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ABSTRACT

The highly stratified, oligotrophic regions of the oceans are predominantly nitrogen limited in the
surface ocean and light limited at the deep chlorophyll maximum (DCM). Hence, determining
light and nitrogen co-limitation patterns for diverse phytoplankton taxa is crucial to
understanding marine primary production throughout the euphotic zone. During two cruises in
the deep-water Gulf of Mexico, we measured primary productivity (H'3CO3), nitrate uptake
(NO3"), and ammonium uptake (‘’NH4") throughout the water column. Primary productivity
declined with depth from the mixed-layer to the DCM, averaging 27.1 mmol C m? d"!. The
fraction of growth supported by NOs™ was consistently low, with upper euphotic zone values
ranging from 0.01 to 0.14 and lower euphotic zone values ranging from 0.03 to 0.44. Nitrate
uptake showed strong diel patterns (maximum during the day), while ammonium uptake
exhibited no diel variability. To parameterize taxon-specific phytoplankton nutrient and light
utilization, we used a data assimilation approach (Bayesian Markov Chain Monte Carlo)
including primary productivity, nutrient uptake, and taxon-specific growth rate measurements.
Parameters derived from this analysis define distinct niches for five phytoplankton taxa
(Prochlorococcus, Synechococcus, diatoms, dinoflagellates, and prymnesiophytes) and may be

useful for constraining biogeochemical models of oligotrophic open-ocean systems.



53

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

73
74
75
76
77
78
79
80
81
82

Please cite as: Yingling, N., T. B. Kelly, K. E. Selph, M. R. Landry, A. N. Knapp, S. A. Kranz, M. R. Stukel (2021). Taxon-specific
phytoplankton growth, nutrient utilization, and light limitation in the oligotrophic Gulf of Mexico. Journal of Plankton Research.
doi:10.1093/plankt/fbab028

INTRODUCTION

Nutrient acquisition by phytoplankton is an important factor regulating marine primary
productivity (Davey et al., 2008; Duce et al., 2008; Mulholland and Lomas, 2008). The open-
ocean Gulf of Mexico (GoM) is a highly-stratified, oligotrophic region where the Loop Current,
mesoscale eddies and episodic storm events influence lateral and vertical transport of nutrients
and organisms (Biggs, 1992; Forristall et al., 1992; Biggs and Ressler, 2001; Oey et al., 2005).
These features create dynamic ecological mosaics with substantial mesoscale spatial variability
in the phytoplankton community (Biggs and Miiller-Karger, 1994; Gomez et al., 2018). Intense
stratification also leads to deep chlorophyll maxima (DCM) that potentially provide unique
niches for phytoplankton compared to low-nutrient, high-light environments found in the shallow
mixed-layer (Shropshire et al., 2020; Knapp et al., this issue; Selph et al., this issue).
Additionally, the oligotrophic GoM is an important spawning region for economically-valuable
and environmentally-important nekton, including Atlantic Bluefin Tuna (Rooker et al., 2007;
Cornic et al., 2008). In addition to vertical advection, previous studies have found that nitrogen
fixation, NO3” upwelling along the boundaries of mesoscale eddies, and horizontal advection of
nutrients can be important nitrogen sources in the GoM (Walker et al., 2005; Mulholland ef al.,
2006). While the sources of bioavailable nitrogen in the oligotrophic GoM are likely
spatiotemporally variable, a more accurate understanding of phytoplankton nutrient-uptake
dynamics is important to provide insight into what regulates group-specific community

composition and inform future biogeochemical models.

Variability in phytoplankton ecophysiology adds complexity to the basic processes of
primary productivity in pelagic habitats. Prochlorococcus is often the dominant phytoplankton
taxon in oligotrophic regions (Chisholm et al., 1988; Partensky et al., 1999); however, many
ecotypes of this genus exist, with different nutrient uptake capabilities and consequently
biogeochemical impacts (Zwirglmaier et al., 2008; Martiny et al., 2009; Kashtan et al., 2014;
Kent et al., 2016; De Martini et al., 2018). Prochlorococcus is the numerically dominant
phytoplankton in our study region and comprises roughly half of the total carbon-based biomass
(Selph et al., this issue). Synechococcus and picoeukaryotes (especially prymnesiophytes,
chlorophytes, and pelagophytes) are also important, with picoeukaryotes comprising a larger

portion of biomass with increasing depth (Selph ez al., this issue). Since different phytoplankton
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groups, as well as species and ecotypes within groups, differ in their adaptations for life in
nutrient-depleted environments, their responses to dynamic environments may also be

quantitatively and qualitatively different (Dutkiewicz et al., 2013).

Constraining phytoplankton functional relationships (i.e., phytoplankton responses to
environmental variables) is necessary to enable forecasting of ecological impacts in dynamic
environments and modified physical conditions—such as those expected in a future ocean.
Numerical modeling of marine microbial ecosystems is presently limited by an inability to
accurately constrain in situ ecophysiological relationships amongst diverse phytoplankton taxa
(Anderson, 2005; Franks, 2009; Follows and Dutkiewicz, 2011). Here, we address three
questions aiming to better constrain group-specific functional phytoplankton relationships: 1)
How do net primary production (NPP) and NOs™ uptake rates of phytoplankton in the open-ocean
GoM vary with depth and time of day; 2) What nitrogen sources support these phytoplankton;

and 3) How do nutrient limitation and light limitation vary among different phytoplankton taxa?

Answers to these questions are derived from measurements collected during two field
studies as part of the Bluefin Larvae in Oligotrophic Ocean Foodwebs: Investigating Nutrients to
Zooplankton in the Gulf of Mexico (BLOOFINZ-GoM) project (Gerard et al., this issue).
Specifically, we conducted Lagrangian experiments with repeated depth-resolved measurements
of NPP, nutrient uptake and taxon-specific phytoplankton growth rates, while also assessing the
biomass of different phytoplankton. We then assimilate this field data to parameterize group-

specific phytoplankton nutrient kinetics for application to biogeochemical models.
METHODS
Cruise structure and sampling strategy

Data are from two cruises in the open-ocean northern GoM (NF1704 in May, 2017; NF1802
in May, 2018) as part of the BLOOFINZ-GoM project. We conducted five Lagrangian
experiments (‘Cycles’ referred to as C1, C2, C3, C4 and C5 to represent each cycle) lasting 2-4
days each (Gerard et al., this issue). Each cycle used a pair of satellite-tracked marker buoys
tethered to subsurface drogues to follow the mixed-layer in a Lagrangian frame of reference
(Landry et al., 2009; Stukel et al., 2015). One array (“incubation array’’) included attachment

points for mesh bags containing incubation bottles for NO3™ uptake, NPP, and taxon-specific



