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The explosion of biobank data offers unprecedented opportunities for gene-environment
interaction (GxE) studies of complex diseases because of the large sample sizes and the
rich collection in genetic and non-genetic information. However, the extremely large
sample size also introduces new computational challenges in G×E assessment,
especially for set-based G×E variance component (VC) tests, which are a widely used
strategy to boost overall G×E signals and to evaluate the joint G×E effect of multiple
variants from a biologically meaningful unit (e.g., gene). In this work, we focus on
continuous traits and present SEAGLE, a Scalable Exact AlGorithm for Large-scale
set-based G×E tests, to permit G×E VC tests for biobank-scale data. SEAGLE
employs modern matrix computations to calculate the test statistic and p-value of the
GxE VC test in a computationally efficient fashion, without imposing additional
assumptions or relying on approximations. SEAGLE can easily accommodate sample
sizes in the order of 105, is implementable on standard laptops, and does not require
specialized computing equipment. We demonstrate the performance of SEAGLE using
extensive simulations. We illustrate its utility by conducting genome-wide gene-based G×E
analysis on the Taiwan Biobank data to explore the interaction of gene and physical activity
status on body mass index.

Keywords: gene-based GxE test for biobank data, GxE collapsing test for biobank data, GxE test for large-scale
sequencing data, scalable GEI test, gene-environment variance component test, gene-environment kernel test,
regional-based gene-environment test

1 INTRODUCTION

Human complex diseases such as neurodegenerative diseases, psychiatric disorders, metabolic
syndromes, and cancers are complex traits for which disease susceptibility, disease development,
and treatment response are mediated by intricate genetic and environmental factors. Understanding
the genetic etiology of these complex diseases requires collective consideration of potential genetic
and environmental contributors. Studies of gene-environment interactions (G×E) enable
understanding of the differences that environmental exposures may have on health outcomes in
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people with varying genotypes (Ottman, 1996; Hunter, 2005;
McAllister et al., 2017). Examples include the impact of physical
activity and alcohol consumption on the genetic risk for obesity-
related traits (Sulc et al., 2020), the impact of air pollution on the
genetic risk for cardio-metabolic and respiratory traits (Favé et al.,
2018), and other examples reviewed in Ritz et al. (2017).

When assessing G×E effects, set-based tests are popular
approaches to detecting interactions between an environmental
factor and a set of single nucleotide polymorphism (SNPs) in a
gene, sliding window, or functional region (Tzeng et al., 2011; Lin
et al., 2013; Zhao et al., 2015; Lin et al., 2016; Su et al., 2017).
Compared to single-SNP G×E tests, set-based G×E tests can
enhance testing performance by reducing multiple-testing
burden and by aggregating G×E signals over multiple SNPs
that are of moderate effect sizes or of low frequencies.

Large-scale biobanks collect genetic and health information on
hundreds of thousands of individuals. Their large sample sizes
and rich data on non-genetic factors offer unprecedented
opportunities for in-depth studies on G×E effects. While the
explosion of biobank data collections provides great hopes for
novel G×E discoveries, it also introduces computational
challenges. In particular, many set-based G×E tests can be cast
as variance component (VC) tests under a random effects
modeling framework (Lin et al., 2013; Su et al., 2017),
including kernel machine based tests (Wang et al., 2015a; Lin
et al., 2016) and similarity regression based methods (Tzeng et al.,
2011; Zhao et al., 2015). Hypothesis testing in this framework
relies on computations with phenotypic variance matrices with
dimension n × n (with n as the sample size) and may involve
estimating nuisance variance components. When n is large, as in
the case of biobank data, matrix computations whose operation
counts scale with n3 are prohibitive in terms of computation time
and storage.

A number of methods attempt to ease this computational
burden by bypassing the estimation of nuisance variance
components, either through approximation of the variance or
kernel matrices (Marceau et al., 2015) or through approximation
of the score-like test statistics (Wang et al., 2020). In the first case,
approximating the kernel matrices still requires an expensive
eigenvalue decomposition upfront, in addition to storage for the
explicit formation of the n × n kernel matrices, thus lacking
practical scalability. In the latter case, approximating the test
statistics requires assumptions that may or may not be valid and
are difficult to validate in practice. Our numerical studies in
Section 3 show that the Type 1 error rates and power can be sub-
optimal when data do not adhere to the required assumptions.

In this work, we focus on continuous traits and introduce a
Scalable Exact AlGorithm for Large-scale set-based G×E tests
(SEAGLE) for performing G×E VC tests on biobank data. Here
“exact” refers to the fact that SEAGLE computes the original VC
test statistic without any approximations, rather than the null
distribution of the test statistic being asymptotic or exact.
Exactness and scalability are achieved through the judicious
use of modern matrix computations, allowing us to dispense
with approximations and assumptions. Our numerical
experiments illustrate that SEAGLE produces Type 1 error
rates and power identical to those of the original GxE VC

methods (Tzeng et al., 2011), but at a fraction of the speed.
Additionally, SEAGLE can easily handle biobank-scale data with
as many as n individuals in the order of 105, often at the same
speed as state-of-the-art approximate methods (Wang et al.,
2020). Compared with the state-of-the-art approximate
method (Wang et al., 2020), SEAGLE can produce more
accurate Type 1 error rates and power. Another advantage of
SEAGLE is its user-friendliness; it can be run on ordinary laptops
and does not require specialized or high performance computing
equipment or parallelization. In fact, nearly all of our timing
comparisons in Section 3 were performed on a 2013 Intel Core i5
laptop with a 2.70 GHz CPU and 16 GB RAM, specs that are
standard for modern laptops. Therefore, SEAGLE makes it
possible to run exact and scalable G×E VC tests on biobank-
scale data with just a modicum of computational resources.

