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We prove small data modified scattering for the Vlasov-Poisson system in dimension
d = 3, using a method inspired from dispersive analysis. In particular, we identify a

simple asymptotic dynamics related to the scattering mass.

1 Introduction
1.1 The Vlasov-Poisson system

We consider the Vlasov-Poisson system for a density function f : RS x R3 x R, — R,:

(3t+V-VX)f—qVX¢-VVf=O, qg==l1,
—Ap(x, 1) = [pa f(x, v, DAV, (1.1)
ft=0,x,v)=fxv).

This model is relevant in plasma physics (usually for g = 1) and in astrophysics (for
q = —1); we refer to [7, 15] for more background. In dimension d = 3, solutions to (1.1)
are global in time under rather mild assumptions [14, 19], but a complete understanding

of their asymptotic behavior is still elusive. In the case of small data [1] provide decay
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estimates, and modified scattering was established in [4]. Recently, these works have
been revisited from different point of views [9, 20, 23, 24] with varying improvements.
The relationship between kinetic and dispersive equations, particularly the
Schrodinger equation is classical, see e.g. Section 1.2 of [13] for a compelling pre-
sentation. A quantum analog of the Vlasov-Poisson system is the Hartree equation,
which can be analyzed effectively using dispersive tools [12]. In this paper, we want
to adapt classical methods from dispersive equations to recover a simple proof of
small data/modified scattering for (1.1) based on energy estimates and convergence in
a weaker norm. In particular, this allows to clarify the role of some of the assumptions
and to isolate a particularly simple asymptotic dynamic. We hope that this framework
will be useful when considering coupling of kinetic equations and other (particularly

dispersive) equations (see [21, 22] for examples of such problems).

1.2 Main result

Assuming that the initial density is a nonnegative function f > 0 (as opposed to a
measure), by the transport nature of (1.1) this condition is propagated along the flow.

We may thus introduce u = \/f and consider the more symmetric equation

(at +v- VX) w—qVyp-V,u=0, —Ap = /3 w?dv. (1.2)
R
Our main result can thus be stated as follows:

Theorem 1.1. There exists ¢* > 0 such that for any 0 < ¢; < ¢*, the following holds: if

Mg is a smooth initial data such that

E1g) = Ixnoliz, + ol < & (1.3)

then there exists a unique solution to (1.2), which is global and scatters. This solution

satisfies
1y ®llgogz + 1y Ollzgs S €00 E@ @) < g @)Anfdn(t))®, (1) = V16 + 2,
where y(x,v,t) = u(x + tv, v, t). In addition, letting

1 N M L/ £ _
moo(v) o tli}g ”/1'( ’ v, t)”L)%' E(V) o 47_[ R3 |§|3 moo(§ V)dé‘r
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we have modified scattering to a new density function

wx+tv+qln(®EW),v,t) — Yoo(X, V) in L3°L§ N H;IV. (1.4)

A few remarks are in order:

Remark 1.2.

(1)

(2)

(3)

(4)

(5)

(6)

The main novelty of our theorem lies in the limited assumptions on the
initial data and the explicit form of the asymptotic behavior (1.4). We feel
however that the importance of this paper lies in the simplicity and versatil-
ity in the method developed. In addition it clarifies the relevance of various
controls (velocity moments and vector fields seem less relevant, regularity
in v seems central). We refer to [5, 18] for subsequent developments based
on the present methodology.

Under our assumptions without velocity moments, classical large data
global existence [14, 19] do not apply. In particular, our solutions can have
infinite physical momentum and energy.

Our assumptions on the initial data are weaker than in most recent works
[20, 23]. Although they are distinct from the ones in [1, 4], our assumptions
have the scale advantage of requiring three derivatives only in L? rather than
two in L*°, and do not require compact support. This is related to the fact
that we rely on energy estimates rather than transport bounds that naturally
give pointwise bounds without appealing to Sobolev inequality.

If one considers measure initial data (in particular monokinetic initial data),
the asymptotic behavior can be radically different, thus some amount of
regularity is needed.

Moving from the density f to u = \/f has several advantages: (1) it
automatically accounts for the nonnegativity of the density, (2) it allows

us to separate further our functions from Dirac masses (the natural space

2

is now u € L,

as opposed to f € L;V), (3) it makes the analogy with
cubic dispersive problems (in particular Hartree) more transparent. To take
advantage of the Sobolev scale, one might want to work on i = f/?P, p > 2.
However, smoothness of & then carries nontrivial implications for f.

