≤ 𝑘(𝜔) a.s. for all 𝑛 > 𝑛0(𝜔) and all 𝑡 ∈ [0, 1].

Since 𝐵𝑑 (𝑡) and 𝐵(𝑡) have continuous samples, we can find 𝑙𝑑 (𝜔) > 0
nd 𝑙(𝜔) finite such that sup0≤𝑡≤1 |𝐵𝑑 (𝑡, 𝜔)| ≤ 𝑙𝑑 (𝜔) and sup0≤𝑡≤1 |𝐵(𝑡, 𝜔)| ≤
(𝜔) for almost all samples. The convergence of the samples of 𝐵𝑑 (𝑡) to
hose of 𝐵(𝑡) in the metric of 𝐶[0, 1] (see Condition 4 below) means
that for almost all 𝜔 ∈ 𝛺 and given 𝜀 > 0, there exists 𝑛0(𝜔) such that
sup0≤𝑡≤1 |𝐵𝑑 (𝑡, 𝜔) − 𝐵(𝑡, 𝜔)| < 𝜀 for 𝑛 ≥ 𝑛0(𝜔) so that sup0≤𝑡≤1 |𝐵𝑑 (𝑡, 𝜔)| ≤
sup0≤𝑡≤1 |𝐵𝑑 (𝑡, 𝜔) − 𝐵(𝑡, 𝜔)| + sup0≤𝑡≤1 |𝐵(𝑡, 𝜔)| < 𝜀 + 𝑙(𝜔) ∶= 𝑘(𝜔) for
𝑛 ≥ 𝑛0(𝜔).

Condition 3. Condition 2 and 𝐵𝑑 (𝑡, 𝜔) has piecewise continuous deriva-
tives.

The basis functions {𝜑𝑘(𝑡)} are continuous and differentiable and so
is 𝐵𝑑 (𝑡).

Condition 4. Condition 3 and 𝐵𝑑 (𝑡, 𝜔) → 𝐵(𝑡, 𝜔) uniformly in [0, 1]. This
follows from the almost sure convergence of 𝐵 to 𝐵 in 𝐶[0, 1] as 𝑑 → ∞.
𝑑

11
We conclude that the solution 𝑋𝑑 (𝑡) of Eq. (22) converges a.s. and
uniformly in [0, 1] to the solution 𝑋(𝑡) of Eq. (19) as 𝑑 → ∞ so that
amples of 𝑋𝑑 (𝑡) can be used as substitutes for samples of 𝑋(𝑡) for a
ufficiently large stochastic dimension.
Let 𝑋(𝑡), 𝑡 ≥ 0, be a vector-valued process defined by the Itô

ifferential equation

𝑋(𝑡) = 𝑎
(

𝑋(𝑡)
)

𝑑𝑡 + 𝑏 𝑑𝐵(𝑡), 𝑡 ≥ 0, (23)

here 𝑋(𝑡) =
[

𝑋1(𝑡) = 𝑌 (𝑡), 𝑋2(𝑡) = 𝑌̇ (𝑡)
]′, 𝑎

(

𝑋(𝑡)
)

=
[

𝑋2(𝑡),−𝑢′
(

𝑋1(𝑡)
)

−
𝑋2(𝑡)

]′, 𝑏 =
[

0,
√

𝜋 𝑔0
]′ are two-dimensional column vectors and 𝑌 (𝑡)

is the solution of

𝑌 (𝑡) + 𝜌 𝑌̇ (𝑡) + 𝑢′
(

𝑌 (𝑡)
)

= 𝑊 (𝑡), 𝑡 ≥ 0, (24)

driven by a zero mean Gaussian white noise 𝑊 (𝑡) with one-sided
spectral density 𝑔(𝜈) = 𝑔0, 𝜈 ≥ 0. The derivative 𝑢′(𝑦) of 𝑢(𝑦) defines
the elastic restoring force of the oscillator. The density of the stationary
solution 𝑋(𝑡) of Eq. (23) has the expression

𝑓 (𝑥) = 𝑓 (𝑥1, 𝑥2) = 𝑐 exp
(

−
2 𝜌
𝜋 𝑔0

𝑢(𝑥1)
)

exp
(

−
2 𝜌
𝜋 𝑔0

𝑥22
2

)

,

𝑥 = (𝑥1, 𝑥2) ∈ R2, (25)

here 𝑐 > 0 is a normalization constant [25] (Example 7.42). If the
nitial condition 𝑋(0) has the density 𝑓 (𝑥) in Eq. (25), the solution
(𝑡) of Eq. (23) is a stationary process with the marginal density 𝑓 (𝑥).
ote also that 𝑋2(𝑡) = 𝑋̇(𝑡) is a zero-mean Gaussian variable with finite
ariance 𝜋 𝑔0∕(2 𝜌) which is independent of 𝑋1(𝑡) = 𝑋(𝑡).
Let 𝑋𝑑 (𝑡) be the solution of Eq. (23) with 𝐵𝑑 (𝑡) in place of 𝐵(𝑡). The

ifferential equations of 𝑋(𝑡) and 𝑋𝑑 (𝑡) have the same form since the
nput 𝐵(𝑡) is additive. The above considerations show that the solution
𝑑 (𝑡) of Eq. (23) with 𝐵𝑑 (𝑡) in place of 𝐵(𝑡) converges a.s. and uniformly
n any bounded interval to 𝑋(𝑡) as 𝑑 → ∞ so that samples of 𝑋𝑑 (𝑡) can
e used as surrogates for samples of 𝑋(𝑡) provided that the stochastic
imension is sufficiently large.
Since 𝑋𝑑 converges weakly to 𝑋, we have 𝑃

