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hippocampus, path integration imposes
spatial meaning on odor cues, thereby
creating new landmarks.
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SUMMARY

The convergence of internal path integration and external sensory landmarks generates a cognitive spatial
map in the hippocampus. We studied how localized odor cues are recognized as landmarks by recording
the activity of neurons in CA1 during a virtual navigation task. We found that odor cues enriched place cell
representations, dramatically improving navigation. Presentation of the same odor at different locations
generated distinct place cell representations. An odor cue at a proximal location enhanced the local place
cell density and also led to the formation of place cells beyond the cue. This resulted in the recognition of
a second, more distal odor cue as a distinct landmark, suggesting an iterative mechanism for extending
spatial representations into unknown territory. Our results establish that odors can serve as landmarks, moti-
vating a model in which path integration and odor landmarks interact sequentially and iteratively to generate

cognitive spatial maps over long distances.

INTRODUCTION

Path integration is a navigational strategy that allows animals to
form an internal estimate of position relative to external land-
marks (Etienne and Jeffery, 2004; Etienne et al., 1998; Etienne
et al., 2004; Kim and Dickinson, 2017; Mittelstaedt and Mittel-
staedt, 1980; 2001; Muller and Wehner, 1988). Path integration
relies on idiothetic (self-motion) signals derived from vestibular,
proprioceptive, visual flow, and motor sources, that provide
imperfect estimates of movement. Accumulated errors in the
internal estimate of position must be corrected by external land-
marks (Etienne et al., 2004; Hardcastle et al., 2015). The conver-
gence of path integration and external landmarks expands the
range over which animals can accurately navigate.

The recognition of a landmark poses an interesting conceptual
problem. The sensory features of a landmark have no inherent
spatial meaning and are only valuable if they are recognized as
fixed in space (Jeffery, 1998; Savelli and Knierim, 2019), and
this determination may require path integration (Bourboulou
et al.,, 2019; Campbell et al., 2018; Chen et al., 2013; Fattahi
et al., 2018; Jayakumar et al., 2019; Muller and Wehner, 2010;
Ravassard et al., 2013). A further problem of disambiguation
emerges if the same sensory features are encountered at
different locations (Draht et al., 2017; Grieves et al., 2016; Zhao
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et al., 2020). The convergence of path integration and sensory
features creates a cognitive spatial map that can impose unique
spatial meanings on these features to create landmarks.

Odors are a primary source of sensory information and may
serve as navigational landmarks if fixed in space (Aboitiz and
Montiel, 2015; Baker et al., 2018; Hamburger and Knauff,
2019; Jacobs, 2012; Jacobs et al., 2015; Koutsoklenis and Papa-
dopoulos, 2011; Marin et al., 2021; Nosal et al., 2016; Porter
et al., 2007; Raithel and Gottfried, 2021; Steck et al., 2009; Wu
et al., 2020). The hippocampus receives olfactory information
from the lateral entorhinal cortex (LEC) (Leitner et al., 2016; Li
et al., 2017; Woods et al., 2020). The LEC receives direct input
from the olfactory bulb and piriform cortex, two structures that
encode odor identity (Diodato et al., 2016; Sosulski et al.,
2011; Stettler and Axel, 2009). The influence of odors on hippo-
campal activity has been observed in both spatial and nonspatial
contexts (Aikath et al., 2014; Anderson and Jeffery, 2003; Igara-
shi et al., 2014; Li et al., 2017; MacDonald et al., 2013; Muzzio
et al., 2009; Radvansky and Dombeck, 2018; Radvansky et al.,
2021; Taxidis et al., 2020; Young et al., 1997). Grid (Hafting
et al., 2005), head direction (Sargolini et al., 2006), and speed
cells (Kropff et al., 2015) in the medial entorhinal cortex (MEC)
are driven by internal path integration signals and provide infor-
mation to the hippocampus about location and self-motion. In
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the dark, these internal path integration signals, in combination
with olfactory and/or tactile cues, are able to support stable
spatial representations in the hippocampus (Kulvicius et al.,
2008; Quirk et al., 1990; Save et al., 1998; Save et al., 2000;
Zhang and Manahan-Vaughan, 2015; Zhang et al., 2014). Thus,
the hippocampus is a potential site of convergence for internal
path integration and external sensory landmarks.

We have examined the activity of hippocampal neurons in mice
performing a navigation behavior that relies solely on path integra-
tion and sparse olfactory sensory cues. The results of these ex-
periments demonstrate the convergence of path integration and
landmarks in the formation of a cognitive spatial map in the hippo-
campus. These observations led to the formulation of a theoretical
model to describe how path integration and olfactory landmarks
interact in an iterative process to form a cognitive spatial map.

RESULTS

Accurate navigation behavior in the presence of
olfactory landmarks

We designed a series of experiments that required mice to navi-
gate in the dark toward a virtual goal location on the basis of path
integration in combination with olfactory landmarks. Initially,
mice were trained to traverse a distance of 4 m on a featureless
spherical treadmill, while head-fixed, in total darkness to reach
an unmarked goal location where they received a water reward
(Figures 1A and S1A). The ball had a single rotational axis,
rendering the task equivalent to navigation on a linear track.
Initially, this task required mice to estimate their own location
and that of the goal using only path integration based on internal
idiothetic signals. In the absence of odors, behavioral perfor-
mance plateaued after 1-2 weeks (n = 5 mice). Mice initiated
licking and decreased their running speed after traveling only
~2 m along the 4-m track (Figures 1B, 1C, 1D, S1B, and S1C).
Thus, in this paradigm, path integration alone may not permit ac-
curate measurement of distances greater than ~2 m.

We then introduced two brief pulses of the same odor delivered
when the mice reached locations at 1 m and 3 m (Figure 1E).
Photoionization detector (PID) measurements revealed only
~1% differences in the time-varying odor concentrations resulting
from the 1-m and 3-m pulses (Figure 1F). Trials using one of two
neutral odor cues, limonene or pinene, were randomly interleaved.
This task required the mice to determine their location solely onthe
basis of path integration and odor cues, allowing us to study the
convergence of idiothetic self-motion and external olfactory infor-
mation in the generation of cognitive spatial maps. After four days
of training with odor cues, all mice suppressed licking and main-
tained high running speeds for ~3.5 m of travel, commencing
licking and rapidly slowing their running speed ~0.5 m from the
reward location (Figures 1C, 1D, 1G, S1B, S1C, SID, and S1E).
This suggests that the mice recognized the odors as spatial land-
marks and used these landmarks to improve navigation.

Olfactory landmarks enhance place cell representations
in CA1

We used a miniature microscope (Ghosh et al., 2011; Ziv et al.,
2013) (nVista 2.0, Inscopix) and the genetically encoded fluores-
cent Ca2* indicator GCamp6f to image the somatic Ca®* activity

¢? CellPress

of ~3,000 CA1 pyramidal neurons per session, pooled across
mice. We identified individual neurons and their Ca* traces
from the fluorescence videos and registered their activity to the
trajectories of the mice on the virtual track. Neural and behavioral
data were averaged in 100-mm bins for analysis. Neurons with
consistent position-selective activity were classified as place
cells (STAR Methods).

After 1-2 weeks of training without odor cues, 5.8% of the
imaged neurons were classified as place cells (169 of 2893 neu-
rons; Figures 2A-2C, S1G-S1l, and S2; Table S1A). The spatial
density of place cells was maximal at the starting location and de-
cayed rapidly with distance (length constant + bootstrapped stan-
dard error: 0.97 + 0.20 m; Figure 2D). Place field reliability
decreased with distance from the start location, and place field
jitter and width increased as the mice traversed the track (Figures
2E, S1H, and S1l). At the population level, the across-trial stability
of the vector of population activity decreased with distance
(0.44 £ 0.02 versus 0.23 = 0.01; Figure 2F). These results show
that, in this paradigm, path integration alone cannot support reli-
able place cell activity beyond ~2 m. The sparse and unreliable
neural representation of space beyond ~2 m is consistent with
the behavioral observation that the mice began to lick at ~2 m,
perhaps reflecting error accumulation in path integration.

