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SUMMARY

Over the course of a lifetime, we process a continual stream of information. Extracted from this stream, mem-
ories must be efficiently encoded and stored in an addressable manner for retrieval. To explore potential
mechanisms, we consider a familiarity detection task in which a subject reports whether an image has
been previously encountered. We design a feedforward network endowed with synaptic plasticity and an ad-
dressing matrix, meta-learned to optimize familiarity detection over long intervals. We find that anti-Hebbian
plasticity leads to better performance than Hebbian plasticity and replicates experimental results such as
repetition suppression. A combinatorial addressing function emerges, selecting a unique neuron as an index
into the synaptic memory matrix for storage or retrieval. Unlike previous models, this network operates
continuously and generalizes to intervals it has not been trained on. Our work suggests a biologically plau-
sible mechanism for continual learning and demonstrates an effective application of machine learning for

neuroscience discovery.

INTRODUCTION

Every day, a continual stream of sensory information and internal
cognitive processing causes lasting synaptic changes in our
brains that alter our responses to future stimuli. It remains a mys-
tery how neural activity and local synaptic updates coordinate to
support distributed storage and readout of information and, in
particular, how ongoing synaptic changes due to either new
memories or homeostatic mechanisms do not interfere with pre-
viously stored information.

Familiarity detection—identifying whether a stimulus has been
previously encountered—is a simple and ubiquitous form of
memory that serves as a useful testbed for addressing these is-
sues. Classical studies have demonstrated that human recogni-
tion memory capacity for images is “almost limitless,” retention
following a power law as a function of the number of items
viewed (Standing, 1973). Theoretical work has shown that the
number of memories stored by a familiarity detection network
depends on the synaptic plasticity rule and can scale proportion-
ally to the number of synapses (Bogacz and Brown, 2003). More
recent behavioral work has further demonstrated an impressive
capacity in a continual setting, the error rate as a function of the
number of intervening items exhibiting a “power law of forget-
ting” (Brady et al., 2008) and theoretical studies showing that
this is achievable by synapses with metaplasticity (Fusi et al.,
2005; Ji-An et al.,, 2019). Neural signals of visual familiarity
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have been observed as reductions in responses to repeated pre-
sentations of a stimulus, a phenomenon known as repetition
suppression (Grill-Spector et al., 2006; Meyer and Rust, 2018;
Miller et al., 1991; Xiang and Brown, 1998). At the timescales
relevant for this task—one-shot memorization on the order of
seconds and long-term forgetting on the order of days—this is
plausibly caused by depression of excitatory synapses or poten-
tiation of inhibitory ones (Lim et al., 2015).

Previous modeling work on recognition memory used a prede-
signed architecture and plasticity rule and both empirical and an-
alytic evaluation of performance (Androulidakis et al., 2008; Bo-
gacz and Brown, 2003; Norman and O’Reilly, 2003; Sohal and
Hasselmo, 2000). An emerging approach uses a machine
learning technique known as “meta-learning,” or “learning how
to learn” (Thrun and Pratt, 2012), that uses optimization tools
to rapidly search for mechanisms that artificial neural networks
can use to solve a learning/memory task (Confavreux et al.,
2020; Gu et al., 2019; Jordan et al., 2021; Lindsey and Litwin-Ku-
mar, 2020; Metz et al., 2019; Najarro and Risi, 2021). In contrast
to hand-designed models, meta-learning enables unbiased
exploration of a large family of architectures and plasticity rules.
Importantly, it is possible to impose constraints that ensure bio-
logical plausibility (Bengio et al., 1991).

In this work, we investigate not only “how” memories are
stored—the synaptic plasticity rule—but also “where” —the
mechanism for addressing the storage and retrieval locations.
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time

Classical models of memory rely on “content-based address-
ing” (Hopfield, 1982), whereby a partial cue elicits recall of the
full memory through recurrent dynamics, but do not explicitly
select which synapses store the memory. On the other hand,
“key-value” memory networks in machine learning (Graves
et al., 2014, 2016) store values in a memory matrix indexed
explicitly by keys, analogous to the addressing in a computer’s
random-access memory, although such models lack a biological
interpretation (but see Tyulmankov et al., 2021). Our model in-
cludes both a synaptic plasticity rule and an explicit addressing
mechanism.

Positing that the answer to “when” plasticity should occur is
“always,” we consider a simple version of “what” to remember:
familiarity. We construct a family of models that recognize previ-
ously experienced stimuli and, importantly, learn and operate
continuously without separate learning and testing phases,
avoiding catastrophic forgetting, a phenomenon in which a
network renders stored information unreadable (Beaulieu et al.,
2020; Parisi, 1986). The capacity of these networks remains con-
stant over time, so they can be continually fed new inputs with no
reduction in steady-state memory performance.

We use a feedforward network architecture with ongoing syn-
aptic plasticity, parameters of which are meta-learned using
gradient descent to optimize continual familiarity detection. Un-
like similar models (Ba et al., 2016; Miconi et al., 2019), to isolate
synaptic plasticity as the unigue memory mechanism, we avoid
recurrent connectivity that could store memory through main-
tained neuronal activations. This architecture, unlike recurrent
networks, generalizes naturally over a range of repeat intervals
even if trained on a single interval. We show that an anti-Hebbian
plasticity rule (co-activated neurons cause synaptic depression)
enables repeat detection over longer intervals than a Hebbian
rule and leads to experimentally observed features such as repe-
tition suppression in the hidden-layer neurons. Furthermore, an
addressing function emerges through strong static feedforward
weights, selecting a unique neuron to index the synapses for
storage of a novel stimulus and detection of a familiar one.

RESULTS

Continual familiarity detection task
In our task, a continuous stream of stimuli is presented to the
network (Figure 1A). With probability 1 — p, the stimulus at time
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Figure 1. Continual familiarity detection
task and HebbFF model

(A) The continual familiarity detection task. Given a
continual stream of stimuli x(t), the desired output
is y(t) =1 if the stimulus has appeared previously
and y(t) =0 otherwise. For a given dataset, repeat
stimuli always appear at an interval R after their
first presentation. Although the task is continual,
for the purposes of network training, we use a
finite-duration trial of length T>R.

(B) The HebbFF network architecture. A feedfor-
ward layer is endowed with ongoing Hebbian
plasticity, the parameters of which are optimized
using stochastic gradient descent. The hidden
units are linearly read out to produce the network’s
estimate of familiarity y (t).

h(t)

tis arandomly generated binary vector x(t), where each compo-
nentis either + 1 or — 1. With probability p, the stimulus is a copy
of the stimulus presented R time steps ago. The output of the
network should be y(t) = 0if x(t) is noveland y(t) = 1 if it is familiar
(i.e., has appeared previously). We begin by considering familiar-
ity detection for uncorrelated stimuli, but in later sections we
generalize to a task that requires simultaneous classification
and familiarity detection and to a dataset of images (see STAR
Methods).

HebbFF network architecture

To investigate the effectiveness of synaptic plasticity for solv-
ing this task, we use a feedforward neural network with a sin-
gle hidden layer and activity-dependent ongoing Hebbian
plasticity to implement the memory function (HebbFF) (Fig-
ure 1B). We do not include any recurrent connections, to
ensure that memory cannot be stored through persistent
neuronal activity, thus isolating synaptic plasticity as the only
memory mechanism.

In the HebbFF network, a group of hidden-layer neurons with
firing rates given by an N-dimensional vector h(t), receives a
d-dimensional input x(t) at time t. The input to each hidden-layer
neuron is weighted by its corresponding synaptic strength and
then transformed into a firing rate through a nonlinear activation
function ¢(-). The synaptic strength between the postsynaptic
neuron with rate h;(t) and the presynaptic neuron carrying the
input x;(t) is the (i,j) component of an N-by-d matrix that is the
sum of a static matrix W4 and a plastic matrix A(t). Thus, the
firing rate of the hidden layer is given by

h(t) = o((W; + A(t))x(t) + by),

where ¢ is the logistic function applied element-wise and b1 is a
vector representing baseline currents into the hidden layer. The
matrix W is fixed after training, and its unconstrained values
are set though optimization. Its structure serves an addressing
function by imposing a unique baseline activity pattern in the hid-
den layer for each input. The plastic matrix A(t) is updated at
every time step: its (/,j) component decays by a factor O<i<1
and is incremented by a Hebbian product of the pre- and post-
synaptic activities, h;(t)x;(t). A plasticity rate parameter
—o<n< oo controls the sign and magnitude of this increment. In
matrix form, the synaptic update rule is
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Figure 2. RNN performance on continual familiarity detection

(A) Training an RNN (d = 100 input dimension, N = 100 recurrent units) on a single familiarity detection dataset (T = 500 stimulus presentations, repeat interval R =
3). Although the loss (top) approaches 0 and accuracy (bottom) approaches 1 on training data (red), performance on a validation data (blue) with the same

parameters fails to generalize, even when tested in distribution with the same R.