(

𝑑 (𝜀, 𝛿)𝑐
)

→ 0 as
→ ∞ for any 𝜀, 𝛿 > 0 by Theorem 3 so that the initial conditions of
𝑎(𝑡) and 𝑆𝑑,𝑎(𝑡) differ by less than 𝜀 for almost all samples as 𝑑 → ∞.
he distribution of the stationary solution 𝑋(𝑡) of Eq. (23) is continuous
y Eq. (25) so that the probability that 𝑎-upcrossings of 𝑋(𝑡) in [0, 𝛿],
< 𝛿 < 1, are accompanied by 𝑎-upcrossings of 𝑋𝑑 (𝑡) with nearly unit
robability for sufficiently large 𝑑, see Theorem 4. These observations
uggest that samples of 𝑋𝑑 (𝑡) and 𝑆𝑑,𝑎(𝑡) can be used as surrogates for
amples of 𝑋(𝑡) and 𝑆𝑎(𝑡) for sufficiently large 𝑑 and that the accuracy
f these FD representations improves with their stochastic dimensions.
The following numerical results are for 𝜌 = 0.5, 𝑢′(𝑥) = 𝛼 𝑥 + 𝛽 𝑥3,

= 𝛽 = 1, 𝑔0 = 1, zero initial conditions, stochastic dimension 𝑑 = 20,
0 and 60, a time interval [0, 10] and 100,000 independent samples of
(𝑡). Fig. 11 shows with solid and dashed lines ten samples of 𝑋(𝑡)
nd the corresponding samples of 𝑋𝑑 (𝑡) in the time interval [0, 10].
he left, middle and right panels of Fig. 12 show histograms of the
iscrepancy sup0≤𝑡≤𝜏 |𝑋(𝑡) −𝑋𝑑 (𝑡)| for 𝑑 = 20, 40 and 60. Note that
he histograms have different scales. The plots of these figures show
isually and quantitatively that the accuracy of the FD processes 𝑋𝑑 (𝑡)
mproves with 𝑑 in the metric of the space of continuous functions
[0, 𝜏] in agreement with theoretical considerations.
The left, middle and right panels of Fig. 13 show with solid and

ashed lines the samples of the Slepian models 𝑆𝑎(𝛼) and 𝑆𝑑,𝑎(𝛼), 𝛼 =
−𝑡0, for 𝑑 = 20, 40 and 60 for 𝑎 = 3.5 and 𝑡0 = 5. Of the samples of 𝑆𝑎(𝛼)
orresponding to those in the previous two figures, i.e., the samples of
(𝑡) which upcross 𝑎 in the time interval [𝑡0, 𝑡0 + 𝛿], 𝛿 = 3𝛥𝑡, only a
raction of 0.1579 samples of 𝑋𝑑 (𝑡) have this property for 𝑑 = 20. This
raction increases to 0.5789 and 0.7895 for 𝑑 = 40 and 60 and is nearly
nity for 𝑑 = 100. For 𝛿 = 𝛥𝑡 these fractions are 0, 0.2857, 0.7143 and
early 1 for 𝑑 = 20, 40, 60 and 100. The plots of Fig. 14 are those of
ig. 13 for a horizontal window of size 𝛿 = 𝛥𝑡, rather than 𝛿 = 3𝛥𝑡. The
umbers of samples of 𝑋(𝑡) and 𝑋 (𝑡) which upcross 𝑎 in this shorter
𝑑
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Fig. 11. Ten samples of 𝑋(𝑡) (solid lines) and 𝑋𝑑 (𝑡) (dashed lines) for 𝑑 = 20, 40 and 60 (left, middle and right panels).
Fig. 12. Histograms of the error sup0≤𝑡≤𝜏 |𝑋(𝑡) −𝑋𝑑 (𝑡)| for 𝑑 = 20, 40 and 60 (left, middle and right panels).
Fig. 13. Samples of 𝑆𝑎(𝛼) and 𝑆𝑑,𝑎(𝛼) (solid and dashed lines), 𝛼 = 𝑡 − 𝑡0, for 𝑑 = 20, 40 and 60 (left, middle and right panels) for 𝛿 = 3𝛥𝑡.
Fig. 14. Samples of 𝑆𝑎(𝛼) and 𝑆𝑑,𝑎(𝛼) (solid and dashed lines), 𝛼 = 𝑡 − 𝑡0, for 𝑑 = 20, 40 and 60 (left, middle and right panels) or 𝛿 = 𝛥𝑡.
window decreases and the Slepian samples originate at approximately
𝑎 = 3.5.