In our setting, we consider solutions that are perturbations of the vacuum
since by density we may assume that i, € CP(RS x R3). There are other

natural equilibria with nondecaying density (e.g. BGK solutions [3]). The
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analysis of their perturbations is related to the study of the Landau
damping, see [2, 16, 17] and relies on different ideas.

(7) It is remarkable that one only gets logarithmic growth of the energy £(y).
In addition, for 1 derivative, one obtains optimal growth in the sense that
the upper and lower growth rates are equal up to a multiplicative constant
(the upper bound in (3.4) is obtained via the sharp decay of V¢, whereas the
logarithmic lower bound derives from the logarithmic correction in (1.4) and
the convergence in H; ,—see also Section 4 for more intuition).

(8) The methods presented here have broad application for kinetic equations,
however, in general, e.g. for relativistic models, we expect that control
on velocity moments would be necessary. Indeed the change of variable

associated to dispersion (see (2.7)) would involve losses in v (see [23]).

1.3 Method

Our method extends a series of works on the asymptotic description of small data
solutions for dispersive and related equations [6, 8, 10-12], which couple energy

estimates with a refined scattering analysis in a weaker norm, here

el = el ez (1.5)

which is associated to conservation laws of the resonant/asymptotic system. In par-
ticular, one can observe that this norm is invariant both for the free streaming and
for the modified scattering flow. The key technical properties we require of this Z-
norm are (1) that it is weak enough so as to remain uniformly bounded throughout the
nonlinear evolution and (2) that it is strong enough to provide optimal decay for the
main unknown. Our analysis then proceeds over a few steps.

We obtain refined dispersive estimates involving the (minimal) Z-norm. This
corresponds to requirement (2) above and is done in Lemma 2.1 below. It can be thought
as an analog of similar estimates for the Schrédinger evolution and is a good “proof of
concept” for the definition of the Z-norm. As for the Hartree equation, the critical step
is however to bound a quartic expression, which appears in Subsection 3.3.

Addressing (1) above, it turns out that for (1.2), it is relatively easy to obtain a

uniform bound on the Z-norm and convergence of the scattering mass

m(v) = /R3 w?(x, v, t)dx — my, (V). (1.6)
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The scattering mass controls how much mass is “seen” by a frame advected by
free streaming and controls the asymptotic dynamics. In particular, it allows to define

the effective electric field and characteristics

X _y AV gy Be) = V.(—A-Hm
dt ~ ' dt = t? ' €)= Ve (28 )Mo,

from which modified scattering follows.

Commuting (1.2) with the corresponding moment or derivative operators, one
sees in (3.7) that the energy estimates separate into simple estimates that do not require
very sharp bounds and are less related to decay on the one hand (Subsection 3.2)
and energy estimates for the velocity regularity, which require sharp control on the
unknowns and provide the “fuel” for the decay (which is obtained by trading regularity
in v) in Subsection 3.3.

This paper is organized as follows: in Section 2 we introduce our notations and
some estimates to control the electric field. The global existence part of Theorem 1.1
is proved through a bootstrap in Section 3. Finally in Section 4, we obtain the modified

scattering.

2 Notations and Preliminary Estimates

In the following, since all our functions are evaluated at t, we have suppressed the
explicit dependence in t of the functions y, ¢. To be more thrifty in v derivatives, we will
introduce Littlewood—-Paley projectors for v-regularity: for ¢ a typical Littlewood—Paley

bump function and C € 2% a dyadic integer, we define
v =F, L 9(CrOF, . (2.1)
Recall Bernstein's estimates and other properties of the Littlewood-Paley projectors:

3
4 < 2 \%4
IPEf sz S C7IPEf Nz,
IV, PEf Iz, ~ CIIPEF Iz .

2 NZ PV 2
Vi, = 2 IPE iz,
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As an application, we can observe that the Z-norm defined in (1.5) is bounded by the
energy:

1Rl < 1Bl < IRlzge,

. it 2 1
IVihellz S min{Cllhllz, CT2 Rl 23}, IVRIZ S IIhIIE}%Hg Ay,
where we have written h, = P;h with notations from (2.1). Besides, using that

x—a x 1 gl x a
—_—) — —) = —0.; — —60-—)db
hM(al : ) hM(a, t) /9 : 8VJhM(ar : t)d

we obtain after summing over M,

X—a

h:
lh(a, —

X . _ 5 _1
)= h@ Dz S D min{e M2 xy g M2yl z42)
M
1
<tb {||h||L§H5 + ||Xh||L§V}. (2.2)

Because of bounds like (2.2), it turns out that our estimates are more simply stated using

a variation of the Z-norm:

IFlz = 1Nz + &7 {IFllz, + IxFllz, | -

For the proof of our multilinear estimates we will use the representation

1 o dR
2 b, (R 1xh 22 _
o cp(x)/R:OR xR x)—, (2.3)

valid for some y € S and p > 0.

