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We prove small data modified scattering for the Vlasov–Poisson system in dimension

d = 3, using a method inspired from dispersive analysis. In particular, we identify a

simple asymptotic dynamics related to the scattering mass.

1 Introduction

1.1 The Vlasov–Poisson system

We consider the Vlasov–Poisson system for a density function f : R3
x × R

3
v × Rt → R+:

⎧⎪⎪⎨
⎪⎪⎩

(
∂t + v · ∇x

)
f − q∇xφ · ∇vf = 0, q = ±1,

−�xφ(x, t) = ∫
R3 f (x, v, t)dv,

f (t = 0, x, v) = f0(x, v).

(1.1)

This model is relevant in plasma physics (usually for q = 1) and in astrophysics (for

q = −1); we refer to [7, 15] for more background. In dimension d = 3, solutions to (1.1)

are global in time under rather mild assumptions [14, 19], but a complete understanding

of their asymptotic behavior is still elusive. In the case of small data [1] provide decay
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8866 A. D. Ionescu et al.

estimates, and modified scattering was established in [4]. Recently, these works have

been revisited from different point of views [9, 20, 23, 24] with varying improvements.

The relationship between kinetic and dispersive equations, particularly the

Schrödinger equation is classical, see e.g. Section 1.2 of [13] for a compelling pre-

sentation. A quantum analog of the Vlasov–Poisson system is the Hartree equation,

which can be analyzed effectively using dispersive tools [12]. In this paper, we want

to adapt classical methods from dispersive equations to recover a simple proof of

small data/modified scattering for (1.1) based on energy estimates and convergence in

a weaker norm. In particular, this allows to clarify the role of some of the assumptions

and to isolate a particularly simple asymptotic dynamic. We hope that this framework

will be useful when considering coupling of kinetic equations and other (particularly

dispersive) equations (see [21, 22] for examples of such problems).

1.2 Main result

Assuming that the initial density is a nonnegative function f ≥ 0 (as opposed to a

measure), by the transport nature of (1.1) this condition is propagated along the flow.

We may thus introduce μ = √
f and consider the more symmetric equation

(
∂t + v · ∇x

)
μ − q∇xφ · ∇vμ = 0, −�xφ =

∫
R3

μ2dv. (1.2)

Our main result can thus be stated as follows:

Theorem 1.1. There exists ε∗ > 0 such that for any 0 < ε0 ≤ ε∗, the following holds: if

μ0 is a smooth initial data such that

E(μ0) := ‖xμ0‖L2
x,v

+ ‖μ0‖H3
x,v

≤ ε0 (1.3)

then there exists a unique solution to (1.2), which is global and scatters. This solution

satisfies

‖γ (t)‖L∞
v L2

x
+ ‖γ (t)‖L2

vH3
x

� ε0, E(γ (t)) � ε0 ln3〈t〉(ln〈ln〈t〉〉)6, 〈t〉 =
√

16 + t2,

where γ (x, v, t) = μ(x + tv, v, t). In addition, letting

m∞(v) := lim
t→∞ ‖μ(·, −v, t)‖2

L2
x
, Ẽ(v) := 1

4π

∫
R3

ζ

|ζ |3 m∞(ζ − v)dζ ,
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Asymptotic Behavior of Solutions to the Vlasov–Poisson System 8867

we have modified scattering to a new density function

μ(x + tv + q ln(t)Ẽ(v), v, t) → γ∞(x, v) in L∞
v L2

x ∩ H1
x,v. (1.4)

A few remarks are in order:

Remark 1.2.

(1) The main novelty of our theorem lies in the limited assumptions on the

initial data and the explicit form of the asymptotic behavior (1.4). We feel

however that the importance of this paper lies in the simplicity and versatil-

ity in the method developed. In addition it clarifies the relevance of various

controls (velocity moments and vector fields seem less relevant, regularity

in v seems central). We refer to [5, 18] for subsequent developments based

on the present methodology.

(2) Under our assumptions without velocity moments, classical large data

global existence [14, 19] do not apply. In particular, our solutions can have

infinite physical momentum and energy.

(3) Our assumptions on the initial data are weaker than in most recent works

[20, 23]. Although they are distinct from the ones in [1, 4], our assumptions

have the scale advantage of requiring three derivatives only in L2 rather than

two in L∞, and do not require compact support. This is related to the fact

that we rely on energy estimates rather than transport bounds that naturally

give pointwise bounds without appealing to Sobolev inequality.

(4) If one considers measure initial data (in particular monokinetic initial data),

the asymptotic behavior can be radically different, thus some amount of

regularity is needed.

(5) Moving from the density f to μ = √
f has several advantages: (1) it

automatically accounts for the nonnegativity of the density, (2) it allows

us to separate further our functions from Dirac masses (the natural space

is now μ ∈ L2
x,v as opposed to f ∈ L1

x,v), (3) it makes the analogy with

cubic dispersive problems (in particular Hartree) more transparent. To take

advantage of the Sobolev scale, one might want to work on μ̃ = f 1/2p, p ≥ 2.

However, smoothness of μ̃ then carries nontrivial implications for f .

(6) In our setting, we consider solutions that are perturbations of the vacuum

since by density we may assume that μ0 ∈ C∞
c (R3

x × R
3
v). There are other

natural equilibria with nondecaying density (e.g. BGK solutions [3]). The
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8868 A. D. Ionescu et al.

analysis of their perturbations is related to the study of the Landau

damping, see [2, 16, 17] and relies on different ideas.

(7) It is remarkable that one only gets logarithmic growth of the energy E(γ ).

In addition, for 1 derivative, one obtains optimal growth in the sense that

the upper and lower growth rates are equal up to a multiplicative constant

(the upper bound in (3.4) is obtained via the sharp decay of ∇φ, whereas the

logarithmic lower bound derives from the logarithmic correction in (1.4) and

the convergence in H1
x,v—see also Section 4 for more intuition).

(8) The methods presented here have broad application for kinetic equations,

however, in general, e.g. for relativistic models, we expect that control

on velocity moments would be necessary. Indeed the change of variable

associated to dispersion (see (2.7)) would involve losses in v (see [23]).

1.3 Method

Our method extends a series of works on the asymptotic description of small data

solutions for dispersive and related equations [6, 8, 10–12], which couple energy

estimates with a refined scattering analysis in a weaker norm, here

‖μ‖Z := ‖μ‖L∞
v L2

x
, (1.5)

which is associated to conservation laws of the resonant/asymptotic system. In par-

ticular, one can observe that this norm is invariant both for the free streaming and

for the modified scattering flow. The key technical properties we require of this Z-

norm are (1) that it is weak enough so as to remain uniformly bounded throughout the

nonlinear evolution and (2) that it is strong enough to provide optimal decay for the

main unknown. Our analysis then proceeds over a few steps.