The rest of the paper proceeds as follows. Section 2 describes
the standard mixed effects model for G×E effects, testing
procedures, computational performance, and SEAGLE
algorithm. Section 3 illustrates SEAGLE’s performance
through numerical studies. Section 4 concludes with a brief
summary of our contributions and avenues for future work.

2 MATERIALS AND METHODS

We describe the standard mixed effects model for G×E effects and
testing procedures (Section 2.1), the computational challenges
for biobank-scale data (Section 2.2), the components of the
SEAGLE algorithm (Section 2.3), and the SEAGLE algorithm
as a whole (Section 2.3.4).

2.1 G×E Variance Component Tests for
Continuous Traits
We present the standard mixed effects model for studying G×E
effects, the score-like test statistic, and its p-value. Let y ∈ Rn

denote the response vector with n individual responses for a
continuous trait; X ∈ Rn×p the design matrix of p covariates
whose leading column is the all ones vector for the intercept;
E ∈ Rn the design vector of the environmental factor in the G×E
effect; and G ∈ Rn×L the genetic marker matrix for the L SNPs
where L < n. Define the design matrix for the G×E terms as ~G �
diag(E)G ∈ Rn×L where diag(E) ∈ Rn×n is a diagonal matrix with
the elements of the vector E on the diagonal.

Consider the linear mixed effects model (Tzeng et al., 2011;
Lin et al., 2013),

y � XβX + EβE + Gb + ~Gc + ε. (1)

Here, βX ∈ Rp and βE ∈ R are the fixed-effects coefficients for
the covariates and environmental factor, respectively; b ∈ RL and
c ∈ RL are the genetic main (G) effect and G×E effect,
respectively, with b ∼N(0, τIL) and c ∼N(0, ]IL); ε ∼N(0, σ
In); and Ik ∈ Rk×k denotes the identity matrix of dimension k.

The SNP-set analysis models the G and G×E effects of the L
SNPs as random effects rather than fixed effects. This choice

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7100552

Chi et al. Biobank-Scale GxE VC Test

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


avoids power loss for non-small L and numerical difficulties from
correlated SNPs that can occur in a fixed effects model. To assess
the presence of G×E effects with H0 : c � 0 in Model (1), one can
apply a score-like test to the corresponding variance component
with H0 : ] � 0.

To simplify the null model of (Eq. 1) in the score-like test, we
consolidate and define ~X � X E( ) ∈ Rn×P and
β � βTX βTE( )T ∈ RP, where P � p + 1. The resulting null
model becomes y � ~Xβ + Gb + ε, where the response is
y ∼ N( ~Xβ , V) with V � τGGT + σIn. Following (Tzeng et al.,
2011), the score-like test statistic is

T � 1
2
(y − μ̂)TV−1 ~G ~G

T
V−1(y − μ̂)

� 1
2
yTP ~G ~G

T
Py ≡

1
2
tTt, where t � ~G

T
Py.

(2)

In (Eq. 2), μ̂ � ~Xβ̂ � ~X( ~XT
V−1 ~X)−1 ~XT

V−1y and

P � V−1 − V−1 ~X( ~XT
V−1 ~X)−1 ~XT

V−1. Supplementary Appendix
S1 presents the restricted maximum likelihood (REML)
expectation-maximization (EM) algorithm for estimating the
nuisance VC parameters τ and σ for computing T (Tzeng
et al., 2011; Zhao et al., 2015). The test statistic T follows a
weighted χ2(1) distribution asymptotically underH0 : ] � 0. That is,

T ∼ ∑
ℓ
λℓχ2(1), where λℓ’s are the eigenvalues of

C � C1C
T
1 , where C1 � 1�

2
√ V

1
2P ~G. (3)

Given the λℓ’s, the p-value of T can be computed with the
moment matching method in Liu et al. (2009) or the exact
method in Davies (1980).

2.2 Computational Challenges in G×E
Variance Component Tests for
Biobank-Scale Data
We identify three computational bottlenecks.

1. The test statistic T and the p-value computation depend on
P ∈ Rn×n, which in turn depends on V−1 ∈ Rn×n. Explicit
formation of the inverse is too expensive and numerically

inadvisable, due to loss of numerical accuracy and stability
(Higham, 2002, Chapter 14).

2. The REML EM algorithm (Supplementary Appendix S1)
estimates the nuisance variance components τ and σ in V
under the null hypothesis. Each iteration requires products
with the orthogonal projector I − ~X( ~XT ~X)−1 ~XT

, and inverting
a matrix of dimension n − P ≈ n.

3. Computing the p-values requires two eigenvalue
decompositions: 1) an eigenvalue decomposition of V to
compute V

1
2 in C1; and 2) an eigenvalue decomposition of

C to compute the λℓ’s in the weighted χ2(1) distribution.
Computing the eigenvalues and eigenvectors of the
symmetric matrix V ∈ Rn×n requires O(n3) arithmetic
operations and O(n3) storage. Computing the eigenvalues of
C ∈ Rn×n requires another O(n3) arithmetic operations.

2.3 Components of the SEAGLE Algorithm
for Biobank-Scale GxE Variance
Component Test
We present our approach for overcoming the three computational
challenges in the previous section: Multiplication withV−1 without
explicit formation of the inverse (Section 2.3.1), a scalable REML
EM algorithm (Section 2.3.2), and a scalable algorithm for
computing the eigenvalues of C (Section 2.3.3). The idea is to
replace explicit formation of inverses by low-rank updates and
linear system solutions; and to replace n × n eigenvalue
decompositions with L × L ones.