2.1 Dispersive estimates

We now study the decay properties of a particle density distribution h under the linear
flow of (1.2).

Lemma 2.1. For any x € R3, there holds that

0 < ppy(x, 1) :=/ h%(x — tv, v)dv < (t)_3 ||h||§,,
R3
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and
IV, Dl S O2URIG +1RIZ 1 —Adpy = op- (2.4)
Moreover,
0% Vidp O] 1o S 02NN, i Tl <2, (2.5)
_1_
0% Ve . )| 2 < (&) 27N IRIZ, oy, el = 2. (2.6)

Proof of Lemma 2.1. Assume without loss of generality that ¢ > 1. We change variables

and rewrite
2 -3 2, X—4a -3 2, X
P (X, 1) =/ h(x—tv,v)*’dv=t / h“(a,——)da=t / h“(a,—)da +J(x,1),
R3 R3 t R3 t
J(x, 1) = t—3/ [hz(a,x;a) —hz(a,’f)] da. (2.7)
R3 t t
The principal part can be directly bounded in terms of the Z norm,
n*a, 5)da < kI3,
R3 t
so it suffices to show the decay of J. To this end we observe that
_ X—a X _a_ 1
D) < 172 Rl g lh@, =——=) = h@, Dz S 2710 1Al (2.8)

where in the last inequality we used (2.2).

The second inequality uses similar ideas. Using (2.3), we can decompose

> dR o dR

1
Vo (x,H) = E/R—oﬁ//u@ v, {(p(R_1|X—y|)}h2(y— tu, wdydu = /R_O Pr(x, 027
- y.u =

(2.9)

On the one hand, we see that

108 Pp(x, 1) S R //3 h?(y — tu,wydydu SR R|2, (2.10)
Ry,u 'X,V
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which is good enough for large R > t. On the other hand, for small R we have

Dp(x,t) = // <p(R |z|)} h?(x — z — tu, wdzdu

—¢3 // v, {(p(R—1|z|)}h2(a,’ﬂ)dzda.
RSq t

Taking derivatives, we see that

e DR(x,t) =t 3l > Coy oy PR (X, 1),

oy,02
lar|+loz|=lal, Jorg [ <|ez]

X—z—a X—zZ—a
“1 *2(x,t) _// <p(R |z|)} aglh(a,f)a,‘j‘zh(a, f)dzda. (2.11)
If |a| = 0, we estimate, with (2.2),
_ X—z—a X—z—a
|<1>?q'0| S IV,eR 1|z|)||L;||h(a, f)lngoLgllh(a, f)lngoLg < Rzllhllgr,

while if || > 1, using Hélder's inequality, we find that

_ X—z—a X—z—a
PR S IV,0 B 2D g 195 hl@, —— ) lpzepg 15 h(@, —— ) lygpg

3 1

S Rzt? ||h|| e ||h|| ploalt1-

Integrating the above bounds for R < t and (2.10) for R > ¢ in (2.5), we obtain (2.4) and
(2.9). Finally, for |a| > 2, we estimate the electric field in L?. For R > t it suffices to note
that

[0 Pr(x D] 2 S

// y e @ x -y} W2y — tw wdydu| S RTE A2,

L

For t < R we use Holder and Sobolev inequalities in (2.11) to find (for 2/p; = |o;|/|a]) that

—lo|— _ z V4
[0 2, )] S 1700, fo @ 2D 5208 h@, Dl 1082 R(@, Dl e

_3 1
SR RN,
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while estimating in L. yields

- -1 2
g @rce vy < 7| v, fo@2D} | I g S € R R
By interpolation it thus follows that
|02 @g(x, 1), < t474RE I,
and hence
t, tle-3R3, Rllts AR <tz
|0 Vo ( X)HL2N mm{ }—2 l ||L2H\a| l ||L2H|a\

Remark 2.2. It is important to have a sharp control on the Electric field as in (2.4).
The first bound on p is here essentially for motivation to help clarify the relationship
with the Schrodinger equation. The decomposition (2.7) with (2.8) is one of the main
motivations for the definition of the Z-norm. It can be compared to Fraunhoffer's

inequality for the Schréodinger flow:

2 \x\z

(e7™F) G0 = S F(— 2+ Opu(t™57H)
(2rit)?

valid whenever f € S, which, when considering uniform estimates, leads to the natural
definition for NLS, | f|l, = II?IILOO, see [6, 12].