We next examined whether spatially localized odor cues
enhance place cell representations. After mice performed the
task with odor cues at 1 m and 3 m for 4 days, the percentage of
place cells increased from 5.8% to 35% (979 of 2,778 neurons,
union of limonene and pinene place cells; Figures 2G-2l, S1F,
S1G, S1J, and S2; Table S1). The density of place cells showed
an overall increase over the length of the track but was most pro-
nounced slightly beyond 1 m and 3 m, the locations of odor expo-
sure (Figure 2D). Importantly, different sets of place cells were
active at 1 m and 3 m, despite exposure to the same odor at
both locations. We also observe a relatively small population of
neurons that respond at both sites of odor presentation (Figure 2J;
2.4%, 68 of 2,778 neurons) which were excluded from place cell
analysis. The presence of three spaced peaks (at the start and
two odor locations) allowed the place cell density to remain high
along the entire track despite the decay between peaks. Place field
reliability increased following odor training whereas place field jitter
tended to decrease (Figures 2E and S1H). At the population level,
the across-trial stability of the vector of population activity
increased following odor training (0.36 + 0.01 versus 0.61 + 0.01;
Figure 2F). The elevated place cell density and increase in reliability
was consistent with the animals’ ability to suppress licking and
retain running speed up to the reward site when odor cues are pre-
sent. The peak in place cells at the 3-m odor cue and elevated
place cell density all the way up to the reward location are consis-
tent with the use of a cognitive spatial map to support navigation.

Analysis of place cell activity on individual trials revealed a sig-
nificant correlation between the number of place cells active at
the 1-m and 3-m odor landmarks (Figures 2K and S1M)). This
suggests that during spatial navigation, the density of place cells
at a proximal landmark influences the density of place cells at a
more distal location.

Upon decoding of position from CA1 population activity, we
observe that mice largely adjusted their distance estimates
and licking behavior in response to trial-by-trial velocity
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Figure 1. Accurate navigation behavior in the presence of olfactory landmarks
(A) Schematic of virtual track during training with no odor landmarks. During pre-training, the mice learned to run down a 4-m virtual linear track to receive a water
reward. The number of pre-training sessions varied between 4 and 11 across mice. Behavioral data were recorded during the final 2 days of pre-training (days —2

and —1) in all mice. All data from n = 5 mice

(B) Single-trial behavioral data on day 0 (no odor cues) for an individual mouse (m1). Left, single-trial lick rate. Right, single-trial speed.
(C) Trial-average lick rate. Black, day 0, no odor cues. Blue, day 4, limonene trials. Red, day 4, pinene trials. Error bars: mean + standard error across mice.
(D) Trial-average speed. Black, day 0, no odor cues. Blue, day 4, limonene trials. Red, day 4, pinene trials. Error bars: mean + standard error across mice.

(E) Schematic of virtual track during training with odor landmarks.

(F) Plots of odor concentrations delivered in time by custom olfactometer. 1 s odor pulses were delivered with the minimum delay (1 s) between offset of 15 cue
and onset of 2" cue that was possible when mice ran at the fastest recorded speed (~100cm/s). Shaded yellow areas indicate times at which odor valve is open.

Top, 10% Limonene, blue traces. Bottom, 10% Pinene, red traces.

(G) Single-trial behavioral data on day 4 in the presence of odor landmarks for an individual mouse (m1). Left, single-trial lick rate. Right, single-trial speed.

deviations (Figures S3B-S3G; STAR Methods), showing a link
between neural activity in CA1 and navigational behavior. Impor-
tantly, this shows that the animals perform the task using path
integration to recognize the odor cues as spatial landmarks
rather than employing estimates of elapsed time. Taken
together, these results demonstrate that odor cues can serve
as landmarks that couple with path integration to generate
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robust spatially dependent neural activity that supports accurate
navigational behavior.

Olfactory landmarks induce place cell remapping and
generate distinct cognitive spatial maps

We examined whether different odors elicit different spatial
maps by interleaving limonene and pinene trials. The two odors
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generated different place cell representations, demonstrating
remapping (Figure 3A). Beyond the first odor cue (1 m), only
11% of place cells (78 of 708 place cells) served as place cells
at the same location in both limonene and pinene trials. In
accord with these findings, the correlation between the trial-
average vectors of population activity dropped from ~80%
for the same odor to ~15% for different odors following the first
odor cue and remained small beyond 1 m (Figure 3B). The re-
mapping between limonene and pinene trials was observed
as early as the first day of training in the presence of odor
cues (Figure 3C). These data indicate that different odors at
the same location in identical tasks generate distinct cognitive
spatial maps.

The gradual and sequential emergence of place cell
maps and improvement in navigation behavior

We further analyzed the interaction of path integration and odor
cues by examining the emergence of place cells during training
and the associated improvement in navigational behavior. On
the first day of training in the presence of odor cues, mice initi-
ated licking and decreased their running speed at ~2 m while
briefly suppressing licking and increasing their running speed
at the onset of the 3-m odor cue (Figures 4A and 4B). Over the
three days of training, we observed a gradual reduction in licking
and increase in running speed at locations that preceded the 3-m
odor cue (Figures 4A and 4B). By the fourth day of training, mice
avoided licking and maintained a high running speed up to the 3-
m odor cue followed by a rapid increase in licking and decrease
in speed after the odor cue and ~0.5 m from the reward location
(Figures 4A and 4B). We quantified the anticipatory licking
behavior by calculating a lick ratio, defined as the average lick

Neuron

rate within 0.3 m of reward divided by the average lick rate
over the final 3 m of the virtual track (Methods). The lick ratio,
averaged across mice, increased with each day of odor training
following day 1 and we observed an increase in the lick ratio from
2.74 + 0.18 to 7.14 + 0.20 following all four days of odor training
(Figures 4D and S3A). These observations suggest that the mice
employ path integration to optimize their navigational behavior.

The evolution of the place cell representation mirrored the
gradual improvement in navigational behavior. On the first day
of training in the presence of odor cues, the spatial density of
place cells increased locally at the 1-m odor cue, but not at the
3-m cue (Figures 4C, 4E, and S4A). Over subsequent days of
training, the number and density of place cells progressively
increased (Figures 4F, 4G, S4B, and S4C). Correspondingly,
the error in the decoded estimate of position decreased more
than 2-fold (0.46 m on day 1 to 0.22 m on day 4; Figure 4H;
STAR Methods). Importantly, the emergence of a peak in the
density of place cells at 1 m was accompanied by an increase
in the density of place cells between 1 m and 3 m. Over the
course of several days, as more place cells tiled the region be-
tween 1 m and 3 m, an additional peak in place cell density arose
at 3 m. The emergence of peaks in place cell density at 1 m and
3 m was therefore gradual and sequential.

These results suggest an iterative process for spatial map
extension in which increasingly distal sensory cues are recog-
nized as landmarks. First, the odor cue nearest the start is recog-
nized as alandmark, resulting in a local peak in place cell density.
This leads to a gradual increase in place cell density beyond the
first cue, allowing the mice to recognize a second odor cue as a
distinct landmark. This, in turn, leads to an increase in place cell
density beyond the second cue. This iterative process could be a

Figure 2. Olfactory landmarks enhance place cell representations in CA1
(A) Single-trial activity of two example neurons on day 0 (no odor cues) from mouse m1.
(B) Trial-average activity of place cells across all mice, sorted by place field centers, on day 0 (no odor cues).

(C) Cross-validation of place field ordering. Place cells were sorted by place field centers on odd trials. Top, odd-trial-average activity. Bottom, even-trial-average
activity. day 0, no odor cues.

