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Abstract

Ubiquinone (coenzyme Q) is a vital respiratory cofactor and
liposoluble antioxidant. Studies have shown that plants derive
approximately a quarter of 4-hydroxybenzoate, which serves
as the direct ring precursor of ubiquinone, from the catabolism
of kaempferol. Biochemical and genetic evidence suggests
that the release of 4-hydroxybenzoate from kaempferol is
catalyzed by heme-dependent peroxidases and that 3-O-gly-
cosylations of kaempferol act as a negative regulator of this
process. These findings not only represent an atypical
instance of primary metabolite being derived from specialized
metabolism but also raise the questionas to whether ubiqui-
none contributes to the ROS scavenging and signaling func-
tions already established for flavonols.
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Introduction
Flavonoids represent one of the largest classes of

specialized metabolites and are often depicted as
signature compounds of land plants [1%*,2]. Functions
most commonly attributed to the evolution and diver-
sification of flavonoids include photoprotection [3,4],
scavenging of reactive oxygen species (ROS) and redox

homeostasis [5e8%*], regulation of auxin transport [9e
11], pollinator attraction [12], resistance to pathogens
[13,14], and modulation of stomata aperture [6,15],
pollen tube  growth [8%*], and root development
[5,16¥*c18]. The recent finding that in Arabidopsis and
tomato, the catabolism of the flavonol kaempferol gen-
erates 4-hydroxybenzoate (4-HB), the aromatic ring
precursor of the vital respiratory cofactor and antioxi-
dant ubiquinone (coenzyme Q), is not only a surprising
addition to the functional repertoire of flavonoids but
also blurs the historical classification of these com-
pounds as archetypal specialized metabolites. Indeed,
although it has long been known that flavonoids can
serve as precursors for other specialized metabolites
(e.g. anthocyanins, chalconoids), the atypical feature of
the metabolic node discussed in this review is that one
of the breakdown products of a flavonol is re-routed
toward the biosynthesis of a primary metabolite.

Here, it must be said that kaempferol is not the
exclusive supplier of 4-HB in plant cells and that the
bulk of 4-HB for ubiquinone biosynthesis actually
originates from the b-oxidation of p-coumarate in per-
oxisomes (Figure 1; [19,20]). There is also evidence
that plants, like yeast and vertebrates, have evolved the
ability to use tyrosine as a precursor of ubiquinone’s
ring [19]; none of the enzymes of this alternative
pathway are known in plants. To put the contribution of
each of these metabolic branches into perspective,
heavy isotope feeding assays and reverse genetics
indicate that in Arabidopsis, about 50% of the pool of
ubiquinone’s ring precursor originates from the b-
oxidation of p-coumarate, while kaempferol cleavage
and tyrosine metabolism each provides about 25%
[19,20]. In tomato leaves, blockage of the flavonoid
biosynthetic pathway upstream of flavonols indicates
that at least 20% of the pool of ubiquinone’s ring pre-
cursor comes from kaempferol [21**].

This review focuses on the branchepoint between the
biosynthetic pathways of flavonols and ubiquinone, the
mechanism of release of 4-HB from kaempferol, and the
evolutionary and physiological significance of the
metabolic connections between these compounds. For
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Figure 1
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Biosynthesis of the aromatic ring of ubiquinone (coenzyme Q) in plant cells. The double bond between C-2 and C-3 and the hydroxyl group on C-3 of the

C-ring that are critical for the formation of the a-diketone tautomer of kaempferol are highlighted in blue. n designates the number of isoprenyl residues in
the prenyl moiety of ubiquinone; this number can vary between species, e.g. n = 9 in Arabidopsis and rice, n = 10 in tomato and tobacco. Note that the
subcellular compartmentalization of flavonol modifying enzymes and of peroxidases acting on kaempferol is a composite view reconstituted from studies
in different plant taxa, and therefore that the correspondingsteps may be species-specific. Dashed arrows indicate putative steps. 4-CL, p-coumaroyl-
CoA ligase; 4-HB, 4-hydroxybenzoate; C4H, cinnamate-4-hydroxylase; CHI, chalcone isomerase; CHS, chalcone synthase; F3H, flavanone-3-

hydroxylase; FLS, flavonol synthase; PAL, phenylalanine ammonia-lyase; PXA1, Peroxisomal ABC transporter 1; UGTs, UDP-carbohydrate-dependent

glycosyltransferases.

more general considerations on the biosynthesis of fla-
vonoids and ubiquinone, we refer the reader to the
following comprehensive publications [22e24]. Addi-
tional examples of unusual metabolic arrangements,

where specialized compounds re-enter primary meta-
bolism as biosynthetic precursors (e.g. retrograde flow of
sulfur from glucosinolates for cysteine biosynthesis
[25]), are covered separately in this issue.
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Kaempferol is the node metabolite between
the biosynthetic pathway of flavonols and
that of ubiquinone