112
113
114
115
116
117
118
119
120

121

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

139

140
141

Please cite as: Yingling, N., T. B. Kelly, K. E. Selph, M. R. Landry, A. N. Knapp, S. A. Kranz, M. R. Stukel (2021). Taxon-specific
phytoplankton growth, nutrient utilization, and light limitation in the oligotrophic Gulf of Mexico. Journal of Plankton Research.
doi:10.1093/plankt/fbab028

phytoplankton growth and grazing rates at depths spanning the euphotic zone. The Lagrangian
approach permitted repeated sampling of the same water parcel to quantify variability in
phytoplankton biomass and rates over the duration of each cycle. Samples for fluorometric
chlorophyll a (Strickland and Parsons, 1972), phytoplankton biomass (Selph et al., this issue),
nutrients (NO3” and NH4", Knapp et al., this issue), and in situ incubation experiments were
collected at 6 depths from the surface to the DCM on daily 02:00 a.m. (local U.S. central) CTD-
Niskin rosette casts. Samples for shipboard incubations were collected from daily CTD casts
near dusk. For more detail on sampling methodology see the aforementioned studies in this

issue.
Phytoplankton community composition and biomass

As reported in Selph ef al. (this issue), we quantified phytoplankton abundance using a
combination of flow cytometry (FCM), epifluorescence microscopy (EPI), and high-pressure
liquid chromatography (HPLC). Cells identified by FCM were categorized into three
populations (Prochlorococcus (PRO), Synechococcus (SYN), and picoeukaryotes (PEUK))
based on forward-angle and side-angle light scattering and fluorescence signatures for DNA,
phycoerythrin, and chlorophyll. For larger cells (i.e., diatoms (DIAT), autotrophic
dinoflagellates (ADINO), prymnesiophytes (PRYM)), and other eukaryotes (OTHER), a
combination of HPLC and EPI was used to determine taxa-specific biomass. HPLC-derived
pigments were partitioned into taxonomic groups using CHEMTAX (Wright ef al., 2008;
Higgins et al., 2011; Selph et al., this issue). EPI samples from the shallowest two depths
(within the mixed-layer, which we define as the depth at which density increases by 0.125 kg/m™
(Monterey and Levitus, 1997)) and the deepest two depths (just above and at the DCM) from
three of the Lagrangian cycles (C1, C4, and C5) were used to determine depth-varying
carbon:chlorophyll ratios, hence, carbon-based biomass for each group. Assuming Redfield C:N
ratios (106:16, mol:mol), carbon-based biomasses from Selph et al., (this issue) were converted
to nitrogen-based biomasses for the biogeochemical model (Redfield 1963). See Supplemental
Appendix A and Selph et al. (this issue) for additional details.

Phytoplankton growth, productivity, and grazing rates

We used three distinct incubation strategies for quantifying phytoplankton productivity

and nutrient uptake rates: 24-h in situ incubations on the “incubation” array (NPP, NO3™ uptake,

5
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and taxon-specific phytoplankton growth rates); 6-h shipboard incubations starting at dawn
(vertical patterns of NO3™ and NH4" uptake); and diel shipboard incubations consisting of
sequential 4-h incubations for 24 h (diurnal patterns of NO3™ and NH4" uptake).

Taxon-specific growth rates - Two-point seawater dilution grazing experiments were
conducted in situ daily at 6 depths spanning the euphotic zone to determine taxon-specific
phytoplankton growth rates for a total of 88 independent experiments (Landry et al., 2008, 2011,
this issue). 2.7-L samples of either whole seawater or partially diluted seawater (32% whole
seawater/68% 0.1-um filtered seawater) were incubated for 24-h on the incubation array. Initial
and final samples for FCM (Prochlorococcus and Synechococcus), HPLC (dinoflagellates,
diatoms and prymnesiophytes), and fluorometric chlorophyll a (bulk phytoplankton) were used
to determine taxon-specific phytoplankton growth and mortality at each depth. See

Supplementary Appendix A and Landry et al. (this issue) for additional details.

In situ NPP and nitrate uptake - NPP and '"NO3  uptake rates were measured at the same
6 depths on the incubation array. Four incubation bottles (2.7-L) per depth were filled from
Niskin rosettes (three light bottles, one dark bottle). All bottles were spiked with H3CO3™ (final
concentration of 154 or 196 pmol L™! on NF1704 and NF1802, respectively). Two light bottles
were spiked with '>NO3" (final concentration of 10 or 8 nmol L' on NF1704 and NF1802,
respectively). Bottles were then incubated for 24 h on the array. Upon recovery, incubations
were immediately vacuum filtered onto pre-combusted 25-mm GF/F filters in the dark. Filters
were rinsed with filtered seawater, wrapped in foil and stored at -80°C. Samples were fumigated
with HCI vapor to remove inorganic carbon, dried, and placed inside a tin cup to be used for C/N
and isotopic analysis at the University of California, Davis stable isotope facility. Uptake rates
("*NOs" or bicarbonate) were determined for each incubation bottle using equations in Stukel
(2020). NOs™ uptake is reported as the average and uncertainty of the '’NOs™ spiked bottles. As
no statistically significant difference in H'*COs™ uptake was detected between bottles spiked with
ISNOs™ and those without, NPP is reported as the average and uncertainty of H'*COs™ uptake in
the three light bottles corrected for dark bottle H'*CO3™ uptake.

Shipboard vertically-resolved nitrate and ammonium uptake - Since NH4" recycling
within 24-h bottle incubations can substantially bias measurements of NH4" uptake (Dugdale and

Wilkerson, 1986), we conducted short-term (6-h) NH4" and NOs™ uptake experiments in
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shipboard incubators. Each incubator was uniformly shaded using clear or blue-tinted acrylic
sheets to achieve three light levels as determined by simultaneous measurements with a 2-m LI-
COR photosynthetically active radiation (PAR) sensor for downwelling irradiance and a 4-n
water-proof LI-COR PAR sensor for ambient irradiance in the incubator. These calibrations
were done shipboard to account for light reflection or shading effects specific to their location.
Incubation light levels for NF1704 (C1-C3) were determined to be 145% (clear, surface), 79%
(mixed-layer), and 21% (lower mixed-layer) of surface irradiance (Io). For NF1802 (C4-C5), the
clear incubator was replaced with one screened to 1.7% Io to mimic DCM light. Incubators were
cooled with mixed-layer seawater (24.5-26.5°C). Samples were drawn from depths near these
light levels (as determined from noon CTD casts with CTD-mounted PAR sensor).

To determine patterns of nitrate and ammonium uptake as a function of depth, six 2.7-L
samples from each of the three incubator light levels (e.g., 5, 15, and 45 m for surface, 79% and
21% lo, respectively) were collected near dusk and placed in the incubators until dawn (N.B.,
ship schedule and CTD water budget did not allow dawn sampling for these experiments). At
dawn, triplicate samples from each depth were spiked with either ’NO3™ or ’NH4"
(concentrations as above) and incubated for 6-h (dawn to approximately local noon). Samples

were then filtered and analyzed as described above.