2.3.1 Multiplication by V−1 Without Explicit Formation
of V−1

The test statisticT and its p-value calculation depend onV−1.We avoid
the explicit formation of the inverse by viewingV � τGGT +σIn as
the low-rank update of a diagonal matrix, and then applying
the Sherman-Morrison-Woodbury formula below to reduce
the dimension of the computed inverse from n to L
where L ≪ n.

LEMMA 1 [Section 2.1.4 in Golub and Van Loan (2013)]. Let
H ∈ Rn×n be nonsingular, and letU,B ∈ Rn×L so that I + BTH−1U
is nonsingular. Then

(H + UBT)−1 � H−1 −H−1U(I + BTH−1U)−1BTH−1.

Algorithm 1 | applyVinv
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Applying Lemma 1 to the product of the inverse of V �
σ(In + τ

σGG
T) with any right-hand side input W ∈ Rn×l gives

V−1W � 1
σ

W − τ

σ
G IL + τ

σ
GTG( )−1

GTW[ ], (4)

which reduces the dimension of the inverse from n to L. The
explicit computation of the inverse of M � IL + τ

σ G
TG ∈ RL×L

is, in turn, avoided with a Cholesky decomposition followed
by a linear system solution. Algorithm 1 shows pseudocode
for computing (Eq. 4). As a further saving, we pre-compute
the Cholesky factorization of M only once, so it is available
for re-use in the computation of the test statistic and
p-value.

2.3.2 Scalable Restricted Maximum Likelihood
Expectation-Maximization Algorithm
We present the scalable version of the REML EM algorithm in
Supplementary Appendix S1 that avoids explicit formation of
the orthogonal projector and the inverses.

We assume throughout that ~X has full column rank with
rank( ~X) � P, and let range( ~X) be the space spanned by the
columns of ~X. The space perpendicular to range( ~X) is
range( ~X)⊥, and the orthogonal projector onto this space is

AAT � I − ~X( ~XT ~X)−1 ~XT
(5)

where A ∈ Rn×(n−P) has orthonormal columns with ATA � In−P.
Let u � ATy ∈ Rn−P be the orthogonal projection of the response
onto range( ~X)⊥.

In iteration t + 1 of the algorithm, define

R̂ � τ̂t A
TGGTA + σ̂t In−P ∈ R(n−P)×(n−P). (6)

Then the updates in Supplementary Eq. S5 and
Supplementary Eq. S6 from Supplementary Appendix S1 can
be expressed as

τ̂t+1 � τ̂t
L

τ̂t ‖GTAR̂
−1
u‖22 + trace(IL − τ̂tG

TAR̂
−1
ATG)[ ]

σ̂t+1 � σ̂t

n − P
‖R̂−1

u‖22 + τ̂t trace(GTAR̂
−1
ATG)[ ].

The two bottlenecks in the REML EM algorithm are the
computation of the non-symmetric “square-root” A in (Eq. 5),
and products with R̂

−1
from (Eq. 6). Since P is small, n − P ≈ n,

hence explicit formation of the inverse is out of the question,
especially since R̂ changes in each iteration due to the updates for
τ̂t and σ̂t.

To avoid explicit formation of the full matrix in (Eq. 5), we
compute instead the QR decomposition

~X � Q1 Q2( )︸����︷︷����︸
Q

R0

0
( ), (7)

where Q ∈ Rn×n is an orthogonal matrix with QTQ � QQT � In.
The columns of Q1 ∈ Rn×P form an orthonormal basis for
range( ~X), and the columns of Q2 ∈ Rn×(n−P) form an
orthonormal basis for range( ~X)⊥. The upper triangular matrix
R0 ∈ RP×P is nonsingular, due to the assumption of ~X having full
column rank. Therefore, (Eq. 5) simplifies to

I − ~X( ~XT ~X)−1 ~XT � I −Q1Q
T
1 � Q2Q

T
2 .

Thus, A � Q2 represents the trailing n − P columns of the
orthogonal matrix Q in the QR factorization of ~X.

Algorithm 2 shows pseudocode for the REML EM algorithm.
SinceA �Q2 occurs only asA

T in matrix-vector or matrix-matrix
multiplications, we do not compute A explicitly. Instead, we
compute the full QR decomposition in (Eq. 7) where the “QR
object” Q � Q1 A( ) is stored implicitly in factored form. To

compute u � ATy, we multiply ~u � QTy � QT
1 y

ATy
( ) and then

extract the trailing n − P rows from ~u.

Algorithm 2 | REML-EM.
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Furthermore, we apply R̂
−1

from (Eq. 6) with a modified version
of Algorithm 1 where G is replaced by ATG and In by In−P.
Unfortunately, one cannot pre-compute a Cholesky factorization
for the whole algorithm since τ̂t and σ̂t change in each iteration.
However, within a single iteration, we pre-compute a Cholesky
factorization of R̂ for subsequent linear system solutions of R̂

−1
u and

R̂
−1
ATG. Following previous work on G×E VC tests in Tzeng et al.

(2011), our convergence criteria are: i) the magnitude of the relative
difference between the current and previous estimate; and ii) the
default convergence tolerance from the SIMreg package for R.