3 Nonlinear Analysis I: Bootstrap of the Norms

We first integrate the linear flow and define
y(x,v,t) = ux+tv,v,t), pkxt) .= /RS ,uz(X, v, t)dv = /}R3 )/Z(X —tv, v, t)dv,
and we obtain the new equation
dyx,v) =qVyp(x+tv) - {V, —tV,}y(x,v), —A,¢=0p. (3.1)

We can now state our main bootstrap proposition from which global existence

and boundedness easily follow.
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Proposition 3.1. Let§ > 0 be a fixed small constant. There exists ¢* > 0 such that for
all 0 < g < ¢ < ¢*, the following holds. Assume that y solves (3.1) on 0 < ¢t < T, with

initial data p satisfying (1.3) and obeys the bound

Iyl <e

Ivliz + 1y llzps <&

17 lzee + %7 Iz, < e(t)’, (3.2)
then there holds that

IVl < Cy (1) %62,

198 Vypllpee < Cy(6) 7271422 1 <ja| <2,
188V, pll,2 < Cy ()21 Be2, 2 <a] <3, (3.3)
and
”V”LJZW = &os

Iyllz + [ Ver ], + Iy lz2ms < &+ Cye3,
Iy llz2ms + 1x7llzz, < €0 + Cp¢° Infz),

17 lzpger < 80+ Coe2(n(e)™ - An(ney)?l,  2<lel<3  (34)

for some universal constant C;,C, = C,(8). In addition, the scattering mass defined in

(1.6) converges uniformly to a limit m. (v) € LL N L, and
1
I, = mo e S €772 (3.5)

Lemma 2.1 gives (3.3). The first norm in (3.4) is trivially controlled by conser-
vation laws (see (3.8) below). We give the bounds for the Z norms in Subsection 3.1.
Subsections 3.2 and 3.3 then demonstrates the energy estimates, including the most

delicate terms: derivatives in velocity.

Remark 3.2 (Regarding the growth rates of derivatives in v). We have made some effort
to obtain almost sharp bounds in the v derivative; a slightly simpler analysis would have

allowed to propagate slow polynomial growth. For one v derivative, (3.4) gives the sharp
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growth rate In(¢), whereas for two or three derivatives there is an additional factor
of (In(In(¢)))P. An inspection of the proof shows that if one were to propagate higher

regularity in v, this loss could be relegated to higher orders of derivatives in v.

3.1 Propagation of the Z-norm
We can directly compute that, for fixed v € R3,

1d

L i 2
yedx =q V.o +tv)yx, v)V,y(x, v)dx+q Ap(x+tv)y“(x,v)dx
2 dt R3 2 R3

from which we deduce that

t

t
@ = 15131 S | 198Ol Iy @1V, r @ lds + [ slag© Iy ©)lds.

Using (3.3), this leads to the bound of the Z norm in (3.4) and to (3.5).

3.1.1 Higher order Z-norm

We can even control higher regularity in Z. Using (3.7), we see that

t
Zdt/ (Byiy) dx= q/ Vi G+ 1),y V, gy dx + E/M Ay (x + V) (3yy) dx

+ q/IR3 V0, (X +tv)-V,y -0,y dx—qt/R3 V, 09 (x +tv)-Vyy -0 ydx.

All but the first terms can be controlled as before. The first term requires a little more
work since it contains 2 derivatives; however, we can still integrate the x-derivative
by parts to move it to a more favorable position. To decide when to do it, we use the

Littlewood—-Paley decomposition (2.1) to decompose

/]R3 V¢ (x +tv)d, ¥V, 0 ydx = ( Z Z )/ Vi (X + tv)dyive, Vi 0yi Ve, X,

C1>Cy C1<Cy
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where on the one hand we estimate

z /R3 Vi (x+ tV)aXfVCl VvaxfyCz dx 5 z ”VX¢||L°° ” aX”/C1 ”L3°L§ ” VVaxfycz ||L3°L§

C1>Cy C1>Cy

3
SIVetllpe 2 € lowre g, €
C1>Co

143
vy,

1
C\ 2
S} HVX(]b”Loo Z (C_f) C% ” anycl “wa Cg ” anyCZ ”L)Z:,v S ||VX¢||L°° ”y”?{;H‘% :
C1>Cy

To control the second sum, we integrate by parts in x to get, when C; < Cy:

/]R \ Vi@ (X + tv)dyive, Vi Oy Ve, dX

= — /RS i V® (X + tV)yive, Vi ve, dx — /}R3 V,p(x+ tv)a)ijc1 -Vyve, dx.