We obtain refined dispersive estimates involving the (minimal) Z-norm. This

corresponds to requirement (2) above and is done in Lemma 2.1 below. It can be thought

as an analog of similar estimates for the Schrödinger evolution and is a good “proof of

concept” for the definition of the Z-norm. As for the Hartree equation, the critical step

is however to bound a quartic expression, which appears in Subsection 3.3.

Addressing (1) above, it turns out that for (1.2), it is relatively easy to obtain a

uniform bound on the Z-norm and convergence of the scattering mass

mt(v) :=
∫
R3

μ2(x, v, t)dx → m∞(v). (1.6)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/12/8865/6330941 by Princeton U
niversity Library user on 03 July 2022



Asymptotic Behavior of Solutions to the Vlasov–Poisson System 8869

The scattering mass controls how much mass is “seen” by a frame advected by

free streaming and controls the asymptotic dynamics. In particular, it allows to define

the effective electric field and characteristics

dX

dt
= V,

dV

dt
= − q

t2 Ẽ(V), Ẽ(ζ ) := ∇ζ (−�−1
ζ )m∞,

from which modified scattering follows.

Commuting (1.2) with the corresponding moment or derivative operators, one

sees in (3.7) that the energy estimates separate into simple estimates that do not require

very sharp bounds and are less related to decay on the one hand (Subsection 3.2)

and energy estimates for the velocity regularity, which require sharp control on the

unknowns and provide the “fuel” for the decay (which is obtained by trading regularity

in v) in Subsection 3.3.

This paper is organized as follows: in Section 2 we introduce our notations and

some estimates to control the electric field. The global existence part of Theorem 1.1

is proved through a bootstrap in Section 3. Finally in Section 4, we obtain the modified

scattering.

2 Notations and Preliminary Estimates

In the following, since all our functions are evaluated at t, we have suppressed the

explicit dependence in t of the functions γ , φ. To be more thrifty in v derivatives, we will

introduce Littlewood–Paley projectors for v-regularity: for ϕ a typical Littlewood–Paley

bump function and C ∈ 2Z a dyadic integer, we define

Pv
C = F−1

θ→vϕ(C−1θ)Fv→θ . (2.1)

Recall Bernstein’s estimates and other properties of the Littlewood–Paley projectors:

‖Pv
Cf ‖L∞

v L2
x

� C
3
2 ‖Pv

Cf ‖L2
x,v

,

‖∇vPv
Cf ‖L2

x,v

 C‖Pv

Cf ‖L2
x,v

,

‖f ‖2
L2

x,v



∑
C

‖Pv
Cf ‖2

L2
x,v

.
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8870 A. D. Ionescu et al.

As an application, we can observe that the Z-norm defined in (1.5) is bounded by the

energy:

‖h‖Z � ‖h‖L2
xL∞

v
� ‖h‖L2

xH2
v
,

‖∇vhC‖Z � min{C‖h‖Z, C− 1
2 ‖h‖L2

xH3
v
}, ‖∇vh‖Z � ‖h‖

2
3

L2
xH3

v
‖h‖

1
3
Z ,

where we have written hC = Pv
Ch with notations from (2.1). Besides, using that

hM(a,
x − a

t
) − hM(a,

x

t
) =

∫ 1

θ=0

aj

t
∂vjhM(a,

x

t
− θ

a

t
)dθ

we obtain after summing over M,

‖h(a,
x − a

t
) − h(a,

x

t
)‖L2

aL∞
x

�
∑
M

min{t−1M
5
2 ‖xγ ‖L2

x,v
, M− 1

2 ‖γ ‖L2
xH2

v
}

� t− 1
6

{
‖h‖L2

xH2
v

+ ‖xh‖L2
x,v

}
. (2.2)

Because of bounds like (2.2), it turns out that our estimates are more simply stated using

a variation of the Z-norm:

‖f ‖Z′ := ‖f ‖Z + 〈t〉− 1
100

{
‖f ‖H2

x,v
+ ‖xf ‖L2

x,v

}
.

For the proof of our multilinear estimates we will use the representation

1

|x|p = cp(χ)

∫ ∞

R=0
R−pχ(R−1|x|)dR

R
, (2.3)

valid for some χ ∈ S and p > 0.

2.1 Dispersive estimates

We now study the decay properties of a particle density distribution h under the linear

flow of (1.2).

Lemma 2.1. For any x ∈ R
3, there holds that

0 ≤ ρ[h](x, t) :=
∫
R3

h2(x − tv, v)dv � 〈t〉−3 ‖h‖2
Z′ ,
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Asymptotic Behavior of Solutions to the Vlasov–Poisson System 8871

and

‖∇xφ[h](x, t)‖L∞
x

� 〈t〉−2[‖h‖2
Z′ + ‖h‖2

L2
x,v

], −�φ[h] = ρ[h]. (2.4)

Moreover,

∥∥∂α
x ∇xφ[h](x, t)

∥∥
L∞

x
� 〈t〉−2−|α| ‖h‖2

L2
xH |α|+1

v
, |α| ≤ 2, (2.5)

∥∥∂α
x ∇xφ[h](x, t)

∥∥
L2

x
� 〈t〉− 1

2 −|α| ‖h‖2
L2

xH |α|
v

, |α| ≥ 2. (2.6)

Proof of Lemma 2.1. Assume without loss of generality that t ≥ 1. We change variables

and rewrite

ρ[h](x, t) =
∫
R3

h(x − tv, v)2dv = t−3
∫
R3

h2(a,
x − a

t
)da = t−3

∫
R3

h2(a,
x

t
)da + J(x, t),

J(x, t) := t−3
∫
R3

{
h2(a,

x − a

t
) − h2(a,

x

t
)

}
da. (2.7)

The principal part can be directly bounded in terms of the Z norm,

∫
R3

h2(a,
x

t
)da ≤ ‖h‖2

Z ,

so it suffices to show the decay of J. To this end we observe that

|J(x, t)| ≤ t−3‖h‖L2
xL∞

v
‖h(a,

x − a

t
) − h(a,

x

t
)‖L2

a
� t−3− 1

10 ‖h‖2
Z′ , (2.8)

where in the last inequality we used (2.2).

The second inequality uses similar ideas. Using (2.3), we can decompose

∇φ[h](x, t) = 1

4π

∫ ∞

R=0

dR

R2

∫∫
R

3
y,u

∇y

{
ϕ(R−1|x − y|)

}
h2(y − tu, u)dydu =:

∫ ∞

R=0
�R(x, t)

dR

R2 .