(D) Spatial density of place cells (number of place cells with centers in each spatial bin, divided by the total number of neurons). Black dots, day 0, no odor cues.
Black line, exponential fit to the mouse-average density over 0.2-4 m. Red dots, day 4, combined limonene and pinene trials (limonene and pinene place cell
densities were averaged for each mouse). Red line, piecewise exponential fit to the mouse-average density over 0.2-1 m, 1-3 m, and 3-4 m. Error bars: mean +
standard error across mice.

(E) Place field reliability over distance. Place cells were pooled across mice (and across trial types for day 4) then divided into 10 spatial bins based on their centers
(shared limonene and pinene place cells were treated as two distinct place cells). The average value was computed for the place cells in each bin. Error bars:
mean + SEM Before and after odor training, place field reliability decreased with distance (two-sided Wilcoxon rank-sum test, dayOp=1.3 x 107% n=1460.1-2-
m place cells versus n = 23 2-4-m place cells; day 4 p = 1.9 x 1077, n = 748 0.1-2-m place cells versus n = 554 2-4-m place cells; STAR Methods). Following odor
training, place field reliability increased (two-sided Wilcoxon rank-sum test, p = 3.4 x 107°, n = 169 place cells for day 0 versus n = 1,302 place cells for day 4).
(F) Before and after odor training, the correlation between the trial-average vectors of population activity for even and odd trials of the same type decreased with
distance (two-sided Wilcoxon rank-sum test, day 0 p = 1.4 x 1072, n = 95 correlation values for 0.1-2 m versus n = 100 correlation values for 2-4 m; day 4 p =
7.9 x 107", n = 190 correlation values for 0.1-2 m versus n = 200 correlation values for 2-4 m; STAR Methods). Following odor training, population vector
correlations increased (two-sided Wilcoxon rank-sum test, p = 6.1 x 1073, n = 195 correlation values for day 0 versus n = 390 correlation values for day 4). Error
bars: mean =+ standard error across mice (and across trial types for day 4). *p < 0.05, **p < 1072, **p < 1072,

(G) Single-trial activity of two neurons on day 4 from mouse m1. Left, limonene trials. Right, pinene trials.

(H) Trial-average activity of place cells across all mice, sorted by place field centers. Day 4, combined limonene and pinene trials (limonene- or pinene-specific
place cell activities were averaged over trials of the appropriate type; shared limonene and pinene place cell activities were averaged over trials of both types).
(I) Cross-validation of place field ordering. Top, day 4, limonene trials. Bottom, day 4, pinene trials. Place cells were sorted by place field centers on odd trials. Left,
odd-trial-average activity. Right, even-trial-average activity.

(J) Trial-average activity of neurons that meet place field criteria at both sites of odor presentation (1.2-2 m and 3.2-4 m) and excluded from place cell sorting on
day 4, combined limonene and pinene trials.

(K) Correlation between fluctuations in the numbers of active places cells at the 1-m and 3-m odor cues. We plot the correlations in these z-scored quantities
pooled across all trials for all mice (P values obtained via two-sided t test, P value = 7.9219e-13).

*p <0.05, *p <1072 **p <102
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Figure 3. Olfactory landmarks induce place
cell remapping and generate distinct cognitive
spatial maps

(A) Remapping of the place cell representation on
day 4. Top, trial-average activity of limonene place
cells sorted by centers on limonene trials. Left, ac-
tivity on limonene trials. Right, activity on pinene tri-
als. Bottom, trial-average activity of pinene place
cells sorted by centers on pinene trials. Left, activity
on pinene trials. Right, activity on limonene trials.
(B) Red, correlation between trial-average vectors of
population activity for even and odd trials of the same
type on day 4 (same as in Figure 1F; STAR Methods).
Blue, correlation between trial-average vectors of
population activity for trials of different types on day 4
(STAR Methods). The different-odor population vector
correlations were substantially reduced compared to
the same-odor correlations beyond the 1-m odor cue
(two-sided Wilcoxon rank sum test, p = 3.6 x 10722,
n = 280 correlation values for each group). Error bars:
mean + standard error across mice.

(C) Population-level remapping. Same as (B), but for
the first three days of odor training (days 1-3) rather
than day 4. Top, day 1. Middle, day 2. Bottom, day 3.
The different-odor population vector correlations were
significantly smaller than the same-odor correlations
beyond the 1-m odor cue for days 1-3 (two-sided
Wilcoxon rank sum test, day 1 p = 1.2 x 107, day
2p=13x10"7%day3p=9.9 x 10775 n = 280
correlation values for each group).

Max

flected in the population-level activity in
CA1. First, we analyzed population-level
activity to study the gradual disambigua-
tion of identical odor cues as distinct
spatial landmarks. We computed the cor-
relation between the trial-average vectors
of population activity in 100-mm bins at lo-
Day2 catonsxand x+2m 0.1 m < x < 2 m).
Note that x = 1 m yields the correlation be-
tween the population vectors at the loca-
tions of the first and second odor cues.
On the first day of training in the presence
of odors, we observed a peak in popula-
tion vector correlation immediately beyond
x =1 m, implying that the population vec-
tor at the second odor cue realigned to
its state at the first odor cue (Figure 5A).
Over the course of odor training, the corre-
lation following x = 1 m was markedly
diminished. Following odor training, the
population response at the second odor
cue was uncorrelated with the response at the first odor cue
(Figure 5A). This result is consistent with a spatial strategy
rather than a strategy based upon sensory discrimination. In
addition, we observe that over the course of 4 days of training
with odor cues, the number of neurons that respond at both
odor locations decreases more than 2-fold from day 1 to day
4 (Figures 5B, 5C, 5D, and 1J; 5.7%, 137 of 2405 neurons on
day 1 to 2.4%, 68 of 2,778 neurons on day 4). Place fields
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unique to the 1-m odor cue location are present at first day of
training, whereas place fields unique to the 3-m odor emerge
after several days of training. At this time, the population level
activity is decorrelated and the number of neurons that respond
at both odor cue locations has decreased substantially. There-
fore, on the initial days of training the mice may have incorrectly
recognized the distal odor cue at 3 m as the more proximal 1-m
spatial landmark. Together, these data suggest that the two
odor cues were gradually and sequentially recognized as
spatial landmarks marking distinct locations.

We also performed principal component analysis (PCA) to
study the state-space trajectory of neural population activity as
the mice learned the task. Projecting the trial-average population
state (combining neurons across mice) onto the first two PCA di-
mensions revealed a striking relationship between the structure
of neural population activity and the structure of the task. Our
virtual task has the topology of a circle because the mice ‘return’
to the start position on the next trial after reaching the reward
location. After four days of odor training, the two-dimensional
neural trajectory had the shape of a closed loop, and distances
on the track were roughly proportional to corresponding dis-
tances along the neural trajectory (36.5% variance explained;
Figures 5E, S5A, and S5B). Thus, the trajectory of this low-
dimensional projection of population activity bears topological
and metrical resemblance to the task.
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Figure 4. The gradual and sequential emer-
gence of place cell maps and improvement
in navigation behavior

(A and B) Trial- and mouse-average lick rate (A) and
speed (B) over the course of odor training (days 1-4).
(C) Mouse-average spatial density of place cells
over the course of odor training (days 1-4).

(D) Trial- and mouse-average lick ratio during pre-
training (days —2 and —1) and Ca®* imaging (days 0—
5) (STAR Methods). On day 5, only trials with no odor
cues are shown. During pre-training and the first day
of odor training, the lick ratio did not change
significantly across days (two-sided Wilcoxon rank-
sumtest,p=5.8 x 1072, day —2 versusday —1; p=
1, day —1 versus day 0; p = 7.4 x 102, day 0 versus
day 1). By contrast, the lick ratio increased with
each additional day of odor training (p = 1.4 x 10°°,
day 1 versus day 2; p = 3.7 x 107, day 2 versus
day 3; p = 1.4 x 1072, day 3 versus day 4). During
day 5, on trials with no odor cues, the lick ratio
decreased compared to day 4 (p = 6.6 x 107';
Bonferroni correction for 7 comparisons between
adjacent days; n = 250 trials for days 1-4, n = 125
trials otherwise). Error bars: mean + standard error
across mice and trials.