The first term leads to a simple sum as before:

> /R 0 Vxd ( + 10057, Ve, dx| S [0 Va | oo 1 Iz 17 gz -
C1=Cy

and we can sum the last term as in (3.6) to get

[Vore, |

> / Vb V)05 ve, Vore,dx| S D | Vil |0 ve,
C1<Cy R3 C1=C;

o\t
SIvelie 3 (8) @

C1=C2

LP12

2
dvey

2 Calveliz, S IVx0lo 17 lze 17 1z -

Combining the estimates with (3.3), we obtain a control of V,y in Z as in (3.4).
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Asymptotic Behavior of Solutions to the Vlasov-Poisson System 8877
3.2 Energy Estimates I: simpler energies
We can do energy estimates based on L,zw norm. Considering directly (3.1) and deriving
with respect to x, we find that (for y,; = 9,;y and y,; = 9,;¥)
3, {ij} —qVypx+tv)-{V, —tV,} {ij} = qtdp(x +tv) -y,
3V — AV (x +tv) - {V, —tV, } v,y = qV, 050 (x + tv) - {V, — tV, } v,

0¥y — qVxp(x +tv) - {V, —tV,} y,j = qtV, 8,50 (x + tv) - {V, —tV, } y. (3.7)
We can use this to control the rest of the norms in (3.4). Note that since
div, (V) =0, V(x,v)=(—tV,$(x +tv,1), Vyp(x + tv)) € R} x R3 (3.8)

the left-hand side is conservative and hence only the right-hand side contributes to

changes in L2 , norms.

3.2.1 Position
We deduce from (3.7) that

d 2
iz, S UVl ly g2 llxy llz.

Using (3.2)-(3.3) and Gronwall, we obtain that

lxy ®llzz, < Ixvollzz, + CSZH)’IIL;'V Int,
which leads to the control of xy in (3.4).

3.2.2 Spatial regularity

Commuting again (3.7), we see that for 1 < || < 2

1d

Sl =a X //anflmxﬂv)-{vv—tvx} oLy - 0%y

B1+B2=a, |B2|<|a|

1
S X Vs [iviolving, + eveolfyig, | 108y,
Br+p2=a, |B2]<|a|

Using (3.2)-(3.3) and Grénwall’s Lemma, this remains bounded. The same estimates also

work for |a| = 3 as long as |8,| < 3. If |8;| = 3 (and thus « = B;, B, = 0) we estimate via
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8878 A. D. Ionescu et al.

(2.6) to obtain
] Sisoces o0 (9, = 9,0y 02 | S 195002 (90 Dz + €19 L) 135 L,
which is bounded by the bootstrap assumptions (3.2)-(3.3).

3.3 Energy Estimates II: velocity regularity

Finally, the most difficult term comes from the v derivative in (3.7) and its higher order

versions:

2dtu Wyl=q Y. // V90 ¢ (x + tv) - 002V, (x,v) - 0%y (x, v)dxdy

Br1+B2=a
[B2]<le|

-q > t//3 V00 (x + tv) - 002V y (x,v) - 3%y (x, v)dxdv.  (3.9)

B2l <la|

We treat the first term in (3.9) using (3.3): If || < 2 we can directly estimate each

summand

< ¢l

oV I

‘ / /]R L V9t 1) - 0PV, (x,v) - 3y (x, v)dxdv]| S o

S22 y|?

2z’
and this also works when |¢| = 3 and derivatives split: |,],|8,] < 2. Finally, if all
derivatives fall on V,¢ we change variables
I= //]RS Vo5 (x +tv) - V,y(x,v) - 35y (x, v)dxdv
=t|°‘|_3//3 V0% (x) - V,y(a ——2) 8¢y, X a)dxda
and therefore, using (2.2) and (3.3),
11 S 0173V, ll 2 1105 v (a, )||Lz 1Vy @ X ez

< tlalig ” angngL)z( ”VVV 202

2
7 ||V||L§H§ < es(t) ||y”L§H§ .
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The same considerations allow to control the second term in (3.9) when
0 <t < 100. For t > 100, due to the extra factor ¢t and the slow growth of ||y||L§H3,

more care is needed. We let

Ig pp = Z // \% 8/31<I5(X+ tv) - 02V V,y(x,v) - 3%y (x, v)dxdy.