(2.9)

On the one hand, we see that

|∂α
x �R(x, t)| � R−1−|α|

∫∫
R

3
y,u

h2(y − tu, u)dydu � R−1−|α|‖h‖2
L2

x,v
, (2.10)
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which is good enough for large R ≥ t. On the other hand, for small R we have

�R(x, t) =
∫∫

R
3
z,u

∇z

{
ϕ(R−1|z|)

}
h2(x − z − tu, u)dzdu

= t−3
∫∫

R
3
z,a

∇z

{
ϕ(R−1|z|)

}
h2(a,

x − z − a

t
)dzda.

Taking derivatives, we see that

∂α
x �R(x, t) = t−3−|α| ∑

|α1|+|α2|=|α|, |α1|≤|α2|
cα1,α2

�
α1,α2
R (x, t),

�
α1,α2
R (x, t) :=

∫∫
R

3
z,a

∇z

{
ϕ(R−1|z|)

}
∂α1

v h(a,
x − z − a

t
)∂α2

v h(a,
x − z − a

t
)dzda. (2.11)

If |α| = 0, we estimate, with (2.2),

|�0,0
R | � ‖∇zϕ(R−1|z|)‖L1

z
‖h(a,

x − z − a

t
)‖L∞

z L2
a
‖h(a,

x − z − a

t
)‖L∞

z L2
a

� R2‖h‖2
Z′ ,

while if |α| ≥ 1, using Hölder’s inequality, we find that

|�α1,α2
R | � ‖∇zϕ(R−1|z|)‖

L
6
5
z

‖∂α1
v h(a,

x − z − a

t
)‖L∞

z L2
a
‖∂α2

v h(a,
x − z − a

t
)‖L6

zL2
a

� R
3
2 t

1
2 ‖h‖

L2
xH

|α1|+2
v

‖h‖
L2

xH
|α2|+1
v

.

Integrating the above bounds for R ≤ t and (2.10) for R ≥ t in (2.5), we obtain (2.4) and

(2.9). Finally, for |α| ≥ 2, we estimate the electric field in L2. For R ≥ t it suffices to note

that

∥∥∂α
x �R(x, t)

∥∥
L2

x
�

∥∥∥∥∥
∫∫

R
3
y,u

∂α
x ∇y

{
ϕ(R−1|x − y|)

}
h2(y − tu, u)dydu

∥∥∥∥∥
L2

x

� R−|α|+ 1
2 ‖h‖2

L2
x,v

.

For t ≤ R we use Hölder and Sobolev inequalities in (2.11) to find (for 2/pj = |αj|/|α|) that

∣∣�α1,α2
R (x, t)

∣∣ � t−|α|−3‖∇z

{
ϕ(R−1|z|)

}
‖L2

z
‖∂α1

v h(a,
z

t
)‖L2

aL
p1
z

‖∂α2
v h(a,

z

t
)‖L2

aL
p2
z

� t−|α|− 3
2 R

1
2 ‖h‖2

L2
xH |α|

v
,
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while estimating in L1
x yields

∥∥∂α
x �R(x, t)

∥∥
L1

x
� t−|α|

∥∥∥∇z

{
ϕ(R−1|z|)

}∥∥∥
L1

x

‖h‖2
L2

xH |α|
v

� t−|α|R2 ‖h‖2
L2

xH |α|
v

.

By interpolation it thus follows that

∥∥∂α
x �R(x, t)

∥∥
L2

x
� t−|α|− 3

4 R
5
4 ‖h‖2

L2
xH |α|

v
,

and hence

∥∥∂α
x ∇xφ(t, x)

∥∥
L2 �

∫ ∞

0
min{t−|α|− 3

4 R
5
4 , R−|α|+ 1

2 }dR

R2 · ‖h‖2
L2

xH |α|
v

� t−|α|− 1
2 ‖h‖2

L2
xH |α|

v
.

�

Remark 2.2. It is important to have a sharp control on the Electric field as in (2.4).

The first bound on ρ is here essentially for motivation to help clarify the relationship

with the Schrödinger equation. The decomposition (2.7) with (2.8) is one of the main

motivations for the definition of the Z-norm. It can be compared to Fraunhoffer’s

inequality for the Schrödinger flow:

(
e−it�f

)
(x) = e−i |x|2

4t

(2π it)
d
2

f̂ (− x

2t
) + OL∞(t− d

2 − 1
4 )

valid whenever f ∈ S, which, when considering uniform estimates, leads to the natural

definition for NLS, ‖f ‖Z = ‖̂f ‖L∞ , see [6, 12].

3 Nonlinear Analysis I: Bootstrap of the Norms

We first integrate the linear flow and define

γ (x, v, t) := μ(x + tv, v, t), ρ(x, t) :=
∫
R3

μ2(x, v, t)dv =
∫
R3

γ 2(x − tv, v, t)dv,

and we obtain the new equation

∂tγ (x, v) = q∇xφ(x + tv) · {∇v − t∇x

}
γ (x, v), −�xφ = ρ. (3.1)

We can now state our main bootstrap proposition from which global existence

and boundedness easily follow.
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Proposition 3.1. Let δ > 0 be a fixed small constant. There exists ε∗ > 0 such that for

all 0 < ε0 ≤ ε ≤ ε∗, the following holds. Assume that γ solves (3.1) on 0 ≤ t ≤ T, with

initial data μ0 satisfying (1.3) and obeys the bound

‖γ ‖L2
x,v

≤ ε,

‖γ ‖Z + ‖γ ‖L2
vH3

x
≤ ε,

‖γ ‖L2
xH3

v
+ ‖xγ ‖L2

x,v
≤ ε〈t〉δ, (3.2)

then there holds that

‖∇xφ‖L∞
x

≤ C1〈t〉−2ε2,

‖∂α
x ∇xφ‖L∞

x
≤ C1〈t〉−2−|α|+2δε2, 1 ≤ |α| ≤ 2,

‖∂α
x ∇xφ‖L2

x
≤ C1〈t〉− 1

2 −|α|+2δε2, 2 ≤ |α| ≤ 3, (3.3)

and

‖γ ‖L2
x,v

≤ ε0,

‖γ ‖Z + ∥∥∇xγ
∥∥

Z + ‖γ ‖L2
vH3

x
≤ ε0 + C2ε3,

‖γ ‖L2
xH1

v
+ ‖xγ ‖L2

x,v
≤ ε0 + C2ε3 ln〈t〉,

‖γ ‖
L2

xH |α|
v

≤ ε0 + C2ε
5
2 (ln〈t〉)|α| · (ln〈ln〈t〉〉)2|α|, 2 ≤ |α| ≤ 3 (3.4)

for some universal constant C1, C2 = C2(δ). In addition, the scattering mass defined in

(1.6) converges uniformly to a limit m∞(v) ∈ L1
v ∩ L∞

v , and

‖mt − m∞‖L∞
v

� ε3〈t〉− 1
2 . (3.5)

Lemma 2.1 gives (3.3). The first norm in (3.4) is trivially controlled by conser-

vation laws (see (3.8) below). We give the bounds for the Z norms in Subsection 3.1.