Shipboard diel nitrate and ammonium uptake experiments - To determine diel variability
in nutrient uptake and assess potential recycling occurring within 24-h incubations, we also
conducted short-term (diurnally-resolved) nutrient uptake experiments. Nine to twelve 2.7-L
bottles were filled at dusk. Two or three 24-h reference bottles (24-h incubation) and an
additional “time point” bottle (4-h incubation) were immediately spiked with >’NO3™ or "'NH4"
(the remainder of the bottles were not immediately spiked). All bottles were then returned to the
incubator. After ~4 h, the first experimental bottle was removed from the incubator and filtered,
and a second experimental bottle was spiked. This process continued for 24-h to produce six
sequential 4-h incubations from which diurnal patterns of nutrient uptake could be determined.
After 24-h, the reference bottles were harvested. No diel experiments were conducted during C3
(NF1704), and no diel ammonium uptake experiments were conducted during C4 (NF1802). On
all other cycles (C1, C2, C5), simultaneous NO3™ or NH4" uptake diel experiments were
conducted. On NF1802 (C4-C5), diel experiment bottles were also spiked with H'*CO3 to

simultaneously determine diel variability in NPP.
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203  Data assimilation and model parameterization

204  Model Structure—Phytoplankton growth is parameterized using transfer functions from the

205  biogeochemical model NEMURO-GoM (Shropshire ef al., 2020; Shropshire et al., this issue),
206  which was designed for the open-ocean GoM. NEMURO-GoM parameterizes phytoplankton
207  growth as a function of light, nutrients and temperature. By default, it includes two

208  phytoplankton groups (small (SP) and large (LP)); however, we extended this model to

209  parameterize 6 distinct groups that were identifiable through FCM, HPLC and/or EPI approaches
210  above: (1) PRO, (2) SYN, (3) PRYM, (4) ADINO, (5) DIAT and (6) OTHER (equaling the

211  residual biomass from the remaining groups of autotrophic eukaryotic phytoplankton).

212 NEMURO-GoM parameterizes group-specific growth rates with the following 7

213 equations: (1) NOs™ limitation (NL), (2) NH4" limitation (AL), (3) light limitation (LL), (4)

214  temperature limitation (TL), (5) respiration (Resp), (6) gross primary productivity (GPP), and (7)
215  NPP, wherein Knos is the NO3™ half-saturation constant (uM), Knn4 is the NHs ™ half-saturation
216  constant (uM), a is the initial slope of the photosynthesis-vs-irradiance curve (m?> W' d!), B is
217  the light-inhibition constant (m* W' d!), and V is the maximum-specific-growth rate at a

218  reference temperature (d'). NEMURO-GoM uses a reference temperature of 0°C, but we

219  provide values referenced to 25°C, which is representative of the GoM mixed-layer during our
220  cruises. Q is the temperature effect coefficient (°C™"), R is biomass-specific respiration, E is

)
1

221  growth-specific excretion, and B is biomass (mmol N m™). Subscript “i” indicates group-

222 specific parameters with nitrate concentrations (UM, [NO37]), ammonium concentrations (LM,
223  [NH4']), PAR, and T (°C) as environmental conditions. For our Bayesian parameter-selection
224  procedure (see below), all group-specific parameters except B were log transformed. Equations

225  are as follows:

226 NL; = [Nozﬁ’]v+f;]m : (1 + %)ﬂ (Eq. 1)
227  AL; = [wﬁ% (Eq. 2)
28  LL; = (1 — exp (“"; P AR)) - exp (‘ﬁ;%) (Eq. 3)
229 TL;= exp(Q-T) (Eq. 4)
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Resp; =R;-exp (Q-T) (Eq. 5)
GPP, = V,-B;- (NL; + AL)) - LL; - TL; (Eq. 6)
NPPlzGPPl(l—El)_ReSplBl (Eq7)

Bayesian Parameter Optimization Procedure—To constrain group-specific model parameters,
we used a Bayesian parameter-selection method applied to a modified 0-dimensional version of
NEMURO-GoM consisting of Eq. 1-7 with 6 phytoplankton taxa (additional details in
Supplemental Appendix B). Our objective was not to find a single “best” parameterization, but
rather to develop a statistical ensemble of possible parameter sets that reflects both uncertainty
within the data and uncertainty in taxon-specific responses to light, temperature and nutrients.
Briefly, the initial parameter set, 7, is set to be equivalent to NEMURO-GoM default
parameterizations for either SP or LP (Supplemental Table AI). The model is then initialized
and run with in situ phytoplankton abundances, nutrient concentrations, temperature, and light
equivalent to the observed initial conditions for every in situ incubation experiment. A joint
probability is then used to assess both the model-data misfit (sum-of-squared normalized
residuals) between observations (NPP, NOs™ uptake, and taxon-specific growth rates) and model

results (Eq. 8; “likelihood”) and the prior probability of the parameter set used (Eq. 9).

!
_fxitxw

Likelihood: P(datal|t) = [licdata ﬁ-e 2< 7 ) (Eq. 8)

where x; and o; are the measurement and measurement uncertainty, respectively, of the i'th

observation and x; is the modeled value for that observation.

*\ 2
. o 1 £
Prior probability: P(17) = [];er <m ‘e 2< ot ) > (Eq.9)
where t* and o are the mean and standard deviation, respectively, for the prior estimate of model

parameter value ¢ (Supplemental Table AI).

To explore the possible solution space, we used a Markov Chain Monte Carlo procedure
with the Metropolis-Hastings algorithm (Hastings, 1970). For each iteration of the random walk,

each parameter is varied by a small increment (in log-transformed space if a variable was
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transformed) yielding a new parameter set: 7;,4, which is used to re-run the model yielding a
new likelihood and prior probability. The new parameter set would be “accepted” any time cost

(i.e., —P(data|rj+1) . P(T]-_,_l)) decreased and may be accepted even when cost increases based

—p(data|tj,1)P(z)s1)
-p(dataltj)-p(z))

on the acceptance ratio: . If the new parameter set is accepted, the random

walk continues from 7;, ;. Otherwise a new ;.4 is calculated. The first 50% of accepted

parameter sets were removed (“burn-in”’) and the remainder were subsampled (1 in 50) to

remove autocorrelation between parameter sets and yielding ~20,000 final parameter sets.
RESULTS
In situ conditions and the phytoplankton community

All five cycles had surface chlorophyll concentrations <0.2 pg L' and a pronounced
DCM between 69 and 137 m (Girard et al., this issue). The top of the DCM typically
corresponded to ~1-2% lo. NO3™ concentrations were consistently <0.1 pM at depths shallower
than 69 m and generally <1 uM throughout the entire euphotic zone (Knapp et al., this issue).
Only C5, with the shallowest euphotic zone and closest to the shelf break, had >1 pM NOs™ at
<100 m depth.

