

1 **Constraining the sources of nitrogen fueling export
2 production in the Gulf of Mexico using nitrogen isotope
3 budgets**

4
5 ANGELA N. KNAPP^{*1}, RACHEL K. THOMAS¹, MICHAEL R. STUKEL¹, THOMAS B. KELLY¹, MICHAEL R.
6 LANDRY², KAREN E. SELPH³, ESTRELLA MALCA^{4,5}, TRIKA GERARD⁵, JOHN LAMKIN⁵

7
8 ¹EOAS Dept., Florida State University, Tallahassee, FL 32306, USA

9 ²Scripps Inst. of Oceanography, University of California at San Diego, La Jolla, CA, 92093-0227, USA

10 ³School of Ocean and Earth Science and Technology, Department of Oceanography, University of
11 Hawai'i at Manoa, 1000 Pope Road, Honolulu, HI 96822, United States

12 ⁴Cooperative Institute of Marine and Atmospheric Studies, University of Miami, Miami, FL, 33149
13 USA

14 ⁵Southeast Fisheries Science Center, NOAA National Marine Fisheries Service, Miami,
15 FL, 33149 USA

16
17 *Corresponding author: anknapp@fsu.edu

18
19 Keywords: Gulf of Mexico, $\delta^{15}\text{N}$ budget, nitrate $\delta^{15}\text{N}$, regenerated production

22 **Abstract**

23
24 The availability of nitrogen (N) in ocean surface waters affects rates of photosynthesis and marine
25 ecosystem structure. In spite of low dissolved inorganic N concentrations, export production in
26 oligotrophic waters is comparable to more nutrient replete regions. Prior observations raise the
27 possibility that di-nitrogen (N₂) fixation supplies a significant fraction of N supporting export
28 production in the Gulf of Mexico. In this study, geochemical tools were used to quantify the relative
29 and absolute importance of both subsurface nitrate and N₂ fixation as sources of new N fueling export
30 production in the oligotrophic Gulf of Mexico in May 2017 and May 2018. Comparing the isotopic
31 composition (“δ¹⁵N”) of nitrate with the δ¹⁵N of sinking particulate N indicates that N₂ fixation is
32 typically not detected and that the majority ($\geq 80\%$) of export production is supported by subsurface
33 nitrate. Moreover, no gradients in upper ocean dissolved organic N and suspended particulate N
34 concentration and/or δ¹⁵N were found that would indicate significant N₂ fixation fluxes accumulated in
35 these pools, consistent with low *Trichodesmium* spp. abundance. Finally, comparing the δ¹⁵N of sinking
36 particulate N captured within vs. below the euphotic zone indicates that regenerated N is low in δ¹⁵N
37 compared to sinking N.

38
39
40 **Keywords: Gulf of Mexico, δ¹⁵N budget, nitrate δ¹⁵N, regenerated production**

43 **INTRODUCTION**

44 Primary productivity in the ocean accounts for roughly half of annual global carbon (C)
45 fixation. Despite low concentrations of inorganic forms of nitrogen (N), such as nitrate (NO_3^-) and
46 ammonium (NH_4^+), in many parts of the low-latitude surface ocean, significant rates of C fixation occur
47 in these seemingly nutrient impoverished regions (Emerson, 2014). Phytoplankton carrying out this
48 photosynthesis not only play a crucial role in the global C cycle, and thus impact climate, but create the
49 foundation of the marine food web. Two sources of N that fuel “new” primary production are NO_3^- , the
50 dominant bioavailable form of N in the global ocean, and biologically-mediated di-nitrogen (N_2)
51 fixation (Dugdale & Goering, 1967). New production fueled by subsurface NO_3^- in mid- to high-
52 latitude waters is supported by vertical mixing as thermocline stability erodes seasonally, with N_2
53 fixation thought to be more important in thermally stratified low-latitude surface waters. This “new”
54 production is contrasted with photosynthesis supported by NH_4^+ , known as “regenerated” production,
55 that largely cycles in the surface ocean and does not contribute to export (Dugdale & Goering, 1967,
56 Eppley & Peterson, 1979). While the distribution and rates of N_2 fixation in the ocean play a central
57 role in regulating the fertility and community structure of marine ecosystems, these first-order
58 properties of marine N_2 fixation remain poorly constrained. The highest short-term rates of N_2 fixation
59 have been documented in the tropical North Atlantic (Mahaffey *et al.*, 2005, Sohm *et al.*, 2011) as well
60 as the western tropical South Pacific (Caffin *et al.*, 2018, Knapp *et al.*, 2018b). The spatial distribution
61 of elevated $^{15}\text{N}_2$ incubation-based N_2 fixation rates (Luo *et al.*, 2012) are consistent with both the high
62 preference of diazotrophs for warm waters (Breitbarth *et al.*, 2007, Stal, 2009) as well as the high
63 atmospheric dust flux to the North Atlantic (Mahowald *et al.*, 2009, Prospero, 1996) that helps fulfill
64 the significant iron requirement of the enzyme, nitrogenase, that catalyzes N_2 fixation (Berman-Frank *et*
65 *al.*, 2001, Kustka *et al.*, 2003). However, field observations are spatially limited, leaving modeling
66 efforts to identify the regions of the global ocean supporting the largest N_2 fixation fluxes under-
67 constrained.

68 Both N_2 fixation rates and fluxes of subsurface NO_3^- to surface waters are expected to respond
69 to global change (Capotondi *et al.*, 2012, Luo *et al.*, 2019, Shi *et al.*, 2012), underscoring the
70 importance of accurately characterizing their roles in supporting low-latitude C fixation. While
71 incubation-based estimates of NO_3^- uptake and N_2 fixation rates are commonly used to evaluate their
72 respective roles in surface waters (Shiozaki *et al.*, 2018), these measurements have limitations,
73 including potential bottle effects (Westberry *et al.*, 2012), the inherent short-term nature of the
74 measurements, and challenges in consistently implementing methodological protocols (White *et al.*,
75 2020). While incubation-based approaches are valuable, geochemical methods to evaluate NO_3^- vs. N_2

fixation fueled export complement our understanding of this process. One geochemical tool to quantify relative and absolute contributions of subsurface NO_3^- and N_2 fixation to export production relies on the distinct isotopic compositions ("δ¹⁵N") of these two N sources ("δ¹⁵N", where δ¹⁵N = {[¹⁵N/¹⁴N]_{sample}/¹⁵N/¹⁴N]_{reference}] - 1) * 1000, with atmospheric N_2 as the reference). N_2 fixation introduces new N to the ocean with a δ¹⁵N of ~ -2 to 0‰ (Carpenter *et al.*, 1997, Hoering & Ford, 1960, Minagawa & Wada, 1986). In contrast, the δ¹⁵N of NO_3^- mixed up from the subsurface in the western North Atlantic can range from 2 to 4‰ (Knapp *et al.*, 2008, Knapp *et al.*, 2005, Marconi *et al.*, 2015). Assuming these are the dominant inputs of new N to the euphotic zone, in steady state, the δ¹⁵N of N fluxes out of the euphotic zone should reflect the relative importance of these N inputs. This "δ¹⁵N budget" approach assumes that sinking particulate N (PN_{sink}) is the major flux of N out of the euphotic zone, and compares the δ¹⁵N of subsurface NO_3^- and N_2 fixation with that of PN_{sink}.

Given these assumptions, the relative importance of each source of new N for supporting export production can be estimated using the two end-member mixing model described in Eqn. 1, where the fractional importance of N_2 fixation for supporting export production (x) is defined as:

$$\text{PN}_{\text{sink}} \delta^{15}\text{N} = x(-1\%) + (1 - x)(\text{NO}_3^- + \text{NO}_2^- \delta^{15}\text{N}) \quad \text{Eqn. 1}$$

Rearranging and solving for x yields:

$$x = (\text{NO}_3^- + \text{NO}_2^- \delta^{15}\text{N} - \text{PN}_{\text{sink}} \delta^{15}\text{N}) / (1 + \text{NO}_3^- + \text{NO}_2^- \delta^{15}\text{N}) \quad \text{Eqn. 2}$$

Multiplying "x" by the PN_{sink} mass flux provides a time-integrated N_2 fixation rate that can be compared with ¹⁵N₂ incubation-based N_2 fixation rate measurements (Knapp *et al.*, 2016a).