2.3.3 Scalable Algorithm for Computing the
Eigenvalues of C
Computation of the p-values requires the eigenvalues ofC � C1CT

1 in
(Eq. 3), which in turn involves products with V

1
2 ∈ Rn×n. We avoid

the computation of the square root by exploiting the fact that the
nonzero eigenvalues of C1CT

1 are equal to the nonzero eigenvalues of
CT
1C1. The symmetry ofV andP and the equality PVP� P imply the

much simpler expression

CT
1C1 � 1

2
~G
T
PVP ~G � 1

2
~G
T
P ~G.

The explicit formation of P is avoided by computing instead
products P ~G with Algorithm 1. Therefore, our approach of
replacing the n × n matrix C1CT

1 with the much smaller L × L
matrix CT

1C1 reduces the operation count from O(n3) down to
O(L3). Part III of Algorithm 3 shows the pseudocode.

2.3.4 The SEAGLE Algorithm
Combining the algorithms from Section 2.3.1, Section 2.3.2, and
Section 2.3.3 gives the SEAGLE Algorithm 3 for computing the
score-like test statistic T and its p-value. SEAGLE is implemented
in the publicly available R package SEAGLE.

Algorithm 3 consists of three parts. Part I computes τ̂ and σ̂ with
the scalable REML EM in Algorithm 2; Part II computes the score-
like T statistic in (Eq. 2); and Part III computes the p-values from the
eigenvalues of C in (Eq. 3). Linear systems with V are efficiently
solved withAlgorithm 1. The fast diagonal multiplication in R stores
diagonal matrices as vectors. The QR decomposition is implemented
with the qr function in the R base package. The qr.qty functionmakes
it possible to left multiply byQT without having to explicitly formQ.

3 RESULTS

3.1 Simulation Study
We evaluate the performance of our proposed method SEAGLE
using simulation studies from two settings. In the first, we simulate
data from a random effects genetic model according to Model (1).
This enables us to evaluate SEAGLE’s estimation and testing
performance. We include experiments with a smaller n � 5,000 to

TABLE 1 | Type 1 error rate with 95% confidence intervals (CIs) for SEAGLE with
Davies p-values over N � 20,000,000 replicates for n � 5,000 observations,
L � 100 loci, and variance components τ � σ � 1 and ] � 0.

α-level Type 1 error Std. Error 95% CI

5 × 10−2 0.0497635 0.0000486 (0.0496681, 0.0498588)
5 × 10−3 0.0049571 0.0000157 (0.0049263, 0.0049878)
5 × 10−4 0.0004894 0.0000049 (0.0004797, 0.0004990)
5 × 10−5 0.0000481 0.0000016 (0.0000451, 0.0000511)
2.5 × 10−6 0.0000027 0.0000004 (0.0000020, 0.0000035)

TABLE 2 | SEAGLE vs. original G×E VC (OVC) results based on N � 1,000
replicates for n � 5,000 observations and L � 100 loci underH0: no G×E effect
(] � 0). Table shows the bias andmean square error (MSE) of the estimated τ and σ

values, compared to the true values τ � σ � 1.

τ σ

SEAGLE Bias −3.06 × 10−4 −1.01 × 10−3

MSE 4.37 × 10−2 4.18 × 10−4

OVC Bias −6.93 × 10−4 −5.56 × 10−4

MSE 4.36 × 10−2 1.05 × 10−4

FIGURE 1 | SEAGLE vs. original G×E VC (OVC) results based on N � 1, 000 replicates for n � 5,000 observations and L � 100 loci under H0: no G×E effect (] � 0).
The (A,B) show the scatter plots of the testing results computed from SEAGLE vs. those from OVC, depicting the “exact” relationship between SEAGLE and OVC; (A)
depicts test statistics T and (B) depicts the p-values.
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enable comparisons with existing G×E VC tests as well as larger n
values (i.e., 20,000 and 100,000) to demonstrate SEAGLE’s
effectiveness on biobank-scale data. In the second, we simulate
data from a fixed effects genetic model with larger n � 20,000 and
n � 100,000 observations. This enables us to evaluate the testing
performance when the data do not follow our modeling assumptions.

In each setting, we study the Type 1 error rate and power. We
consider three baseline approaches: i) the original G×E VC test
(referred to as OVC) (Tzeng et al., 2011; Wang et al., 2015b), as
implemented in the SIMreg R package (https://www4.stat.ncsu.
edu/̃jytzeng/software_simreg.php); ii) FastKM (Marceau et al.,
2015), as implemented in the FastKM R package; and iii) MAGEE
(Wang et al., 2020), as implemented in the MAGEE R package.
MAGEE is the state-of-the-art scalable G×E VC test with
demonstrated superior performance compared to several set-
based GxE methods.

In all simulations, we obtain the genotype design matrix
G ∈ Rn×L as follows. First, we employ the COSI software
(Schaffner et al., 2005) to simulate 10,000 haplotypes of SNP
sequences mimicking the European population. We then form a
SNP set of L loci (L � 100 or 400) with minor allele frequency
(MAF) less than 1% by randomly selecting L SNPs without
replacement. Finally, in each replicate, we generate the

TABLE 3 |Mean squared error (MSE) of the p-values obtained from different G×E
VC tests, compared to the “Truth” p-values. Results are obtained with τ � σ �
1 under H0: ] � 0 over N � 1,000 replicates with n � 5,000 observations and L �
100 loci.

MSE of p-value

SEAGLE 3.49 × 10−4

MAGEE 224.96 × 10−4

OVC 3.49 × 10−4

FastKM 17.88 × 10−4

Algorithm 3 | SEAGLE.
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genotypes of n individuals by randomly selecting two
haploytpes with replacement. We also consider a
confounding factor X ∈ Rn and an environmental factor
E ∈ Rn, where each is generated from a standard normal
distribution. Given X and E, we then form the covariate
design matrix ~X ∈ Rn×3 by column-combining the vector of
ones, X, and E together.