Subsections 3.2 and 3.3 then demonstrates the energy estimates, including the most

delicate terms: derivatives in velocity.

Remark 3.2 (Regarding the growth rates of derivatives in v). We have made some effort

to obtain almost sharp bounds in the v derivative; a slightly simpler analysis would have

allowed to propagate slow polynomial growth. For one v derivative, (3.4) gives the sharp
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growth rate ln(t), whereas for two or three derivatives there is an additional factor

of (ln(ln(t)))p. An inspection of the proof shows that if one were to propagate higher

regularity in v, this loss could be relegated to higher orders of derivatives in v.

3.1 Propagation of the Z-norm

We can directly compute that, for fixed v ∈ R
3,

1

2

d

dt

∫
γ 2dx = q

∫
R3

∇xφ(x + tv)γ (x, v)∇vγ (x, v)dx + q
t

2

∫
R3

�xφ(x + tv)γ 2(x, v)dx

from which we deduce that

|‖γ (t)‖2
Z − ‖γ0‖2

Z| �
∫ t

s=0
‖∇xφ(s)‖L∞

x
‖γ (s)‖Z‖∇vγ (s)‖Zds +

∫ t

s=0
s‖�φ(s)‖L∞‖γ (s)‖2

Zds.

Using (3.3), this leads to the bound of the Z norm in (3.4) and to (3.5).

3.1.1 Higher order Z-norm

We can even control higher regularity in Z. Using (3.7), we see that

1

2

d

dt

∫
R

3
x

(∂xjγ )2dx=q
∫
R

3
x

∇xφ(x + tv)∂xjγ∇v∂xjγ dx + t

2

∫
R

3
x

�xφ(x + tv)(∂xjγ )2dx

+ q
∫
R

3
x

∇x∂xjφ(x + tv)·∇vγ ·∂xjγ dx−qt
∫
R

3
x

∇x∂xjφ(x + tv)·∇xγ ·∂xjγ dx.

All but the first terms can be controlled as before. The first term requires a little more

work since it contains 2 derivatives; however, we can still integrate the x-derivative

by parts to move it to a more favorable position. To decide when to do it, we use the

Littlewood–Paley decomposition (2.1) to decompose

∫
R3

∇xφ(x + tv)∂xjγ∇v∂xjγ dx =
( ∑

C1>C2

+
∑

C1≤C2

) ∫
R3

∇xφ(x + tv)∂xjγC1
∇v∂xjγC2

dx,
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where on the one hand we estimate

∣∣∣∣∣∣
∑

C1>C2

∫
R3

∇xφ(x + tv)∂xjγC1
∇v∂xjγC2

dx

∣∣∣∣∣∣ �
∑

C1>C2

∥∥∇xφ
∥∥

L∞
∥∥∂xjγC1

∥∥
L∞

v L2
x

∥∥∇v∂xjγC2

∥∥
L∞

v L2
x

�
∥∥∇xφ

∥∥
L∞

∑
C1>C2

C
3
2
1

∥∥∂xjγC1

∥∥
L2

x,v
C

1+ 3
2

2

∥∥∂xjγC2

∥∥
L2

x,v

�
∥∥∇xφ

∥∥
L∞

∑
C1>C2

(
C2

C1

) 1
2

C2
1

∥∥∂xjγC1

∥∥
L2

x,v
C2

2

∥∥∂xjγC2

∥∥
L2

x,v
�

∥∥∇xφ
∥∥

L∞ ‖γ ‖2
H1

x H2
v

. (3.6)

To control the second sum, we integrate by parts in x to get, when C1 ≤ C2:

∫
R3

∇xφ(x + tv)∂xjγC1
∇v∂xjγC2

dx

= −
∫
R3

∂xj∇xφ(x + tv)∂xjγC1
∇vγC2

dx −
∫
R3

∇xφ(x + tv)∂2
xjγC1

· ∇vγC2
dx.

The first term leads to a simple sum as before:

∣∣∣∣∣∣
∑

C1≤C2

∫
R3

∂xj∇xφ(x + tv)∂xjγC1
∇vγC2

dx

∣∣∣∣∣∣ �
∥∥∂xj∇xφ

∥∥
L∞ ‖γ ‖H1

x H2
v
‖γ ‖L2

xH3
v

,

and we can sum the last term as in (3.6) to get

∣∣∣∣∣∣
∑

C1≤C2

∫
R3

∇xφ(x + tv)∂2
xjγC1

∇vγC2
dx

∣∣∣∣∣∣ �
∑

C1≤C2

∥∥∇xφ
∥∥

L∞
∥∥∥∂2

xjγC1

∥∥∥
L∞

v L2
x

∥∥∇vγC2

∥∥
L∞

v L2
x

�
∥∥∇xφ

∥∥
L∞

∑
C1≤C2

(
C1

C2

) 1
2

C1

∥∥∥∂2
xjγC1

∥∥∥
L2

x,v
C3

2

∥∥γC2

∥∥
L2

x,v
�

∥∥∇xφ
∥∥

L∞ ‖γ ‖H2
x H1

v
‖γ ‖L2

xH3
v

.

Combining the estimates with (3.3), we obtain a control of ∇xγ in Z as in (3.4).
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3.2 Energy Estimates I: simpler energies

We can do energy estimates based on L2
x,v norm. Considering directly (3.1) and deriving

with respect to x, we find that (for γxj = ∂xjγ and γvj = ∂vjγ )

∂t

{
xjγ

}
− q∇xφ(x + tv) · {∇v − t∇x

} {
xjγ

}
= qt∂jφ(x + tv) · γ ,

∂tγxj − q∇xφ(x + tv) · {∇v − t∇x

}
γxj = q∇x∂xjφ(x + tv) · {∇v − t∇x

}
γ ,

∂tγvj − q∇xφ(x + tv) · {∇v − t∇x

}
γvj = qt∇x∂xjφ(x + tv) · {∇v − t∇x

}
γ . (3.7)

We can use this to control the rest of the norms in (3.4). Note that since

divx,v(V) = 0, V(x, v) = (−t∇xφ(x + tv, t), ∇xφ(x + tv)) ∈ R
3
x × R

3
v (3.8)

the left-hand side is conservative and hence only the right-hand side contributes to

changes in L2
x,v norms.