Prochlorococcus averaged ~50% of the carbon-based phytoplankton biomass in all water
parcels, although its proportional contribution varied from 31-66% of integrated euphotic zone
biomass, being slightly more dominant in cycles with deeper DCMs (Table 2). PRO biomass
typically increased with depth from the mixed-layer to a subsurface maximum slightly above the
DCM before declining at the DCM. Mixed-layer SYN:PRO biomass ratios ranged from 0.2-1.4.
However, SYN biomass decreased with depth, such that it represented <10% of PRO biomass at
the DCM. Combined, cyanobacteria contributed a mean (+ standard deviation) of 67£14% of
euphotic zone integrated autotrophic carbon, while 2-10 um eukaryotic cells comprised most of
the remaining biomass. Prymnesiophytes were the dominant eukaryotic taxa, comprising 17 +
7%, while chlorophytes and pelagophytes represented 5+3% and 4.2+2%, respectively, of
integrated euphotic zone carbon biomass. Diatoms were only minor contributors to autotrophic
biomass (<2% in all cycles). For additional details on community composition, see Selph et al.

(this issue).

10
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Vertical profiles of NPP and nutrient uptake

NPP declined almost monotonically with depth on all cycles, although mixed-layer NPP
was typically only 2 to 3-fold higher than NPP at the DCM (Fig. 1). NPP showed relatively
weak inter-cycle variability. Cycle-average NPP varied from 0.27-0.55 umol C L' d"! at 5 m
and varied from 0.10-0.29 umol C L' d"!' at the DCM. The highest vertically integrated NPP
(mean: 29.3 mmol C m™ d!) was for C5 (the cycle closest to the shelf), which also had the
shallowest DCM, euphotic zone depth, and nitracline. The lowest vertically-integrated NPP was
measured during C2 (24.3 mmol C m? d).

Vertical structure was less distinct for NO3™ uptake rates (Fig. 1). Across depths and
cycles, NOs™ uptake typically ranged from 5-20 nmol N L' d!. C1 exhibited a modest
subsurface peak at 20-30 m (the rate was much higher for one outlier experiment at the DCM,
likely due to contamination). C2 and C3 showed evidence for a weak subsurface maximum at
~60 m, while rates were relatively constant with depth for C4. C5 was the only cycle with a
clear surface maximum in NOs™ uptake rates. Vertically integrated, cycle-average NO3™ uptake
ranged from 0.72 (C4) to 3.45 mmol N m? d! (C1).

To investigate the relative proportion of NPP supported by NO3™ uptake (commonly

referred to as the f~ratio), we computed an f-ratio from in situ data as:

fo= NOs;Uptake

' NPP/S
where S is Redfield C:N stoichiometry (106:16). We caution that while fis is similar to the
commonly used f-ratio (proportion of N uptake provided by NO3"), it should not be interpreted as
equivalent to the technical definition of the f-ratio (new production divided by total production),
because we suspect that nitrification in the euphotic zone may have been significant (Kelly et al.,
in review; Stukel et al. this issue b). Furthermore, fis may overestimate an f-ratio calculated from
NOs™ and NH4" uptake (see below), if phytoplankton engage in luxury nutrient uptake. With
those caveats, vertically-integrated, cycle-average fis ranged from 0.17-0.89; however, the high
value (0.89 from C1), was heavily biased by the aforementioned high NOs™ uptake outlier at the
DCM. If the results from this day’s experiments are excluded, fis for this cycle decreases to 0.47.
Across all cycles, fis generally increased with depth in the euphotic zone. It is important to note

that heterotrophic bacteria may play a role in nutrient uptake; however, the data suggests that

11



312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333

334

335
336
337
338
339
340
341

Please cite as: Yingling, N., T. B. Kelly, K. E. Selph, M. R. Landry, A. N. Knapp, S. A. Kranz, M. R. Stukel (2021). Taxon-specific
phytoplankton growth, nutrient utilization, and light limitation in the oligotrophic Gulf of Mexico. Journal of Plankton Research.
doi:10.1093/plankt/fbab028

ammonium uptake was vertically-correlated with net primary production and phytoplankton
growth rates (i.e., ammonium uptake was low at the light-limited DCM), while nitrate uptake
was negligible during the night. Since community nitrate and ammonium uptake were light
limited, we suspect that the majority of nutrient uptake was mediated by phytoplankton.

Shipboard, depth-resolved NO3™ and NH4" uptake experiments showed that NHs" uptake
is consistently higher than NOs™ uptake for all cycles and depths (Fig. 2). Similar to the findings
from in situ experiments, the data suggests that NH4" is the preferred nitrogen source.
Experiments during 2017 (mixed-layer only) showed little variability with depth, although NO3"
uptake was higher in C1 than C2 (as suggested by fis). NO3 and NH4" uptake rates from 2018
(which extended to the depth of the DCM) showed that NH4" uptake was lower at the DCM than
in the mixed-layer, a finding that also agrees with our in situ NPP results. Shipboard incubation-
based f-ratios (faeck = NOs uptake / (NOs uptake + NHa uptake)) were lower than fis and ranged
from 0.02-0.17. For faeck, we assumed that NH4" uptake occurs at constant rates over the full 24-
h daily period (and hence multiplied 6-h experiments by 4), but that NOs™ uptake occurs only
during the day (hence multiplied 6-h experiments by 2), based on the results of diel experiments
(next section). Because fieck calculated from NO3™ and NH4" uptake measurements should be
considered more accurate due to the shorter incubation times with less recycling occurring, we
developed a blended f-ratio product: we treated fzck as more accurate at paired depths, but used
the vertical patterns from fis. That is, we multiplied fis by the ratio of facx:fis at the nearest depths.
This approach suggested that euphotic zone-averaged f-ratios varied from 0.02-0.22
(mean=0.06). f-ratios were slightly higher in the deep euphotic zone (>50 m depth, f ranged
from 0.03-0.44, mean=0.14) than in the shallow euphotic zone (= 0.01-0.14, mean=0.06).