3.1.1 Random Effects Simulation Study
Given the n × L genotype design matrix G (where L � 100 for n �
5, 20, and 100 k, and L � 400 for n � 20 and 100 k) and the n × P
covariate design matrix ~X (where P � 3), we simulate the outcome

data y according to the random effects model:
y � ~Xβ + Gb + diag(E)Gc + e, where β is set as the all ones
vector of length P; b is generated from N(0, τ IL); e is
generated from N(0, σ In); and σ and τ are set to be 1. We set
] � 0 for Type I error analysis and ] > 0 for power analysis, where
the actual value of ] is set so that the empirical power of various
methods can be within 0.2 ∼0.9 when possible (i.e., not all near 1
or all < 0.1) and would depend on sample size (i.e., ] � 0.04, 0.002
and 0.007 for n � 5, 20, and 100 k, respectively). With ] � 0, we
simulate N � 1,000 replicates and evaluate the results at the
nominal level α � 0.05, except when assessing SEAGLE’s Type I
error rates at α � 5 × 10−2, 5 × 10−3, 5 × 10−4, 5 × 10−5, and 2.5 ×

FIGURE 3 | Type 1 error at α � 0.05 level for N � 1,000 replicates with
n � 5,000 observations and L � 100 loci with τ � σ � 1 and ] � 0.

FIGURE 4 | Power at α � 0.05 level over N � 200 replicates with
n � 5,000 observations, L � 100 loci, and ] � 0.04.

FIGURE 2 | (A) Box plots of computation time in seconds to obtain a single p-value over N � 1,000 replicates for n � 5,000 observations and L � 100 loci. (B)
Computation time in seconds to obtain a single p-value for SEAGLE and MAGEE.
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10−6, where we consider N � 20,000,000 replicates. With ] > 0, we
simulate N � 200 replicates to assess power.

We begin by examining the Type 1 error rate for SEAGLE with
N � 20,000,000 replicates. Table 1 depicts the SEAGLE Type 1
error rates and shows that SEAGLE provides reasonable control
over the Type 1 error rate at varying α-levels with p-values from
Davies (1980). Next, underH0: ] � 0 and τ � σ � 1 with N � 1,000
replicates, we compare the testing results of SEAGLE with OVC.
Table 2 shows the bias and the mean square error (MSE) of the
estimated values for τ and σ obtained from the SEAGLE and
OVC REML EM algorithms. Both algorithms produce very small
bias and MSE for τ and σ. The left and right panels in Figure 1
depicts scatter plots of the score-like test statistics and p-values,
respectively, produced by SEAGLE and OVC. The panels show

that SEAGLE and OVC produce identical test statistics and
p-values, hence the “exactness” of the SEAGLE algorithm.

Since the data are generated from a random effects model
underH0: ] � 0, we can compute the “true” score-like test statistic
T by evaluating (Eq. 2) at the true τ and σ values, and obtaining
the corresponding p-value. We refer to this as the “Truth” and
include it as a baseline approach. Supplementary Figure S1
depicts quantile-quantile plots (QQ plots) of the p-values from
different methods, each over N � 1,000 replicates. We use the
Kolmogorov-Smirnov (KS) test to examine whether or not these
observed p-values follow the expected null distribution, i.e., to test
forH0: the observed p-values follows Uniform (0,1). With τ � σ �
1, all methods exhibit similar p-value behavior and follow
Uniform (0,1) except MAGEE (Supplementary Figure S1A).

FIGURE 5 | Type 1 error at α � 0.05 for random effects simulations withN � 1,000 replicates for n � 20,000 and n � 100,000 observations, L � 100 and L � 400 loci,
and τ � σ � 1 and ] � 0.

FIGURE 6 | Time in seconds for random effects simulations with N � 1,000 replicates for n � 20,000 and n � 100,000 observations, L � 100 and L � 400 loci, and τ

� σ � 1 and ] � 0. Replicates computed on a single core of an Intel Xeon Gold 6226R (2.90 GHz) machine with 8 GB of RAM.
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FIGURE 7 | Power at α � 0.05 level over N � 200 replicates with n � 20,000 (] � 0.007) and n � 100,000 (] � 0.002) observations, L � 100 and L � 400 loci, and
τ � σ � 1.

FIGURE 8 | Type 1 error at α � 0.05 for fixed effects simulations with N � 1,000 replicates with n � 20,000 and n � 100,000 observations, and L � 100 loci with
cGE � 0 and varying values of cG.

FIGURE 9 | Computation time in seconds for fixed effects simulations with N � 1,000 replicates with n � 20,000 observations and L � 100 loci.
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In fact, the points for SEAGLE (red) and OVC (light blue)
overlap. The corresponding p-values of the KS test are 0.3599,
0.4303, 0.4303, 0.3529, and 3.33e-15 for Truth, SEAGLE, OVC,
FastKM, and MAGEE, respectively. The deviation of MAGEE’s
p-value distribution is likely due to the non-negligible genetic
main effects as reported in Wang et al. (2020). To confirm, we
repeat the same simulation with τ � 0.01 and σ � 1 and examine
the p-values of MAGEE. The results based onN � 1,000 replicates
show that the MAGEE p-values behavior similarly to Uniform
(0,1) (Supplementary Figure S1B). The p-values of the KS test

are 0.7244, 0.4945, and 0.1426 for Truth, SEAGLE and MAGEE,
respectively.