(B) RNN trained with “infinite data,” R =3 (red) or R =6 (blue). Accuracy (top) and true and false positive probabilities (bottom) shown as a function of the repeat
interval on validation data. RNNs perform well in distribution on datasets with the same repeat interval as used during training but fail to generalize out of dis-

tribution to other repeat intervals.

(C) RNN trained on “infinite data” with both intervals R =3 and R =6 interpolates between the intervals but fails to extrapolate.

At + 1) = 2A(®t) +nh(t)x ()"

Finally, the output of the network y(t) is a linear readout of the
hidden layer, and, because the target y(t) is binary, we bound
the readout with the logistic function,

y(t) = o(Wah(t) + by).

The response of the network is “familiar” if y(t)>1/2 and “novel”
otherwise. Although in the general case W5 is unconstrained, to
simplify analysis we later consider a uniform readout in which all
entries of W, are equal, with no appreciable change in
performance.

To construct the network, we use backpropagation through
time (BPTT) to meta-learn the parameters W+, by, W5, by, A,
1, which are fixed once training is completed (STAR Methods).
The continual familiarity detection task—the “learning” task—
is then performed by the ongoing synaptic dynamics of A(t),
controlled by the fixed parameters. These dynamics are a bio-
logically plausible mechanism for solving the continual memory
task, but BPTT is simply used as an optimization tool to find suit-
able parameters of the network.

The HebbFF network generalizes both in and out of
distribution

As a benchmark for comparing HebbFF performance, we train a
long short-term memory (LSTM) network (Hochreiter and
Schmidhuber, 1997)—a recurrent neural network (RNN) archi-
tecture well suited for memory performance—on the continual
familiarity detection task. Unlike HebbFF, which stores its input

546 Neuron 770, 544-557, February 2, 2022

history in the plastic synaptic matrix A(t), an RNN uses ongoing
neuronal activity.

If we train the RNN using a single dataset with T =500 image
presentations (STAR Methods) and a repeat interval of R = 3, it
successfully learns the training set but fails to generalize to
new test sets with the same R (Figure 2A). To fix this, we use
an “infinite data” approach in which we generate a new dataset
for every iteration of BPTT, each with the same value of R = 3.
Trained in this way, the RNN now generalizes in distribution
across datasets with R=3 (i.e., to datasets drawn from the
same distribution as the training data, which is parameterized
by R) but fails to generalize out of distribution to data with any
other value of R (i.e., to datasets from a different distribution)
(Figure 2B). The same result holds with R=6 (Figure 2B). We
can further train the RNN with items spaced at intervals of both
R=3 and R=6 (the value of R is chosen randomly for each
familiar stimulus rather than being fixed). Although the network
can interpolate between the trained values, it does not extrapo-
late well to larger or smaller ones (Figure 2C). Although it is likely
possible to train the RNN to perform well for multiple values of R
with more complex training schedules, we believe that poor
out-of-distribution generalization is a bottleneck of the RNN
approach.

In contrast, the HebbFF network exhibits both in- and out-of-
distribution generalization. Even when trained on a single dataset
with a fixed repeat interval R, the network generalizes to new test
sets with the same R (Figure 3A) and even to those with different
R values. Critically, the training procedure is the same as for the
RNN above, but HebbFF successfully learns a qualitatively
different solution because of its inductive bias. Trained with “in-
finite data” (the scheme we use in general), HebbFF generalizes
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Figure 3. Hebbian versus anti-Hebbian plasticity and continual operation
(A) Training the HebbFF network (d = N = 100), as in Figure 2A. Both training and validation loss decrease, indicating in-distribution generalization. Over many

iterations, overtraining occurs because of the use of a single dataset, increasing the final validation loss.
(B) HebbFF, trained as in Figure 2B, shows not only in-distribution generalization to datasets with the same R but also out-of-distribution generalization to data

with any smaller and slightly larger R.
(C) HebbFF with a different initialization converges to an anti-Hebbian learning rule (see also Figure S8) with generalization over a longer R values than Hebbian.

(D) Model from Bogacz and Brown (2003), evaluated on the continual familiarity detection task, varying the length T of the trial. Accuracy (top) is near perfect
regardless of the repeat interval R (blue versus red curve) until the model reaches its capacity (P* =100 for network size d = N = 100) because the model reliably
stores the first P* patterns. Accuracy rapidly drops below chance for T>P* as the model begins to report familiar stimuli as novel (see Figure S2B).

(E) HebbFF network operates continuously. Accuracy is consistent with the generalization curve from (C), with near perfect performance for Riest = 5 and above
80% for Ryest = 20 for any trial length. True and false probabilities (bottom) are better representations as accuracy is artificially higher for small T because of the low

proportion of familiar stimuli.

over time, other than being scaled by a factor. A stimulus x(t)
is initially stored as the outer product of h(t) and x(t), multiplied
by the plasticity rate n. The plastic component of the connectivity
matrix also contains terms arising from previously stored mem-
ories, which for the purposes of this particular stimulus act as ad-

ditive noise &:

to datasets with smaller and larger R (Figure 3B). Matching the
number of dynamic variables rather than the number of hidden
neurons, HebbFF still shows superior generalization compared
with the RNN (Figure S1). This qualitative difference in perfor-
mance suggests that Hebbian plasticity provides a more “natu-
ral” mechanism for familiarity detection.
The generalization performance of HebbFF is due to the fact
that the memory representation of an item does not change A(t+1) = nh(Hx(t) +e
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As subsequent stimuli are presented, the representation of x(t)
maintains the same form, so that k time steps later it is still stored
as the outer product of h(t) and x(t), scaled by a factor *:

A(t + k)=ph(t)x(t)" + e+ ¢

where further additive noise ¢ arises from stimuli presented af-
ter x(t).

Unlike HebbFF, RNNs are poor at generalizing across intervals
R because the dynamics of their units allow the memory repre-
sentation of a stimulus to change arbitrarily over time. The
RNN only generates the appropriate representation at the time
when a query is expected, namely, after a delay equal to the
value of R used during training. This makes it difficult to gener-
alize across intervals.

The “how” of synaptic plasticity: storage via an anti-
Hebbian rule

The plasticity rate n in HebbFF can be positive or negative, re-
sulting in either Hebbian or anti-Hebbian plasticity. For the Heb-
bian solution with 1 > 0, synapses are potentiated in response to
a stimulus. When it is repeated, the hidden-layer activity is higher
because of the increased strength of the synapses storing the
memory. For anti-Hebbian plasticity, n < 0, synapses are
depressed when a memory is stored. In this case, the hidden-
layer activity is lower for a familiar stimulus, consistent with
experimental results of repetition suppression (Grill-Spector
et al., 2006; Meyer and Rust, 2018; Xiang and Brown, 1998).
Furthermore, the meta-learning algorithm is more likely to
converge to the anti-Hebbian solution, especially when trained
with a relatively large repeat interval, even if the initial value of
1 is positive, and almost always when the initial value is negative
(Figure S8).

Anti-Hebbian plasticity enables successful familiarity detec-
tion over considerably longer intervals than a Hebbian rule (Fig-
ure 3C). To understand this, note that the memory of a stimulus is
degraded in two ways: plasticity events obscure existing mem-
ories, and plastic weights decay over time. With an anti-Hebbian
plasticity rule, the hidden layer activation h(t) is close to zero for
a familiar stimulus. As a result, the plasticity update h(t)x(t)T
when the stimulus is repeated is negligible, as if a stimulus
were not presented at that time step. This effectively reduces
the number of plasticity events, and the disruption of existing
memories. As a secondary effect, the smaller number of plas-
ticity events allows a larger A (slower decay rate) to be used while
still controlling the amplitude of plastic weights (Figure S8),
further extending the lifetime of the memory. Because of their
superior performance and consistency with experimental re-
sults, we consider only anti-Hebbian solutions throughout the
following sections.

The “when” of synaptic plasticity: continual learning
without catastrophic forgetting

Previous modeling work using anti-Hebbian plasticity mecha-
nisms for familiarity detection (Bogacz and Brown, 2003)
focused on a paradigm used in classic studies of recognition
memory (Standing, 1973) in which subjects are serially pre-
sented an entire dataset and later asked to identify which
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stimulus is familiar in a two-alternative forced-choice (2AFC)
test. Analogously, this previous modeling work used explicit
“learning” and “testing” phases and demonstrated an impres-
sive capacity for recognition memory (Bogacz and Brown,
2003) (Figure S2A). When evaluated on the continual memory
task that we use, the Bogacz-Brown model has near perfect per-
formance if the number of stimuli T in the dataset is smaller than
the model’s capacity P*, independent of the value of the repeat
interval R (Figure 3D), as the model successfully stores all T<P*
stimuli. As the dataset size increases, however, the model per-
formance declines because of catastrophic interference (Figures
3D and S2B; STAR Methods). To store additional memories, the
old memories must be removed by resetting the synaptic
weights.