Diel variability in NPP and nutrient uptake

Distinct patterns emerged from the sequential 4-h incubations assessing diel variability in
NH4" uptake (Fig. 3), NOs uptake (Fig. 4), and NPP (Fig. 5). NOsz™ uptake and NPP were
strongly light-dependent, with consistent mid-day peaks and low activity during the night (Figs.
4, 5). However, NH4" uptake showed no distinct diel patterns, with uptake rates as high at night
as during the day. Comparison to simultaneous 24-h incubations allowed us to assess potential
nutrient recycling in the euphotic zone. For NPP, the sum of six sequential 4-h H*COs™ uptake

experiments were generally not significantly different from the mean of simultaneous 24-h
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uptake experiments, indicating, as expected, that the time scale of H'*CO3 recycling within the
euphotic zone is long relative to the duration of a 24-h experiment. However, for both NOs
uptake and NH4" uptake rates, the sums of 4-h incubations were substantially greater than
simultaneous 24-h incubations. For NOs™ uptake, the ratio of the sum of sequential 4-h
incubations to the average of 24-h incubations ranged from 1.2-5.6 (median=2.0). For NH4"
uptake this ratio ranged from 5.0-6.0 (median=5.7). These results indicate rapid recycling of

NH4" in the euphotic zone, and also reasonably fast recycling of NO3".
Vertical profiles of phytoplankton growth rates

Instantaneous growth rates of phytoplankton were variable as a function of depth and
cycle (Fig. 6). On average, PRO surface growth rates were 0.67+0.35 d!, decreasing with depth
to 0.27+0.10 d!' at the DCM. Similarly, the average SYN surface growth rates were 0.64+0.29
d!, decreasing with depth to 0.34+0.30 d! at the DCM. These rates are consistent with previous
research (Partensky et al., 1999). DIAT growth, ranging from -0.4 to 1.5 d"!, was higher in the
upper euphotic zone and declined gradually with depth, except for a peak at 85 m during C4.
ADINO growth ranged from 0-1.2 d"!' and varied between cruises. In 2017 (C1-C3), growth of
ADINOs was highest in the upper mixed-layer and gradually declined with depth. In 2018
experiments, (C4-C5), ADINO growth peaked in the mid euphotic zone at ~40 m. PRYM
growth rate varied among cycles, ranging from -0.5 to 1.3 d"! with occasional peak values in the

mid water column.
Model results

Using a Bayesian statistical approach to assimilate our in situ measurements, we
constrained typical transfer functions used to model taxon-specific phytoplankton responses to
light, temperature, and nutrient limitation in biogeochemical models. Data assimilation
increased the fit to experimental data relative to the default parameterization from NEMURO-
GoM (Supp. Fig. 2; Supp. Table I). The parameters determined from data assimilation had a
much better fit to NPP observations than the default parameters, but only a moderately better fit
to nitrate uptake observations (Fig. 7). The assimilated parameters underestimated observed
nitrate uptake when nitrate uptake was high (although only by a factor of 2—5, while the default
parameters underestimated nitrate uptake by ~10-fold). The model underestimate resulted from

the fact that even with low half-saturation constants, the NEMURO model did not predict nitrate
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uptake rates as high as the observations in a region with such low nitrate concentrations. Total
model log-likelihood increased substantially after the Bayesian optimization procedure

(from -40,748 to -3,333 for NEMURO-GOM default and data-assimilated parameters,
respectively, Supp. Table I). Notably, the default parameters predicted unrealistically low NPP
and growth rates for phytoplankton based on the low nutrient concentrations in the GoM
euphotic zone (Supp. Fig. 2). Consequently, the optimized parameter ranges suggested much
lower Knnsa (NH4" half-saturation constants) for all phytoplankton taxa except SYN (Fig. 8).
Kxns was lowest for PRO (mean = 0.007 uM, 95% C.I. = 0.005-0.009 uM), which thrives in
oligotrophic regions. Previous research supports low half-saturation values for PRO (Marafion et
al., 2013; Grossowicz et al., 2017). In contrast, the posterior distributions for Knos remained
relatively close to the prior distributions (and to default NEMURO-GoM parameterizations, Fig.
8). The Bayesian parameter optimization approach suggested Knos values of ~3 pmol L™! for all
large phytoplankton taxa, ~0.4 pmol L' for PRO and OTHER, and ~0.1 umol L™ for SYN. This
is comparable to laboratory studies that suggest half saturation constants are proportional to cell

size with larger cells ranging in value from 0.1-5.0 umol L' (Eppley et al., 1969).

Model results also varied among groups with respect to light-response parameters and
maximum growth rates. PRO and OTHER had the lowest maximum growth rates at 25°C (Vasec
=0.82d"',95% C.1.=0.73-0.92 d"! and 0.44 d!, 95% C.1.=0.35-0.54 d’!, respectively as shown in
Supplementary Fig. 2). However, the low maximum growth rate parameter suggested for
OTHER might be an artifact of the inclusion of many different taxa within this group, which
resulted in the model predicting low and only weakly-varying growth rates. All large
phytoplankton taxa had a maximum growth rate at 25°C of approximately 1.6-2.0 d"!, while SYN
had a higher maximum growth rate of 2.6-4.4 d"!. PRO had the weakest light sensitivity, with o
(initial slope of the photosynthesis-irradiance relationship) equal to 0.01 m? W d! (95%: 0.006-
0.02 m> W' d'1), which likely reflects the presence of low-light-adapted PRO strains that thrive
in the deep euphotic zone. Most taxa had o in the range of 0.02-0.8 m> W' d"! reflecting
substantial light limitation and reduced growth rates in the DCM (Fig. 8, Supp. Fig. 1).

Because we simultaneously varied all parameters, our optimization procedure provides
some insight into correlations among parameters. A subset of these results (for PRO) are shown

in Fig. 8. For instance, a and V were positively correlated suggesting that the model could fit
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402  PRO growth rates at the DCM with either a higher maximum growth rate or with a weaker
403  sensitivity to light limitation. Correlations for PRO were relatively weak for most parameter
404  pairs. SYN, however, shows strong correlations for several parameter pairs. In particular,
405  nutrient half-saturation constants were positively correlated with each other and with V. This
406  suggests that the model could determine viable solution sets with high maximum growth rates
407  and substantial nutrient limitation or with low maximum growth rates and weaker nutrient
408  limitation, and that the relative importance of nutrient limitation by NO3™ or NH4" could vary

409  (although Kno3 was always lower than Knns for SYN).

410 Comparison of optimized parameter sets to measured environmental conditions

411  (nutrients, light, and temperature) also allowed us to assess patterns of limiting resources for

412  each taxon (Fig. 9). While all phytoplankton taxa experienced slightly greater nutrient limitation
413 in the shallow euphotic zone than in the deep euphotic zone, with the exception of SYN, nutrient
414  limitation led to <50% decrease in growth rates (Fig. 9a). SYN was the only group with a

415  median f-ratio greater than 0.05. This suggests that all taxa (except SYN) rely disproportionately
416  on ammonium as a N source for growth and primary productivity. In contrast, SYN appeared to
417  be the sole NOs3™ specialist, with commensurately high f-ratios (~0.5) and greater nutrient

418  limitation of growth rates. Our model thus shows a distinct niche specialization of the abundant

419  taxa to the oligotrophic nature of this ecosystem.