B1+pa=a
|B2l<let]

Case |o| = 1. Here we necessarily have 8, = «. Using that ||V, y |, is uniformly bounded,
we can then proceed as follows: We recognize that I, , can be written as (identifying an

operator and its kernel)

Io= t? //3 Yy —tu, Wy [y — tu, WMy (x — ¥)dyiy (X — tv, V)dyey (x — tv, v)dxdydudy,
R
My, = (=0)719;0 = RiRy..

Now changing variables, we can rewrite this as

o—t_4// [y(a %)@, ;“)]Mjk@c—y)

[ XJ)/(b )avkj/(b —)] dadbdxdy.

Since M is bounded as a map L? — L?, using (2.2), we see that

y—a
I, 0|<t4||y(a : )V(a,yt )IIL2L1||3X1)/(b )3Vk1/(b —)IILle

S IZ IV Iz Iy gz IV vz

and using (3.2) and integrating, we find the bound in (3.4).

Case || > 2. For higher |«|, we use (2.3) to decompose

o dR
_ B+l p1.62 AR
Iﬁl,ﬂz =" /R OIR R2

Igl’ﬂz — //Rs y(y —tu, wyy — tu,U)aﬁlaxj {X(R_1|X—Y|)}

- Oy Bﬁzy(x tv, v)ogy (x — tv, v)dxdydudv.
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8880 A. D. Ionescu et al.

And we claim that, for ¢t > 100,

) S R [an 162 4 an o)y I, ],

T S BRI R [y 1, + el P R=t,

L2 H\a 12 Hla\]

I8Pz < Re2-1A] 2[(lnt)2|°" Lnlnt)*@-1e3 4 (n¢-Inlnt) Y|y (3.10)

LzH\al]

We can combine these bounds and Gréonwall estimate to obtain the last energy bounds
in (3.4). We integrate the first bound for R > ¢, the second for 0 < R < t/(Int)!%° and the
last for t/(Int)1%° < R < ¢, to get

2

< —1 2a I
”y”LzH‘“' 3 t (Int)** + _tl t”V” H‘|/a\ + t(n t)50 ||J/||L2H|a\
+ ezt~ Y(Int)2?—1 (InIn(t)) 4!
which lead to (3.4).
To get the first bound in (3.10), we use a crude estimate
1.5 ) ) P - +I/‘32I Iﬂ1|

g1 S Ry I%, 10x05% g 107y g, S BTy, ”V”LZH‘@ Iy 1™ o
X,V ' I12H 1811

1821

2+ I+ «

S ||y||L2H‘.a‘|

and using convexity, this gives the first estimate in (3.10).

On the other hand, we can change variables and integrate by parts to get

b _ t—ﬁ//Rsy(a,y;a)y(a, Lyolra, {x(R IX—Y|)}

8002y (b, = —)a v, = )dxdydadb
D S s
01+02=P1, 01 <02
et [ arve X Sy@ L xaan)
8,0y (b, Lb)a“ b, 2 Y =0 1 avdadn.
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In case 0, = B, =0, 0, = B; = o, we see that
70,0
5“1 S RPNy Iz 10,7 12195 v 7y | S R 197y 17
In case 0, =0, 6, = B;, B, # 0, Hélder's inequality gives

0,62,
112%2) < R Y|y (a, L )||mz 18%y (@, L

—a _
M2 l(VX)R Hx —yDIl 6
y-a L;

-b
x ||ana’32y(b —)IILz ||3°‘7/(b — iz,

SElz - 121l e .Rf.t3~||vxa vl 195z,

2.3 1 m‘\‘ ‘\ﬁzl‘ \ll
SREEA/RZ Nyl Iyl ||y||L2H‘Ta.