(E-G) Trial-average activity of place cells across all
mice, sorted by place field centers, for day 1 (E), day
2 (F), and day 3(G).

(H) Decoder error (root-mean-square) over the
course of odor training. The error decreased
through odor training (two-sided Wilcoxon rank-
sum test, p = 4.4 x 1072%, day 0 versus day 4) and
increased once odors were removed on day 5 (two-
sided Wilcoxon rank-sum test, p = 6.5 x 107'2, day
4 versus day 5). Trial counts same as in c. Error bars:
mean + standard error across mice and trials.

*p < 0.05, *p < 1072, **p < 1073

Day 1

Distance (m)

Day 2

Day 3

We next examined the evolution of the neural trajectory during
odor training. On the first day of odor exposure, the trajectory
beyond the odor cue at 3 m loops back and retraces a path similar
to the trajectory taken after the odor cue at 1 m (Figures 5F, S5B,
and S5C). Also, the point on the trajectory corresponding to the
reward location at 4 m was close to the point corresponding to
2 m. This trajectory is consistent with the misrecognition of the
3-m odor cue as the 1-m spatial landmark. Backward looping
was reduced with training and by the fourth day was absent (Fig-
ures 5G and 5H). Thus, the decorrelation of the population re-
sponses evoked by the 1-m and 3-m odor cues is accompanied
by a disentangling of the neural trajectory with relation to space.

Removal of odor cues or a rewarded location modifies
place cell representations

We next asked whether the enriched place cell representation and
improved navigational behavior that emerged during odor training
persist in the absence of odor cues. On day 5, following 4 days of
odor training, the mice performed a session in which pinene
trials were randomly interleaved with no-odor trials (Figure 6A).
We compared the place cell representations observed during
no-odor trials on day 5 to no-odor trial on day 0. Although the num-
ber of place cells was larger (Figures 6B and 6C), and the licking
behavior more accurate (Figures 6D) on day 5 than on day 0, the
density of place cells decayed rapidly with a length constant only
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Day 3 and 11 on pinene trials; Figure 6K; see Ta-
ble S1D for significance tests). Thus, the
robust place cell representation in our

3m task is contingent on the presence of the

\_\ reward. The absence of place cells when

Am the reward is withheld may reflect the loss

start of spatial information provided by the
reward cue or a lack of task motivation.

2m

1m

slightly greater than observed on day-0 length constant + boot-
strapped standard error: 1.45 + 0.18 m; one-sided bootstrap test
versus day-0 length constant + bootstrapped standard error:
0.97+0.20m,p=3.7 x 1079).

We also compared the place cell representation of day-5 trials
with odor cues to the representation of trials without odor. The
number of place cells beyond 2 m was 2.4 times greater on
day-5 trials with odor cues than on trails without odor (308 versus
128 of 3,087 neurons, Figures 6E and 6F). In addition, the antic-
ipatory licking was less accurate on day-5 trials without odor
cues (Figure 6G).

We next explored the dependence of place cell activity on
reward. On day 6, the mice performed a session in which the wa-

_O'?oq_zz -0.35-0.3 -0.25-0.2 -0.15-0.1 -0.05 0 0.05 A model for the convergence of path

PC1 integration and odor landmarks in
place cell formation

The observation that odor cues can serve as navigational land-
marks motivated a model to explain how the convergence of
path integration and odor cues generates a cognitive spatial
map in the hippocampus. The model consists of a population
of place cells driven by inputs from a set of path integrators,
and feedback from the place cells back to the path integrators
(Figure 7A; STAR Methods). In the absence of odor cues, each
path integrator generates an independent estimate of the dis-
tance that the animal has traveled from the starting point, and
each estimate drives a different spatially modulated input to
the place cells.

In our model, each path integrator samples a velocity esti-
mate on each trial from a distribution centered at the animal’s
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Figure 6. Removal of odor cues or a re-
warded location modifies place cell repre-
sentations

(A) Schematic of virtual track on day 5. Top, half of
trials with no odor cues. Bottom, half of trials with
pinene odor cues. Trial types were randomly inter-
leaved.

(B) Trial-average place cell activity on day 5, no odor
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cues.
(C) Spatial densities of place cells. Black, day 5, no
odor cues. Gray, day 0, no odor cues. Error bars:
mean + standard error across mice.

(D) Mean lick rate, colors as in (C). Error bars:
mean + standard error across mice.

(E) Trial-averaged place cell activity on day 5, pinene
trials.
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(F) Spatial densities of place cells on day 5. Red,
pinene trials. Black, no odor cues. Error bars:
mean + standard error across mice.

(G) Trial- and mouse-average lick rate day 5. Red,
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pinene trials. Black, no odor cues. Gray, day 0, no

limonene odor cues. Error bars: mean + standard error across
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mice (and across trial types for day 4).
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(I and J) Trial- and mouse-average behavioral data
on day 6 (no water reward). Blue, limonene trials.
Red, pinene trials. (I) Speed. (J) Lick rate. Error bars:
mean + standard error across mice.

(K) Trial-average place cell activity on day 6 with (no
water reward). Top, limonene trials. Bottom, pinene
trials.
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true velocity which, for simplicity, was modeled as being the
same on each trial. To model variability in path integrator dy-
namics, we introduce noise into the velocity integral. Due to
both velocity uncertainty and integration noise, the path inte-
grators’ estimates of position and, consequently, the inputs
they drive vary from trial to trial. The trial-to-trial variance grows
with the distance traveled as path integration becomes less reli-
able (Figures 7B).

Model place cells form by a process that simulates the ef-
fects of plateau potentials observed during CA1 place cell for-
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mation (Bittner et al., 2015; Bittner et al.,
2017; Magee and Grienberger, 2020).
The model posits that, in each cell, a
plateau potential occurs at a random
location, resulting in plasticity that sets
the weights of the synapses from the inte-
grators to that place cell to values propor-
3 4 tional to the presynaptic input at the time
of the plateau. Following this plasticity,
the cell performs template matching, re-
sponding if there is a sufficiently close
match between the current input rates
and the rates experienced at the time of
the plateau. This process creates reliable
place cells at short distances from the
starting location because the inputs driven by path integration
are similar from trial to trial at these locations and therefore
well matched to the template. For large distances, on the other
hand, inputs vary considerably from trial to trial, rarely match
the template, and reliable place cells cannot form. We chose
a level of noise for the path integrators so that reliable place
cells form only at distance less than 2 m (Figure 7C).

Model place cells project back to the path integrators, and this
projection is also subject to plasticity. At the same time that plas-
ticity modifies synapses from path integrators to a place cell, it
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Figure 7. A model for the convergence of
path integration and odor landmarks in place
cell formation

(A) Schematic of the computational model. A pop-
ulation of noisy path integrators drives a population
of place cells, which form reciprocal connections
onto the path integrators. Odor cues gate the con-
nections from place cells onto path integrators.

(B) The trial-to-trial variability of the position esti-
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tonically with distance in the absence of odor cues
(black) and is reduced at the locations of the odor
cues due to resetting of the path integrators by the
place cells (red).

(C) Without odor cues, few model place cells form
beyond ~2 m.

(D) In the presence of odor cues, model place cells
tile the entire 4-m track.

(E) Spatial density of model place cells. Black, no odor
cues on initial day of training (day 0). Red, after 4
training sessions in the presence of odor cues (day 4).
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(G) Reliability of model place cells as a function of
distance along the 4-m track over the course of
training. Lighter to darker shades or red indicate
successive days of training in the presence of odor
cues.