Prior δ¹⁵N budgets have been applied in oligotrophic waters like the Gulf of Mexico (GoM) where euphotic zone NO_3^- concentrations are low and N_2 fixation is thought to potentially support a significant (i.e., >10%) fraction of export production. Although N_2 fixation has recently been found to support the majority of export production at one location in the southwest Pacific Ocean (Knapp *et al.*, 2018b), and in the eastern North Atlantic N_2 fixation has been found to support up to 40% of export (Bourbonnais *et al.*, 2009), even in regions where N_2 fixation rates are relatively high, δ¹⁵N budgets indicate that subsurface NO_3^- fuels the majority of export production in the oligotrophic Atlantic and Pacific gyres (e.g., (Altabet, 1988, Casciotti *et al.*, 2008, Knapp *et al.*, 2016a, Knapp *et al.*, 2005)). Indeed, when δ¹⁵N budgets do indicate N_2 fixation is a significant N source (Knapp *et al.*, 2018b), ¹⁵N₂ uptake rates (Caffin *et al.*, 2018) and diazotroph abundance (Stenegren *et al.*, 2018) are notably elevated and consistent with diazotroph "bloom" conditions that fall outside typical ¹⁵N₂ uptake

106 observations (Luo *et al.*, 2012), thus leaving a clear signature when N₂ fixation is a quantitatively
107 important source of new N supporting export production.

108 Typical $\delta^{15}\text{N}$ budget results appear consistent with related work indicating that not only is NO₃⁻
109 the dominant new N input to low-latitude surface waters, but that its distinct isotopic composition
110 propagates through geochemical N pools as well as the food web of oligotrophic gyres. At the base of
111 the food web, this has been shown near Bermuda where, even during stratified summer conditions,
112 eukaryotes consuming NO₃⁻ are responsible for new production (Fawcett *et al.*, 2011). The importance
113 of NO₃⁻ as a N source to the low latitude ocean is also evident in the isotopic composition of dissolved
114 organic nitrogen (DON). Phytoplankton release a fraction of new production as DON (Bronk & Ward,
115 1999, Bronk & Ward, 2000, Bronk & Ward, 2005, Ward & Bronk, 2001). The distinct $\delta^{15}\text{N}$ of surface
116 ocean DON in the subtropical North Pacific versus the subtropical North Atlantic reflects the difference
117 in $\delta^{15}\text{N}$ of subsurface NO₃⁻ of the two basins (Knapp *et al.*, 2011), again emphasizing the primary role
118 of NO₃⁻ in supporting low-latitude production. Similarly, the $\delta^{15}\text{N}$ of suspended particulate N (PN_{susp})
119 in the surface ocean, a fraction of which includes living phytoplankton, also exhibits variations that
120 track regional differences in the $\delta^{15}\text{N}$ of subsurface NO₃⁻. For example, surface ocean PN_{susp} $\delta^{15}\text{N}$
121 ranges from 5 to 15‰ in regions with relatively high subsurface NO₃⁻ $\delta^{15}\text{N}$ such as in oxygen deficient
122 zones (Knapp *et al.*, 2016a, White *et al.*, 2013). In contrast, the relatively low $\delta^{15}\text{N}$ of PN_{susp} in surface
123 waters of the Sargasso Sea typically ranges from -1 to 0‰ (Altabet, 1988) and subsurface NO₃⁻ $\delta^{15}\text{N}$ is
124 particularly low, 2 to 4‰ (Knapp *et al.*, 2008, Marconi *et al.*, 2017). Regional variations in subsurface
125 NO₃⁻ $\delta^{15}\text{N}$ are also evident further up the food web in the $\delta^{15}\text{N}$ of zooplankton biomass, which is higher
126 in the North Pacific (Hannides *et al.*, 2009) than North Atlantic (McClelland *et al.*, 2003).

127 While results from prior $\delta^{15}\text{N}$ budgets might lead to the expectation that subsurface NO₃⁻ is the
128 dominant source of new N to GoM surface waters, the same environmental conditions that are thought
129 to support significant rates of N₂ fixation in the tropical North Atlantic are also commonly found in the
130 GoM. Modest N₂ fixation rates, up to 2.3 nmol N L⁻¹ d⁻¹, have been measured on the West Florida Shelf
131 (Mulholland *et al.*, 2006, Mulholland *et al.*, 2014) and off of the northern GoM shelf, 85 $\mu\text{mol N m}^{-2} \text{ d}^{-1}$
132 (Holl *et al.*, 2007), but the contribution of N₂ fixation to export production in the open waters of the
133 GoM has not been quantified. Here we apply $\delta^{15}\text{N}$ budgets to evaluate the relative importance of
134 subsurface NO₃⁻ and N₂ fixation for supporting export production in the oligotrophic GoM, as well as to
135 estimate geochemically-derived rates of N₂ fixation. A novel addition to these $\delta^{15}\text{N}$ budgets is the
136 inclusion of estimates of zooplankton NH₄⁺ and/or urea excretion as a secondary mechanism of N
137 export from the euphotic zone.

138 **METHODS**139 **Sample collection**

140 Samples were collected for inorganic nutrient concentration and isotopic analysis on the NOAA
141 Ship *Nancy Foster* from May 11-29 of 2017 (“NF1704”) and April 30 to May 19 of 2018 (“NF1802”)
142 in the deep waters of the northern and central GoM (Fig. 1). Samples were also collected for DON
143 concentration and isotopic analysis on the NF1802 cruise. Details of the cruises can be found in (Gerard
144 *et al.*, In Review). Briefly, samples were collected during five Lagrangian experiments of two- to four-
145 day duration (i.e. “cycles”), each initiated with the deployment of free-drifting, mixed-layer-drogued
146 sediment traps and concluded with their recovery. The length of trap deployment was chosen to
147 accommodate multiple cycles per cruise, with longer cycles conducted where patches of bluefin tuna
148 larvae were observed. Cycles over the course of the two cruises were sequentially numbered, with the
149 first three cycles on the 2017 cruise referenced as NF1704-C1 (C1), NF1704-C2 (C2), and NF1704-C3
150 (C3), and the two cycles on the 2018 cruise referenced as NF1802-C4 (C4), and NF1802-C5 (C5).
151 During the Lagrangian experiments, water-column samples were collected from Niskin bottles
152 deployed on a CTD-rosette close to the drifting sediment trap array at ~0200 local time each day.
153 Nutrient samples were collected in the dark to accommodate pre-dawn sampling for light incubation
154 experiments (Yingling *et al.*, 2021). Nutrient samples passed an acid-cleaned 0.2- μ m membrane filter
155 and were stored frozen at -20 °C in acid-washed HDPE bottles for analysis on land, per GEOTRACES
156 protocols (Cutter *et al.*, 2014). The depth of the mixed layer, defined as the depth at which density
157 increased by 0.125 kg m⁻³ (Monterey & Levitus, 1997), ranged from 21-36 m during NF1704 (C1-C3)
158 and 11-27 m during NF1802 (C4-C5).

159
160 **NO₃⁻+NO₂⁻, ammonium, phosphate, and DON concentrations**

161 The concentrations of NO₃⁻+nitrite (NO₃⁻+NO₂⁻) in water-column samples were measured using
162 a chemiluminescent method with a lower quantification limit of 0.1 μ M and mean standard deviation of
163 \pm 0.1 μ M (Braman & Hendrix, 1989). Concentrations of NH₄⁺ were quantified using the fluorescent
164 OPA method with a lower limit of 25 nM and mean standard deviation of \pm 20 nM (Holmes *et al.*,
165 1999). Soluble reactive phosphorus (PO₄³⁻) concentration measurements were made using colorimetric
166 methods with a lower quantification limit of 50 nM (Koroleff, 1983). Concentrations of total dissolved
167 nitrogen (TDN) were measured using persulfate oxidation of TDN to NO₃⁻ according to (Knapp *et al.*,
168 2005), and the resulting NO₃⁻ concentration was measured using chemiluminescence as described
169 above. The concentration of DON was calculated by subtracting the concentrations of NO₃⁻+NO₂⁻ and

170 NH₄⁺ from the TDN concentration. In samples with undetectable levels of NO₃⁻+NO₂⁻ (i.e., most
171 samples in the upper 100 m), the average standard deviation of DON concentration was ± 0.3 μM , with
172 a propagated error for DON concentration with detectable levels of NO₃⁻+NO₂⁻ of ± 0.32 μM .