3.2.1 Position

We deduce from (3.7) that

d

dt
‖xγ ‖2

L2
x,v

� t‖∇xφ‖L∞
x

‖γ ‖L2‖xγ ‖L2 .

Using (3.2)-(3.3) and Grönwall, we obtain that

‖xγ (t)‖L2
x,v

≤ ‖xγ0‖L2
x,v

+ Cε2‖γ ‖L2
x,v

ln t,

which leads to the control of xγ in (3.4).

3.2.2 Spatial regularity

Commuting again (3.7), we see that for 1 ≤ |α| ≤ 2

1

2

d

dt
‖∂α

x γ ‖2
L2 = q

∑
β1+β2=α, |β2|<|α|

∫∫
∇x∂

β1
x φ(x + tv) · {∇v − t∇x

}
∂

β2
x γ · ∂α

x γ

�
∑

β1+β2=α, |β2|<|α|
‖∇|β1|+1

x φ‖L∞
x

{
‖∇v∂

β2
x γ ‖L2

x,v
+ t‖∇x∂

β2
x γ ‖L2

x,v

}
‖∂α

x γ ‖L2
x,v

.

Using (3.2)-(3.3) and Grönwall’s Lemma, this remains bounded. The same estimates also

work for |α| = 3 as long as
∣∣β1

∣∣ < 3. If
∣∣β1

∣∣ = 3 (and thus α = β1, β2 = 0) we estimate via
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(2.6) to obtain

∣∣∣∣
∫∫

∇x∂α
x φ(x + tv) · {∇v − t∇x

}
γ · ∂α

x γ

∣∣∣∣ �
∥∥∇x∂α

x φ
∥∥

L2
x
(
∥∥∇vγ

∥∥
L∞

x L2
v

+ t
∥∥∇xγ

∥∥
L∞

x L2
v
)
∥∥∂α

x γ
∥∥

L2
x,v

,

which is bounded by the bootstrap assumptions (3.2)-(3.3).

3.3 Energy Estimates II: velocity regularity

Finally, the most difficult term comes from the v derivative in (3.7) and its higher order

versions:

1

2

d

dt
‖∂α

v γ ‖2
L2 = q

∑
β1+β2=α
|β2|<|α|

∫∫
R

3
x,v

∇x∂
β1
v φ(x + tv) · ∂

β2
v ∇vγ (x, v) · ∂α

v γ (x, v)dxdv

− q
∑

β1+β2=α
|β2|<|α|

t
∫∫

R
3
x,v

∇x∂
β1
v φ(x + tv) · ∂

β2
v ∇xγ (x, v) · ∂α

v γ (x, v)dxdv. (3.9)

We treat the first term in (3.9) using (3.3): If |α| ≤ 2 we can directly estimate each

summand

∣∣∣∣∣
∫∫

R
3
x,v

∇x∂
β1
v φ(x + tv) · ∂

β2
v ∇vγ (x, v) · ∂α

v γ (x, v)dxdv

∣∣∣∣∣ � t|β1|
∥∥∥∂

β1
x ∇xφ

∥∥∥
L∞

x

‖γ ‖2
L2

xH |α|
v

� ε2〈t〉2δ−2 ‖γ ‖2
L2

xH |α|
v

,

and this also works when |α| = 3 and derivatives split: |β1|, |β2| ≤ 2. Finally, if all

derivatives fall on ∇xφ we change variables

I =
∫∫

R
3
x,v

∇x∂α
v φ(x + tv) · ∇vγ (x, v) · ∂α

v γ (x, v)dxdv

= t|α|−3
∫∫

R
3
x,a

∇x∂α
x φ(x) · ∇vγ (a,

x − a

t
) · ∂α

v γ (a,
x − a

t
)dxda

and therefore, using (2.2) and (3.3),

|I| � t|α|−3‖∇x∂α
x φ‖L2

x
‖∂α

v γ (a,
x − a

t
)‖L2

x,a
‖∇vγ (a,

x − a

t
)‖L∞

x L2
a

� t|α|− 3
2

∥∥∇x∂α
x φ

∥∥
L2

x

∥∥∇vγ
∥∥

Z′ ‖γ ‖L2
xH3

v
� ε2〈t〉2δ−2 ‖γ ‖2

L2
xH3

v
.
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Asymptotic Behavior of Solutions to the Vlasov–Poisson System 8879

The same considerations allow to control the second term in (3.9) when

0 ≤ t ≤ 100. For t ≥ 100, due to the extra factor t and the slow growth of ‖γ ‖L2
xH3

v
,

more care is needed. We let

Iβ1,β2
:=

∑
β1+β2=α
|β2|<|α|

t
∫∫

R
3
x,v

∇x∂
β1
v φ(x + tv) · ∂

β2
v ∇xγ (x, v) · ∂α

v γ (x, v)dxdv.

Case |α| = 1. Here we necessarily have β1 = α. Using that ‖∇xγ ‖Z is uniformly bounded,

we can then proceed as follows: We recognize that Iα,0 can be written as (identifying an

operator and its kernel)

Iα,0 = t2
∫∫

R3
γ (y − tu, u)γ (y − tu, u)Mjk(x − y)∂xjγ (x − tv, v)∂vkγ (x − tv, v)dxdydudv,

Mjk = (−�)−1∂j∂k = RjRk.

Now changing variables, we can rewrite this as

Iα,0 = t−4
∫∫

R3

{
γ (a,

y − a

t
)γ (a,

y − a

t
)

}
Mjk(x − y)

{
∂xjγ (b,

x − b

t
)∂vkγ (b,

x − b

t
)

}
dadbdxdy.

Since Mjk is bounded as a map L2 → L2, using (2.2), we see that

|Iα,0| � t−4‖γ (a,
y − a

t
)γ (a,

y − a

t
)‖L2

yL1
a
‖∂xjγ (b,

x − b

t
)∂vkγ (b,

x − b

t
)‖L2

xL1
b

� t−1‖γ ‖Z′ ‖∇xγ ‖Z′ ‖γ ‖L2
x,v

‖∇vγ ‖L2
x,v

,

and using (3.2) and integrating, we find the bound in (3.4).