420 With the exception of PRO and OTHER, which seem to be well-adapted to maintaining
421  low and comparatively insensitive growth rates in both the mixed-layer and the deep euphotic
422 zone, all taxa experienced substantial light limitation in the deep euphotic zone (>50 m). At
423 these depths, light limitation ranged from mild limitation at ~50 m depth (e.g., growth penalties
424 of ~20%) to strong limitation at the DCM (growth penalties of up to 95%). In comparison, no
425  groups exhibited substantial light-limitation above 50 m; the greatest average light-limitation
426  penalty in the upper 50 m was for DIAT (~10%), which had the highest photo-inhibition

427  parameter.
428  DISCUSSION
429  Diel and vertical variability in phytoplankton productivity and nutrient utilization

430 Our data indicates that the oligotrophic GoM is a highly-stratified, picophytoplankton-
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dominated (mostly PRO) region, with low nitrate concentrations (typically <0.1 uM above the
DCM), low chlorophyll a concentrations (typically <0.03 ug L™ in the mixed-layer and <0.2 ug
L!'in the DCM), and deep DCMs (69 to 137 m). Nutrient uptake measurements show that NH4"
recycling is key to sustaining the phytoplankton community and productivity. These conclusions
are consistent with previous investigations of phytoplankton nutrient limitation in the oceanic
GoM (Dugdale and Goering, 1967; Eppley and Peterson, 1979; Platt and Harrison, 1985;
Lipschultz, 2001; Wawrik et al., 2004).

Vertical profiles of NPP (Fig. 1) and taxon-specific growth rates (Fig. 6) indicate that
phytoplankton and nutrient uptake are generally light limited, with NPP and growth rates
declining with depth. This decrease in NPP was not associated with a decline in phytoplankton
biomass. Although the biomass of different taxa varied with depth, overall phytoplankton
biomass and POC were typically relatively constant or increased slightly with depth (Selph et al.,
this issue; Stukel et al., this issue a). This decrease in productivity and growth is more gradual,
however, than might be expected based on light limitation alone. Instead, it reflects substantial
nutrient limitation in surface waters that gradually gives way to light limitation in the deeper
euphotic zone, suggesting that phytoplankton throughout the euphotic zone grow at rates
substantially below their physiological potential. Vertical trends also likely include shifts in
species composition. Although these patterns are not evident from our FCM and HPLC-based
taxonomic study, sequencing data has shown differentially adapted species within our broad
categories, especially for high-light or low-light adapted PRO and SYN (Gutiérrez-Rodriguez et
al., 2016). Notably, the distinct DCM was primarily, but not solely, driven by increased cellular
pigmentation, as has been seen in multiple other studies (Cullen et al., 1982; Mignot ef al.,
2014). The maintenance of the DCM despite reduced growth rates thus requires either reduced
mortality (i.e., grazing) or subsidies from sinking phytoplankton (Hodges and Rudnick, 2004;
Moeller et al., 2019; Stukel et al., this issue a).

The diel experiments showed distinct temporal patterns of NH4" and NO3™ uptake. NHg4"
uptake rates did not vary with time of day (Fig. 3), while NOs™ uptake rates were light-dependent
and similar to diel patterns of NPP (Figs. 4 and 5). This is consistent with NO3™ uptake being
more coupled to photosynthetic energy generation while NH4" uptake had no cellular regulation
(Figs. 3 and 4) (Dortch, 1990). Similar patterns have been found for NOs™ uptake in the Costa

Rica Dome (Stukel ef al., 2016). However, NOs™ uptake rates measured in the Sargasso Sea were
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lower at night but remained at ~1/3 daytime values (Lipschultz ef al., 2001). In the Sargasso
Sea, different studies have also given different ratios of daytime to nighttime NH4" uptake, with
Lipschultz ef al. (2001) determining that daytime rates were twice those of nighttime rates, while
Glibert et al. (1988) found negligible day-night differences (as in our study). Lipschultz et al.
(2001) methods included longer incubations (dusk to dawn) while Glibert ef al. (1988) included
short 1-2 h incubations. Taken together, these results underline the difficulty in extrapolating
from short (2-6 h) experiments to daily uptake rates or f~ratios. Our diel uptake experiments also
showed substantial differences between 4-h and 24-h NH4" uptake incubations (and to a lesser,
but still considerable, extent for NOs™ uptake incubations). Rapid cycling of NH4" in the surface
ocean is expected, while NO3" is often considered upwelled “new” nitrogen (Dugdale and
Goering, 1967). Recent evidence, however, suggests that NO3™ regeneration through NH4"
oxidation may be more common in surface oceans than previously realized (Yool et al., 2007,
Shiozaki et al., 2016). The combination of relatively high rates of NO3™ uptake (compared to
NOs™ concentration), very low NOs™ inventory from the surface to the DCM at ~100 m, and the
~2-fold higher NOs™ uptake measured in 4-h incubations relative to 24-h incubations lead us to
believe that NO3" in the surface GoM might be supplied primarily by NH4" oxidation (Stukel et

al., this issue b).

Model Optimization

Accurately constraining biogeochemical model parameters is a challenging yet crucial
step towards treating models as falsifiable hypotheses (Arhonditsis and Brett, 2004; Anderson,
2005; Franks, 2009; Schartau et al., 2017). Objective parameterization typically follows two
broad approaches: (1) empirical fits of specific transfer functions to available data, or, (2) formal
data assimilation. The former approach typically fits simple functional forms (e.g.,
photosynthesis-irradiance curves or Ivlev grazing formulations) to field or laboratory data.
Empirical fits can be developed using experimental data derived from intentional manipulation
of independent variables for a specific species or community (Eppley et al., 1969; Platt et al.,
1980), or determined by fitting relationships for measurements made under natural conditions
across an environmental gradient (Li et al., 2010; Morrow et al., 2018). These two empirical
approaches address subtly different questions. The former approach examines the mechanistic

response of a single taxon to changes in an environmental variable, while the latter addresses a

17



493
494
495
496
497

498
499
500
501
502
503
504
505
506
507
508
509
510

511
512
513
514
515
516
517
518
519
520
521

Please cite as: Yingling, N., T. B. Kelly, K. E. Selph, M. R. Landry, A. N. Knapp, S. A. Kranz, M. R. Stukel (2021). Taxon-specific
phytoplankton growth, nutrient utilization, and light limitation in the oligotrophic Gulf of Mexico. Journal of Plankton Research.
doi:10.1093/plankt/fbab028

similar question but at a community-level scale, thus accounting for community shifts that occur
with changes in light and nutrient conditions. This investigation of mechanistic responses at the
community level is often more appropriate for models, because most such models simulate
plankton functional groups comprised of many different species (Hood et al., 2006). However, it

is complicated by frequent covariance of multiple parameters (e.g., light and nutrients).

The alternative approach to model parameterization, which has long been common in
physical oceanography, is formal data assimilation (Friedrichs et al., 2006; Gregg et al., 2009;
Cummings et al., 2013). In data assimilation, the full forward model is typically run and
compared to observations, and then a prescriptive approach is followed to sequentially modify a
subset of the parameters to minimize the model-data misfit. While multiple approaches have
been used (Lawson et al., 1995; Ward et al., 2010; Doron et al., 2011), the most common
approach is the variational-adjoint, which is frequently used to compare model outputs to spatial
maps of sea surface chlorophyll or time-series measurements of standing stocks in a one-
dimensional framework. However, some studies have questioned whether assimilation of
standing stock measurements is sufficient to constrain many model parameters, or have noted
that more complex models often respond less well to assimilation techniques and the tendency of
the variational-adjoint method to gravitate toward local minima in parameter space (Xiao and

Friedrichs, 2014; Loptien and Dietze, 2015).