Construction of FD Slepian models: Consider a samples 𝐵(𝑡, 𝜔) of
the input 𝐵(𝑡) to Eq. (23) and denote by 𝑋(𝑡, 𝜔) the solution of this
equation to this input. The samples of 𝑋(𝑡) with the property 𝑋(𝑡0, 𝜔) <
𝑎 < 𝑋(𝑡0 + 𝛿, 𝜔) for times 𝑡 ≥ 𝑡0 are the samples 𝑆𝑎(𝛼, 𝜔) of the Slepian
model 𝑆𝑎(𝛼), where 𝛼 = 𝑡 − 𝑡0.

The FD pairs 𝑋𝑑 (𝑡, 𝜔) and 𝑆𝑑,𝑎(𝛼, 𝜔) of the samples 𝑋(𝑡, 𝜔) and
𝑆𝑎(𝛼, 𝜔) are constructed in three steps. First, samples {𝑍𝑘(𝜔)} of the
random coefficients {𝑍𝑘} of the FD representation 𝐵𝑑 (𝑡) of 𝐵(𝑡) in
Eq. (4) are obtained by projecting the input samples 𝐵(𝑡, 𝜔) on the basis
functions {𝜑𝑘(𝑡)} in this equations. Note that large sets of samples of
{𝑍𝑘} can be obtained with a negligible computational effort. Second,
the resulting input samples are mapped into samples of 𝑋 (𝑡) by solving
𝑑
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Eq. (22). The calculation of samples of 𝑋𝑑 (𝑡) is computationally more
demanding than in the previous example since their functional form is
unknown. They have to be obtained by numerical integration. Third,
the subset of samples of 𝑋𝑑 (𝑡) with the property 𝑋𝑑 (𝑡0, 𝜔) < 𝑎 <
𝑋𝑑 (𝑡0 + 𝛿, 𝜔) defines the samples 𝑆𝑑,𝑎(𝛼, 𝜔) of the FD Slepian model of
𝑋𝑑 (𝑡) which correspond to the samples 𝑆𝑎(𝛼, 𝜔) of the Slepian model of
𝑋(𝑡).

6. Comments

Analytical formulations are available for the Slepian models of
stationary and non-stationary Gaussian processes 𝑋(𝑡). The resulting
Slepian models are versions of the processes defined by the trajectories
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of 𝑋(𝑡) following 𝑎-upcrossings, i.e., crossings of 𝑎 of 𝑋(𝑡) with positive
slopes. The extension of these formulations to non-Gaussian processes
𝑋(𝑡) seems to be impractical. This paper has developed Slepian models
for continuous processes 𝑋(𝑡) by using finite dimensional (FD) represen-
tations 𝑋𝑑 (𝑡) of 𝑋(𝑡), i.e., deterministic functions of time and sets of 𝑑 <
∞ random variables. The Slepian models 𝑆𝑎(𝑡) and 𝑆𝑑,𝑎(𝑡) characterize
he evolution of 𝑋(𝑡) and 𝑋𝑑 (𝑡) following their 𝑎-upcrossings.
It was noted that most stochastic problems do not admit analytical

olutions and that numerical solutions of these problems are possible
nly if the random processes in their definitions are FD processes. The
ypes of FD representations depends on the objective of the analysis,
.g., FD representations given by truncated KL series characterize ac-
urately the mean and correlation functions of target processes but not
heir sample property. The class of FD processes 𝑋𝑑 (𝑡) and their Slepian
odels 𝑆𝑑,𝑎(𝑡) in the paper are such that their samples, which can be
enerated by standard algorithms, can be used as surrogates for the
amples of 𝑋(𝑡) and 𝑆𝑎(𝑡).
Conditions have been established under which FD and target pro-

esses have similar samples on bounded time intervals [0, 𝜏] in the sense
f the metric of the space 𝐶[0, 𝜏] of continuous functions. Under these
onditions, samples of 𝑋𝑑 (𝑡) can be used as substitutes for samples 𝑋(𝑡).
These conditions have been augmented to assure that samples of 𝑆𝑑,𝑎(𝑡)
can be used as surrogates for samples of 𝑆𝑎(𝑡) for sufficiently large
stochastic dimensions 𝑑.

Two sets of examples have been presented to illustrate the construc-
tion of Slepian models and examine consistency with the theoretical
considerations in the paper. The first set includes Gaussian and non-
Gaussian FD processes with the same functional form and first two
moments which depend on 𝑑 = 4 Gaussian and 𝑑 = 4 non-Gaussian
random variables. The target processes 𝑋(𝑡) in the second set of exam-
ples are solutions of linear and nonlinear random vibration problems
with non-Gaussian and Gaussian inputs so that they are non-Gaussian.
It was shown that the processes 𝑋(𝑡) satisfy the conditions under which
target and FD processes and their Slepian models have similar samples.
The numerical illustrations are consistent with theoretical predictions.
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