173

174 **NO₃⁻+NO₂⁻ $\delta^{15}\text{N}$, $\delta^{18}\text{O}$ and DON $\delta^{15}\text{N}$ measurements**

175 The $\delta^{15}\text{N}$ of NO₃⁻+NO₂⁻ in samples was measured using the denitrifier method (Casciotti *et al.*,
176 2002, Sigman *et al.*, 2001, Weigand *et al.*, 2016) and calibrated using standard bracketing techniques
177 with IAEA N3 ($\delta^{15}\text{N} = 4.7\text{\textperthousand}$, $\delta^{18}\text{O} = 25.6\text{\textperthousand}$), and USGS 34 ($\delta^{15}\text{N} = -1.8\text{\textperthousand}$, $\delta^{18}\text{O} = -27.9\text{\textperthousand}$), and for
178 $\delta^{18}\text{O}$, additionally with USGS 35 ($\delta^{18}\text{O} = 57.5\text{\textperthousand}$) as described by (Mcilvin & Casciotti, 2011). The
179 mean standard deviation of replicate NO₃⁻+NO₂⁻ $\delta^{15}\text{N}$ and $\delta^{18}\text{O}$ analyses was $\leq 0.2\text{\textperthousand}$. The $\delta^{15}\text{N}$ of TDN
180 was determined using persulfate oxidation according to (Knapp *et al.*, 2005), with the resulting NO₃⁻
181 determined with the denitrifier method after adjusting the sample to pH=4. The $\delta^{15}\text{N}$ of DON was
182 calculated by mass balance by subtracting the concentration and $\delta^{15}\text{N}$ of NO₃⁻+NO₂⁻ from the TDN
183 concentration and $\delta^{15}\text{N}$. When the concentration of NO₃⁻+NO₂⁻ was below detection, the average
184 standard deviation of duplicate analyses of DON $\delta^{15}\text{N}$ was $\pm 0.3\text{\textperthousand}$. When the concentration of NO₃⁻
185 +NO₂⁻ was proportionate to the concentration of DON in the sample the propagated error for replicate
186 analyses of DON $\delta^{15}\text{N}$ was $\pm 0.6\text{\textperthousand}$, determined using a Monte Carlo approach (Press *et al.*, 1992).

187

188 **Chlorophyll *a* concentration, *Trichodesmium* spp. abundance, and suspended particulate N
189 concentration and $\delta^{15}\text{N}$ measurements**

190 The concentration of chlorophyll *a* was determined by calibrating the CTD fluorescence sensor
191 with Niskin-bottle based HPLC pigments as described in Selph *et al.* (2021). Additionally, trichomes of
192 the diazotroph *Trichodesmium* spp. were enumerated digitally using an OMAX A355OU camera and
193 TouPLite software as described in (Selph *et al.*, 2021). Suspended particulate organic nitrogen (PN_{susp})
194 was collected by filtering 2.2 L of water onto a pre-combusted (450 °C for 4 h) Whatman glass fiber
195 filter and its mass and isotopic composition was determined by an elemental analyzer interfaced to an
196 isotope ratio mass spectrometer at the UC Davis Stable Isotope Facility with a lower detection limit of
197 2.2 $\mu\text{g N}$ and precision of $\pm 0.3\text{\textperthousand}$ for 80 $\mu\text{g N}$ samples.

198

199 **Sinking particulate N flux and $\delta^{15}\text{N}$ measurements**

200 Surface-tethered, VERTEX-style particle-interceptor traps (PIT) were deployed at three depths: a
201 “shallow” trap deployed at 60 m, below the mixed layer; a “mid-depth” trap deployed just below the
202 base of the euphotic zone (i.e., 117 m on C5, 140 m on C1-C3, and 151 m on C4); and a “deep” trap
203 deployed at 231 m. PIT tubes (8:1 aspect ratio, baffle on top constructed of smaller tubes with 8:1
204 aspect ratio) were deployed with a formalin-brine for 2.2 to 4.5 days. After recovery, they were filtered
205 through a 100- μ m filter and swimmers were removed during inspection at 25X magnification (Zeiss
206 stereomicroscope). Triplicate brine tubes were then filtered through pre-combusted Whatman glass
207 fiber filters and the N mass flux (“ PN_{sink} flux”) and $\delta^{15}\text{N}$ of the PN_{sink} flux were determined as
208 described above for suspended particles. A complete description of the sediment trap deployment and
209 sample collection is given in (Stukel *et al.*, 2021).

210

211 **Zooplankton excretion flux and its isotopic composition**

212 Estimates of N loss from the euphotic zone due to excretion of diel migrant zooplankton at their
213 mesopelagic daytime depths were calculated from the size-fractioned biomass measurements of
214 (Landry & Swalethorp, 2021) and the empirical allometric relationship of Ikeda (1985) for ammonium
215 and/or urea excretion (E: $\mu\text{g N organism}^{-1} \text{ h}^{-1}$):

$$216 \quad \ln E = -2.176 + 0.829 \ln C_i + 0.0648 T$$

217 where C_i is the average carbon content of individual zooplankters in size fraction i and T ($^{\circ}\text{C}$) is the
218 environmental temperature at 300-500 m. Mesozooplankton were collected daily during experimental
219 cycles at mid-day and mid-night with a 1-m diameter ring net (0.2-mm Nitex mesh) towed obliquely
220 through the euphotic zone. The collected organisms were wet sieved through nested Nitex screens of 5,
221 2, 1, 0.5 and 0.2 mm Nitex mesh to produce 5 size classes of 0.2-0.5, 0.5-1, 1-2, 2-5 and >5 mm. Size
222 fractions were oven dried (60°C) for total dry weight, ground to a powder, and analyzed for C and N
223 content and isotopes ($\delta^{13}\text{C}$ and $\delta^{15}\text{N}$) by an elemental analyzer coupled to an isotope ratio mass
224 spectrometer (EA-IRMS) (Owens and Rees, 1989). For each pair of day-night samples, migrant
225 biomass was determined as the difference between night-day carbon for each size fraction. For
226 individual carbon contents, C_i , in the Ikeda (1985) equation, we used mean values of 2.4, 7.4, 41, 140
227 and $2782 \mu\text{g C ind}^{-1}$ for the 0.2-0.5 to >5 mm size fractions, respectively (Landry *et al.*, 2001). Migrant
228 abundances in each size fraction were calculated from measured C biomass and the individual C_i
229 estimates, and migrants were assumed to spend 12 h d^{-1} at mesopelagic depths (300-500 m).

230 Since few have measured it directly, we consider the $\delta^{15}\text{N}$ of zooplankton excretion to be
231 relatively uncertain. Consequently, we used lower and upper bound estimates, 3‰ and 5‰,

232 respectively, for the magnitude of the isotope effect associated with zooplankton N excretion. The 3‰
233 estimate reflects the difference between the $\delta^{15}\text{N}$ of copepod and doliolid biomass and excreted N in the
234 northwest Pacific Ocean (Checkley & Miller, 1989). This estimate is also consistent with prior studies
235 of N isotopic enrichment in food webs (Checkley & Entzeroth, 1985, Deniro & Epstein, 1981,
236 Minagawa & Wada, 1984, Wada *et al.*, 1987). The 5‰ estimate comes from organismal N mass and
237 isotopic observational and modeling constraints (Stukel *et al.*, 2018). Uncertainties in the day-night
238 biomass of each size class were propagated through all measurements using Monte Carlo approaches.
239

240 RESULTS

241 $\text{NO}_3^- + \text{NO}_2^-$ concentration, $\delta^{15}\text{N}$, $\delta^{18}\text{O}$

242 The concentration of $\text{NO}_3^- + \text{NO}_2^-$ in the upper 100 m was $\leq 0.1 \mu\text{M}$ and increased with depth
243 (Figs. 2 and 3). Water-column profiles of thermocline $\text{NO}_3^- + \text{NO}_2^- \delta^{15}\text{N}$ and $\delta^{18}\text{O}$ show similar trends
244 among the cycles and little variation on potential density surfaces, with a $\text{NO}_3^- + \text{NO}_2^- \delta^{15}\text{N}$ maximum of
245 ~5‰ at 650 m, which decreases up through the shallower thermocline to a minimum of 2.0 to 3.0‰ at
246 231 m (Figs. 2 and 3). The $\delta^{18}\text{O}$ of $\text{NO}_3^- + \text{NO}_2^-$ throughout the water column was largely $1.5 \pm 0.5\text{‰}$
247 (Fig. 3), with the $\delta^{18}\text{O}$ of $\text{NO}_3^- + \text{NO}_2^-$ in samples shallower than 150 m $> 3.0\text{‰}$ in the same samples with
248 elevated $\text{NO}_3^- + \text{NO}_2^- \delta^{15}\text{N}$ (Fig. 3).