Hints of the existence of a functional connection be-
tween the metabolism of flavonoids and that of ubi-
quinone in plants originate from gene coexpression
analyses in Arabidopsis [21**]. Quantification of ubi-
quinone in a series of Arabidopsis flavonoid biosynthetic
mutants showed that blockage of the pathway up to the
flavanone-3-hydroxylase (F3H) catalyzed-reaction
resulted in a decrease in ubiquinone content, while
null mutations downstream of this step did not
(Figure 1; [21**]). Furthermore, when added to axenic
cultures of F3H knockout plants, dihydrokaempferol or
kaempferol, but not naringenin, boosted ubiquinone
content at or above wild-type level [21**]. Isotopic
tracer experiments using B3C-labeled phenylalanine and
13C—labeled—kaempferol in Arabidopsis confirmed these
findings while simultaneously pinpointing the B-ring of
kaempferol as the part of the flavonoid scaffold that was
incorporated into ubiquinone (Figure 1; [21**]). There
is also evidence that the tomato anthocyanin reduced (are)
mutant, which carries a point mutation in the F3H gene,
displays a decrease in ubiquinone content similar to that
observed in the Arabidopsis F3H mutant [21%*].
Conversely, tomato fruits engineered to boost flavonol
content were found to accumulate up to twice as much
ubiquinone than their wild-type counterparts [21%*].

Heme-dependent peroxidases likely release
4-hydroxybenzoate from the a-diketone
tautomer of kaempferol

The immediate precursor of ubiquinone’s benzenoid
ring is 4-HB. A mechanistic model based on the perox-
idative cleavage of kaempferol has been proposed to
explain the release of 4-HB from this flavonol’s B-ring
[21**]. Notably, this model predicts that it is not
kaempferol itself that is cleaved, but its a-diketone
tautomer (Figure 1). Two structural features of the C-
ring of kaempferol dictate this process: the presence of a
double bond between C-2 and C-3 and a free hydroxyl
group on C-3 (Figure 1). Compelling biochemical and
genetic evidence supports the model: (i) The H>O»-
dependent release of 4-HB from kaempferol is readily
detected in Arabidopsis leaf extracts; this activity is
saturable and is highly sensitive to sodium azide, a
prosthetic-heme group inhibitor [21**]. The corre-
sponding heme-dependent peroxidases have not yet
been identified. (ii) Blockage of the hydroxyl group on
C-3 via glycosylation prevents the H;O,-dependent
cleavage of kaempferol in vitro [21**]. There is indirect
evidence that the same mechanism operates in vivo [26,
see next section]. (iii) Naringenin, which lacks a double
bond between C-2 and C-3 and a hydroxyl group on C-3
(Figure 1), and dihydrokaempferol, which lacks the C-2/
C-3 double bond (Figure 1), are also fully resistant to
peroxidative cleavage in vitro [21**].

3-O-glycosylations of kaempferol represent

a bottleneck in ubiquinone biosynthesis

in vivo

That chemical modification of the C-3 hydroxyl of fla-
vonols prevents the formation of the corresponding a-
diketone tautomers, and thus, protects these molecules
from peroxidative cleavage is physiologically significant
because in plant tissues, kaempferol occurs almost
exclusively as glycosyl conjugates [10,27]. In Arabi-
dopsis, loss of function of flavonol 3-O-glucosyl-
transferase and of flavonol 3-O-rhamnosyltransferase,
which together bear the bulk of the activities of 3-O-
glycosylation of kaempferol, has been shown to result in
an increase in the incorporation of phenylalanine into
the benzenoid moiety of ubiquinone, as well as in an
increase in ubiquinone content [26]. In contrast,
knocking out flavonol 3-O-arabinosyltransferase did not
have any impact on ubiquinone biosynthesis [26].
Interestingly, the boost in ubiquinone content in the
flavonol 3-O-glucosyltransferase/flavonol 3-O-rhamno-
syltransferase double knockout was virtually identical to
that observed for axenic cultures of wild-type plants fed
with saturating doses of 4-HB [26]. These observations
suggest that the supply of 4-HB limits ubiquinone
biosynthesis in plant tissues and that the glycosylation
of kaempferol contributes to such a bottleneck in the
pathway. Conversely, it is logical to expect that degly-
cosylation of kaempferol at the C-3 hydroxyl position
would increase the availability of 4-HB for ubiquinone
biosynthesis. There are reports of plant b-glucosidases
that hydrolyze kaempferol 3-O-b-glucoside [28,29], but
the extent to which these enzymes may impact ubi-
quinone biosynthesis is not known.