In Table 3, we compute theMSE of the p-values obtained from
SEAGLE, OVC, FastKM, and MAGEE, compared to the Truth
p-values at τ � σ � 1. We observe that MAGEE produces p-values
with larger MSE than the other methods. Supplementary Figure
S2 shows the corresponding absolute relative error of the p-values
for each method, computed by first taking the absolute difference
between a method’s p-value and the Truth p-value, then dividing
it by the Truth p-value. The boxplots suggest that MAGEE

FIGURE 10 | Power at α � 0.05 and α � 0.001 for p-values from fixed
genetic effectsmodel overN � 200 replicates with n � 20,000 and n � 100,000
observations, respectively, and L � 100 loci.

FIGURE 11 | Power at α � 0.05 and α � 0.001 for p-values from fixed
genetic effectsmodel overN � 200 replicates with n � 20,000 and n � 100,000
observations, respectively, and L � 400 loci.
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exhibits higher bias and greater variance than SEAGLE, OVC and
FastKM at τ � σ � 1.

Regarding the computational cost, the left panel in Figure 2
shows boxplots of the computation time in seconds required to
obtain a single p-value for each of the methods over N � 1,000
replicates with τ � σ � 1 and ] � 0. The right panel shows the same
boxplots for just SEAGLE and MAGEE. Results show that at n �
5,000 observations and L � 100 loci, SEAGLE is faster than
MAGEE on average. All replicates were computed on a 2013 Intel
Core i5 laptop with a 2.70 GHz CPU and 16 GB RAM.

Figure 3 shows the Type 1 error rate for each method under
H0: ] � 0. SEAGLE performs identically to OVC with respect to
Type 1 error rate at α � 0.05 while requiring only a fraction of the
computation time, as demonstrated in Figure 2. By contrast,
MAGEE is nearly as fast as SEAGLE for n � 5,000 and L � 100 but
produces much more conservative p-values at τ � σ � 1.

Figure 4 shows the power for each method under the
alternative hypothesis that ] > 0. SEAGLE again performs
identically to OVC while requiring a fraction of the
computation time. By contrast, MAGEE is nearly as fast as
SEAGLE for n � 5,000 and L � 100 but has lower power
when τ � σ � 1 and ] � 0.04.

Figures 5–7 show the comparisons of SEAGLE and MAGEE
under the large-n simulations (i.e., n � 20,000 and n � 100,000
individuals) with L � 100 and L � 400 loci and by setting τ � σ � 1.
Figure 5 shows the Type 1 error rate for Truth, SEAGLE, and
MAGEE underH0 : ] � 0. SEAGLE performs almost identically to
Truth and OVC, and provides adequate coverage at the α � 0.05
level. Meanwhile, MAGEE produces conservative p-values.
Figure 6 depicts boxplots of the computation time in seconds
required to obtain a single p-value for SEAGLE and MAGEE
under H0 : ] � 0. SEAGLE is faster than MAGEE at both
n � 20,000 and n � 100,000 when L � 100 and requires
comparable computation time to MAGEE when L � 400.
These timing results were obtained on a single core of an Intel
Xeon Gold 6226 R (2.90 GHz) machine with 8 GB of RAM.
Figure 7 shows the power for SEAGLE and MAGEE under
HA: ] > 0 (i.e., ] � 0.007 for n � 20,000 and ] � 0.002 for n �
100,000). SEAGLE exhibits greater power than MAGEE in all
four scenarios considered.

3.1.2 Fixed Effects Simulation Study
To study the performance of our proposed method when the data
may not adhere to our model assumptions, we follow previous
work (Marceau et al., 2015; Wang et al., 2020) and simulate data
according to the fixed effects model with a given ~X and G:

y � ~Xγ ~X + GγG + diag(E)GγGE + e, (8)

where γ ~X is the all ones vector of length P � 3, γG ∈ RL, γGE ∈ RL,
and e ∼N(0,σ In) with σ � 1. The entries of γG and γGE pertaining
to causal loci are set to be cG and cGE, respectively. The remaining
entries of γG and γGE pertaining to non-causal loci are 0. We
consider n � 20,000 or 100,000 observations with L � 100 or 400,
and compare SEAGLE with MAGEE only since OVC and fastKM
are unable to work on the sample sizes considered here. We select
the first ℓ loci to be causal (i.e., loci with both G and G×E effects or
just G effect). We vary cG over 0.5, 1, and 1.5 for the ℓ loci to study
the impact of the G main effect sizes. For each scenario, we report
the signal-to-noise ratio (SNR), obtained by the ratio of the effect-
term variance (i.e., GγG or diag(E)GγGE) to the error-term
variance (i.e., e) in Eq. 8. Because each simulation replicate
has its own G, we report the median variance ratio as SNR.

We first evaluate the Type 1 error of SEAGLE by simulating
N � 1,000 replicates with L � 100 for both n � 20,000 and 100,000,
and setting cGE � 0 for all loci while letting the first ℓ � 40 loci to
have non-zero cG. For both sample sizes, the SNR based on
Var(GγG)/Var(e) of Eq. 8 is 0.015, 0.061 and 0.138 for γG � 0.5, γG
� 1 and γG � 1.5, respectively. Figure 8 depicts the Type 1 error
rate at α � 0.05 over varying values for cG. While the Type 1 error
rate for SEAGLE remains relatively unaffected by different cG
values, MAGEE produces more conservative p-values as cG
increases. This is consistent with the MAGEE assumption
requiring a small G main effect (Wang et al., 2020).
Supplementary Figure S3 shows the corresponding quantile-
quantile plots for the p-values obtained from SEAGLE and
MAGEE.