Case |α| ≥ 2. For higher |α|, we use (2.3) to decompose

Iβ1,β2
= t|β1|+1

∫ ∞

R=0
Iβ1,β2
R

dR

R2

Iβ1,β2
R =

∫∫
R3

γ (y − tu, u)γ (y − tu, u)∂
β1
x ∂xj

{
χ(R−1|x − y|)

}
· ∂xj∂

β2
v γ (x − tv, v)∂α

v γ (x − tv, v)dxdydudv.
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And we claim that, for t ≥ 100,

|Iβ1,β2
R | � R−1−|β1|ε2

[
(ln t)2|α|−1ε2 + (ln t)−1‖γ ‖2

L2
xH |α|

v

]
,

|Iβ1,β2
R | � R2t−3−|β1|(t/R)

1
2

[
ε2‖γ ‖2

L2
xH |α|

v
+ ε‖γ ‖3

L2
xH |α|

v

]
, R ≤ t,

|Iβ1,β2
R | �δ Rt−2−|β1|ε2

[
(ln t)2|α|−1(ln ln t)4|α|−1ε

3
2 + (ln t · ln ln t)−1‖γ ‖2

L2
xH |α|

v

]
. (3.10)

We can combine these bounds and Grönwall estimate to obtain the last energy bounds

in (3.4). We integrate the first bound for R ≥ t, the second for 0 ≤ R ≤ t/(ln t)100 and the

last for t/(ln t)100 ≤ R ≤ t, to get

d

dt
‖γ ‖2

L2
xH |α|

v
� ε4t−1(ln t)2α + ε2

t ln t
‖γ ‖2

L2
xH |α|

v
+ ε

t(ln t)50 ‖γ ‖3
L2

xH |α|
v

+ ε
7
2 t−1(ln t)2|α|−1(ln ln(t))4|α|

which lead to (3.4).

To get the first bound in (3.10), we use a crude estimate

|Iβ1,β2
R | � R−1−|β1|‖γ ‖2

L2
x,v

‖∂x∂
β2
v γ ‖L2

x,v
‖∂α

v γ ‖L2
x,v

� R−1−|β1|‖γ ‖2
L2

x,v
‖γ ‖1+ |β2|

|α|
L2

xH |α|
v

‖γ ‖
|β1|
|α|

L2
vH

|α|
|β1|

x

� R−1−|β1|ε2+ |β1|
|α| ‖γ ‖1+ |β2|

|α|
L2

xH |α|
v

and using convexity, this gives the first estimate in (3.10).

On the other hand, we can change variables and integrate by parts to get

Iβ1,β2
R = t−6

∫∫
R3

γ (a,
y − a

t
)γ (a,

y − a

t
)∂

β1
x ∂xj

{
χ(R−1|x − y|)

}

· ∂xj∂
β2
v γ (b,

x − b

t
)∂α

v γ (b,
x − b

t
)dxdydadb

= t−6−|β1| ∑
θ1+θ2=β1, θ1≤θ2

cθ1,θ2
Iθ1,θ2,β2
R ,

Iθ1,θ2,β2
R :=

∫∫
R3

∂θ1
v γ (a,

y − a

t
)∂θ2

v γ (a,
y − a

t
)∂xj

{
χ(R−1|z|)

}

· ∂xj∂
β2
v γ (b,

z + y − b

t
)∂α

v γ (b,
z + y − b

t
)dzdydadb.
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In case θ1 = β2 = 0, θ2 = β1 = α, we see that

|I0,α,0
R | � R2t3‖γ ‖Z′ ‖∂xγ ‖Z′ ‖∂α

v γ ‖2
L2

x,v
� R2t3ε2‖∂α

v γ ‖2
L2

x,v
.

In case θ1 = 0, θ2 = β1, β2 �= 0, Hölder’s inequality gives

|I0,θ2,β2
R | � R−1‖γ (a,

y − a

t
)‖L∞

y L2
a
‖∂θ2

v γ (a,
y − a

t
)‖L6

yL2
a
‖(∇χ)(R−1|x − y|)‖

L
6
5
y

× ‖∂xj∂
β2
v γ (b,

x − b

t
)‖L2

x,b
‖∂α

v γ (b,
x − b

t
)‖L2

x,b

� R−1‖γ ‖Z′ · t
1
2 ‖γ ‖

L2
xH

|β1|+1
v

· R
5
2 · t3 · ‖∇x∂

β2
v γ ‖L2

x,v
‖∂α

v γ ‖L2
x,v

� R2t3(t/R)
1
2 · ‖γ ‖Z′ · ‖γ ‖1+ |β1|+1

|α| + |β2|
|α|

L2
xH |α|

v
‖γ ‖1− 1

|α|
L2

xH |α|
x

� R2t3(t/R)
1
2 · ε

2− 1
|α| ‖γ ‖2+ 1

|α|
L2

xH |α|
v

while if β2 = 0, θ1 �= 0, we proceed similarly

|Iθ1,θ2,0
R | � R−1‖∂θ1

v γ (a,
y − z − a

t
)‖L2

y,a
‖∂θ2

v γ (a,
y − z − a

t
)‖L6

zL2
a
‖(∇χ)(R−1|z|)‖

L
6
5
z

× ‖∇xγ (b,
y − b

t
)‖L∞

y L2
b
‖∂α

v γ (b,
y − b

t
)‖L2

y,b

� R2t3(t/R)
1
2 · ε

2− 1
|α| ‖γ ‖2+ 1

|α|
L2

xH |α|
v

.

Finally, if θ1 �= 0, β2 �= 0, then |α| = 3 and we obtain

|Iθ1,θ2,β2
R | � R2‖∂vγ (a,

y − a

t
)‖2

L6
yL2

a
‖∂xj∂vγ (b,

z + y − b

t
)‖L6

yL2
b
‖∂α

v γ (b,
z + y − b

t
)‖L2

y,b

� R2t3‖γ ‖2
L2

xH2
v
‖γ ‖H1

x H2
v
‖γ ‖L2

xH3
v

� R2t3ε‖γ ‖3
L2

xH3
v
.

We now obtain improved bounds in the regime R ∼ t. In this case, we leave one

additional derivative on the kernel to get

Iβ1,β2
R = t−5−|β1| ∑

θ1+θ2+θ3=β1, θ1≤θ2

cθ1,θ2,θ3
Iθ1,θ2,θ3,β2
R ,

Iθ1,θ2,θ3,β2
R =

∫∫
R3

∂θ1
v γ (a,

y − a

t
)∂θ2

v γ (a,
y − a

t
)∂

θ3
x ∂xi

{
χ(R−1|x − y|)

}

· ∂xj∂
β2
v γ (b,

x − b

t
)∂α

v γ (b,
x − b

t
)dxdydadb
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with |θ3| = 1, |θ1| + |θ2| + |θ3| + |β2| = |α|. If |θ1| = |θ2| = 0, we can directly compute

|I0,0,θ3,β2
R | � R‖γ ‖2

Z′ ‖γ ‖H1
x H |α|−1

v
‖γ ‖L2

xH |α|
v

� Rε2‖γ ‖H1
x H |α|−1

v
‖γ ‖L2

xH |α|
v

.