Our Bayesian statistical approach allows us to simultaneously constrain multiple
parameters for which a priori estimates contained substantial uncertainty. The incorporation of
multiple types of rate measurements allows for more precise determination of posterior
distributions than would have been possible if we only utilized standing stock measurements.
Indeed, optimized parameter values for the NEMURO-GoM transfer functions suggest >90%
reduction in cost on average (Supp. Table I). The results returned reasonable parameter value
ranges for most taxa, and demonstrated some expected emergent properties (e.g., PRO is an
oligotrophic specialist). They also, however, disagreed with a priori expectations in some key
ways, indicating that likelihood (i.e., our measurements) was more important than prior
distributions in determining the posterior distributions. Most notably, the model showed that our

experimental results could only be matched using much lower NH4" half-saturation values for
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most taxa than the default values in NEMURO-GoM or common half-saturation constants

measured in cultures (Edwards et al., 2012; Shropshire et al., 2020).

Nevertheless, some parameters seem unrealistic. Notably, the OTHER group, which is a
composite of multiple phytoplankton taxa including pelagophytes, chlorophytes, prasinophytes,
cryptophytes and other taxa, had very low maximum growth rates (mean: 0.44 d!, 95%: 0.35 —
0.54 d! at 25°C) and very little nutrient or light limitation. This suggests that the optimization
procedure attempted to give this composite group a low and relatively constant growth rate under
all conditions. It is unlikely that pelagophytes, chlorophytes, prasinophytes, and cryptophytes
were all insensitive to environmental variability. More likely, the different taxa within OTHERS
have different responses to light and nutrients that are masked when they are aggregated together
in a single group. On the other hand, this aggregate behavior might also be considered a strength
of this parameterization approach, since even the most accurate representation of any one taxon
or group can never reflect the adaptive physiological potential of a natural mixed community. It
is also important to consider that groups like ADINO and OTHERS might be mixotrophic and
taking up nitrogen by phagotrophy in this region, which may impact their functional responses to

light and nutrient limitation (Jones 2000; Stoecker et al., 2017).

Even though posterior distributions were very different from prior distributions, many of
the parameters (e.g., Knn4) retained substantial uncertainties. These uncertainties arise, in part,
from covariance among environmental variables, which leads to correlations across the different
parameters. In future work, experimental manipulations could be conducted in ways that break
some of the natural correlations (e.g., nutrient amendments or light manipulation). In addition,
some uncertainty undoubtedly arises from errors in measurements (nutrients, light,
phytoplankton abundance). Future work could explicitly formulate the model such that the
inputs are “true” values of standing stocks, defined as X; = X; + 8y, for incubation i, where X;
is the measured value and Jy; is a random variable with prior distribution centered at 0 and a
standard deviation equal to the measurement uncertainty. The dy; would then be variables to
solve for parameter solutions. Even without these potential improvements, however, we believe
that our approach provides useful guidance for parameterizing future biogeochemical models of

the GoM and elsewhere.

Phytoplankton niches in the oligotrophic ocean
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The vast number of species, strains, or ecotypes that are aggregated into our broad
phytoplankton taxonomic groups make it difficult to define specific niches for each group
(Scanlan, 2003; Simon et al., 2009; Kashtan et al., 2014). It is reasonable to expect that the
evolutionary history of taxa provides some inherited physiological constraints on their overall
niche space, while the prevalence of specific ecotypes may contribute further to a definable niche
space for each group. Our results, with respect to both spatial patterns of abundance and model

constrained characteristics, shed light on these questions.

The two cyanobacterial taxa have distinctly different ecological niches. For PRO, the
consistent subsurface maxima just above the DCM (Selph et al., this issue) and high o (initial
slope of the photosynthesis-irradiance curve) indicates that it thrives in low-light conditions. We
also observed a substantial increase in divinyl chlorophyll a cell”! with depth that likely explains
its physiological adaptation to low light (whether by cellular regulation or distinct ecotypes
remains unconstrained). Other studies have shown that there are distinct depth distributions of
PRO ecotypes (HLI and HLII near the surface, and LL at low light) (Zwirglmaier et al., 2007).
Beyond light limitation, the very low NH4" half-saturation constant shows it to be a low-nutrient
specialist that relies almost exclusively on rapidly recycled NHs". This concurs with a general
consensus that although some strains of PRO contain genes for NO3™ assimilation (Martiny et al.,
2009), this genus primarily utilizes NHs" (Moore et al., 2002). In contrast, SYN was the only
group that efficiently exploited low nitrate concentrations, typically maintaining a shallower
distribution in the water column with greater sensitivity to light limitation. We thus suspect that
SYN relies substantially on NOs™ regenerated in the upper euphotic zone through shallow
nitrification (Kelly ef al., submitted; Stukel e al., this issue b). Previous research has shown
similar fundamental differences between SYN and PRO in nutrient utilization, with SYN
utilizing nitrate more efficiently than PRO (Scanlan and West, 2002). Comparisons of
abundances to nutrient concentrations and turbulent mixing rates have also suggested that PRO is
more abundant in warm waters with low nitrate supply, while SYN and picoeukaryote niches are
in cooler waters with greater nitrate supply (Otero-Ferrer ef al., 2018), a finding that agrees with
previous evidence showing PRO dominance in oligotrophic gyres and SYN and picoeukaryotes
becoming more important in equatorial upwelling and temperate regions (Zubkov et al., 2000;

Landry and Kirchman, 2002).
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Model results for eukaryotic phytoplankton taxa were slightly less conclusive. The larger
uncertainty is partially due to the substantially lower abundance of these taxa, and also in part
because the pigment-based growth rates were imperfect estimates of true cellular growth of these
taxa. DIAT had modest maximum growth rates, lower than those in many culture and field
measurements (e.g., Furnas, 1990; Sarthou et al., 2005; Selph et al., 2011; Selph et al., 2016).
This might, however, reflect chronic extreme silicon limitation, which was not assessed in our
study. We do note that prior concentration measurements from GoM indicate that Si is very low
(Dortch and Whitledge, 1992). Irwin et al. (2012) used continuous-plankton-recorder-derived
phytoplankton abundance data to show that diatoms and dinoflagellates have distinct ecological
niches with diatoms typically excelling in cold, nutrient-rich, well-mixed, low-light
environments relative to dinoflagellates, which agrees with the low diatom biomasses we found.
Barton et al. (2015) further showed that diatom responses to these physical drivers are
spatiotemporally variable, which does suggest caution when applying our results to other
regions. Our model could not significantly differentiate between ADINO and PRYMN, both of
which had maximum growth rates of ~0.6 d-1 and exhibited substantial light limitation. The
model did, however, suggest that the NH4" half-saturation constant was substantially lower for
PRYMN than ADINO, which is not surprising for a generally smaller phytoplankton taxon and
might help explain why PRYM was the biomass-dominant eukaryote in our study (Selph et al.,
this issue). Considered together, these results delineate distinct competitive differences between
these diverse phytoplankton functional groups, which helps explain their coexistence in
oligotrophic conditions and supports the advanced light and nutrient resource competition model

(Burson et al 2018).