1

2.3 1 " Tl
SRR -6 l||y||L2H|a‘

while if 8, = 0, 6; # 0, we proceed similarly
01,02,0 - y—z—a y—z—a _
501 S RO0gy (@ ——)llgg 1957y (@ ——) gz | (VOR 1|Z|)||Lg

b b
X |V, (b, Y Dz liogy @, Y iz,

l
o

LZ chx\

<R2B@/R)E 2|y

Finally, if 6; # 0, B, # 0, then |¢| = 3 and we obtain

y +y—b>b

61,0
192 P2 < R2)9,y (@, ¥ >||L6L2 1833, ¥ (b, >IIL6L2||3 y (6,2 Mz,

SRV 2y Iz lly 2 SR t%uyanHg

We now obtain improved bounds in the regime R ~ t. In this case, we leave one

additional derivative on the kernel to get

B1.B2 _ —5—|B1| 1,602,603, ﬂz
=t > Cor p0.5TR
01+62+03=p1, 01 <02

102052 // 0y (@, Y =%y, ¥

85082 (b, X —)a v, X )dxdydadb

—S)aa,, {x(R—Hx—yD}
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8882 A. D. Ionescu et al.

with |65 = 1, 161 + 16,] + 165] + |B5| = |x|. If |6;| = |6,] = O, we can directly compute

0,0,63,
IR S Ryl Iy | SRy ||

w117 lzge e 11 gle

If |6,| = |B,| = O, then we can proceed similarly

0,02,03,0 2
IR S RIYIZ IVey Iz Y et Iy 2 et S RNy gy glei-1 1y 1] 2 g

Finally, if 6, # 0, 8, # 0, |a| = 3, |#;| = 0 and we decompose in Littlewood-Paley pieces:

10,92,93432 _ 10,92,93,/32
R - R,C1,C2 !
C1,C2

7062.63.B2 .
per = [ vaX

—)aip g, (@, Tk, {x(R x—vD)

- B,700% v, b, = )a yb = )dXdydadb

In case min{C;, C,} < 1, the derivative is favorable and one can proceed as above. From
now on, we may assume that the sums are over dyadic C;,C, > 1. Proceeding as above,

we can bound

0,02,0 3 . —1 y—a
ey | S RENY Iz 1y gy - min(Cy M 18, v, (@ =) Igorz 17 iz

C1Callvey gz, V57 I}
using that

||3V)/c(a )IILooLz < min{Cllyllz, C~ 2IIJ/IIL2H3} < min{Ce, C~ ZII)/IILsz}

. _3 . —3
||yc||L,zW S min{llyllz,, €3Iy llzpa} S minfe, €3yl zp)
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and summing the bounds above and using interpolation, one finds that

1

0,02,03,8 3 . _1
> e < REely ol gz > minfe, € 2 lly lpzps)
C1=C2 Ci

<Rt383||)’||3 Al In{lly ll 2 e

0,02,03, 3.2 : 2 A—1
D HRE S S RE |yl g D> min{eCE, € 1y llzps)
Cy<C Cy

In total, this gives, for any § > 0,

0,02.83.82| < p3,.2 1 2 3 5 1
Iz | S Rt [ln(t) Tn{n() ”y”L,%H‘;" + ¢2(In(2))°(In(In(z))) ] '

which leads to an acceptable contribution in (3.4)

4 Nonlinear Analysis II: Asymptotic Flow and Strong Convergence

Once we have isolated the scattering mass in (1.6), we can simplify the dynamics along

rays by studying the electric field V,¢. We compute

Vi (x+tv) = — //R3 P y|3 v4(y — tu,u)dudy

XxX—a+z
// a, x—atz + v)dadz.
T an 3 ) Jpe |z|3 t

When x remains in a bounded set, the main contribution to the electric field will come

from

4
Bmain(V: 0= 408 //Rs [ZEM ‘@ _+V)dad 4 t2 TG v)dt.

This expression only involves the scattering mass that converges. We thus define

1
Ev) = o || i Mac Ve,

Note that m_, € L' NL*, so that E(v) is well defined and E =t"2E + o(t~2). Inspired

mam

by the model characteristics of

3f(x,v,t) = qEW,t) - {V, —tV,} f(x,v, 1)
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we define for ¢t > 1,

ox,v,t) =yX,v,t), X:=x+qln@®E®W).

Proposition 4.1. Let y(x,v,t) be a global solution of (3.1) as in Proposition 3.1. Then

with X, o as in (4.1) there exists o, (x,v) € ZN H, , such that
o, v, t) — oy (x,v) ”zmH},V < e3¢0,
Proof. In the following, we may assume ¢t > 100. From (4.1) we compute that
040 = 04y, 3,50 = 8,5y + qIn(t)d, E*d,y, 3,0 =,y + %Epaxpy,
from which we obtain the equation
0,0(X, V) = qokp(X + tv)(9,ky) (X, V) +q %E‘p — 10, (X + Vt)] <0 Y (X, V).

We claim that this is integrable in time in both Z and H}. ..