Figure 9 depicts boxplots of the computation time in seconds
required to obtain a single p-value over the N � 1,000 replicates
for n � 20,000 and n � 100,000, and L � 100, over varying values
for cG. All replicates were computed on a 2013 Intel Core i5
laptop with a 2.70 GHz CPU and 16 GB RAM. For n � 20,000,
SEAGLE is faster than MAGEE at larger values of cG even though
MAGEE computes an approximation to the test statistic T and
bypasses the traditional REML EM algorithm. At smaller values
of cG, however, SEAGLE requires a few seconds more than
MAGEE. This is because smaller cG values result in smaller τ,
and the REML EM algorithm converges slowly for τ values close
to 0. Supplementary Figure S4 illustrates this empirically for n �
20,000 with the estimated values of τ produced by the REML EM
algorithm at different cG values. These trends persist for
n � 100,000 observations.

For power evaluation, we simulate N � 200 replicates with L �
100 and 400, and let the first ℓ causal loci to have non-zero cG and
cGE. For L � 100 loci, we set cGE for the first ℓ � 40 causal loci to be
0.1 or 0.15. For L � 400 loci, we set cGE for the first ℓ � 120 causal
loci to be 0.075 or 0.1. These cGE values are determined so that the
power for n � 20,000 at α � 0.05 is not close to 1. When L � 100,
the SNR for the G×E effect based on Var(diag(E)GγGE)/Var(e) of

FIGURE 12 | Upset plot of significant G×PA interactions identified by
SEAGLE and MAGEE in the Taiwan Biobank at the 5 × 10−4 nominal level.
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(Eq. 8) is 0.0006 and 0.0015 for γGE � 0.1 and 0.15, respectively.
When L � 400, the SNR for the GxE effect is 0.0014 and 0.0024 for
γGE � 0.075 and 0.1, respectively. The values of cG for the ℓ causal
loci are set to be 0.5, 1.0, and 1.5 as before. For L � 100, the SNR
for the G main effect is 0.015, 0.061 and 0.138 for γG � 0.5, γG � 1
and γG � 1.5, respectively. For L � 400, the SNR for the G main
effect is 0.050, 0.201 and 0.453 for γG � 0.5, γG � 1 and γG � 1.5,
respectively.

Figure 10 shows the power for L � 100 loci. At n � 20,000,
SEAGLE exhibits better power than MAGEE at all combinations
of cG and cGE. Moreover, the difference in power increases for
larger values of cG since MAGEE relies on the assumption that
the Gmain effect size is small. At n � 100,000 and the same values
of cGE, we report the power at α � 0.001 instead of 0.05 because
the power at α � 0.05 is near 1 for both methods. We see that both
methods produce similar results although SEAGLE still
outperforms MAGEE at slightly smaller values of cGE.
Figure 11 shows the power for L � 400 loci. Similar patterns
of relative power performance are observed as in the case of L �
100, except that the power difference between SEAGLE and
MAGEE is more pronounced in L � 400.

3.2 Application to the Taiwan Biobank Data
To illustrate the scalability of the G×E VC test using SEAGLE, we
apply SEAGLE and MAGEE to the Taiwan Biobank (TWB) data.
TWB is a nationwide biobank project initiated in 2012 and has
recruited more than 15,995 individuals. Peripheral blood
specimens were extracted and genotyped using the Affymetrix
Genomewide Axiom TWB array, which was designed specifically
for a Taiwanese population. We conduct the gene-based G×E
analysis and evaluate the interaction between gene and physical
activity (PA) status on body mass index (BMI), adjusting for age,
sex and the top 10 principal components for population
substructure. The PA status is a binary indicator for with/
without regular physical activity. Our G×E analyses focuses on
a subset of 11,664 unrelated individuals who have non-missing
phenotype and covariate information. After PLINK quality
control (i.e., removing SNPs with call rates < 0.95 or Hardy-
Weinberg Equilibrium p-value < 10−6), there are 589,867 SNPs
remaining, which are mapped to genes according to the gene
range list “glist-hg19” from the PLINK Resources page at https://
www.cog-genomics.org/plink/1.9/resources. There are a total of
13,260 genes containing > 1 SNPs for G×PA interaction analysis.

The median run time of SEAGLE and MAGEE is 2.4 and 1.3 s,
respectively, Both SEAGLE and MAGEE do not find any
significant G×PA interactions at the genome-wide Bonferroni
threshold 0.05/13,260 � 3.77 × 10−6. We hence discuss the
results using a less stringent threshold, i.e., 5 × 10−4 and
summarize the results in Figure 12 and Supplementary Table
S4. SEAGLE and MAGEE identify 8 and 6 G×PA interactions,
respectively, among which 5 G×PA results are identified by both
methods (Figure 12). The observation that SEAGLE identifies
slightly more G×PA effects than MAGEE generally agrees with the
simulation findings.We use theGeneCardsHumanGeneDatabase
(www.genecards.org) (Stelzer et al., 2016) to explore the relevance
of the identified genes with BMI or PA (see Supplementary Table
S4). Two of the 5 commonly identified genes, i.e., FCN2 andOCM,

have non-zero relevance scores (i.e., 0.56 and 0.91, respectively).
For the 3 genes identified by SEAGLE only, i.e., ALOX5AP,
BCLAF1 and PCDH17, their relevance scores are 6.16, 0.26 and
1.54, respectively. The expression ofALOX5AP has also been found
associated with obesity and insulin resistance (Kaaman et al., 2006)
as well as exercise-induced stress (Hilberg et al., 2005). On the
other hand, TBPL1 (identified by MAGEE only) is not in the
GeneCards relevance list with BMI or PA.