CONCLUSION

The oceanic GoM is an extremely oligotrophic ecosystem with low NPP and a strong
DCM. We found higher NPP in the upper euphotic zone than the DCM, fueled mostly by
recycled nutrients. Ammonium uptake exceeded nitrate uptake at all depths and was relatively
invariant with time of day, while nitrate uptake was mainly restricted to daytime. Bayesian
parameter optimization techniques allowed us to constrain maximum growth rates, light
utilization parameters, and half saturation constants for five phytoplankton taxa (PRO, SYN,

DIAT, PRYMN and ADINO), yielding parameter values for future modeling studies. This
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approach also allowed us to define distinct niches for different taxa and determine that all, except

PRO, were chronically nutrient limited at all depths.
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934  Table I. Summary of data for each Lagrangian cycle. Surface NOs™ and NH4" are averaged

935  across days within a cycle. NPP, NO3™ and f-ratio are vertically integrated values. f-ratio = NO3"
936  uptake / (NH4" uptake + NOs3™ uptake) is a blended product that combines shipboard NOs™ and
937  ammonium uptake experiments (more accurate) with in situ NO3™ uptake and NPP measurements
938  (greater depth resolution).

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5
Surface NO3"
(nM) <0.1 <0.1 <0.1 <0.1 <0.1
Surface NH4*"
(nM) <0.025 <0.025 <0.025 <0.025 0.025
Surface Chl a
(ng/L) 0.107+0.04  0.049 0.080£0.007  0.100£0.01  0.127+0.01
NPP
2 g1
(mmol Cm™d™)  »s5 0101 244228  24.9:04 202430  30.1£2.9
In Situ NOs”
Uptake
(umol Nm2d') 345:1.63  1.49:021  0.99+0.37  0.74:0.02  1.48+0.09
fratio 0.22 0.02 0.05 0.06 0.12
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Table II. Summary of in situ observations. Group-specific biomass are vertically integrated to
the base of the euphotic zone for each Lagrangian cycle. Units are mmol N m (converted from
carbon-based values reported in Selph et al. (this issue) by dividing by a Redfield C:N ratio of
106:16, mol:mol). Values marked with NM were not measured.

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5
Prochlorococcus | 6.16+0.22 | 6.76 £0.28 | 6.85+0.37 | 485+0.04 | 3.24+045
Synechococcus 1.44+004 | 1.25+0.03 | 1.22+0.04 | 2.57+0.05 | 2.36 £0.37
Diatom 0.26 +£0.11 NM NM 0.07+0.004 | 0.04 +0.003
Dinoflagellate 0.47+0.05 NM NM 0.40+0.11 | 0.43+0.02
Prymnesiophytes | 0.33 +0.03 NM NM 0.44+0.18 | 0.54+0.03
Other
Eukaryotes 2.46 +0.84 0.79+0.0 0.60 £ 0.0 047 +0.11 1.64+ 0.5
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973  Figure 1. NOs™ (red) and HCO3™ uptake (blue) rates from in situ incubations. HCO3™ uptake
974  rates are converted to nitrogen units assuming Redfield ratio (6.625 molar ratios of C:N). Error
975  bars represent 1 standard deviation of the mean.
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measurements.
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981  Figure 3. Diel NH4" uptake rates (nmol N L! h'!) with solid horizontal lines showing the

982  duration and mean uptake rates for the 4-5 h (blue) and 24-h (dark brown) incubations. Dashed
983  horizontal lines (orange) represent averages of 4-5-h incubations for comparison with 24-h

984  incubations carried out during the same time frame. Black and yellow alternating bars (top of
985  each figure) represent local daylight and dark hours. Depths indicate depth of water collection
986  and approximate correspondence to incubator light level.
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990  Figure 4. Diel NOs™ uptake rates (nmol N L' h'!). Depths of water collection for the

991 incubations are indicated next to the cycle number. Solid horizontal lines show the duration and
992  mean uptake rates for the 4-5-h (blue) and 24-h (dark brown) incubations. Dashed horizontal
993  lines (orange) represent averages of 4-5-h incubations for comparison with 24-h incubations
994  carried out during the same time frame. Time periods that had more than one replicate are both
995  shown, e.g, two blue lines at one time period. Black and yellow alternating bars (top of each
996  figure) represent local daylight and dark hours.
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999  Figure 5. Diel primary production (umol C L' h™") from shipboard experiments. Solid
1000  horizontal lines show the duration and uptake rates for individual 4-5 h (blue) and duplicate 24-h
1001  (dark brown) incubations. Time periods that had more than one replicate are both shown, e.g,
1002  two blue lines at one time period. Dashed horizontal lines (orange) represent averaged short
1003 incubations for comparison with 24-hour incubations. Black and yellow bars located at the top
1004  of figures represents local daytime and nighttime.
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function of depth. Details of experiments are in Landry ef al., this issue.
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Figure 8. (a) Model parameters of log-transformed Knua (umol L), log-transformed Knos
(umol L), log-transformed Alpha (m?> W' d!), Beta (m? W' d'!) and log-transformed V at 0°C
(d™") for Prochlorococcus. Upper plots are histograms for each variable (filled gray lines, n =
108, subsampled to 2x10%), with blue lines approximating the prior distribution that was assumed
for each variable from previous studies. Lower property-property plots show the correlation
between any two parameters (note that scales are as in the histograms above). Red value located
in bottom right corner in each subplot gives Pearson’s correlation coefficient (which is suitable
for use with non-normal data, Nefzger and Drazow, 1957), with bold values indicating
significance at p < 0.05. Violin plots of (b) NH4" half-saturation constants (Kxn4, uM) and (c)
NOs" half-saturation constants (Knos, pM) from the optimized model (filled) and their priors
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1031  Figure 9. Modeled results for each phytoplankton group for (a) nutrient availability (unitless
1032 growth rate multiplier equal to NL + AL in Egs. 1 and 2), (b) f-ratio and (c) light availability
1033 (unitless growth rate multiplier equal to LL in Eq. ) as a function of depth. Light bars represent
1034  shallow water (< 50 m) and dark bars represent deeper samples (>50 m). Note that the upper
1035  quartile and 95% C.I. values are offscale for SYN in panel b with values of 0.551 and 0.696 for
1036  shallow and 0.699 and 0.921 for deep. See equations 1-4 for formulas and additional

1037  information on the calculations.
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