249

250 DON and PN_{susp} concentration and $\delta^{15}\text{N}$

251 DON concentration in the NF1802 samples was largely consistent among stations (Fig. 4).
252 Profile concentrations averaged between 4 and 5 μM in the upper 100 m. The mean $\delta^{15}\text{N}$ of DON
253 varied between 3.0 and 3.5‰, but showed more variability among stations than DON concentration
254 (Figs. 4 and 5). Exceptions to these mean values include a station from C5 near the shelf/slope break
255 where higher DON concentration (7.3 μM) was found in surface waters with a relatively elevated $\delta^{15}\text{N}$
256 of 4.5‰ (Fig. 4). This surface water sample also had a relatively low salinity (35.28) compared with the
257 underlying 40 m sample (36.45). However, other samples further offshore with a similar salinity, 35.0
258 to 36.0, had a $\delta^{15}\text{N}$ between 3.0 and 4.0‰ (Fig. 4). Other samples near the shelf/slope break collected
259 from 75 and 100 m with relatively high DON $\delta^{15}\text{N}$, from 4.0 to 6.0‰, had salinities > 36 . Additionally,
260 two stations further offshore had $\delta^{15}\text{N}$ DON $< 3\text{‰}$ at several depths in the upper 100 m (Fig. 4). All

samples at these stations had salinity >36. No significant changes in DON concentration or $\delta^{15}\text{N}$ were found over the course of the Lagrangian cycles (Figs. 4 and 5).

The mean PN_{susp} concentration in the upper 100 m on the NF1704 cruise was $\sim 1.0 \mu\text{M}$, and ranged from 0.7 to $2.0 \mu\text{M}$ and was higher than the mean PN_{susp} concentration on the NF1802 cruise (mean $\sim 0.6 \mu\text{M}$, ranging from 0.3 to $1.3 \mu\text{M}$) (Fig. 5) (Table III). The mean $\delta^{15}\text{N}$ of PN_{susp} on NF1704, 1.0 to $2.0\text{\textperthousand}$, was not significantly different from that on NF1802, 1.0 to $2.5\text{\textperthousand}$. Finally, like DON, we found no significant gradients with depth or over the course of the Lagrangian cycles for either PN_{susp} concentration or $\delta^{15}\text{N}$ in the upper 100 m (Fig. 5) (Table III).

The flux and isotopic composition of PN_{sink} and zooplankton excretion

The largest flux of N out of the euphotic zone was the PN_{sink} flux. The range and mean PN_{sink} mass flux ($\pm 1 \text{ S.D.}$) and mean, mass-weighted $\delta^{15}\text{N}$ of the PN_{sink} flux ($\pm 1 \text{ S.D.}$) for each cycle, determined by averaging the PN_{sink} collected in three brine tubes per floating sediment trap deployment, is reported in Table I (Fig. 2). The mean PN_{sink} mass flux into the 60 m traps, representing upper euphotic zone export from the mixed layer, ranged from 0.59 ± 0.04 (C4) to 1.53 ± 0.6 (C1) $\text{mmol N m}^{-2} \text{ d}^{-1}$ (Table I). Mean PN_{sink} fluxes out of the euphotic zone, as recorded by the mid-depth trap, ranged from 0.46 ± 0.02 (C1) to 1.1 ± 0.18 (C3) $\text{mmol N m}^{-2} \text{ d}^{-1}$ (Table I). The mean PN_{sink} mass flux decreased with depth except for C3, when the PN_{sink} flux in the 140 m trap was larger than (although not significantly different from) that captured in the 60 m trap, 1.1 ± 0.18 vs. $0.98 \pm 0.26 \text{ mmol N m}^{-2} \text{ d}^{-1}$, respectively (Table I). The PN_{sink} flux in the 231 m trap was 35 to 50% of the PN_{sink} flux at the base of the euphotic zone (Table I). The mean $\delta^{15}\text{N}$ of the PN_{sink} flux at 60 m, ranging from $1.6 \pm 0.3\text{\textperthousand}$ (C3) to $3.8 \pm 0.2\text{\textperthousand}$ (C5), was lower than the $\delta^{15}\text{N}$ of PN_{sink} flux in the deeper traps (Fig. 2, Table I). The $\delta^{15}\text{N}$ of the PN_{sink} flux in the deepest two traps were typically more similar to each other than the $\delta^{15}\text{N}$ of the PN_{sink} flux in the euphotic zone, and the mean $\delta^{15}\text{N}$ for both of the deeper traps ranged from $2.9 \pm 0.1\text{\textperthousand}$ (C2, 120 m) to $5.0 \pm 0.2\text{\textperthousand}$ (C5, 231 m) (Table I). Finally, we note that the $\delta^{15}\text{N}$ of the PN_{sink} flux was always higher than the $\delta^{15}\text{N}$ of PN_{susp} .

Since we observed no gradients either with depth or over the course of Lagrangian sampling in either PN_{susp} or DON concentration in the euphotic zone (Table III, Figs. 4 and 5), the only other quantifiable pathway for N loss from the euphotic zone is via excretion or defecation of nitrogenous waste from vertically migrating zooplankton at depth or mortality of these organisms at their daytime resting depths. The estimated rates of zooplankton N excretion, in the form of NH_4^+ (Checkley & Miller, 1989) and urea (Bidigare, 1983), below the euphotic zone are reported in Table II. The mean

293 excretion rates of all vertically migrating zooplankton size classes were summed for each cycle, and
294 range from 19.6 ± 49.1 (C1) to 171.7 ± 103.3 (C5) $\mu\text{mol N m}^{-2} \text{d}^{-1}$ (Table II), with detailed descriptions
295 of these fluxes in (Landry & Swalethorp, 2021). These zooplankton excretion fluxes are roughly an
296 order of magnitude smaller than the PN_{sink} fluxes below the euphotic zone (Tables I and II). Although
297 we could not quantify zooplankton mortality or defecation at depth, we believe these fluxes are also
298 small relative to PN_{sink} and hence neglect them in further calculations. Estimates of the $\delta^{15}\text{N}$ of
299 zooplankton excretion assuming a 3‰ isotope effect range from 0.6 to 3.1‰ and are similar to or lower
300 than the $\delta^{15}\text{N}$ of both subsurface $\text{NO}_3^- + \text{NO}_2^-$ and the PN_{sink} flux (Table I), which range from -0.8 to
301 1.7‰ using the 5‰ isotope effect (Table II).

302

303 DISCUSSION

304 Comparison with prior regional observations

305 Water column profiles of $\text{NO}_3^- + \text{NO}_2^-$ concentration and isotopic composition from these cruises
306 were consistent with prior regional observations (Howe *et al.*, 2020). In particular, the decreasing NO_3^-
307 + $\text{NO}_2^- \delta^{15}\text{N}$ up through the thermocline (Fig. 3) has been observed previously in the GoM and North
308 Atlantic and is consistent with prior characterizations of the isotopic composition of $\text{NO}_3^- + \text{NO}_2^-$ in
309 regional water masses including the GoM (Howe *et al.*, 2020), the Florida Straits (Leichter *et al.*,
310 2007), and the North Atlantic (Knapp *et al.*, 2008, Marconi *et al.*, 2015, Marconi *et al.*, 2019). The
311 increasing $\delta^{15}\text{N}$ and $\delta^{18}\text{O}$ of $\text{NO}_3^- + \text{NO}_2^-$ in the upper 150 m is consistent with NO_3^- assimilation at the
312 base of the euphotic zone as has been observed previously in the region (Howe *et al.*, 2020, Knapp *et*
313 *al.*, 2005). The similarities of GoM samples to $\text{NO}_3^- + \text{NO}_2^-$ concentration, $\delta^{15}\text{N}$, and $\delta^{18}\text{O}$ from the
314 North Atlantic are consistent with the Loop Current importing thermocline water from the tropical and
315 subtropical North Atlantic into the GoM (Hernandez-Guerra & Joyce, 2000, Hofmann & Worley, 1986,
316 Morrison *et al.*, 1983, Wilson & Johns, 1997), as well as the relatively short residence time of water in
317 the GoM (Amon *et al.*, 2020). The latter prevents N inputs from the Mississippi River, submarine
318 groundwater discharge, and N_2 fixation from significantly modifying the concentration and isotopic
319 composition of $\text{NO}_3^- + \text{NO}_2^-$ before leaving the GoM (Howe *et al.*, 2020).