4 DISCUSSION

We introduced SEAGLE, a scalable exact algorithm for performing
set-based G×E VC tests on large-scale biobank data. We achieve
scalability and accuracy by applying modern numerical analysis
techniques, which include avoiding the explicit formation of
products and inverses of large matrices. Our numerical
experiments illustrate that SEAGLE produces Type 1 error rates
and power that are identical to those of the original VC test (Tzeng
et al., 2011), while requiring a fraction of the computational cost.
Moreover, SEAGLE is well-equipped to handle the very large
dimensions required for analysis of large-scale biobank data.

State-of-the-art computational approaches such as MAGEE
bypass the traditional time-consuming REML EM algorithm, and
instead compute an approximation to the score-like test statistic
by assuming that the G main effect size is small. In practice,
however, the G main effect size is often unknown. Our numerical
experiments illustrate that SEAGLE generally achieves better
Type 1 error and power with comparable computation time.

In general, computational time differences between SEAGLE and
MAGEE depend primarily on the effect size of the genetic main effect
(G effect) and the size of the data, particularly the number of loci L.
This is due to the fact that SEAGLE computes the score-like test
statistic exactly and therefore requires an EM algorithm to estimate
themain effect parameter τ and the noise effect parameter σ. The EM
algorithm requires more time to converge when τ is small,
particularly when τ is very close to zero. Furthermore, the EM
algorithm also requires more computational time for data with
larger dimensions, particularly as L grows larger. Despite these
differences, the computational time for SEAGLE is at least
comparable to that of MAGEE in all the many scenarios
considered in this manuscript.

We highlight the fact that most of our timing experiments
were performed on a 2013 Intel Core i5 laptop with a 2.70 GHz
CPU and 16 GB RAM. Therefore, SEAGLE performs efficient and
exact set-based G×E tests on biobank-scale data with n � 20,000
and n � 100,000 observations on ordinary laptops, without any
need for high performance computational platforms. This makes
SEAGLE broadly accessible to all researchers. Software for
SEAGLE is publicly available as the SEAGLE package on
GitHub (https://github.com/jocelynchi/SEAGLE), and is also
available on the Comprehensive R Archive Network.

Recent studies suggested incorporating functional annotations
can further enhance power and accuracy in set-based association
analysis [e.g., STAAR (Li et al., 2020) and GAMBIT (Quick et al.,
2020)], as a variant’s functional importance could better reflect
the causal/null status of the variants than its MAF. The variant-
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specific annotation weights derived in these methods can
also be incorporated into set-based GxE test (and hence
SEAGLE). To do so, consider an L × 1 annotation weight
vector wj based on annotation class j, j � 1, . . ., J with J the
total number of annotation classes, such as the scores
derived based on tissue-specific regulatory annotations in
Quick et al. (2020) or the estimated probability of being
causal derived from the epigenetic annotation PCs in Li et al.
(2020). We can first replace G by diag(wj)G in SEAGLE and
obtain the association p-value of the target variant set for
annotation class j (denoted by pj), j � 1, . . ., J. Then we
combine these pj’s across annotation classes using the
Cauchy Combination Test (Liu and Xie, 2020) or the
Harmonic Mean p-value (Wilson, 2019), and obtain the
final p-value of the variant set.

We conclude with a discussion of possible avenues for
future extensions. First, the current SEAGLE framework
only allows for quantitative traits. Extension to
binary traits can be based on developing a scalable
algorithm for the G×E VC test described in Zhao et al.
(2015) using similar numerical analysis techniques,
although the extension can be intricate due to the
complexity of the EM algorithm for estimating the
nuisance VCs involved with binary traits.

Second is the extension from a single environmental factor to a
set of factors represented by E ∈ Rn×q with q > 1. The
corresponding extension of Model (1) is

y � XβX + hE + hG + hGE + ε,with
hE ∼ N(0, τEΣE), hG ∼ N(0, τGΣG), hGE ∼ N(0, ]ΣGE), and ε ∼ N(0, σIn). (9)

Here ΣE,ΣG,ΣGE ∈ Rn×n are variance matrices, where ΣE �
EET, ΣG �GGT and ΣGE is the element-wise product of ΣG and ΣE.
Adaptation of SEAGLE’s scalable REML EM algorithm to the EM
algorithm in Wang et al. (2015b) takes care of estimating the
nuisance VC parameters. Numerical analysis techniques
analogous to the ones presented here will be the foundation
for the efficient extension to multi-E factors.

Third is the extension from unrelated samples to family
samples. With family samples, Model (1) will include an
additional nuisance VC associated with kinship matrix to
account for the within-family correlation. Similar scalable
algorithms as for the multi-E analysis would also be useful for
analyzing family samples.

The last is the extension to other types of kernels (Broadaway
et al., 2015; Wang et al., 2015b) of the current random effects
framework, which can be viewed as a special case of kernel
machine regression with linear kernels. As in Lumley et al.
(2018) and Wu and Sankararaman (2018), we will explore the
potential of randomized numerical linear algebra, by drawing on
the authors’ long standing expertise in the development of
numerically stable, accurate and efficient randomized matrix
algorithms (Eriksson-Bique et al., 2011; Ipsen and Wentworth,
2014; Wentworth and Ipsen, 2014; Holodnak and Ipsen, 2015;
Saibaba et al., 2017; Holodnak et al., 2018; Drineas and Ipsen,
2019; Chi and Ipsen, 2021).
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