We start with the first term in (4.2). For 1 <j, k < 3, we compute

[0, (X + tV) @)X, V)|, S IVSl |Vor ],
0511060 X + t) @) X, V| 12 S 00V e 171203 + IV llzoe 17 lpzypy

| 0ilxe¢ (X + t) Qi) X, W 12 S 1[0V oo 1y iy + IVl 1y N 252

+1In(®) 1Vl IV EW) g [ Vo | g

By boundedness of the Riesz transform, we see that

0EX(v) = RBym,, €IP, 1<p<oo, Ty (x)=m(—%)

(4.1)
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so together with the bounds (3.4) on y and the decay (3.3) of V¢, time integrability of the

first term follows. For the second term in (4.2) we compute that

DE = %EP — tdpd (X + vt) = %V(—A)_l (M, + M, + M,},
MO i=ma© =m0, 0= [ [P@0-yiac-D)da
R3 t

9 a 9 X—a
M;(¢) = vi@¢—2)—rial+——)da
R3 t t
We will often use the convolution structure. Sobolev inequality directly gives that
1 -1 -1
SIVE2) T Ml < 6 I s
This allows to bound the contribution of M, using (3.5). We can treat M, similarly since

2 2@ -2 <3 <t 3g2
||1{|a‘zt%}{y @, &) —y2(a¢ t)} Iz, S €2yl Ixviig, S ¢ 562,

2 _ 2 _a <t 3 < ¢ 3g2
”l{la\st%}{y (@) —vyeac¢ t)} ||L§'a St 2lyligz IVyylgz, St 36,

a
Iv%(@,0) = v?@ ¢ = Dligery S Iyl S 6%t
For M5, we observe the bounds

a X—-a _ _
Iy*@ ¢ =2 =vi@ s+ =)l StXIylg, Vi, S ¢©71 X
2 _2y_ 2 X-a < yl2 < g2
ly*t@ ¢ =) =yi@a i +——lp Slriz e

a X—a
Iy*@ & =) = rH@ &+ =l S vl S &
These bounds are enough to control the Z-norm. Indeed, we see that

1 _ 1 _
15V TIM - 0y X V)llz S 15V (=8 Ml [y (X, V)
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and we can use this when j = 1, 2, while for M;, we use that

1 B 1 _
12V (=) My 0,y X, V)z S I2V(=2) M, 1 Aoy X, V)l

(1X|<tB)

1 _
+ ISV (=) My Oy X, V)l

(1X|2t8)

11 11 1
S22 [0py (X, V)|l + 2t 100 || x| 8V, y |,

and again, this gives an acceptable contribution using (4.3) below. The control of L2H}

is similar since

Dk H%E’P — 0P (X + Vt)] By (X, v)]

xPxk

1
= - 2 0w (=) My iy (X, v) — 805, 1§ (X + V)07 (X, )
J

with a new term that can be treated as follows:
LIV X + V) Vyy X, Wz S UVl Viy iz, S 807265

Finally, the control of L2H} follows along similar lines, but requires a little more

care. Indeed

i H%EP — 10, (X + vt)] Dy (X, V>]

1 _1 Int 1 ~
=< D 0w (=A) M - 0,0y (X, v) + VA TIM b0y (X, ) - OB
j

1 _
+ z D gk (—A) M - 3,50k (X, V)
J

The last term is slightly singular. We can use the boundedness of the Riesz transform

to control

1840 B (— ) T M - 8,0y (X, Wz S Myl 1900y (X, V) a2
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and this is enough for M;, M,, and for M;, we use the same decomposition to get

_ _ 1
13p O (= A) ™ M - Dy By KV, S T [y (X W) 3z

Aav-lag <
18008 (=)™ My D3y Ky S Mg Iy Koy
and we can bound the last term with (4.3).

To finish the proof, it suffices to show that

1 1 1
X8Vl + X Ve vllzz, SNXIEYI 1 S lxpllge + Iyl St (43)
The first inequality follows from Sobolev embedding; the second inequality follows
directly if y is supported on {|x| < 1} or is localized at small frequencies in x or in
v; in the other cases, we introduce a Littlewood-Paley decomposition as in (2.1) in x (P})

and in v (Pj) to get

1 1 13
1118 1 ~r)PaPRY ”HIH% S R8AB® ||l{\x|~R}Pi§PgV||L§'V

A

REAB® min{R™!,473,B73) . | |x
A B kvl + 17 lgs,
and we can sum this over dyadic 4,B,R 2 1. [ ]
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