(H) Spatial density of model place cells over the course
of training. Lighter to darker shades of red indicate
successive days of training in the presence of
odor cues.
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of distance on any other trial, they are
consistent from trial to trial due to the reset
provided by the odor-activated place cells.
Thus, place cells that form beyond the 2-m
point have inputs that are more reliable as a
consequence of the odor cues. This con-
sistency allows reliable place cells to be
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also modifies connections from this place cell back to the path
integrators. This plasticity stores a trace of the distance estimate
provided by each path integrator at the time of the plateau. The
result is a projection by which the activity of a place cell can reset
a path integrator back to the value it took when the place field
formed. In our model, this projection is only engaged when a
sensory cue, the odor, appears (Figure 7A). Other work suggests
that this one-shot plasticity rule could be replaced by a form of
slow-timescale Hebbian plasticity (Ocko et al., 2018).

In the model, when an odor appears, place cell activity drives
the path integrators to their previously stored values (Figure 7B).
Although these values are no more accurate than the estimates

Distance (m)

created beyond 2 m by the plateau poten-
tial mechanism. This process is then
repeated at the location of the 3-m odor
cue in an iterative process that enables a
complete place cell representation along
the entire 4-m track (Figure 7D).

The system we have described consists of two networks—the
place cells and the path integrators—that store within their syn-
apses the traces of their relationship at the time of place cell
formation. Place cells are maximally driven by path integrators
that match the input that occurred when their place fields
formed. Reciprocally, place cell inputs to each path integrator
store the value that the path integrator had when the place field
formed. This system is calibrated by an external event that iden-
tifies when these relationships are consistent. This event is a
landmark.

This model is also consistent with our experimental observa-
tions. First, in the model and in our experimental data following
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odor training, equivalent sensory inputs presented at different
locations activate distinct subpopulations of place cells. In the
model, this occurs because only the place cells active when an
odor cue is encountered are involved in resetting the path inte-
grators and this, in turn, strongly drives a location-specific set
of place cells in the vicinity of the cue. This is consistent with
the role of the hippocampus in the transformation of egocentric
sensory information into an allocentric cognitive spatial map of
the external world. Second, the model predicts that place cell
density and reliability (STAR Methods) decrease as a function
of distance from odor cues, with local peaks in density and reli-
ability at the site of each cue (Figures 7E and 7F). This is a conse-
quence of model place cells being driven by a population of path
integrators with independently accumulating errors. If path inte-
gration is implemented by grid cells in the MEC (McNaughton
et al., 2006), as has been widely suggested, these independent
path integrators could correspond to distinct grid modules
(Stensola et al., 2012). In addition, the model predicts that the
reliability of place cells along the entire track will improve with
training in the presence of odor cues (Figures 7Fand 7G). Both
of these model predictions are in agreement with our experi-
mental data (Figures 2D and 2E).

Finally, the iterative mechanism of spatial map extension
posited by the model is consistent with our experimental findings
regarding the evolution of place cell representations over the
course of training. The model predicts that the same sensory
cue presented at two different locations leads to the formation
of local peaks in place cell density in an iterative and sequential
manner (Figure 7H). In both the model and our data, a peak in
place cell density initially emerges at the sensory cue nearest
the start (1 m), and over several training sessions, the place
cell map tiles the gap between 1 m and 3 m, eventually forming
a second peak at 3 m (Figure 4C). Interestingly, our model pre-
dicts that an odor cue cannot be recognized as a landmark within
an extant cognitive spatial map if its distance from a proximal cue
is much greater than the decay length scale of the place cell
representation, which is approximately 2 m.

DISCUSSION

For most organisms, olfaction is the central sensory modality by
which they communicate with their environment. We have exam-
ined the role of olfaction in the generation of a cognitive spatial
map essential for navigation. The interaction of path integration
and visual landmarks in the control of place cells and navigation
has been extensively studied(Poucet et al., 2014; Savelli and
Knierim, 2019). However, interpretation is complicated by the
fact that visual features (real or virtual) can be seen at a distance,
have inherent spatial dimensions, and can be used to estimate
velocity using optic flow and parallax motion. Previous studies
have established that olfactory cues in concert with path integra-
tion, in the absence of visual information, can support place cell
representations in the hippocampus (Radvansky and Dombeck,
2018; Save et al., 2000; Zhang and Manahan-Vaughan, 2015). In
these studies, the odor cues were either not confined to a spe-
cific location or were presented as spatial gradients over a virtual
track. Therefore, the specific contributions of sensory cues and
path integration in the formation of the place cell representations
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were not clearly discernible. We have recorded the activity of a
large number of neurons in CA1 during an olfactory-guided nav-
igation task with localized odor cues and observed the process
by which internal path integration imposes a spatial meaning
onto an odor cue to create a landmark. This experimental para-
digm allowed us to observe the convergence of olfactory infor-
mation and internal path integration signals in the hippocampus
during the emergence of place cell representations. The emer-
gence of these place cell representations correlated with an
increase in the accuracy of navigational behavior.

First, we found that internal path integration alone, in the
absence of sensory cues, cannot support stable place fields or
accurate navigation over distances longer than ~2 m from the
start of the virtual track. As the animal moves further from the
start landmark, the rapid decline in place cell density is consis-
tent with the accumulation of errors in the internal path integra-
tion signals. The presentation of an odor cue at 1 m leads to
the formation of a new peak in place fields at that location and
thus a new spatial landmark. Different odors at the same 1-m dis-
tance along the track result in the activation of different place cell
ensembles. Therefore, the spatial representations generated by
olfactory landmarks do not represent distance alone but instead
the convergence of path integration and olfactory sensory
features.

In addition, we observe that the enhanced place cell represen-
tation generated by odor cues at 1 m leads to an increase in the
density of place fields beyond 1 m. This implies that the number
of place cells active at one location influences the number of
place cells active at subsequent locations. In the absence of
new sensory information, this influence diminishes as the path
integrator becomes progressively less accurate. Place field den-
sities show a qualitatively similar rapid decrease as a function of
distance from either the start location or from the location of
olfactory landmarks. Thus, the presence of olfactory cues
appears to reset internal path integration signals.

The ability of an odor cue to serve as a spatial landmark de-
pends on the accuracy of the path integrator at positions leading
up to the odor location. When the same odor cue is present at
two different locations, 1 m and 3 m, the cue nearest the starting
position is the first to generate a unique place cell representation
and appears to reset the path integrator. Over several days of
training, place fields are generated that span the gap between
the two spaced, but identical, odor cues. Only then does the
odor cue at 3 m generate a distinct place cell representation
and an additional peak in the density of place fields at 3 m.
The gradual and sequential extension of place fields over the
entire virtual track and the improvement in navigational accuracy
reflect the disambiguation of two identical odor cues as distinct
spatial landmarks. Thus, the same sensory features present at
multiple locations can be identified as unique landmarks by an
iterative process that relies on path integration.

Our experiments demonstrating that path integration and odor
cues interact to form a cognitive spatial map in CA1 motivated a
model in which reciprocally connected path integrators and
place cells generate spatial selectivity via bidirectional plasticity.
The model we propose explains how place cell ensembles in the
hippocampus can be generated at the site of spatial landmarks
through the coincidence of localized odor information and
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reliable path integration signals. The high dimensionality that re-
sults from a place cell ensemble code implies that a very large
number of unique landmarks can be represented in the hippo-
campus. In addition, our model posits that a landmark represen-
tation in the hippocampus improves the accuracy of path inte-
gration signals via direct feedback projections to the MEC.

Previous models describing the interaction of landmarks and
path integration require dedicated landmark cells (Campbell
et al., 2018; Ocko et al., 2018). Our model does not assume the
pre-existence of cells dedicated to the recognition and represen-
tation of landmarks as abstract spatial features. Instead, the
model postulates that landmark-related activity arises in the hip-
pocampus through the convergence of sensory and path integra-
tion signals. This leads to the recognition and representation of a
given sensory feature as a spatial landmark and then informs path
integration circuits through feedback and plasticity mechanisms.