320 To the best of our knowledge, these measurements of DON $\delta^{15}\text{N}$ are the first reported from the
321 GoM. As was found for the concentration and isotopic composition of $\text{NO}_3^- + \text{NO}_2^-$, these DON
322 observations are consistent with regional observations from the Sargasso Sea, between 3.0 and 4.0‰
323 (Figs. 4, 5) (Knapp *et al.*, 2005, Knapp *et al.*, 2011). The sample from C5 near the shelf/slope break
324 with elevated DON concentration and $\delta^{15}\text{N}$ and slightly lower salinity was collected near DeSoto

325 Canyon, and it is possible that the surface sample included freshwater DON, possibly from the
326 Mississippi-Atchafalaya River System, other riverine (e.g., Apalachicola) inputs, benthic DON, and/or
327 submarine groundwater discharge (Morey *et al.*, 2003). Alternatively, the elevated concentration and
328 isotopic composition may reflect production of DON near the shelf/slope break (Kelly *et al.*, 2021) that
329 underwent subsequent consumption with isotopic fractionation (Knapp *et al.*, 2018a, Zhang *et al.*,
330 2020). Other samples collected near the shelf/slope break with elevated DON $\delta^{15}\text{N}$ values deeper in the
331 water column are not associated with a decrease in DON concentration between the surface and
332 subsurface, indicating a different DON source and not remineralization with depth as a likely
333 explanation with benthic sources potentially including submarine groundwater discharge (Sanial *et al.*,
334 2021). A distinct DON source, such as benthic organic matter and/or submarine groundwater discharge,
335 may also be responsible for the low- $\delta^{15}\text{N}$ DON (1.7‰) observed near De Soto Canyon (Fig. 4).

336 While 100 m samples collected offshore with relatively low DON $\delta^{15}\text{N}$ (<3‰) and salinity >36
337 were not associated with elevated *Trichodesmium* spp. trichome abundance, they may reflect recent
338 low- $\delta^{15}\text{N}$ inputs not captured by *Trichodesmium* spp. abundance at the time of sampling. It is also
339 notable that while *Trichodesmium* spp. were most abundant in the upper 20 m (Fig. 5) (Selph *et al.*,
340 2021), consistent with prior observations of their depth distribution (Capone *et al.*, 2005), the $\delta^{15}\text{N}$ of
341 DON was not significantly lower in the upper 20 m than throughout the upper 100 m (Figs. 4 and 5).
342 Thus, if DON was released by *Trichodesmium* spp., it did not accumulate to detectable levels in this
343 pool (Knapp *et al.*, 2011), but instead may have been assimilated by other phytoplankton that could
344 then contribute to the sinking flux (e.g., (Bonnet *et al.*, 2016, Knapp *et al.*, 2016b)). We note that
345 *Trichodesmium* spp. trichome abundance was low compared to prior work in the Atlantic, where an
346 average of >2000 trichomes L⁻¹ was observed (Carpenter *et al.*, 2004). No significant trends in DON
347 concentration or $\delta^{15}\text{N}$ with depth were observed, which is also consistent with losses of DON not
348 typically observed in the upper 100 m in oligotrophic regions, but instead seen at or below 150 m
349 (Knapp *et al.*, 2011). Finally, there is no evidence for differences in DON concentration in the upper 50
350 m vs. the 50 to 100 m depth horizons (Figs. 4 and 5), as would be consistent with DON consumption
351 within the euphotic zone observed in regions transitional between productive and oligotrophic regions
352 (Knapp *et al.*, 2018a, Zhang *et al.*, 2020).

353 The mean PN_{susp} concentration on these cruises, in particular on the NF1704 cruise, was higher
354 than is typically found in oligotrophic environments such as Bermuda and Hawaii. The concentrations
355 of PN_{susp} on NF1802 were closer to those typically observed in oligotrophic euphotic zones such as
356 near Hawaii and Bermuda, where PN_{susp} concentrations are typically 0.3 to 0.4 μM (Altabet, 1988,

357 Fujiki *et al.*, 2011). It is not clear why the PN_{susp} was twice as high on NF1704 compared to NF1802, as
358 chlorophyll *a* concentrations in the upper 50 m were not meaningfully different between the two years
359 (Fig. 5), nor were other productivity metrics (Yingling *et al.*, 2021). The similarity of the mean $\delta^{15}\text{N}$ of
360 PN_{susp} on both cruises suggests similar N supply and cycling mechanisms were at work during both
361 cruises. Regardless, the $\delta^{15}\text{N}$ of this PN_{susp} was higher than that typically observed in the Sargasso Sea,
362 -1 to 0‰ (Altabet, 1988, Fawcett *et al.*, 2011), or in other tropical Atlantic regions where diazotrophs
363 are abundant (Montoya *et al.*, 2002).

364 The PN_{sink} mass fluxes captured in the sub-euphotic zone traps are somewhat lower than
365 observations closer to the northern Gulf of Mexico shelf/slope break region (Hung *et al.*, 2004; Hung *et*
366 *al.*, 2010), but similar to other observations from the Gulf from deeper waters (Maiti *et al.*, 2014).
367 Additionally, these PN_{sink} fluxes are similar to results from the Sargasso Sea (Altabet, 1988) and are
368 somewhat higher than fluxes in the oligotrophic North (Casciotti *et al.*, 2008, Christian *et al.*, 1997) and
369 South Pacific (Knapp *et al.*, 2016a). Finally, the elevation of the $\delta^{15}\text{N}$ of the PN_{sink} flux relative to the
370 $\delta^{15}\text{N}$ of PN_{susp} is consistent with prior observations (Altabet, 1988, Altabet *et al.*, 1991, White *et al.*,
371 2013).

373 **$\delta^{15}\text{N}$ budget constraints on the sources of N fueling export production in the GoM**

374 In spite of low inorganic nutrient concentrations, oligotrophic surface waters still support rates
375 of export production comparable to regions with higher surface nutrient concentrations (Emerson,
376 2014). Older $\delta^{15}\text{N}$ budgets in a similarly stratified oligotrophic region near Hawaii have suggested that
377 N₂ fixation provides as much as 50% of the N supporting export production (Karl *et al.*, 1997; Dore *et*
378 *al.*, 2002). However, more recent $\delta^{15}\text{N}$ budgets, employing sensitive methods to measure the $\delta^{15}\text{N}$ of
379 NO₃⁻ present at lower concentrations immediately below the euphotic zone indicate that export
380 production is primarily fueled by NO₃⁻ near Hawaii (Casciotti *et al.*, 2008), assuming that the PN_{sink}
381 flux is the primary N loss pathway from the euphotic zone. Even though PN_{sink} is the largest flux of N
382 out of the euphotic zone, zooplankton vertical migration and mortality or N excretion at depth and
383 vertical mixing of DOM and/or POM can also be an important vector for C and N loss from surface
384 waters (Emerson, 2014) (Fig. 6). In the Sargasso Sea near Bermuda, previous $\delta^{15}\text{N}$ budgets have
385 considered the potential importance of DON and PN_{susp} consumption as a N source fueling export
386 production (Knapp *et al.*, 2005). In this previous study, with DON concentration and $\delta^{15}\text{N}$ similar to
387 those in the GoM, calculated DON and PN_{susp} consumption did not play a quantitatively important role
388 supporting export (Knapp *et al.*, 2005). Since a stably stratified water column suggested weak mixing

389 and DON and PN_{susp} vertical gradients were not pronounced (Table III, Figs. 4 and 5), and since no
390 significant gradients were observed over the duration of the Lagrangian cycles either, we cannot
391 include PN_{susp} or DON in these $\delta^{15}\text{N}$ budget calculations. However, we note that consumption of either
392 PN_{susp} or DON at rates sufficient to support the magnitude of export production observed in the mid-
393 depth trap would be difficult to resolve in these measurements. For instance, if the PN_{sink} flux in the
394 sub-euphotic trap of C1, $0.46 \text{ mmol N m}^{-2} \text{ d}^{-1}$ (Table I) was entirely supported by the consumption of
395 DON or PN_{susp} occurring equally throughout the upper 100 m, it would correspond to a loss of 4.6 nM
396 N d^{-1} from the DON or PN_{susp} pool, not detectable in these concentration measurements over the course
397 of the 2-4 day cycles.