In real-world scenarios, an organism typically does not expe-
rience a dedicated “learning” phase. The answer to “when” syn-
aptic plasticity should occur is “always.” As such, the HebbFF
model operates continually rather than using separate learning
and evaluation phases. Its performance is independent of the
length of the dataset, and it can operate continuously without
any need to reset the synaptic weights. For example, a HebbFF
network trained with R =5 operates at near perfect performance
irrespective of the duration of the trial T when tested with R=5
(Figure 3E). Similarly, when tested with R = 20, it operates
continually at near 80% accuracy (Figure 3E), as expected
from the generalization curve in Figure 3C (note that for small T
the accuracy [Figure 3E, top, blue] is transiently elevated
because the fraction of novel stimuli is more than %). In other
words, the model has a moving window in time within which it
can successfully detect a familiar stimulus and forgets old stimuli
gracefully without suffering from catastrophic interference.

The “where” of synaptic plasticity: addressing via
strong feedforward weights

In the HebbFF network, the hidden layer plays a dual role. On one
hand, it must produce a reliable familiarity signal for the readout
to decode. On the other, it must create a robust representation of
the input stimulus during the Hebbian plasticity update. The hid-
den activity is controlled by the fixed parameters W and b+, as
well as the plastic matrix A(t). Here, we investigate how W1, b+,
and A(t) influence these two aspects of the familiarity detec-
tion task.

To simplify this analysis, we restrict W, to be a scaled 1 -by- N
matrix of ones, W2 = az[1, ..., 1], where a7 is a trained scalar.
Similarly, we restrict by = $4[1, ..., 1]7. As the hidden units
now contribute equally to the readout, they are statistically iden-
tical (although not necessarily independent). Therefore, the rows
of W4 and A(t) are statistically identical, allowing us to meaning-
fully plot histograms of the corresponding input currents. This
choice of output weights does not affect the performance or
memory mechanism (Figure S3).

Networks trained with larger R have sparser hidden unit activ-
ity (Figures 4A-4C): the sparser the activity, the less plasticity is
evoked and thus the longer memories can be retained without
overwriting. In the limiting case we might expect that exactly
one neuron is active for a novel stimulus, and none are active
for familiar stimuli. Associated with this increased sparsity in ac-
tivity, W1 is also sparser for larger R (Figures 4D-4F and S8).
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Figure 4. Storage and readout mechanism

(A-C) Hidden-layer activity h(t) over 20 consecutive time steps for networks with input dimension d =25 and N =25 hidden units, trained on datasets with R =
1, 7, or 14, respectively. Familiar stimuli (black rectangles) cause silencing (i.e., repetition suppression of hidden-layer activity). Activity for novel stimuli becomes
sparser for networks trained with larger R.

(D-F) Static weight matrix W1 of the networks from (A)~(C). The weight matrix becomes sparser (Figure S8) and individual weight magnitudes increase for
networks trained with larger R, enabling sparser activity in the hidden layer for novel stimuli.

(G-) Distributions of hidden-layer input current due to the static component of the synapses (W1, b+) for the networks from (A)—~(C). For networks trained with
larger R, the distribution becomes multi-modal, with the number of modes equal (approximately) to the number of high-magnitude values per row of W+, plus one.
Because of the bias, only the rightmost mode has the potential to produce firing rates that are significantly above zero.

(J-L) Distributions of input current into the hidden layer due to the plastic component of the synapses A(t), for novel (red) and familiar (green) stimuli. We consider
only the trained network from (C), (F), and (I) and evaluate its behavior on test sets with R =14, 40, or 100, corresponding to perfect, intermediate, and chance
accuracy. The large central mode occurs because of stored stimuli uncorrelated with the input stimulus x(t). In the novel case, the input is uncorrelated with all the
stored stimuli by definition, and thus there is only one mode. Similarly, in the familiar case with a long delay interval R = 100, the stored stimulus has decayed

(legend continued on next page)
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To isolate the effect of W4 on hidden unit activity, we compute
a histogram of the input current into the hidden layer due to the
non-plastic synapses, W1x(t) + b1, across units and across time
(Figures 4G-4l). As R increases, the distribution becomes multi-
modal as a result of the combinatorial structure of the rows in W
(more evident in the idealized model; see below and STAR
Methods). In general, the number of peaks in this distribution de-
pends on the number of large-magnitude values of W per row.
Critically, because of the logistic function nonlinearity, only the
rightmost peak in Figure 4l is large enough to elicit appreciable
activity in the hidden layer. This peak drives the small number
of hidden units that are significantly activated by a novel stim-
ulus. In other words, the W1 matrix acts like an addressing func-
tion to select a small subset of hidden units to store the memory
of a given stimulus.

We next consider the effect of A(t), focusing on the network
trained to maximum capacity (Figures 4C, 4F, and 4l) (see Curric-
ulum training and empirical capacity). For a novel stimulus, the
distribution of the input current due to the plastic synapses
A(t)x(t) is unimodal and symmetric about zero (Figures 4J-4L).
For a familiar stimulus, however, there is an additional peak at
approximately A7~ 'nd. This peak is due to the dot product of
the input vector x(t —R) (stored in the matrix A(t) asA®"nh(t —
R)x(t — R)"), and the familiar input vectorx(t) = x(t — R). Impor-
tantly, the neurons that exhibit this behavior are the same ones
active due to W1 when the stimulus was novel. Thus, again,
W+ provides addressing functionality (now indirectly through
its effect on A(t)), allowing the system to probe the same neu-
rons not only during storage but also during recall.

Finally, the total hidden-layer input current is the sum of
these two components, (W1 +A(t))x(t) + by (Figures 4M-40).
Comparing Figures 41 and 40, we see that the large central sym-
metric mode of the A(t)x(t) distribution does not significantly
affect the total hidden-layer input current. Rather, the familiarity
signal arises because the smaller peak of the A(t)x(t) distribution
pushes the rightmost peak of the W1x(t) + b+ distribution below
zero (Figure 4M). Anti-correlation between the two input currents
for familiar stimuli (Figures 4P-4R) indicates that this shift is
caused by the input current from the plastic component of the
synapse canceling the input current from the fixed component,
resulting in lower activation (i.e., repetition suppression).

Curriculum training and empirical capacity

A randomly initialized HebbFF network may fail to find a solution
if directly trained with a large value of R (Figure S8). Instead, we
use a curriculum training procedure to bootstrap the optimized
solution. First, the network is trained on data with R = 1,
using the “infinite data” regime. Once the accuracy is above
99%, R is incremented by 1, and training continues on data

Neuron

with R = 2. This process continues until R becomes large
enough that the network cannot find a solution with accuracy
above 99% (i.e., if R is not incremented for at least 2 million iter-
ations) (Figure 5A). We thus define the memory capacity Rmax as
the largest value of R for which the familiarity detection accuracy
is above 99%.

We curriculum-train networks of different sizes and plot the
capacity Rmax for each one (Figure 5B). For consistency and
ease of training, we restrict the networks to the anti-Hebbian
solution and use the uniform readout as above. We find that
the capacity depends primarily on the number of synapses,
rather than on the number of pre- or postsynaptic neurons (Fig-
ures 5C and 5D), consistent with previous familiarity detection
results (Bogacz and Brown, 2003). To estimate the scaling,
we compute a linear least-squares fit of log(Rmax) as a function
of log(Nd). Empirically, we find that the capacity of the network
scales as

Rimax =0.10(Nd)°™®

which is sublinear in the number of plastic input synapses to the
hidden layer, Nd.

In contrast, the model of Bogacz and Brown (2003) for the non-
continual task has a capacity that is linear in the number of
synapses. To determine whether the difference between the
empirical performance of HebbFF and the Bogacz-Brown model
reflects a fundamental limitation in the feedforward architecture,
we developed an idealized version of the model (Figure 6A) that
we could study analytically (STAR Methods).

Idealized model and theoretical capacity

We noted above that the limiting behavior of the network at
maximum capacity appears to have W, activate just a single
unit for memory storage. We build this limiting behavior into
the idealized model through a specific choice of W1 and by,
set by design rather than through a training procedure. Specif-
ically, we use the first n < d components of x(t) as an identifier
by choosing the first n columns of W4 so that a unique hidden
unit is activated by each possible n -bit combination of these
components (STAR Methods) and set the remaining columns
of W4 to zero. To simplify the model, we do not allow plasticity
to operate on the inputs from these bits and set the first n col-
umns of A(t) to zero (Figure 6A). This isolates the addressing
function of the fixed matrix from the memory storage. Further-
more, instead of a sigmoid nonlinearity for the hidden units, we
use a Heaviside step function ®( -). Thus, the hidden layer in
the idealized model is governed by

h(t) = O((W1+A(t) )x(t) + by)

sufficiently that its signal is lost. In the case of familiar stimuli presented at shorter delay intervals, R = 14 or 40, there is an additional mode due to the correlation
between the input x(t) and its copy x(t —R) previously stored in the plastic matrix A(t).