In conclusion, we have combined CA1 population record-
ings with theoretical modeling to provide evidence for a pro-
cess in which odor cues serve as landmarks that reset noisy
path integrators, enabling the iterative expansion of a cogni-
tive spatial map in the hippocampus. The convergence of
path integration and olfactory landmarks in the hippocampus
allows mice to construct spatial maps that support navigation
over distances far greater than would be possible with path
integration alone.
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Software and algorithms

nVista Acquisition Software Inscopix, inc. Version 2.0
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CNMF-E Zhou et al., 2018 https://github.com/zhoupc/CNMF_E

OASIS Friedrich et al., 2017 https://github.com/j-friedrich/OASIS
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matlab.html; RRID:SCR_001622

Arduinio IDE Arduino https://www.arduino.cc/en/software

Python 3.6 Python https://www.python.org/;
RRID:SCR_008394

iPython and Jupyter https://jupyter.org/; RRID:SCR_018414

Custom analysis code Python https://doi.org/10.5281/zenodo.5526602

Other

pPENN.AAV.CamKIl.GCaMP6f.WPRE.SV40 Addene 100834-AAV1

GRIN lens 1.00mm diameter, 4.0mm length Inscopix, inc. Part ID:1050-004595

Miniature fluorescent microscope Inscopix, inc. nVista v2.0; RRID:SCR_017407

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Dr. Richard Axel (ra27@
columbia.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability

Original data have been deposited to Mendeley Data:
“Fischler-Ruiz2021,” Mendeley Data, V1, https://doi.org/10.17632/62zmrvi6jy.1
The code used for analysis is available at:
https://doi.org/10.5281/zenodo.5526602

EXPERIMENTAL MODEL AND SUBJECT DETAILS

We report data here from 5 adult male (8-12 weeks old) C57BL/6J mice acquired from Jackson Laboratory. Mice were individually
housed and maintained on a 12 hour reverse light/dark cycle. All experiments were conducted during the dark cycle when mice are
most active. All experiments and surgical protocols were performed in accordance with the guide of Care and Use of Laboratory
Animals (NIH) and were approved by the institutional Animal Care and Use Committee at Columbia University.

METHOD DETAILS

Surgeries

Mice underwent two surgical procedures under isoflurane (1%-2% vol/vol). We injected ~500 nL of a 1:3 dilution in PBS of AAV2/1
serotype virus expressing GCaMP6f under the control of the CaMKIl promoter (UPENN Vector Core, AAV1.CamKIl.GCaMP6f.
WPRE.SV40, titer 1-3 x 10" vg/ml) with a thin glass pipette into the left hemisphere of dorsal CA1 (-2.2 mm from bregma,
1.6 mm mediolateral, —1.2 mm dorsoventral). 1-2 weeks after viral injection we implanted a 1.8 mm diameter imaging cannula
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(metal cannula with a glass coverslip attached at the bottom, Inscopix part number 1050-002189) over the dorsal surface of CA1
centered on the site of viral injection after aspiration of the overlying cortical area as previously described(Barretto et al., 2011).
We then secured the cannula and a custom metal head bar to the cranium of the mice using dental cement (Dentsply). 1-2 weeks
after cannula implantation we inserted a 1 mm diameter gradient refractory index (GRIN) micro-endoscope (Inscopix part number
1050-002176) into the cannula and a plastic baseplate (Inscopix part number 1050-002192) was cemented into place after confirming
even expression of GCaMP6f in healthy tissue using a miniaturized fluorescent microscope (Inscopix nVista, v2.0).

Virtual odor-guided navigation system

Mice were head-fixed on a spherical treadmill (20-cm diameter Styrofoam ball) rotating on a single axis. The axis of the treadmill
was attached to an analog rotary encoder (US Digital part number MA3-A10-125-B) connected to an Arduino Mega2560. Angular
displacement was converted to a linear distance based on the circumference of the treadmill. A water port consisting of a small
gavage needle (Cadence Science part number 7901) connected to a water reservoir was placed within reach of the mouse’s
tongue. A capacitance touch sensor (Sparkfun part number MPR121) was attached to the water port to measure licking and
the sensor was connected to the Arduino Mega2560. Small 2-4 pL drops of water were delivered by the brief opening a solenoid
valve (Lee Valves part number LHDA 12712154) connected to the water port. Custom Arduino software was used to deliver water
drops at reward locations. Limonene and pinene odor cues were delivered via a custom olfactometer controlled by an Arduino
Mega2560. 10% solutions of limonene (Sigma part number 183164) and pinene (Sigma part number P45680) diluted in mineral
oil (Fisher Scientific part number 0121-1) were added to syringe filters (Whatman part number 6888-2527) and an additional filter
of pure mineral oil was used to provide blank odor stimuli between the 1 s presentations of limonene and pinene cues. Custom
Arduino software was used to control odor valves for switching between limonene or pinene and blank (mineral oil) filters. Two
mass flow controllers (MFCs) were used to maintain a constant airflow of compressed medical grade air for odor delivery. One
MFC was set to deliver air to the odor and blank filters at 0.3 L/min. The other MFC was set at 0.7 L/min to deliver clean air
for a carrier stream. The combined airflow experienced by the mouse was a constant 1 L/min in the absence or presence of limo-
nene and pinene odor cues. The odor or blank air streams and the carrier stream were combined in an 8-port odor manifold (Island
Motion Corporation 020206.0001) connected to one side of a custom odor port that was placed within 2 mm of the nose. A vac-
uum was connected to the opposite side of the odor port. The vacuum line was controlled by an MFC set at 1 L/min to remove air
and odor continuously from the odor port. Speakers delivering white noise at 70 dB were placed in front of the mouse to cancel
out ambient noise and the sound of the valves opening and closing. The entire experimental system was enclosed by black hard-
board (Thorlabs part number TB4) on the sides, Blackout nylon fabric (Thorlabs part number BK5) on the top, and the lights were
kept off in the room to maintain a dark environment. Mice were monitored using an IR camera (Basler A601f) and illuminated using
an IR light.

Measurement of time-varying odorant dynamics

Odor concentrations were measured using a photoionization detector (miniPID 201A Aurora Scientific) placed in the airstream that
was used to deliver odors to the nose of the mice. The 0-10 V output of the PID was converted to a normalized concentration range
plotted in arbitrary units. Measurements were done with the exact same dilutions of odor used in all of the experiments: 10% dilutions
of either limonene or pinene in mineral oil. Flow rates were matched to those used in all experiments: 0.3 L/min odor source combined
with a constant 0.7 L/min or clean air.

Behavior training

After surgeries, the mice were placed on a 12-hour reverse light/dark cycle. All experiments were performed in the middle of the
active (dark) period. The mice were habituated to handling for several days. The mice were then habituated to head-fixation on
the spherical treadmill for several days before being put on water restriction. After 2-3 days on water restriction (~2 mL water per
day), the mice were trained to walk increasing linear distances to receive water rewards. On the initial day of training, the distance
to reward was set at 0.5 m. After the mice were able to complete > 60 trials in one 20-min session (1 session per day) the distance
was gradually increased from 0.5 to 1 m, then from 1 m to 4 m in 1 m increments. After graduating to the 4-m track, the mice were
required to complete > 80 trials in a single 20-min session for 3 consecutive days, at which point we began collecting the data for
these experiments. The 5 mice used in this study achieved these criteria after 4-11 days of training at 4 m.