398 With the exception of a recent study (Stukel *et al.*, 2018), previous $\delta^{15}\text{N}$ budgets have not
399 quantified zooplankton N excretion at depth as another N loss term. Here, we include zooplankton
400 excretion below the euphotic zone with the PN_{sink} flux in Eqn. 1 to estimate the $\delta^{15}\text{N}$ of total N loss
401 from the euphotic zone and compare that with the $\delta^{15}\text{N}$ of the presumed largest source of N fueling
402 export, subsurface NO_3^- ; Fig. 6 illustrates this conceptually and includes the $\delta^{15}\text{N}$ of N pools and fluxes
403 in this study. If the $\delta^{15}\text{N}$ of the combined, mass-weighted N loss terms is lower than the $\delta^{15}\text{N}$ of
404 subsurface NO_3^- it implies that the $\delta^{15}\text{N}$ budget is imbalanced and an additional source of N to the
405 euphotic zone with a lower $\delta^{15}\text{N}$ is required to balance the isotopic composition of N losses. Here, we
406 assume N_2 fixation is the best candidate for that low- $\delta^{15}\text{N}$ N source, which introduces N with a $\delta^{15}\text{N}$
407 between -2 and 0‰ to the euphotic zone (Carpenter *et al.*, 1997, Hoering & Ford, 1960, Minagawa &
408 Wada, 1986). However, we note that atmospheric deposition of N has a similarly low $\delta^{15}\text{N}$ signature
409 (Dillon & Chanton, 2005, Hastings *et al.*, 2003, Knapp *et al.*, 2010).

410 First considering the $\delta^{15}\text{N}$ of the source NO_3^- , we see that water column samples collected
411 shallower than 231 m show elevation in $\text{NO}_3^- + \text{NO}_2^- \delta^{15}\text{N}$ and $\delta^{18}\text{O}$ as the $\text{NO}_3^- + \text{NO}_2^-$ concentration
412 decreases (Figs. 2 and 3). This increase in both the $\delta^{15}\text{N}$ and $\delta^{18}\text{O}$ of $\text{NO}_3^- + \text{NO}_2^-$ reflects NO_3^-
413 assimilation, as is commonly observed below the euphotic zone (Granger *et al.*, 2004, Knapp *et al.*,
414 2008, Wankel *et al.*, 2007), and thus does not represent the $\delta^{15}\text{N}$ of the source NO_3^- . Given the
415 difficulty in identifying the precise $\text{NO}_3^- + \text{NO}_2^-$ source depth, we evaluate a range in $\text{NO}_3^- + \text{NO}_2^- \delta^{15}\text{N}$
416 end-members, including the shallow $\text{NO}_3^- + \text{NO}_2^- \delta^{15}\text{N}$ minima in each profile, as well as the $\text{NO}_3^- + \text{NO}_2^-$
417 $\delta^{15}\text{N}$ in the sample collected immediately below the $\delta^{15}\text{N}$ minima, in the $\delta^{15}\text{N}$ budget calculations (Eqn.
418 1) (Table I). Using a range of $\text{NO}_3^- + \text{NO}_2^- \delta^{15}\text{N}$ values for the end-member when calculating the
419 importance and rate of N_2 fixation allows for variability in the depth from which $\text{NO}_3^- + \text{NO}_2^-$ is being

420 mixed into the euphotic zone via, e.g., internal waves breaking near the continental shelf (Sharples *et*
421 *al.*, 2009, Sharples *et al.*, 2007) and/or eddy pumping (Falkowski *et al.*, 1991).

422 Next, we consider the mass flux and isotopic composition of N loss pathways from the euphotic
423 zone. The two loss terms included in the $\delta^{15}\text{N}$ budget calculations are the PN_{sink} flux and zooplankton
424 excretion. As described above, the PN_{sink} flux is roughly an order of magnitude larger than the
425 zooplankton excretion flux (Tables I and II, Fig. 6). Because the $\delta^{15}\text{N}$ of zooplankton excretion is lower
426 than the $\delta^{15}\text{N}$ of the PN_{sink} flux, the $\delta^{15}\text{N}$ of the combined export fluxes is close to, but up to 0.3‰
427 lower than, the $\delta^{15}\text{N}$ of the PN_{sink} flux. Including the mass-weighted $\delta^{15}\text{N}$ of the zooplankton excretion
428 flux estimated according to Checkley and Miller (1989) (Table II) together with the PN_{sink} flux
429 modifies the $\delta^{15}\text{N}$ of the combined flux most significantly for C2, where it increases the importance of
430 N_2 fixation from supporting ~10 to 18% of export production. When evaluating the $\delta^{15}\text{N}$ budgets, we
431 include both the range in the $\delta^{15}\text{N}$ of the $\text{NO}_3^- + \text{NO}_2^-$ end-member as well as the standard deviation
432 associated with the PN_{sink} $\delta^{15}\text{N}$ measurement in our uncertainty estimates (Table I).

433 Using these constraints in Eqn. 2 indicates that N_2 fixation was not detected as a N source
434 supporting export production in four of the five cycles (Table I). This is qualitatively evident from
435 comparing the $\delta^{15}\text{N}$ of the dominant N loss term, the PN_{sink} flux, with the $\delta^{15}\text{N}$ of subsurface NO_3^-
436 $+ \text{NO}_2^-$ (Fig. 2), and is consistent with the low abundance of *Trichodesmium* spp. in this study, <10
437 trichomes L^{-1} (Fig. 5) (Selph *et al.*, 2021) compared with prior work where >2000 trichomes L^{-1} have
438 been observed in the tropical North Atlantic, e.g. (Capone *et al.*, 1998, Capone *et al.*, 1997, Carpenter
439 *et al.*, 2004). We see that the $\delta^{15}\text{N}$ of the $\text{PN}_{\text{sink}} +$ zooplankton excretion fluxes is nearly always higher
440 than the $\delta^{15}\text{N}$ of subsurface $\text{NO}_3^- + \text{NO}_2^-$ (Fig. 2, Tables I and II). Only in C2 during the 2017 cruise was
441 the $\delta^{15}\text{N}$ of the combined export fluxes lower than the $\delta^{15}\text{N}$ of subsurface $\text{NO}_3^- + \text{NO}_2^-$ (i.e., 2.6‰ vs. 3.1
442 to 3.7‰, respectively) (Fig. 2) (Table I), allowing for an input from a low- $\delta^{15}\text{N}$ N source to balance the
443 $\delta^{15}\text{N}$ of N inputs to and loss from the euphotic zone. N_2 fixation is estimated to have supported $18 \pm 8\%$
444 of export production during C2 (Table I). Multiplying this fractional importance of N_2 fixation by the
445 combined PN_{sink} and zooplankton excretion fluxes yields an estimated N_2 fixation rate of $90 \pm 40 \mu\text{mol}$
446 $\text{N m}^{-2} \text{d}^{-1}$ during C2 (Table I). Additionally, the range in the $\delta^{15}\text{N}$ of subsurface $\text{NO}_3^- + \text{NO}_2^-$, the large
447 standard deviation associated with the PN_{sink} $\delta^{15}\text{N}$ measurement, and the high PN_{sink} flux indicates that
448 N_2 fixation during C3 supported $0 \pm 30\%$ of export production, corresponding to N_2 fixation rates of 0
449 $\pm 336 \mu\text{mol N m}^{-2} \text{d}^{-1}$ (Table I). The detection of N_2 fixation during the 2017 and not 2018 cycles is
450 consistent with the higher, albeit still very low, abundance of *Trichodesmium* spp. in 2017 vs. 2018
451 (Fig. 5) (Selph *et al.*, 2021). These geochemically-derived N_2 fixation rates are also consistent with the

452 range of previously reported $^{15}\text{N}_2$ uptake rates from the northern Gulf of Mexico (Redalje *et al.*, 2019)
453 and references therein). In particular, (Weber *et al.*, 2016) reported low rates of 0.07 to 0.37 nmol N L $^{-1}$
454 d $^{-1}$ in July 2013 near the northern Gulf of Mexico shelf break, while (Holl *et al.*, 2007) reported July
455 2000 rates of $85 \pm 18 \mu\text{mol N m}^{-2} \text{ d}^{-1}$ from sites near to this study area. This range in previously
456 reported $^{15}\text{N}_2$ uptake rates largely brackets the geochemical estimates of N₂ fixation rates from this
457 study (Table I). The N₂ fixation rates estimated from these $\delta^{15}\text{N}$ budgets are relatively low compared
458 with those found throughout the global ocean (Luo *et al.*, 2012), and are consistent with previous work
459 that found a minor role for N₂ fixation supporting export production in the nearby Sargasso Sea
460 (Altabet, 1988, Fawcett *et al.*, 2011, Knapp *et al.*, 2005).