(M-0) Distributions of the total input current into the hidden layer on test sets with R =14, 40, or 100. Only the values above zero cause high firing rates after
applying the logistic sigmoid nonlinearity. As all the input currents are low for familiar stimuli (green) for small values of R, there is repetition suppression.
(P-R) Correlation between the input current into the hidden layer from static and plastic synapse components at each of 20 consecutive time points. Asterisks
indicate output response errors. For sufficiently small R, the input currents are more anti-correlated for familiar stimuli (black circles) than for novel. Combined
with the distributions of input currents, this indicates that the units receiving positive input current from the static synapses receive negative input current from the

plastic synapses.
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(A) The value of R used over the course of curriculum training for four different network sizes.
(B) The final value of R after curriculum training (i.e., network capacity) as a function of the number of plastic synapses in the network, plotted on a log-log scale.
The color corresponds to the number of input units as in (D). The least-squares fit (slope k, bias c) indicates that the empirical network capacity scales sublinearly

with the number of synapses.

(C and D) Capacity plotted as a function of the input dimension d and hidden layer size N, respectively, holding the other one constant. It primarily depends only on

the number of synapses, rather than on the hidden or input layer sizes.

For the nonzero entries of A(t), plasticity is the same as in the
trained model, but because the Heaviside function does not
depend on the scale of the input, we can set the plasticity rate
to n= — 1 without loss of generality. The optimal synaptic decay
rate A is computed analytically. A stimulus is considered familiar
if all hidden unit activities are zero and novel otherwise (STAR
Methods).

This idealized model exhibits similar behavior to HebbFF. We
can fit the analytic functional form of the true and false positive
probabilities computed from the idealized model (Figure 6B) to
the corresponding probabilities of HebbFF (Figure 6C). Further-
more, the histograms of inputs to the hidden layer are qualita-
tively similar: W1x(t) + by has the same multi-modal distribution
with more prominent peaks in the middle (Figures 4l and 6D;
STAR Methods), a bimodal distribution of A(t)x(t) with a large
symmetric central peak and a smaller one corresponding to
the familiarity signal (Figures 4J and 6E), and a similar distribution
of the total input current (W4 +A(t))x(t) + b1 (Figures 40 and

6F). From this, we conclude that the memory storage and
readout mechanisms are analogous in the meta-learned HebbFF
network and the idealized model.

Finally, the memory capacity of the idealized model can be
computed analytically (STAR Methods). As in the Bogacz-Brown
model (2003), the capacity is proportional to the number of syn-
apses Nd. There are several possible reasons for the discrep-
ancy between the analytic capacity, as well as that of the
Bogacz-Brown model, relative to the empirical capacity for
HebbFF. First, the idealized HebbFF model uses a dedicated
set of synapses through the fixed W4 matrix, and the Bogacz-
Brown model selects the units that have the highest input current
implicitly through inhibitory competition. Both of these are dedi-
cated addressing functions for the hidden layer, but meta-
learned HebbFF must multiplex this functionality with memory
storage, leading to correlations between the hidden-layer input
currents from the plastic and fixed synapse components
(Figure S4A).
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Figure 6. lIdealized model

(A) The idealized HebbFF network architecture. The input x(t) is effectively split into two sections of size n and D =d — n that serve as inputs into separate static
and plastic synaptic matrices W and A(t), respectively (STAR Methods). The hidden layer size is N = 2" and output is y(t) = 1 whenever any of the hidden units is

active .

(B) The analytic calculation of network performance (solid line) matches simulation results for the idealized network (x’s), shown for two different network sizes

(red, blue).

(C) Aleast-squares fit of the analytic performance curve of the idealized network to a trained HebbFF network of the same size for two network sizes. The idealized
network has similar performance to the HebbFF model if its decay rate and bias are scaled appropriately: 2=0.986, b1 = — 4.771 (for all units) ford = 200, N =

32, and 1=0.993, by = — 4.771 ford = 200, N = 32.

(D-F) Same as Figures 4L, 4J, and 4M but for the idealized network (D = 400, N = 32, R = 300).

In addition, replacing the logistic function with a Heaviside
function means that familiar stimuli truly generate no plasticity
in the idealized model, reducing overwriting at the cost of not re-
inforcing partially decayed memories (Figures S4B and S4C). For
the same reason, in contrast to HebbFF, the idealized model
achieves maximal plasticity for any suprathreshold level of input
to a hidden layer unit.

Finally, training the HebbFF model may lead to specialized
solutions for small d and N that have better performance than
that predicted by the asymptotic analysis. Similarly, training
may not converge to the optimal solution for large d and N
because it requires the use of very long repeat intervals R.
This means the dataset size T must be very large to include
a sufficient number of familiar examples, which may lead to
practical issues such as vanishing gradients. Thus, the empir-
ical capacity may scale sublinearly with the number of synap-
ses because of over-performance at low R, under-performance
at high R, or both.
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HebbFF recapitulates neural data from inferotemporal
cortex

We next compare the optimized HebbFF model with experi-
mental results. Meyer and Rust (2018) recorded neurons from
the inferotemporal (IT) cortex of monkeys performing familiarity
detection and compared the quality of two decoders in predict-
ing behavior from neural data as a function of neural population
size. The authors considered a “spike count classifier” (SCC)
decoder, which amounts to comparing a simple average of
neuronal firing rates to a threshold, as well as a Fisher linear
discriminant (FLD), which instead considers a weighted average,
with weights computed from the data.

We perform a similar analysis. We first construct an FLD
decoder of the hidden unit firing rates and rank the units in
reverse order of their FLD readout weights (i.e., units with the
most negative weights are top ranked; STAR Methods). We
then consider decoders that use increasingly larger subsets of
hidden units, adding them according to their ranking. As in the
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Figure 7. Comparison with IT cortex data
(A) Left: neurons from the IT cortex used to predict
the behavioral outputs of a monkey performing
continual familiarity detection, decoded using the
Fisher linear discriminant (FLD; blue) or spike
count classifier (SCC; red). Right: units from the
hidden layer of a trained HebbFF network (trained
with unconstrained W) used to decode familiarity
with SCC or FLD. In both cases, the number of
neurons/units available to the decoder was varied,
added in order of increasing FLD weight. While the
FLD decoder accuracy saturates, the SCC
decoder accuracy peaks and declines as more
neurons/units are included in the decoder.

(B) Distribution the FLD decoder output for IT
cortex neurons (left) and HebbFF hidden units
(right) for familiar stimuli at varying delay intervals.
In both cases, the distribution shifts toward lower
values as delay interval increases. For HebbFF,
the distribution gets narrower for shorter delay
intervals because of saturation in the hidden layer
units.

(C) Distribution of the FLD decoder weights for
decoding IT cortex data (left) or HebbFF hidden
unit activity (right). In both cases, the majority of
output weights are negative.

(D) Left: measured reaction time as a function of
delay interval for correct and error trials (red, blue
curves) in monkeys performing the continual fa-
miliarity detection task. Black lines indicate reac-
tion times predicted using strength theory anal-
ysis. Right: HebbFF predicted reaction times using
analogous strength theory analysis (STAR
Methods). Both result in a qualitatively similar x-
shaped pattern. Plots on the left side of (A)-(D)
adapted from Meyer and Rust (2018).

signal of familiarity. Including them hurts
performance of the SCC decoder, but
because the FLD readout weight for
these units is close to zero, they do not
alter its familiarity detection performance.