Evolutionary and physiological significance
of the connection between the catabolism

of kaempferol and the biosynthesis of
ubiquinone

Flavonols are widely distributed dand even possibly
ubiquitousd in Angiosperms, Gymnosperms, ferns, and
liverworts, while in other groups of Archaeplastida, fla-
vonols are either absent (e.g. hornworts, lycophytes) or
seem to occur only sporadically and/or at trace levels
(e.g. Chlorophytes, Rhodophytes, mosses) [30e33].
UV-B screening, ROS scavenging, and the regulation of
the actions of auxins and abscisic acid are usually cited
as the selection drivers for the emergence of flavonoids
in land plants [1*], and some authors have proposed that
flavonols could be central to these adaptive mechanisms
[2]. The metabolic connection between kaempferol and
ubiquinone invites the question as to whether ubiqui-
none could contribute to some of the cellular functions
that have so far been attributed exclusively to flavo-
noids. This applies in particular to the antioxidant ac-
tivity of flavonols because ubiquinone is, together with
carotenoids, tocopherols, and estrogens, one of the
major liposoluble scavengers of reactive oxygen species
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(ROS) in eukaryotes [34e36]. Of outstanding interest
here is the recent demonstration that in Arabidopsis, the
level of kaempferol in lateral root primordia inversely
correlates with that of ROS, which in turn controls
lateral root emergence [16**]. Moreover, reverse ge-
netics and correlation analysis between flavonol content
and number of lateral roots suggested that the two other
major flavonols in Arabidopsis, quercetin, and isorham-
netin, did not play a role in this regulatory mechanism
[16**]. Incidentally, there is also evidence that the
cleavage product from the B-ring of quercetin, 3,4-
dihydroxybenzoate, does not serve as a ring precursor
for ubiquinone biosynthesis in plants [19]. Inverse cor-
relations between flavonol content and ROS accumula-
tion have also been shown to be central to pollen
viability and tube growth and abscisic acid-dependent
stomatal closure [6, 8%, 15]. Even if in such instances
the significance of specific flavonol species was not
investigated, it is tempting to speculate that ubiqui-
none, via the catabolism of kaempferol, may contribute
to these developmental and regulatory processes. In
contrast, there is firm evidence that despite the parallel
upregulation of flavonoid and ubiquinone biosynthesis
in response to high-light stress, the increase in ubiqui-
none production in high light is independent of
kaempferol catabolism [20].

One should not end this section without mentioning
that mammalian cells have also been shown to readily
use exogenous kaempferol as an aromatic ring precursor
for ubiquinone biosynthesis [37*]. Isotopic tracer ex-
periments demonstrated that here again, it was specif-
ically the B-ring of kaempferol that was incorporated
into ubiquinone [38]. Notably, naringenin was shown to
have no significant effect on ubiquinone biosynthesis
when fed to these cell cultures [37*]. These observa-
tions are strikingly similar to those made with plants,
and suggest that in mammalian cells as well the incor-
poration of the B-ring of kaempferol into ubiquinone
proceeds via the direct oxidative release of 4-HB. It is
not known, however, if in mammalian cells such a
cleavage is enzymatic or simply results from the spon-
taneous oxidation of kaempferol. More surprising
perhaps is the case of the yeast Saccharomyces cerevisiae,
which despite having evolved a plant-dependent
saprophytic lifestyle, makes only marginal use of exog-
enous kaempferol for ubiquinone biosynthesis [37*].

Conclusions and future directions

Beyond the semantic consideration as to whether
kaempferol and its flavonoid precursors should still be
considered exclusively as specialized metabolites, the
discovery that the upper branch of the core flavonoid
biosynthetic pathway feeds into the assembly of a

respiratory cofactor opens several new frontiers for in-
vestigations. For instance, finding out how widespread is
the occurrence of the functional link between kaempferol
and ubiquinone across plant lineages will help understand
when this metabolic branch point evolved during plant
evolution and how strong the selection pressure is for its
maintenance. Moreover, because even modest changes in
ubiquinone level have a major impact on ROS scavenging
in plant tissues [35,39], identifying the enzymatic com-
ponents that control the release of4-HB from kaempferol
din particular kaempferol 3-O-b-glycosidase(s) and
kaempferol peroxidase(s)d might provide new tools to
boost ubiquinone content and oxidative stress tolerance in
plant cells.

Learning about the subcellular localization of these
enzymes is also important because the prenylation and
further modifications of 4-HB for ubiquinone biosyn-
thesis take place in mitochondria [40e43], while
kaempferol is synthesized in the cytosol and its glycosyl
conjugates are stored primarily in the vacuole [44e46].
The identification of a b-glucosidase that frees the C-3
hydroxyl position of flavonols in the apoplast [28] and of
peroxidases acting on kaempferol in the vacuole and in
plastids [47,48] suggest that kaempferol glycosides,
kaempferol, and 4-HB are subjected to a complex
intracellular dand possibly intercellulard trafficking.
Each of the cognate transport steps thus represents
potential bottlenecks in the supply of 4-HB for ubi-
quinone biosynthesis. Furthermore, plant tissues readily
glycosylate 4-HB and here again store the resulting
conjugates in the vacuole, where they appear to be un-
available for ubiquinone biosynthesis [26]. Therefore, it
seems likely that plants have evolved mechanisms d
e.g. channeling, carrier proteinsd to protect 4-HB prior
to its import in mitochondria. Last, the availability of
Arabidopsis mutants and silenced transgenics that have
marked defects in ubiquinone accumulation, but a priori
intact flavonol metabolism (e.g. Refs. [19,49,50]),
should help answer the intriguing question as to
whether ubiquinone contributes to ROS scavenging and
signaling in lateral root emergence, pollen development,
and stomatal aperture.
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