If |θ1| = |β2| = 0, then we can proceed similarly

|I0,θ2,θ3,0
R | � R‖γ ‖Z′ ‖∇xγ ‖Z′ ‖γ ‖L2

xH |α|−1
v

‖γ ‖L2
xH |α|

v
� Rε2‖γ ‖H1

x H |α|−1
v

‖γ ‖L2
xH |α|

v
.

Finally, if θ2 �= 0, β2 �= 0, |α| = 3, |θ1| = 0 and we decompose in Littlewood–Paley pieces:

I0,θ2,θ3,β2
R =

∑
C1,C2

I0,θ2,θ3,β2
R,C1,C2

,

I0,θ2,θ3,β2
R,C1,C2

:=
∫∫

R3
γ (a,

y − a

t
)∂θ2

v γC1
(a,

y − a

t
)∂

θ3
x ∂xi

{
χ(R−1|x − y|)

}

· ∂xj∂
β2
v γC2

(b,
x − b

t
)∂α

v γ (b,
x − b

t
)dxdydadb.

In case min{C1, C2} ≤ 1, the derivative is favorable and one can proceed as above. From

now on, we may assume that the sums are over dyadic C1, C2 ≥ 1. Proceeding as above,

we can bound

|I0,θ2,θ3,β2
R,C1,C2

| � Rt3‖γ ‖Z′ ‖γ ‖L2
xH |α|

v
· min{C−1

2 ‖∂vγC1
(a,

y − a

t
)‖L∞

y L2
a
‖γ ‖H1

x H2
v

,

C1C2‖γC1
‖L2

x,v
‖∇xγ ‖Z′ }

using that

‖∂vγC(a,
y − a

t
)‖L∞

y L2
a

� min{C‖γ ‖Z′ , C− 3
2 ‖γ ‖L2

xH3
v
} � min{Cε, C− 3

2 ‖γ ‖L2
xH3

v
}

‖γC‖L2
x,v

� min{‖γ ‖L2
x,v

, C−3‖γ ‖L2
xH3

v
} � min{ε, C−3‖γ ‖L2

xH3
v
}
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and summing the bounds above and using interpolation, one finds that

∑
C1≤C2

|I0,θ2,θ3,β2
R,C1,C2

| � Rt3ε‖γ ‖L2
xH |α|

v
‖γ ‖H1

x H2
v

∑
C1

min{ε, C
− 1

2
1 ‖γ ‖L2

xH3
v
}

� Rt3ε
7
3 ‖γ ‖

5
3

L2
xH |α|

v
ln〈‖γ ‖L2

xH |α|
v

〉,
∑

C2<C1

|I0,θ2,θ3,β2
R,C1,C2

| � Rt3ε2‖γ ‖L2
xH |α|

v

∑
C1

min{εC2
1, C−1

1 ‖γ ‖L2
xH3

v
}

In total, this gives, for any δ > 0,

|I0,θ2,θ3,β2
R | � Rt3ε2

{
1

ln〈t〉 · ln〈ln〈t〉〉‖γ ‖2
L2

xH |α|
v

+ ε
3
2 (ln〈t〉)5(ln〈ln〈t〉〉)11

}
,

which leads to an acceptable contribution in (3.4)

4 Nonlinear Analysis II: Asymptotic Flow and Strong Convergence

Once we have isolated the scattering mass in (1.6), we can simplify the dynamics along

rays by studying the electric field ∇xφ. We compute

∇xφ(x + tv) = − 1

4π

∫∫
R3

x + tv − y

|x + tv − y|3 γ 2(y − tu, u)dudy

= 1

4π

1

t3

∫∫
R3

z

|z|3 γ 2(a,
x − a + z

t
+ v)dadz.

When x remains in a bounded set, the main contribution to the electric field will come

from

Emain(v, t) := 1

4π

1

t3

∫∫
R3

z

|z|3 γ 2(a,
z

t
+ v)dadz = 1

4π

1

t2

∫
R3

ζ

|ζ |3 mt(ζ − v)dζ .

This expression only involves the scattering mass that converges. We thus define

Ẽ(v) := 1

4π

∫
R3

ζ

|ζ |3 m∞(ζ − v)dζ .

Note that m∞ ∈ L1 ∩ L∞, so that Ẽ(v) is well defined and Emain = t−2Ẽ + o(t−2). Inspired

by the model characteristics of

∂tf (x, v, t) = qE(v, t) · {∇v − t∇x

}
f (x, v, t)
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we define for t ≥ 1,

σ(x, v, t) = γ (X, v, t), X := x + q ln(t)Ẽ(v). (4.1)

Proposition 4.1. Let γ (x, v, t) be a global solution of (3.1) as in Proposition 3.1. Then

with X, σ as in (4.1) there exists σ∞(x, v) ∈ Z ∩ H1
x,v such that

∥∥σ(x, v, t) − σ∞(x, v)
∥∥

Z∩H1
x,v

� ε3t− 1
200 .

Proof. In the following, we may assume t ≥ 100. From (4.1) we compute that

∂xjσ = ∂xjγ , ∂vjσ = ∂vjγ + q ln(t)∂vj Ẽk∂xkγ , ∂tσ = ∂tγ + q

t
Ẽp∂xpγ ,

from which we obtain the equation

∂tσ(x, v) = q∂xkφ(X + tv)(∂vkγ )(X, v) + q
{

1

t
Ẽp − t∂xpφ(X + vt)

}
· ∂xpγ (X, v). (4.2)

We claim that this is integrable in time in both Z and H1
x,v.

We start with the first term in (4.2). For 1 ≤ j, k ≤ 3, we compute

∥∥∂xkφ(X + tv)(∂vkγ )(X, v)
∥∥

Z � ‖∇φ‖L∞
∥∥∇vγ

∥∥
Z ,∥∥∂xj [∂xkφ(X + tv)(∂vkγ )(X, v)]

∥∥
L2

x,v
�

∥∥∂xj∇φ
∥∥

L∞ ‖γ ‖L2
xH1

v
+ ‖∇φ‖L∞ ‖γ ‖H1

x H1
v

,

∥∥∂vj [∂xkφ(X + tv)(∂vkγ )(X, v)]
∥∥

L2
x,v

� t
∥∥∂xj∇φ

∥∥
L∞ ‖γ ‖L2

xH1
v

+ ‖∇φ‖L∞ ‖γ ‖L2
xH2

v

+ ln(t) ‖∇φ‖L∞ ‖∇vẼ(v)‖L4

∥∥∇vγ
∥∥

H1
x L4

v
.