The unreliable units occur in HebbFF
because of suboptimal training. In the IT
cortex, they are possibly due to perform-
ing an unrelated task. We explicitly
consider the latter scenario by training
our network to perform binary classifica-
tion in parallel with familiarity detection,
reading out both signals from the same
set of hidden units (STAR Methods). As
a result, two sub-populations of hidden
units emerge: one for classification and
one for familiarity detection (Figure S5E),
the classification units degrading the
SCC readout as expected. All other re-
sults in this section remain unchanged
(Figures S5A-S5D).

experimental data, performance saturates for the FLD and de-
clines for the SCC readout beyond a certain number of decoded
units (Figure 7A), as some of the units do not provide a reliable

Comparing the experimental and model distributions of
readout activity shows a qualitatively similar pattern for outputs
to novel and familiar stimuli (Figure 7B). Both distributions shift
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toward smaller values as R increases and familiar stimuli begin to
appear novel. The fact that the distribution of outputs becomes
narrower for HebbFF as R decreases, unlike in the data, may
be due to repetition suppression causing hidden units to have
near zero responses for highly familiar (low R) stimuli, thus
causing the readout distribution to cluster around its minimal
value. On the other hand, biological neurons that exhibit repeti-
tion suppression may never be fully silenced, for example, if it
takes multiple repetitions to achieve maximal familiarity or if neu-
rons are multiplexed with another task that requires a baseline
level of activity. Furthermore, as in the data, the distribution of
readout weights is biased toward negative values (Figure 7C).
Finally, using a similar “strength theory” analysis as in the
experimental results (Meyer and Rust, 2018; Murdock, 1985),
which suggests that reaction times are inversely proportional to
the distance of the readout from the threshold, we can qualita-
tively reproduce the x-shaped reaction time curves seen experi-
mentally. We used the same proportionality constant determined
experimentally to compute network “reaction times” (Figure 7D).

Familiarity detection of images

To validate the HebbFF model in a more realistic scenario, we
evaluate its performance on images. As a stand-in for the pro-
cessing done by the visual stream, we use a pre-trained convolu-
tional neural network and down-sample its output, either by sub-
sampling and binarizing (Figures 8A and 8B) or by introducing a
trainable intermediate layer (Figure S6A). These two down-sam-
pling approaches change the statistics of the inputs to HebbFF,
either by introducing correlations (Figure 8C) or by having them
be real-valued vectors (Figure S6B). Interestingly, in the latter
case, the network learns an uncorrelated representation auto-
matically (Figure S6C), which further supports storing uncorre-
lated stimuli.

These networks have similar features to those trained on un-
correlated binary vectors. For binarized inputs, the W1 matrix
has a similar structure (Figures 4F and 8D), the hidden-layer ac-
tivity is sparse (Figures 4C and 8E), and the hidden unit input cur-
rent distributions have similar shapes (Figures 41, 4J, 4M, 7B, and
8F-8l), but there is a slight drop in performance due to correla-
tions (Figure 8J). For real-valued inputs, although its structure
is different, the W1 matrix still acts as a addressing function to
select a unique neuron in the hidden layer (Figure S6E) that is
then suppressed for a familiar stimulus through the A(t) matrix
(Figures S6G and S6H). The network maintains its generalization
performance (Figure S6J). See STAR Methods for details.

DISCUSSION

In answer to the question of “how” memories are stored, we find
that anti-Hebbian plasticity, in which neuronal co-activation
causes synaptic depression (this may be also interpreted as
potentiation of inhibitory synapses; Schulz et al., 2020), is a bet-
ter storage mechanism for familiarity detection than Hebbian. An
anti-Hebbian rule generalizes better, has a larger capacity, and is
discovered by meta-learning more frequently and reliably.
Although this result is consistent with previous work (Bogacz
and Brown, 2003), the underlying reasons are different. Bogacz
and Brown (2003) showed that in a non-continual version of
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the familiarity detection task, an anti-Hebbian plasticity rule
leads to a larger storage capacity, although this advantage
held only in the case of correlated inputs. In their case, the
anti-Hebbian rule automatically suppresses common input fea-
tures, effectively storing only the uncorrelated components,
leading to an increased capacity. In contrast, anti-Hebbian
HebbFF shows an advantage even for uncorrelated inputs in
the continual task. This is due to an effective decrease in the
number of plasticity events; a synaptic update is weak for a
familiar stimulus because the postsynaptic activity is low, lead-
ing to smaller updates that are less disruptive to stored
memories.

Equally important is the question of “where” memories are
stored. HebbFF explicitly selects storage locations through an
addressing function implemented by strong feedforward
weights W+, independent of the previously stored memories
A(t). By inducing hidden-layer activity (typically a single active
neuron), W, selects only those afferents for storing a novel
memory. This is in contrast to implicit addressing through recur-
rent inhibition in a previous anti-Hebbian model (Bogacz and
Brown, 2003) which selects 50% of hidden-layer neurons.
Although much experimental and theoretical work has been
devoted to elucidating the plasticity rules used in memory stor-
age, our work highlights the equal importance of studying the ad-
dressing functions of neuronal circuits as well.

Critically, unlike classical models, these answers emerged
from meta-learning. The architectural features were not due
to decisions made by the modeler but rather discovered
through optimization. Although our particular meta-learning al-
gorithm, BPTT, does not easily map onto a biological mecha-
nism, we can nevertheless interpret it as a stand-in for struc-
tural changes over long timescales: an addressing function
developing in a newborn’s brain over the first years of her life
or a plasticity rule emerging within a species across genera-
tions. Evolutionary strategies for meta-learning (Confavreux
et al., 2020; Jordan et al., 2021; Najarro and Risi, 2021) imply
the latter interpretation. In contrast, the plasticity rule itself is
a biologically realistic mechanism for learning over short time-
scales: seconds or minutes to store a memory that may be
retrieved throughout a lifetime.

Thus, the HebbFF model predicts that there should be two
populations of synapses: a small set of slow-varying or fixed syn-
apses for addressing the memory neurons (the hidden layer of
HebbFF) and a larger set of highly plastic synapses for encoding
memories.

We also make a more quantitative experimental prediction.
Although it is obvious that the true positive rate should decrease
with longer delay intervals R, we also observe that the false pos-
itive rate slightly increases (Figure S7A). Neither the Hebbian
mechanism nor the RNN trained on a single R show this behavior
(Figures S7B and S7C). If biological networks implement famil-
iarity detection through an anti-Hebbian plasticity mechanism,
we expect to see the same effect. Note, however, that anti-Heb-
bian plasticity is merely sufficient, not necessary, for this result,
so the converse may not be true (Figure S7D).

There are experimental results that the HebbFF model does
not capture. For example, data from human subjects show a
very slow decrease in performance as a function of R that begins



Neuron ¢ CellPress

A B C
Pre-trained CNN
30 -
2 5.
3 20 -
(]
s
& 10 - 1
0 - i i 0 - i i " i
=1 0 1 -1.0 -05 0.0 0.5 1.0
Xi(t) corr(X;, X;)
h(t)
D 100 E o - e
1 1 75 = m LI =
L g u - 5.0 [ [ - 08
(]
u I - 25 c ] ] | | |
| - 0.6
L] - ! ! - 0.0 g ] ] [ ]
LI - - 25 2 m = 0.4
[ | | u
B = | — =50 ™ I 02
] ] I -75 - ] - H | .
- -10.0 SRARTRE NE =g RN - 0.0
Time
F G J
1.0
0.3 - = |mages
> 0.04 1 = Uncorrelated
= 5 > 09 -
8 ) ®
S 0.02 - 3 08 -
o 0.1 - 2 :
0.00 - ; ; 0.0 =" . 0.7 -
=40 -20 0 -5 0
W1x(t) + by A(t)x(t) 1.00 -
H I ' e True positive
0.10 - Novel m B 0.75 - = = [alse positive
2> 0.3 - = Familiar 3
= ® 0.50
Q o)
[ 0.2 o
o 0.05 - s
e 8 0.25 -
o 0.1 -
0.00 - -—— e
0.00 -+ i i 0.0 -—ye——— i i ‘0 '1 S "'2 5
-40 -20 0 =40 -20 0 10 10 10 10
(W1 +A(1)x(t) + by Wox(t) + bz Ritest

Figure 8. HebbFF performance on real-world images

(A) Network architecture for familiarity detection of real-world images. The activity of the penultimate layer of a convolutional neural network (ResNet18, pre-
trained on ImageNet) is down-sampled and passed to the HebbFF network (d = 50, N = 16) for familiarity detection. Only the HebbFF portion of this network is
trained, via curriculum training.

(B) Distribution of inputs x(t) to HebbFF. After down-sampling by extracting the first 50 units of the CNN, the activity is centered at zero and binarized.

(C) Histogram of the correlations between all pairs of input stimuli x(t). On average (vertical dashed line) the correlation is slightly positive.

(D-H) Same as Figures 4F, 4C, 4l, 4J, and 4M, respectively (Ryain = Riest = 12).

() Distribution of network outputs V(t). for novel (red) and familiar (green) stimuli

(J) Generalization performance, compared with a network of the same size trained on uncorrelated binary random vectors, is lower because of correlations in the

input images.

at relatively small value (Brady et al., 2008). In contrast, HebbFF Finally, along with other recent applications of this technique,
has near perfect performance for all R<Rmax, and then perfor-  our work demonstrates the utility of meta-learning as a tool
mance drops off quickly. However, it is likely that errors inthe ex-  for neuroscience discovery. We used meta-learning to optimize
periments do not reflect limitations on recognition memory but a network architecture and plasticity rule that solves the
rather are due to factors such as fatigue and lack of attention  continual familiarity detection task, contrasted it with an alter-
that were not included in the model. native suboptimal solution, and subsequently used analytic
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methods to understand its mechanism. A similar approach can
be used for other networks, plasticity rules, datasets,
and tasks.