Reward delivery

Rewards consisted of 2-4 uL drops of water. The delivery of the first reward is triggered when the mice reach 4 m. No licking is
required for the first reward. Each additional reward is triggered by two licks. This design allows the mice to control reward delivery
and avoids a buildup of water at the port. After reaching 4 m, the mice are free to progress on the treadmill and trigger rewards for a
period of 4 s. After 4 s, rewards cease and the next trial begins. Additionally, if the mice traverse more than 1 m within the 4 s period,
rewards cease and the next trial begins (rare). The number of rewards was variable as mice triggered water drops themselves,
excluding the first drop. On each trial, 5-15 drops were typically delivered. Note that there is no explicit signal for the start of
each trial other than cessation of the water reward.
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Imaging and behavioral data collection
At the beginning of each experimental session, mice were head fixed on the spherical treadmill and the miniature microscope
(Inscopix, v2.0) was attached to the plastic baseplate. The field of view containing GCamp6f-expressing neurons was examined
to confirm that the site was aligned with previous recording sessions. Imaging data were collected at a frame rate of 20 Hz. LED power
was set between 30%-40%. The data were initially collected at a resolution of 1440 x 1080 pixels and then subsequently down-
sampled by a factor of 4 for further analysis.

Processing of imaging data
Calcium imaging movies were preprocessed using the Mosaic software package (Inscopix). During preprocessing, movies were
spatially cropped to fit the imaging site and motion corrected. Individual neurons were isolated using the publicly available
CNMF-E MATLAB package(Zhou et al., 2018). The calcium signals extracted using CNMF-E were then deconvolved using the
publicly available OASIS algorithm(Friedrich et al., 2017). The inferred activity yielded by OASIS (denoted by s in OASIS) was
used for analysis in this study.

Behavioral data processing and alignment to neural activity

We used custom Arduino software to convert rotary encoder signals to a virtual linear distance and speed was calculated over rolling
200 ms time windows. Lick detection from touch sensor signals was aligned to virtual distances. A TTL pulse was sent to the Arduino
Mega2560 from the microscope on the acquisition of each imaging frame to align neural activity to virtual distance, speed, and
licking. Signals for the opening and closing of odor and water reward valves were recorded by Arduino Mega2650 and aligned to
behavior and activity data.

Spatial binning and selection of trials for analysis

For all analyses except for decoding-related analyses, aligned behavioral and imaging data were averaged within spatial bins of
100 mm on each trial, yielding a total of 40 spatial bins. We excluded the first bin (0-100 mm) to limit our analyses to periods
when the mice were actively running toward the reward location. In all analyses, we excluded any data after initiation of the initial
water reward, so all licking shown is pre-reward. Because there was no explicit signal for the start of the experiment other than
the termination of the water reward, several 4 m reward crossings were typically required before mice showed engagement with
the task. Thus, the first 5 trials for each trial type in a session were excluded. We analyzed trials 6-30 for each trial type. During
pre-training, the mice performed sessions with > 60 trials, but only trials 6-30 were analyzed for consistency with Ca®* imaging
sessions.

Behavioral quantification (lick ratio and lick rate center of mass)

To quantify behavioral performance, we computed a lick ratio using the spatially binned lick rate. On each trial, we computed the ratio
of the mean lick rate over the last 3 spatial bins (3.7-4 m) to the mean lick rate over the last 30 spatial bins (1-4 m). Thus, the lick ratio is
unity when licking is uniform across the track and maximized (lick ratio = 10) when licking is withheld until 3.7-4 m. The first 10 spatial
bins (0-1 m) were excluded from the analysis since, toward the beginning of the track, mice often continued to lick following the most
recent reward. To assess the dependence of licking behavior on trial-to-trial velocity deviations, we computed the center of mass of
the spatially binned lick rate on each trial, excluding the first 10 spatial bins (0-1 m) from the computation.

Place cell analysis

Place cells were classified using the spatially binned neural data according to the following procedure. First, the track was divided
into 4 approximately equal-length segments: 0.1-1.1 m, 1.1-2 m, 2-3.1 m, and 3.1-4 m. These segments consisted of 10,9, 11, and 9
spatial bins, respectively (for a total of 39 bins rather than 40, since the first bin was excluded from analysis). Candidate place cells
had at least one segment in which two criteria were simultaneously satisfied: (1) a bin had trial-average activity greater than 3 times
the trail-average activity over the whole track, and (2) a bin had z-scored activity greater than 1 in more than 25% of trials (7 or more
trials). We z-scored neural activity prior to spatial binning. If condition (1) was met in both the 1.1-2 m and 3.1-4 m segments and the
bin of peak trial-average activity fell in one of these ranges, the cell was not classified as a place cell (such neurons are described in
the text as ‘neurons that responded at both sites of odor presentation’). Otherwise, the cell was classified as a place cell. This
procedure selects cells with consistent spatially localized activity. A place field’s center was taken to be the spatial bin with peak
trial-average activity, excluding the first bin.

To assess the false-positive rate of our place cell selection procedure, we performed shuffling tests. To shuffle the data, we used
both circular permutations, which preserved the spatial autocorrelation of each neuron’s activity, as well as arbitrary permutations,
which destroyed all spatial structure. These methods resulted in similar shuffled distributions of place cell counts (Figure S1F). On
shuffled data, our procedure selected 1-2 orders of magnitude fewer place cells than on unshuffled data. No shuffles yielded
more place cells than yielded by unshuffled data. We conclude that the false-positive rate of our procedure is low, and that the place
cell counts reported in the text are significant with respect to shuffled distributions.

We also performed a test specifically designed to reveal a potential bias against selecting place cells at boundaries between 1-
m bins (Figure S1G). Using circular spatial shifts, we moved the bin of peak trial-average activity for each cell to either 1 m or 3 m.
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As a result, all place cells selected by our procedure had centers at 1 m or 3 m. Rather than drastically reducing the number of
place cells, shifting the data yielded slightly larger numbers of place cells. It is therefore unlikely that the proposed bias affected
our results.

Characterization of place cell quality (reliability, jitter, and width)

Place field reliability was defined as the fraction of trials on which the z-scored activity for a given place cell was greater than unity
within £ 1 spatial bin (100 mm) of the place cell’s center. Neural activity was z-scored prior to spatial binning. For artificial place
cells in our computational model, place field reliability was defined as the fraction of trials on which a place cell had activity greater
than a threshold (0.15) at its central location. Place field jitter was defined as the root-mean-square difference between a place
field’s center and its center on single trials (location of peak single-trial activity). For jitter computation, activity outside of + 10
spatial bins of a place field’s center was zeroed out, and trials on which a cell was not active within + 10 bins of the center
were excluded from the calculation. Finally, to avoid confusing jitter with place field expansion, we computed width on a sin-
gle-trial basis. On each trial, we computed a width by dividing the sum-total activity by the peak activity. These single-trial values
were then averaged across trials to obtain a place field’s width. As in the computation of jitter, activity outside of + 10 spatial bins
of a place field’s center was zeroed out, and trials on which a cell was not active within + 10 bins of the center were excluded from
the calculation.

Correlation between fluctuations in the numbers of active places cells at the 1-m and 3-m odor cues

On a given trial, we defined the number of place cells active at the 1-m (3-m) odor cue to be the number of place cells with centers
between 1.2 m and 2 m (3.2 and 4 m) whose z-scored activity was greater than one within +- 1 bins of the center bin (0.1 m bins). We
z-scored this quantity within each mouse, odor type, and location (i.e., 1 m or 3 m). We plot the correlations in these z-scored
quantities for each mouse and pooled across mice.

Population vector analyses

The stability of the vector of population activity across trials was computed as follows. First, using the spatially binned neural data, we
computed the even- and odd-trial-average population vectors at each spatial bin. Then, we computed at each bin the element-wise
Pearson correlation between the two vectors. To analyze remapping, we performed a similar analysis, but computed the element-
wise correlation between the even-trial-average population vectors for different odor types. To analyze the gradual orthogonalization
of the population responses evoked by the 1-m and 3-m odor cues, we computed the correlation between the trial-average popu-
lation vectors at locations x and x + 2 m for 0.1 m < x < 2 m, as described in the main text. The first bin (0-100 mm) was excluded from
this analysis as usual.