461 We note that low rates of N₂ fixation ($<50 \mu\text{mol N m}^{-2} \text{ d}^{-1}$) by all diazotrophs may have
462 occurred in the study region and not been detected by the $\delta^{15}\text{N}$ budget (Knapp *et al.*, 2005). However,
463 prior work in the Arabian Sea comparing *Trichodesmium* spp. trichome abundance and PN_{sink} $\delta^{15}\text{N}$ only
464 observed a depression in the $\delta^{15}\text{N}$ of PN_{sink} when >2000 trichomes L $^{-1}$ were observed (Capone *et al.*,
465 1998). To explore the quantitative potential for N₂ fixation by *Trichodesmium* spp. at the trichome
466 abundances observed in this study to influence the $\delta^{15}\text{N}$ of PN_{susp} and/or the $\delta^{15}\text{N}$ of DON, we consider
467 the following. If there were 10 *Trichodesmium* spp. trichomes L $^{-1}$ in all of our study locations and times
468 (Fig. 5) (Selph *et al.*, 2021) fixing at a rate of 1.0 pmol N trichome $^{-1}$ hr $^{-1}$ (Capone *et al.*, 1998), and N₂
469 fixation occurred over a 12-hr photoperiod, that would correspond to 120 pM N fixed d $^{-1}$. We could
470 further make the (unrealistic) assumption that all of that newly fixed N accumulated as DON, none
471 went into *Trichodesmium* spp. biomass, none went into higher trophic levels, no *Trichodesmium* spp.
472 sank out (Hewson *et al.*, 2007, Marumo & Asaoka, 1974), and none of the DON was advected away
473 due to circulation. Making the same assumptions to maximize newly fixed N accumulation in the DON
474 pool, and sustaining that rate of N₂ fixation over 100 days, this would only correspond to an
475 accumulation of 12 nM DON. This quantity of newly fixed N would not be detectable in terms of
476 concentration or isotopic composition in the DON or PN_{susp} pools (Knapp *et al.*, 2008, Knapp *et al.*,
477 2005, Knapp *et al.*, 2011). In contrast to the mass and isotopic inertia of the PN_{susp} and especially the
478 DON pools, the short time period over which the PN_{sink} flux integrates over means the PN_{sink} flux is the
479 most responsive to small changes in the relative source of new N fueling export, and thus the best target
480 for detecting N₂ fixation inputs (Altabet, 1988, Karl *et al.*, 1997). Given that Thorpe-scale analyses
481 indicate that vertical NO₃ $^{-}$ transport at the time of sampling was low, N fueling the PN_{sink} flux may have
482 originated from upwelling of NO₃ $^{-}$ near the shelf break (Sharples *et al.*, 2009, Sharples *et al.*, 2007) and
483 lateral advection of resulting organic N (Kelly *et al.*, 2021). Finally, we note that while we have

484 assumed that any low- $\delta^{15}\text{N}$ inputs to the system are from N_2 fixation, the rate of N_2 fixation estimated
485 by the $\delta^{15}\text{N}$ budget for Cycle 2, 90 $\mu\text{mol N m}^{-2} \text{d}^{-1}$ (Table I) is comparable to rates of atmospheric NO_3^-
486 + NO_2^- deposition in the region, 20 to 30 $\mu\text{mol N m}^{-2} \text{d}^{-1}$ (Hastings *et al.*, 2003, Katz *et al.*, 2009,
487 Prospero *et al.*, 1996), which has a similarly low $\delta^{15}\text{N}$ (Dillon & Chanton, 2005, Hastings *et al.*, 2003,
488 Knapp *et al.*, 2010). Given the low diazotroph abundance observed on these cruises (Selph *et al.*, 2021),
489 atmospheric deposition of low- $\delta^{15}\text{N}$ N may contribute to the low- $\delta^{15}\text{N}$ PN_{sink} flux observed in Cycle 2.
490

491 **Mixed layer vs. sub-euphotic zone PN_{sink} $\delta^{15}\text{N}$: the $\delta^{15}\text{N}$ associated with regenerated production**

492 To the best of our knowledge, the PN_{sink} flux and its $\delta^{15}\text{N}$ have not been reported from sediment
493 traps deployed *within* the euphotic zone before. The results from this study show that the PN_{sink} flux
494 leaving the upper euphotic zone typically exceeds the PN_{sink} flux leaving the base of the euphotic zone.
495 On the NF1802 cruise, the PN_{sink} flux in the sub-euphotic zone trap was 81% (C4) and 82% (C5) of the
496 PN_{sink} flux captured in the 60-m trap. On the NF1704 cruise, this ratio varied from 30 to 112%
497 (although the C3 measurement of 112% was not significantly different from the PN_{sink} flux measured in
498 the 60-m trap) (Table I). Taken together, these results suggest that more particles were consumed in the
499 vicinity of the deep chlorophyll maximum than were produced at that depth, with the net consumption
500 of those particles contributing to regenerated production (Stukel *et al.*, 2021). Importantly, the $\delta^{15}\text{N}$ of
501 the PN_{sink} flux in the 60 m traps was 0.4 to 2.0‰ lower than that in the deeper traps in all cycles (Fig.
502 2) (Table I). The $\delta^{15}\text{N}$ of the PN_{sink} flux in the 50 m traps ranged from $1.6 \pm 0.3\text{‰}$ to $3.8 \pm 0.2\text{‰}$ (Table
503 I). Interestingly, although perhaps not surprising given the small sample size, the $\delta^{15}\text{N}$ increase between
504 the 60 m and mid-depth traps does not appear related to the ratio of the PN_{sink} flux captured in the mid-
505 depth vs. euphotic zone traps, which would be expected if flux attenuation between the traps was
506 significant and associated with an isotope effect for N degradation. Regardless, the difference in $\delta^{15}\text{N}$
507 of the PN_{sink} flux between the euphotic and sub-euphotic zone is consistent with regenerated production
508 supported by low- $\delta^{15}\text{N}$ N. This is also consistent with high rates of NH_4^+ regeneration that have been
509 found in the northern Gulf of Mexico to be the primary source of N fueling primary productivity (Bode
510 & Dortch, 1996, Wawrik *et al.*, 2004). Regenerated NH_4^+ is expected to be relatively low in $\delta^{15}\text{N}$
511 whether it originates from zooplankton excretion (Checkley & Miller, 1989) (Deniro & Epstein, 1981,
512 Minagawa & Wada, 1984, Wada *et al.*, 1987), or from the degradation of DON (Knapp *et al.*, 2018a,
513 Knapp *et al.*, 2011, Zhang *et al.*, 2020) or PN_{susp} (Hannides *et al.*, 2013). Moreover, multiple lines of
514 evidence indicate that low- $\delta^{15}\text{N}$ forms of N accumulate in the pools associated with regenerated
515 production. Near Bermuda, (Altabet, 1988) showed that the $\delta^{15}\text{N}$ of PN_{susp} was ~3‰ lower than that of

516 PN_{sink}, while the $\delta^{15}\text{N}$ of PN_{sink} was roughly equivalent to that of subsurface NO₃⁻. Later, (Fawcett *et al.*, 2011) found that low- $\delta^{15}\text{N}$ N sources supported the organisms carrying out regenerated production 517 near Bermuda. Additionally, they found that the $\delta^{15}\text{N}$ of eukaryotic phytoplankton near Bermuda was 518 elevated compared to cyanobacteria and heterotrophic microbes. The $\delta^{15}\text{N}$ of the eukaryotes was 519 similar to that of subsurface NO₃⁻ and the PN_{sink} flux, while the $\delta^{15}\text{N}$ of cyanobacteria was similar to the 520 $\delta^{15}\text{N}$ of the bulk PN_{susp} pool and 1 to 5‰ lower than the $\delta^{15}\text{N}$ of subsurface NO₃⁻ (Fawcett *et al.*, 2011). 521 Together, this evidence indicates that the $\delta^{15}\text{N}$ of regenerated N retained in the euphotic zone should be 522 1 to 6‰ lower than the $\delta^{15}\text{N}$ of the dominant source of N to surface waters, while the $\delta^{15}\text{N}$ of fluxes of 523 N to and from should be roughly equivalent. Thus, the magnitude of the $\delta^{15}\text{N}$ increase between the 524 shallow and mid-depth traps observed in the GoM is broadly consistent with the mechanisms outlined 525 above that would retain low- $\delta^{15}\text{N}$ material in the euphotic zone to support regenerated production and 526 permit elevated $\delta^{15}\text{N}$ to leave via the PN_{sink} flux.