STARXMETHODS

Detailed methods are provided in the online version of this paper
and include the following:

o KEY RESOURCES TABLE
o RESOURCE AVAILABILITY
O Lead contact
O Materials availability
O Data and code availability
e METHOD DETAILS
O Continual familiarity detection task
O HebbFF and RNN training
O Bogacz-Brown (Bogacz and Brown, 2003) model im-
plementation
O Training FLD and SCC decoders
O Simultaneous classification and familiarity detection
O ldealized model analytic capacity derivation
O CNN preprocessing for familiarity detection of images
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Python Python Software Foundation https://www.python.org/

PyTorch Facebook, Inc. https://pytorch.org

Custom code This paper https://github.com/dtyulman/hebbff (https://doi.org/10.5281/zenodo.5659610)

RESOURCE AVAILABILITY

Lead contact
Further information and requests should be directed to and will be fulfilled by the lead contact, Danil Tyulmankov (dt2586@
columbia.edu)

Materials availability
This study did not generate new unique materials.

Data and code availability

All original data in this work was programmatically generated. The code for data generation, as well as the network and analysis can
be found at https://github.com/dtyulman/hebbff (https://doi.org/10.5281/zenodo.5659610). Any additional information required to
reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Continual familiarity detection task

We consider a continual familiarity detection task (Figure 1A) in which a stream of stimuli is presented to a network. With probability
1 —p, the stimulus at time t is chosen as a randomly generated d -dimensional binary vector x(t), where each component is either + 1
or —1 (note that for sufficiently large d, spurious chance repeats are extremely unlikely). With probability p, the stimulus is a copy of
the stimulus presented R time steps ago, so that x(t) = x(t — R). However, we ensure that a stimulus is repeated at most once so, if
x(t —R) is already arepeat, i.e.,x(t — R) = x(t — 2R), anew x(t) is generated. As a result, the fraction of novel stimuli, which we call f,
is not equal to 1 — p, butratherf = (1 /1 +p). Weusep = (1/2),sof = (2 /3). The output of the network should be y(t) = 0if x(t) is
novel and y(t) =1 if it is familiar, i.e., has appeared previously.

The accuracy of the network (Pcorrect, the probability of correctly responding to a stimulus) depends on two factors: the true positive
rate (Prp, the probability of correctly reporting a repeated stimulus as “familiar”), and the false positive rate (Prp, the probability of
incorrectly reporting a novel stimulus as “familiar”). These two factors are weighted by the fraction of novel stimuli f, so that
Peorrect = (1 — f)Prp+f(1 — Pep). Through our choice of loss function (next section), we are effectively training the networks to maxi-
mize accuracy, so the “chance” level performance is f (for £>(1 /2)), which a network can achieve by reporting all stimuli as novel
(Prp = Pep = 0).

In our paradigm, a given dataset has a single repeat interval R, which differs slightly from previously studied experimental paradigms
(Brady et al., 2008; Meyer and Rust, 2018). However, we evaluate performance on multiple datasets with various values of R. For testing,
thisis analogous to evaluating a single dataset with multiple repeat intervals and computing accuracy for each interval separately. We use
this approach because it allows us to test generalization by training on one value of R and testing on others. It also allows us to train the
network to its maximal capacity by gradually increasing R during “curriculum training,” and simplifies analytic calculations.

HebbFF and RNN training

To set the fixed HebbFF parameters W+, by, W, bs, 4,7, as well as the RNN weight and bias matrices, we use the PyTorch imple-
mentation of the Adam optimizer with the suggested default hyperparameters (Kingma and Ba, 2017). For a single trial, we use a data-
set containing T stimuli, with familiar ones appearing at a repeat interval R. We present stimuli to the network sequentially, and
compute the binary cross-entropy loss

T

Z tlogy (t) + (1 —y(t)log(1 — ¥ (1))

t=1
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Since this is a dynamic task (the state of the network at time t + 1 depends on the state at time t, either through recurrent activity in
the RNN or through ongoing plasticity in HebbFF), backpropagation through time is used to compute the gradient of the loss with
respect to the parameters.

For each trial, we either use the same pre-generated length- T dataset, or we generate a new length-T dataset using the same
repeat interval R. We refer to the latter case as the “infinite data” training regime since the sample space is much larger than the
network would explore during training. Note that in the infinite data regime, we do not consider a validation dataset, since the training
set is new every time and the training accuracy is therefore the same as the validation accuracy. In both cases, one trial corresponds
to one step of gradient descent. To train the HebbFF network, the plastic matrix A(t) is reset to a matrix of zeros at the start of each
trial. Similarly, when training the RNN, hidden unit activity is reset to zero. In practice, the plastic matrix of HebbFF reaches its steady
state distribution quickly and the transient does not contribute significantly to the gradient, so any reasonable initialization can
be used.

Bogacz-Brown (Bogacz and Brown, 2003) model implementation

To validate it on the (non-continual) two-alternative-forced-choice (2AFC) familiarity detection task, we implement the anti-Hebbian
model as described by Bogacz and Brown (Bogacz and Brown, 2003), with the exception that the distribution of weights in the plastic
weight matrix must be normalized such that its variance is equal to (1 /N), rather than unit variance as stated in the paper. In the
encoding phase, the network is presented a sequence of P random patterns. In the testing phase, it is shown the original P patterns,
as well as P novel ones. Ciritically, there are no plastic updates in the testing phase. A stimulus is reported as “familiar” if the output
unit activity is below the mean across all 2P test patterns and “novel” otherwise. We see that this model performs well on the 2AFC
task with a range of plasticity rates 7 (Figure S2A), so we arbitrarily choose n=0.7 to test its performance on the continual task.

The continual task, unlike the 2AFC task, does not have an equal proportion of novel and familiar stimuli since we ensure that a
stimulus is repeated at most once. So, we set the readout threshold such that an item is considered novel if it is in the fi" quantile
of output unit activity for that trial, where f is the fraction of novel stimuli in the trial. This ensures that the fraction of stimuli reported
as “novel” is equal to the true fraction of novel stimuli. In the case of equal proportions of novel and familiar stimuli, this reduces to the
threshold being equal to the mean of the output unit activity for that trial.

Finally, note that unlike in the 2AFC task (Figure S2A), the performance of this model does not go to chance levels for large dataset
sizes T in the continual task (Figure 3D). Rather, the true positive rate goes to zero and the false positive rate is =0.5, so accuracy is =
0.33. The reason for this difference is that the second presentation of a stimulus in the continual task causes an additional plasticity
event, unlike the 2AFC task where the test phase is offline. As a result, for datasets much larger than the network capacity T > P*, the
output unit activity for familiar stimuli becomes larger than the activity for novel stimuli (Figure S2B).

Training FLD and SCC decoders

To construct the Fisher linear discriminant (FLD) and spike count classifier (SCC) decoders, we first generate a dataset of length
T = 1000. To better match the experimental dataset (Meyer and Rust, 2018), we use multiple values of R in this single stream. For
each familiar stimulus, the value of R is drawn uniformly at random from 34 unique values, log-spaced from 1 to 100 (in practice,
the results are qualitatively the same regardless of the number of items, the range, or whether the spacing is linear or logarithmic).
We evaluate the trained network on this dataset and use the firing rates of the hidden layer to perform analyses analogous to those
reported in (Meyer and Rust, 2018).

We compute the readout weight and bias terms for the FLD decoder as
WELD = 271 (Enov _Efam)v b;LD = - WELD'%(Enov + Efam)

where hnoy and him are the average firing rates of the hidden layer for novel and familiar stimuli, respectively, and the mean covari-
ance matrix is calculated as

2"fam + 2nov
2

where 2, and X, are the covariance matrices of the firing rates of the hidden layer for familiar and novel stimuli, respectively. The
SCC decoder is a simple weighted average

s =

WECC = 1 (Enov - Efam)7 bgcc == WSCC 1

N 2

To get the ranking of the units for both decoders, we sort their readout weights and consider the most negative weights as the highest

ranked. Note that for both decoders, the sign of the weights is flipped compared to (Meyer and Rust, 2018), and high-ranked units

have the most negative weights rather than positive. This is due to the fact that we ask the network to label familiar stimulias y(t) = 1,

whereas (Meyer and Rust, 2018) readout a familiar stimulus as y(t) = 0. The two cases are symmetric and this does not change the
results.