Position decoding

We used a naive Bayesian decoder to decode position from neural activity. In the signal extracted from the Calcium imaging data,
each neuron’s activity is related to its true spiking activity by an unknown proportionality constant. However, the value of zero is non-
arbitrary and corresponds to the neuron being silent. We therefore performed the decoder analysis on binarized neural data, assign-
ing ‘1’ to time bins where the inferred activity was positive and ‘0’ otherwise. Time bins were 50 ms, corresponding to the 20 Hz im-
aging frame rate. We modeled the i-th neuron’s activity, denoted by n;, using a Bernoulli spiking model with a position-dependent
spike probability denoted by ri(x). That is, p(ni|x) ~Bernoulli(ri(x)). In turn, rix) was given as the spike probability (across training set
trials) of the i-th neuron at position x, where position was binned in 50 mm bins, and the trial-average activity was smoothed using
a Gaussian kernel (o = 0.2 m). In bins in which ri(x) was less than a minimum spike probably p i, we set ri(x) = Pmin, @ form of reg-
ularization (omi» = 107%). We used 15 bins of neural activity (total of 750 ms), centered at the current time step, to decode position
at each time step. The key assumption of the naive Bayesian decoder is that neural responses are conditionally independent given
position, so that p(n;.nlx) = [[ip(nilx). The decoded position estimate at time t was computed as X; = arg max, p(x|n+.n) = arg max;
p(n1.nlx), assuming a uniform prior on position. We used leave-one-out cross validation. On days with two odor conditions (days
1-4), we fit the decoder using only trials of the same odor condition. Thus, the decoder was always fit using 24 trials and evaluated
on one. We began decoding at 100 mm.

Reversion to the mean velocity analysis

We computed the error of the decoder on the j-th trial as ¢; = %for (xdecv,-(t) — xi(t))dt, where Xqeg,i(t) is the decoder output, x;(t) is the
mouse’s actual position, and T; is the duration of the i-th trial. Thus, ¢; is positive when the decoder overestimates position on average
and negative when the decoder underestimates position on average. Note that we use the RMS decoder error, rather than the
‘signed’ error described here, to measure the overall performance of the decoder. The velocity deviation on the i-th trial was
computed as 4v; = v; - Vag, Where v; = (3.9 m)/T; and vg,g = (2v))/25. We used 3.9 m instead of 4 m since this analysis excluded
the first 100 mm of the track. To obtain the slope of the relationship between decoder errors and velocity deviations corresponding
to a total reliance on the average velocity, we computed each ¢; by using the trial-average position for the decoder output: Xgec, i(t) =
(Zx(t)/25. Then, we fit a line to the relationship between the resulting €;’s and 4v;’s and extracted the fitted slope.
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A model of place cells driven by and interacting with path integrators

Model place cells receive inputs that are modulated by a set of locations estimated by path integration (Figure 7a). All of the model
place cells receive the same set of 100 spatially tuned inputs with firing rates fi(x;) for i = 1, 2, ..., 100. Each function f; is generated
initially by a Gaussian random process, using a Gaussian kernel with length constant 0.35 m, and then held fixed. Each variable
Xi(t) is an independent noisy estimate of the location of the animal at time ¢, obtained by integrating a noisy estimate of the animal’s
velocity with added white-noise fluctuations. Specifically, on each trial, velocities for these integrators are chosen from a Gaussian
distribution around the true velocity of the animal, taken to be 0. 4 m/s, with a standard deviation of 0.05 m/s. In addition, Gaussian
white noise was added to the integrated velocity, configured to produce a standard deviation of 0.175 m after 1 s. This causes each x;
to differ from the others on every trial and also to vary from trial to trial. As a result, the modulated inputs, fi(x,(t)), are also different and
vary from trial to trial. These fluctuations increase as a function of t as the animal moves along the virtual track because the integrator-
to-integrator and trial-to-trial variance of the location estimates increases as a function of the integration interval. Additionally, each
integrator is randomly initialized at the starting location using a zero-mean Gaussian with standard deviation 0.2 m.

The input to place cella, fora=1, 2, ..., 150, is Swy; fix(t)/|f(x(t))|, where the expression in the denominator is the norm of the vector
with components fi(x,(t), and w,; is the weight of the input from integrator i to place cell a. A threshold of 0.55 is subtracted from this
input, and the place cells firing rate, r,(t), is determined by rectifying the result. Independent Gaussian noise with standard deviation
0.055 is applied to each place cell’s threshold at each time step.

When a place cell is subject to plasticity, we choose a time t,* for this plasticity to take place, simulating the effects of a dendritic
plateau potential(Bittner et al., 2015; Bittner et al., 2017). We denote the values of the path integrators at this time and on this trial by
X;*(t,*). The result of this plateau is that the weights to model place cell a are set to w,; = fi(x;*(t.*)/|[f(x*(t2*)|, i.e., the input at time of the
plateau. Following this plasticity, the input to place cell a is equal to the cosine of the angle between the vector f(x*(t,*) (the input
vector at time t* on the trial when the plasticity occurred) and the vector f(x) at the current time on the current trial. If the place cell
happened to form near the start of the virtual track, it is likely that it will fire on subsequent trials because the vector f(x) only fluctuates
by a small amount from trial to trial when the integrators only have to integrate over a short distance. If, on the other hand, the place
cell formed at a larger distance from the start, the larger fluctuations in f(x) from trial to trial cause a poor match to the weights and, as a
result, the place cell is unlikely to fire. This is the reason that reliable place cells only form across the first 2 m of the virtual track.

For comparison with our experimental data, we ran the model using artificial notions of days and trials. We used 5 artificial days with
80 artificial trials per day. Odor landmarks were present on all days except the first. On each trial, 3 cells have plateau potentials. If
such a cell is active on the next trial, its status as a place cell is cemented and it is no longer subject to plasticity. Otherwise, it
becomes subject to plasticity once again. On each day, a maximum of 80 place cells can form. Using the parameter settings
described here, all 80 place cells successfully formed on each day.

Thus far, we have described the connections from the path integrators to the place cells, but there are connections from place cells
to path integrators in the model as well (Figure 7a), and these are also plastic. When plasticity acts on the inputs to place cell a, we
imagine that it also acts on the inputs from that place cell back to the path integrators. This is assumed to be similar to the plasticity
discussed in reference(Campbell et al., 2018), but we do not model this circuit in full, focusing instead on the results of this plasticity.
The effect of this plasticity is that the value x*(t,* is stored in synapses from place cell a to a path integrator i. Specifically, if an odor is
present at time t,qor, Which we assume gates the effect of place cells on the path integrators (Figure 7a), path integrator i is reset to
Xitodor) = Z2X"i(ta*)ra(togor)Za ra(todor)- The result of this resetting is that, after the odor appears, the trial-to-trial variability of the path
integrator estimates is greatly reduced. This consistency produces a better match between the weight vectors of place cells formed
beyond the odor location and the input vectors generated by the path integrators. The result is that reliable place cells can now form
along the entire virtual track (Figure 6E).

Statistical analysis
Data analysis and computational modeling were performed using MATLAB and Python.

To assess changes in place cell proportions, we used Pearson’s x tests. In cases where this test yielded a P value of exactly zero in
MATLAB (using the ‘chi2cdf’ function), we report p < 107", To assess the significance of correlations in Figures 2K and S1M we used
two-sided t tests. To assess differences in a quantity between two unpaired groups, we used two-sided Wilcoxon rank-sum tests. To
assess Whether two fitted slopes were different, or whether a fitted slope was less or greater than some value, we used one-sided
bootstrap tests with 10,000 bootstraps. In cases where no bootstraps were in favor of the null hypothesis, we report p < 10~4. To fitan
exponential function to place cell densities, we used a standard curve fitting function. We used 10,000 bootstraps to place error bars
on length constants and to compare different length constants. In order to correct for multiple comparisons, we apply Bonferroni
corrections by multiplying raw P values by the number of comparisons. In cases where this yielded a corrected P value greater
than unity, we report p = 1. No statistical methods were used to predetermine sample sizes.
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