By boundedness of the Riesz transform, we see that

∂vj Ẽk(v) = RjRkm̃∞ ∈ Lp, 1 < p < ∞, m̃∞(x) = m∞(−x)
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so together with the bounds (3.4) on γ and the decay (3.3) of ∇φ, time integrability of the

first term follows. For the second term in (4.2) we compute that

DE := 1

t
Ẽp − t∂xpφ(X + vt) = 1

t
∇(−�)−1 {

M1 + M2 + M3

}
,

M1(ζ ) := m∞(ζ ) − mt(ζ ), M2(ζ ) :=
∫
R3

{
γ 2(a, ζ ) − γ 2(a, ζ − a

t
)
}

da

M3(ζ ) :=
∫
R3

{
γ 2(a, ζ − a

t
) − γ 2(a, ζ + X − a

t
)

}
da.

We will often use the convolution structure. Sobolev inequality directly gives that

1

t
‖∇(−�)−1Mj‖L∞

x
� t−1‖Mj‖L2∩L4 .

This allows to bound the contribution of M1 using (3.5). We can treat M2 similarly since

‖1{|a|≥t
1
2 }

{
γ 2(a, ζ ) − γ 2(a, ζ − a

t
)
}

‖L1
ζ ,a

� t− 1
2 ‖γ ‖L2

x,v
‖xγ ‖L2

x,v
� t− 1

3 ε2,

‖1{|a|≤t
1
2 }

{
γ 2(a, ζ ) − γ 2(a, ζ − a

t
)
}

‖L1
ζ ,a

� t− 1
2 ‖γ ‖L2

x,v
‖∇vγ ‖L2

x,v
� t− 1

3 ε2,

‖γ 2(a, ζ ) − γ 2(a, ζ − a

t
)‖L∞

ζ L1
a

� ‖γ ‖2
H2

x,v
� ε2t2δ

For M3, we observe the bounds

‖γ 2(a, ζ − a

t
) − γ 2(a, ζ + X − a

t
)‖L1

ζ ,a
� t−1|X|‖γ ‖L2

x,v
‖∇vγ ‖L2

x,v
� tδ−1|X|ε2,

‖γ 2(a, ζ − a

t
) − γ 2(a, ζ + X − a

t
)‖L1

ζ ,a
� ‖γ ‖2

L2
x,v

� ε2,

‖γ 2(a, ζ − a

t
) − γ 2(a, ζ + X − a

t
)‖L∞

ζ L1
a

� ‖γ ‖2
Z′ � ε2

These bounds are enough to control the Z-norm. Indeed, we see that

‖1

t
∇(−�)−1Mj · ∂xpγ (X, v)‖Z � ‖1

t
∇(−�)−1Mj‖L∞‖∂xpγ (X, v)‖Z
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and we can use this when j = 1, 2, while for M3, we use that

‖1

t
∇(−�)−1M3 · ∂xpγ (X, v)‖Z � ‖1

t
∇(−�)−1M3 · 1{|X|≤t

1
6 }∂xpγ (X, v)‖Z

+ ‖1

t
∇(−�)−1M3 · 1{|X|≥t

1
6 }∂xpγ (X, v)‖Z

� ε2t−1− 1
20 ‖∂xpγ (X, v)‖Z + ε2t−1− 1

100 ‖|x| 1
8 ∇xγ ‖Z

and again, this gives an acceptable contribution using (4.3) below. The control of L2
vH1

x

is similar since

∂xk

{{
1

t
Ẽp − t∂xpφ(X + vt)

}
· ∂xpγ (X, v)

}

= 1

t

∑
j

∂xp(−�)−1Mj · ∂xp∂xkγ (X, v) − t∂2
xpxkφ(X + tv)∂xpγ (X, v)

with a new term that can be treated as follows:

t‖∇2φ(X + tv)∇xγ (X, v)‖L2
x,v

� t‖∇2φ‖L∞‖∇xγ ‖L2
x,v

� tδ−2ε3.

Finally, the control of L2
xH1

v follows along similar lines, but requires a little more

care. Indeed

∂vk

{{
1

t
Ẽp − t∂xpφ(X + vt)

}
· ∂xpγ (X, v)

}

= 1

t

∑
j

∂xp(−�)−1Mj · ∂xp∂vkγ (X, v) + ln t

t
∇(−�)−1Mj · ∂xp∂x�γ (X, v) · ∂vk Ẽ�

+ 1

t

∑
j

∂xp∂xk(−�)−1Mj · ∂xp∂vkγ (X, v)

The last term is slightly singular. We can use the boundedness of the Riesz transform

to control

‖∂xp∂xk(−�)−1Mj · ∂xp∂vkγ (X, v)‖L2
x,v

� ‖Mj‖L4
v
‖∂xp∂vkγ (X, v)‖L4

vL2
x
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and this is enough for M1, M2, and for M3, we use the same decomposition to get

‖∂xp∂xk(−�)−1M3 · ∂xp∂vkγ (X, v)‖
L2

x,v{|X|≤t
1
10 } � ε2t− 1

100 ‖∂xp∂vkγ (X, v)‖L4
vL2

x

‖∂xp∂xk(−�)−1M3 · ∂xp∂vkγ (X, v)‖
L2

x,v{|X|≥t
1
10 } � ‖M3‖L6

v
‖∂xp∂vkγ (X, v)‖

L3
vL2

x{|X|≥t
1

10 }

and we can bound the last term with (4.3).

To finish the proof, it suffices to show that

‖|x| 1
8 ∇xγ ‖Z + ‖|x| 1

8 ∇x,vγ ‖L2
x,v

� ‖|x| 1
8 γ ‖

H1
x H

13
8

v

� ‖xγ ‖L2 + ‖γ ‖H3
x,v

� εtδ. (4.3)

The first inequality follows from Sobolev embedding; the second inequality follows

directly if γ is supported on {|x| ≤ 1} or is localized at small frequencies in x or in

v; in the other cases, we introduce a Littlewood–Paley decomposition as in (2.1) in x (Px
A)

and in v (Pv
B) to get

‖|x| 1
8 1{|x|∼R}Px

APv
Bγ ‖

H1
x H

13
8

v

� R
1
8 AB

13
8 ‖1{|x|∼R}Px

APv
Bγ ‖L2

x,v

� R
1
8 AB

13
8 min{R−1, A−3, B−3} ·

[
‖xγ ‖L2

x,v
+ ‖γ ‖H3

x,v

]

and we can sum this over dyadic A, B, R � 1. �
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