(Enov + Efam)
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Simultaneous classification and familiarity detection
IT cortex encodes object identity as well as familiarity (Lehky and Tanaka, 2016; Lueschow et al., 1994). To match this dual function-
ality, we augment familiarity detection with object classification. We first create a large pool of random vectors and randomly assign a
binary label to each one. We then generate a familiarity detection dataset as before, except that each novel input is drawn from this
pool (without replacement) rather than being generated anew. In addition to the scalar readout of familiarity, the network must now
report the class of the stimulus through a second binary output. Critically, both outputs are read out from the same hidden layer
activity.

To train the HebbFF network on the augmented familiarity detection/object classification task, we simply sum the cross-entropy
losses from the classifier and familiarity output units:

T 2
L= 2177_ > Yalt)logy, () + (1 - ya(t)log(1 - y,(t))

For every trial, we draw a new dataset from the pre-generated pool of stimuli. The class of each stimulus remains the same across
datasets, but the ordering and repeats are chosen randomly each time. Although the network will have seen all of the stimuli during
training in order to learn their classes, we can test generalization performance on the familiarity subtask by varying R and generating
previously unseen permutations of the stimuli.

The augmented task could be solved by having all the neurons multiplexed to encode both familiarity and object identity (Meyer
and Rust, 2018). Alternatively, the neurons could split into two subpopulations, one of which detects familiarity and the other clas-
sifies objects (Rutishauser et al., 2015). We find that the HebbFF model converges to this second solution, an even split between
familiarity and classifier units, as evident from inspecting the W matrix (Figure 7E). Consistent with this, the capacity of the classi-
fier-augmented HebbFF with 50 hidden units (Rmax = 13) is approximately the same as the original network with 25 units (Rmax = 14).
In accord with this split, SCC decoder performance peaks in the split-task network when half of the top-ranked units are included
(Figure S5D) because including units responsible for object identity but not familiarity degrades the familiarity readout. The other sim-
ilarities to experimental results discussed in the previous section also hold for the task-augmented network (Figure S5).

Idealized model analytic capacity derivation

For notational simplicity, we only consider the nonzero submatrices of W4 and A(t), each of which acts on its corresponding subset of

the input vector x(t). Thus, equivalently, input layer of the idealized network is a d -dimensional vector split into two parts x(t) =
[xw(t), xa(t)], of dimension n and D respectively (d = n+ D). The firing rate of the hidden layer is given by

h(t) = @(Wixw(t) + A(t)xa(t) + by)

for an Nxn matrix W1, an NxD matrix A(t), and an Nx1 vector by. In other words, the firing rate of the /" hidden unit is

n D
hi(t) = ® (ZVV,‘/X,-(t) + ZAik(t)Xn+k(t) + b) (Equation 1)
j=1 k=1
fori =1, ..., N, where ®( -) is the Heaviside step function, i.e., ®(z) =0 for z<0 and 1 for z> 0. We fix the value of b to be the same for

all i. As before, the elements of x(t) are +1 or —1 with equal probability. We would like to specify the network parameters such that
exactly one hidden neuron is active for a novel stimulus and none for familiar, which will serve as the familiarity readout mechanism.

The Nxn matrix W+ is designed such that the vector W1xw (t) has exactly one maximal entry given any such x(t). Importantly, this
matrix must act like a hash function such that different values of xw (t) result in different entries of W1xw (t) attaining the maximum
value. One such W1 is one whose rows enumerate all of the binary length- n strings consisting of entries +1 and — 1. This sets the
number of rows N to be equal to the total number of such strings, N = 2". To set the overall scale of the input current (the term inside
the nonlinearity), we scale this matrix by a factor K, to be determined later. For example, if n = 3,

[+1 +1 +1]
+1 +1 -1
+1 =1 +1
+1 -1 -1
Wi=Kl_4 11 4
-1 +1 -1
-1 -1 +1
-1 -1 -1
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n
Thus, we have )~ Wjx;(t) = Kn for exactly one value of i, specifically the row where Wj; = x;(t) for allj. This is the unique maximal value
j=1

n
and will correspond to a different row for each instance of xw (t). Subsequently, Y Wjx;(t) =K (n —2) for n values of i, specifically
j=1

those where Wj; #x;(t) for exactly one j, and so on. This structure explains the multi-modal distribution of Wyxw (t) + b1 in Figure 6D
and by extension that of W1x(t) + b4 in Figures 4G-4l.

Assuming that the vector A(t)xa(t) is zero-mean with sufficiently small variance (this will be made rigorous shortly), we can now
choose the scalar offset b such that exactly one element of h(t) is equal to 1 and all others are zero.

The NxD matrix A(t) is updated at every timestep by A(t +1) = 2A(t) — nh(t)xA(t)T, where the plasticity rate n is now restricted to
be positive, corresponding to an anti-Hebbian learning rule. Considering one entry in this matrix and unrolling this recurrence, we
find that

Ai(t+1) =Mt ) 1h; (E)Xn 1 (t)

:At+1A/k nZAt t Xn+k )

= — 7]2 Atit,h,‘(t/)xn+k(t,)
t'=0

where the last equality holds if we assume that the network is in steady-state, so t is large, i.e., t — o, and therefore A‘*‘A,-k(O) — 0.
We can now consider the middle term of Equation 1, which we denote by ¢;(t). We consider it as a random variable and compute its
mean and variance. By definition, we have

D D t—1
&(t) = Z ik (E)Xn 1k () Z(- ﬂzlt - th ()X sk (t ))ka(t)
k=1 1
t—1 : D
= - 772/1!714’7:'({)an+k(t/)xn+k(t) (Equation 2)
=0 k=1

In the case where x(t) is novel, x,.«(t') and x,.(t) are independent Bernoulli random variables that take on values + 1 with prob-
ability 1/2. Thus, Xk (t') =Xn+k(t')Xn 4k (t) is also a Bernoulli random variable with the same distribution, zero mean and unit variance, so

t—1 D
g(t)= — 0> ATUA(E) Y Xi(t)
t=0 k=1
Since the entries of x(t) are independent by definition, the Xi(t') are also independent across k, so summing over these indices, the

D
variances add. Therefore, X(t')= > Xk(t') is a random variable with mean 0 and variance D, and
k=1

g(t) = — nzx h X ()

Next, we need the statistics of the term h;(t'). Since it is a function of the random variable x(t), we also consider it as a random var-
iable. Let fos denote the fraction of stimuli reported as “novel” by the network. Note that there are two ways for a network to report a
stimulus as “novel” — by correctly identifying a novel stimulus (“true negative”), or incorrectly identifying a familiar one (“false nega-
tive”) — so if we let f denote the true fraction of novel input stimuli, we have

feff = PTNf + PFN(1 7f)=(1 7PFp)f + (1 7PTP)(1 7f)

where Py, Pen, Prp and Pgp are the true negative, false negative, true positive, and false positive rates, respectively. Since by design
there is exactly one hidden unit active for a novel stimulus, we have h;(t') =1 with probability % and h;(t') = 0 with probability 1 —
(ferr /N). So, h;(t') is a Bernoulli random variable with mean (fs+ /N) and variance (fes /N)(1 — (ferr /N)). Now, we let H;(t') =
hi(tX(t'), so

t—1
()= — 0 ATH(t)
t'=0

Although h;(t') is, in principle, a function of x(t'), we assume they are independent. Since X(t') is zero-mean, the mean of H;(t') is also
zero. Using the identity var(XY) = var(X)var(Y) +var(X)E2[Y] + var(Y)E2[X], which holds for independent random variables X and Y,
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feffD

we have that the variance of H;(t') is Finally, for convenience we can rewrite this as

/ef‘f Z;{t 1- t’gl t/

where &(t') is a zero-mean, unit-variance random variable. Furthermore, we now see that by the Central Limit Theorem ¢(t) is a
Gaussian random variable since we are considering the steady-state performance at large t, so we can take t — .
We can now compute the mean and variance of (t). First, since x,.«(t) is zero-mean and independent of Aj(t),

To compute the variance,

var(g(t)) = E[e2(t)] — E[e(t)] = E[e2(t)]

/

(iR )]
:[EK \/—Z ><_ \/?Za’””g,t”ﬂ— I WARARE O

t —0 t''=

In general, we have E[5;(t')£;(t")] =1 for t’' =t since ;(t') is a zero-mean, unit-variance random variable. For t' #t", we again make a
simplifying independence assumption. In principle, &(t") is not independent of &;(t') since h;(t") depends on h;(t') for t"> t' through the
memory stored in the A(t) matrix. This dependence, however, is sufficiently weak, so we let E[¢;(t')&;(t")] =0 for t’ #t”. As a result, the
double-sum collapses and we have

—neﬁDZA2t1t, eﬁD‘:_iZt

var(g(t)

where the second equality comes from the standard geometric series. As before, since we are considering the steady-state with t —
«, we have vy —0, so

ferD 1
var(s (1)) = n" "
Thus, for a novel input x(t) we can write
fettD .
(1) = § Equation 3
alt) = &\ s (Eq )

for all i, where £; is a zero-mean, unit-variance Gaussian random variable, since ¢;(t) is Gaussian.
For a familiar stimulus, where x(t) = x(t — R), clearly x,.,«(t') and x,.«(t) are no longer independent for t' = t — R. Thus, we
consider this term separately, rewriting the sum in Equation 2 as

&(t) = Tlﬁt ==Rp mek R)Xp.k(t) — m
t—1 :
Z At - t an+k Xn+k
=0
t'#t-R

Assuming no errors, by design, h;(t —R) =1 for exactly one neuron i, since the stimulus at time t — R was guaranteed to be novel (we
enforce that a stimulus is repeated at most once in this task). We consider the statistics of ;(t) for this particular neuron. In the first
D
term, the sum 3 X,k (t —R)Xn .+« (t) = D since by assumption x,, ..« (t) =X, .« (t —R) for all k. The second term has the same distribution
k=1
as the one for a novel input since we have only removed one term from the sum and tis large. Thus, for a familiar stimulus we can write

fuiD

i(t) = — AR71D+ i —_—
&(t) n &m N )

for exactly one value of i, where &, is a zero-mean, unit-variance random variable as before. For all other values of i, Equation 3 holds.
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Having established the statistics of the hidden layer input currents for a novel and a familiar stimulus, we can now write down the
conditions for the model to work, use them to find the optimal values of the parameters and calculate the true positive and false pos-
itive probabilities, and compute the capacity — the largest value of R for which the error is below a predetermined threshold. First, to
ensure that exactly one unit is active for a novel stimulus (true negative), since we are using a step function nonlinearity, we must have
the largest input current take on a positive value (since &; is an identically distributed standard normal random variable for every
neuron, for simplicity we suppress the index i),

Kn + &n LDz+b>0
N —2%)

and second-largest to be below zero,

)
K(n—2 Tl peo
(n=2)+ i Na =y tbs

Second, to ensure there are no units active for a familiar stimulus (true positive),

feD

N1 —2%)

Kn—nAf'D+&y

For sufficiently large R, i.e., if 77" D<2K,, the third of these conditions implies the second. Since we are interested in maximizing R,
we only consider the first and third conditions. Furthermore, note that these conditions are overparameterized. If we divide all three
equations by 7 (e.g., letk = %7 B = %), we can eliminate this free parameter. In other words, for any value of n we can scale K and b
proportionally to satisfy the conditions, so for simplicity we choose n = 1. Similarly, the term Kn +b can be replaced by a single
parameter since for any choice of K we can rescale b to keep this sum constant. To ensure that the condition nAf~'D<2K holds

for all R, we can choose K = D. For convenience, we also let b= 6D and / (fexD/N(1 — 3?)) = a;D, the subscript indicating explicit
dependence on 1. Dividing both inequalities by D, the conditions simplify to
n+o6+06>0
n+8+wé —AF1<0

The accuracy, i.e., probability of a correct response, is given by Peorrect = (1 —f)Prp + fPry. For convenience, we compute the false
positive instead of the true negative rate, noting that Pry = 1 — Pgp. The false positive and true positive rates are given by

PFP:P|:§<—%:|
R-1
PTp:P[5<fn+'80;A }

Since ¢ is a standard Normal random variable, P[£ <z] = (1 /2)erfc(—z /v/2), so

PFP:%eFfC(n+ﬁ>

0(/1\/5

1 n+ﬁ—AR’1)

Prp = erfc( ————
s 2 ( 0(,1\/5

We would now like to set the optimal values of 1 and 8 which maximize R, given a desired true positive and false positive probability
P:p, P1p. Note that fixing these probabilities also fixes forf = f* = (1 — Pgp)f + (1 — Pyp)(1 —f). Rearranging the previous equations,
we get

n+g _ .
e V2erfc " (2P;,)
_ 3R
% = V2erfc ™ (2P;,)

The first equality sets the value for 8. To determine 4, we substitute § into the second equality to get

R-1

Verfc ' (2P;,) — Aa— =V2erfc " (2P;,)

2
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For notational convenience, let E = \/§[er'fc’1 (2Pp) — erfc™! (2P3p)]. Using the definition of «; and s = f*, we have A =
1 — (f*/a2ND). Rearranging, we have
BR-1

1o VT e
(_aiND)

Assuming N and D are large (so 2 is close to 1), we can use the first-order Taylor expansion exp(—z) =1 — z for the term in parentheses
(this will be necessary to get a closed-form expression for the optimal 1) and solve for R

f* R-1 2NDo? 1
eXp<7W'T) =wE=R=1+ £ In(ﬁ)

Setting (dR /dA) =0 and solving for 1 gives the optimum

A=1/1— (eE?f* /ND)

Thus, the capacity of the optimized network is
ND
eE2f
where f* and E are constants that depend on Pz, and Py, (f* also depends on the true fraction of novel stimuli f). For instance, if we
impose that Pz, =0.01 and P3, = 0.99, with our value of f = (2 /3), we get
ND
e-2-[erfc™" (2P;,) — erfc ™" (2P5)]% - [(1 = Pip)f + (1= Pip)(1 1)
ND
+2e[‘| 645 — (—1.645)]°[0.98f + 0.01]

N 0.017ND
0.98f + 0.01

Rmax = 1+

Rpax=1+

=1 =1+0.026ND
It is clear that that the capacity scales in proportion to the number of plastic synapses in the network. Furthermore, sinced = n+ D,
i.e., D = d — log 2(N), the capacity scales in proportion to the total number of synapses d, as long as D>>n.

Rimax = O(ND) = O(N(d —n)) = O(Nd — NlogN))) = O(Nd)

Finally, note that the equations for Pep and Prp are a function of fs due to the «; parameter, and therefore recursively depend on Pgp
and Prp. We cannot compute the closed-form solution for these, but we can approximate the values with arbitrary accuracy by iter-
ating through this recurrence until convergence to the fixed point. As the initial value for the recurrence, we use Prp and Prp computed
using fesr = f, i.e., assuming no errors.

CNN preprocessing for familiarity detection of images

We consider the dataset used by Brady et al. (2008) to study familiarity detection in humans. As a stand-in for the processing done by
the visual stream before the inferotemporal or perirhinal cortices, we use a pre-trained convolutional neural network (CNN), and
extract the activity in its penultimate layer (before the final classification step). We use the ResNet18 network (He et al., 2015),
although any CNN could, in principle, be used (see also Kazanovich and Borisyuk, 2021). This activity is a 512 -dimensional vector,
which, if used as the HebbFF input dimension d, would lead to the capacity Rmax being prohibitively large for training purposes. To
keep the performance in a reasonable range, we downsample to d = 50, either by partial sampling (Figure 8A) or by introducing an
intermediate layer (Figure S6A). We use the uniform readout W, for simplicity of training and analysis, although the results are similar
for the unconstrained readout.

As the first method of downsampling, we truncate the output of the CNN (Figure 8A). To keep the same input datatype as in pre-
vious sections, we also shift the inputs to zero mean and binarize them by taking the sign of each input component (Figure 8B). Unlike
in previous sections, however, the inputs to HebbFF now have correlations that tend to be positive (Figure 8C). Nevertheless, this
network has qualitatively similar features as the networks trained on uncorrelated vectors. The W1 matrix has a similar structure (Fig-
ures 4F and 8D), the hidden layer activity is sparse (Figures 4C and 8E), and the hidden unit input current distributions have similar
shapes (Figures 41, 4J, 4M, 7B, and 8F-8l). Due to the added correlations, however, there is a decline in performance compared to a
network of the same size trained and evaluated on uncorrelated binary random vectors (Figure 8J).

As another way to downsample, we add a trainable linear layer that transforms the CNN output to a 50 -dimensional real-valued
vector (Figure S6A). After training, the resulting inputs to HebbFF are no longer binary, but they are zero-mean (Figure S6B) and have
zero-mean correlations Figure S6C). Interestingly, the network learns to generate this representation automatically to optimize
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familiarity detection over long intervals, which further supports storing uncorrelated stimuli. Although the W1 matrix (Figure S6D) and
the distribution of input currents from the fixed component of the synapses (Figure S6F) have a different structure compared to the
original network, the operating principle remains the same: the W1 matrix acts as a addressing function to select a unique neuron in
the hidden layer (Figure S6E) that is then suppressed for a familiar stimulus through the A(t) matrix (Figures S6G and S6H). The
network maintains its generalization performance across repeat intervals R, and across permutations of the sequence of images (Fig-
ure S6J). However, it does not generalize well to images it has not been trained on. It is possible that this difficulty is due to the rela-
tively small number of images used during training and may be addressed by using a much larger dataset such as ImageNet (Deng
et al., 2009).
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