527 Interestingly, the $\delta^{15}\text{N}$ of the PN_{sink} flux captured in the 60 m traps, 1.6 to 3.8‰ (Table I), is 528 relatively high compared to the $\delta^{15}\text{N}$ of PN_{susp}, 1.2 to 2.5‰ (Fig. 5), suggesting that the 60 m PN_{sink} 529 flux is supported by allochthonous sources of N, such as subsurface NO₃⁻, and/or is produced by 530 organisms feeding relatively high in the food chain. Additionally, the $\delta^{15}\text{N}$ of PN_{susp} is elevated 531 compared to that collected near Bermuda, -1 to 0‰ (Altabet, 1988, Fawcett *et al.*, 2011). The 532 differences in the $\delta^{15}\text{N}$ of PN_{susp} from the GoM and near Bermuda qualitatively indicate that NO₃⁻ is an 533 even more important source of new N to surface waters and/or that the ratio of new to regenerated 534 production is higher in the GoM than near Bermuda. Thus, the isotopic evidence overwhelmingly 535 indicates that subsurface NO₃⁻, and not N₂ fixation, supports export production in these GoM samples. 536 However, we acknowledge the possibility that PN_{sink} with a $\delta^{15}\text{N}$ between 2.8 to 4.9‰ could also result 537 from a linear combination of lateral sources of N with a relatively high $\delta^{15}\text{N}$, potentially including 538 Mississippi River and/or other coastal sources, with sources of low- $\delta^{15}\text{N}$ N, including N₂ fixation, 539 atmospheric deposition, and/or the consumption of DON with an isotope effect (Knapp *et al.*, 2018a, 540 Zhang *et al.*, 2020). None of our other measurements, however, show any clear evidence of substantial 541 riverine or diazotrophic influence (Selph *et al.*, 2021). We also note that our results reflect a relatively 542 short sampling period, and so does not preclude N₂ fixation supporting a higher fraction of export at 543 other times.

545 **CONCLUSIONS**

546 Here we use a geochemical tool, a $\delta^{15}\text{N}$ budget, to evaluate the sources of new N fueling export
547 production in the oceanic Gulf of Mexico. Measurements of water-column $\text{NO}_3^- + \text{NO}_2^- \delta^{15}\text{N}$ were
548 compared with the $\delta^{15}\text{N}$ of PN_{sink} captured in floating sediment traps deployed below the euphotic zone.
549 The results of the $\delta^{15}\text{N}$ budgets indicate that subsurface $\text{NO}_3^- + \text{NO}_2^-$, not N_2 fixation, is the dominant
550 source of new N supporting export production in samples collected in the deep waters of the Gulf of
551 Mexico in May of 2017 and 2018. Geochemically estimated N_2 fixation rates, when N_2 fixation was
552 detected at all, were low and consistent with prior $^{15}\text{N}_2$ uptake rates reported from the northern Gulf of
553 Mexico (Holl *et al.*, 2007). We also report the first measurements of DON $\delta^{15}\text{N}$ from the Gulf of
554 Mexico, which are similar to prior observations from the Sargasso Sea (Knapp *et al.*, 2005, Knapp *et*
555 *al.*, 2011). Finally, the difference in the $\delta^{15}\text{N}$ of PN_{sink} collected in the shallow vs. mid-depth sediment
556 traps is consistent with regenerated production having a low $\delta^{15}\text{N}$ compared to the $\delta^{15}\text{N}$ of the PN_{sink}
557 flux captured below the euphotic zone.

558 **ACKNOWLEDGEMENTS**

559 We gratefully acknowledge the crew and science parties on the *NOAA Ship* Nancy Foster cruises who
560 collected these samples as well as colleagues in the BLOOFINZ-GoM project for discussions.

561 **FUNDING**

562 This work was supported by a National Oceanic and Atmospheric Administration's RESTORE Program
563 Grant (Project Title: Effects of nitrogen sources and plankton food-web dynamics on habitat quality for
564 the larvae of Atlantic bluefin tuna in the Gulf of Mexico) under federal funding opportunity NOAA-
565 NOS-NCCOS-2017-2004875. <https://restoreactscienceprogram.noaa.gov/funded-projects/bluefin-tuna-larvae>. This study acknowledges BLOOFINZ Program support from National Oceanic and
566 Atmospheric Administration awards NA15OAR4320071 (to MRL), NA16NMF4320058 (to KES),
567 NA15OAR4320064 (to ANK and MRS) and U.S. National Science Foundation award OCE-1851558
568 (MRL) and OCE-1851347 (ANK, MRS).

570 **DATA ARCHIVING**

571 Data presented here have been submitted to the National Oceanic and Atmospheric Administration's
572 (NOAA) National Centers for Environmental Information (NCEI) data repository, and are also archived

573 at the BCO-DMO (Biological and Chemical Oceanography Data Management Office) site:
574 <https://www.bco-dmo.org/project/819488>.

575
576
577 **REFERENCES**
578

579 Altabet, M. A. (1988) Variations in Nitrogen Isotopic Composition between Sinking and Suspended
580 Particles - Implications for Nitrogen Cycling and Particle Transformation in the Open Ocean.
581 *Deep-Sea Research Part a-Oceanographic Research Papers*, **35**, 535-554.

582 Altabet, M. A., Deuser, W. G., Honjo, S. and Stienen, C. (1991) Seasonal and Depth-Related Changes
583 in the Source of Sinking Particles in the North-Atlantic. *Nature*, **354**, 136-139.

584 Amon, R. M. W., Ochoa, J., Candela, J., Sheinbaum, J., Herguera, J. C., Herzka, S. Z., Perez-Brunius,
585 P., Hernandez-Ayon, J. M., Camacho-Ibar, V. F. and Key, R. M. (2020) Novel insights into
586 deep ventilation of the Gulf of Mexico and its linkage to the Labrador Sea *Ocean Sciences*
587 *Meeting*. AGU, 2020.

588 Berman-Frank, I., Cullen, J. T., Shaked, Y., Sherrell, R. M. and Falkowski, P. G. (2001) Iron
589 availability, cellular iron quotas, and nitrogen fixation in *Trichodesmium*. *Limnology and*
590 *Oceanography*, **46**, 1249-1260.

591 Bidigare, R. (1983) Nitrogen excretion by marine zooplankton. In: Carpente.E.J. and D. G. Capone
592 (eds) *Nitrogen in the Marine Environment*. 1 ed. Academic Press, New York, pp. 385-409.

593 Bode, A. and Dortch, Q. (1996) Uptake and regeneration of inorganic nitrogen in coastal waters
594 influenced by the Mississippi River spatial and seasonal variations. *Journal of Plankton*
595 *Research*, **18**, 2251-2268.

596 Bonnet, S., Berthelot, H., Turk-Kubo, K., Fawcett, S., Rahav, E., L'helguen, S. and Berman-Frank, I.
597 (2016) Dynamics of N2 fixation and fate of diazotroph-derived nitrogen during the VAHINE
598 mesocosm experiment. *Biogeosciences*, **13**, 2653-2673.

599 Bourbonnais, A., Lehmann, M. F., Wanek, J. J. and Schulz-Bull, D. E. (2009) Nitrate isotope
600 anomalies reflect N-2 fixation in the Azores Front region (subtropical NE Atlantic). *Journal of*
601 *Geophysical Research-Oceans*, **114**.

602 Braman, R. S. and Hendrix, S. A. (1989) Nanogram Nitrite and Nitrate Determination in Environmental
603 and Biological-Materials by Vanadium(III) Reduction with Chemi-Luminescence Detection.
604 *Analytical Chemistry*, **61**, 2715-2718.

605 Breitbarth, E., Oschlies, A. and Laroche, J. (2007) Physiological constraints on the global distribution
606 of *Trichodesmium* - effect of temperature on diazotrophy. *Biogeosciences*, **4**, 53-61.

607 Bronk, D. A. and Ward, B. B. (1999) Gross and net nitrogen uptake and DON release in the euphotic
608 zone of Monterey Bay, California. *Limnology and Oceanography*, **44**, 573-585.

609 Bronk, D. A. and Ward, B. B. (2000) Magnitude of dissolved organic nitrogen release relative to gross
610 nitrogen uptake in marine systems. *Limnology and Oceanography*, **45**, 1879-1883.

611 Bronk, D. A. and Ward, B. B. (2005) Inorganic and organic nitrogen cycling in the Southern California
612 Bight. *Deep-Sea Research Part I-Oceanographic Research Papers*, **52**, 2285-2300.

613 Caffin, M., Foster, R., Berthelot, H., Stenegren, M., Caputo, A., Berntzo, L. and Bonnet, S. (2018) Fate
614 of N2 fixation in the Western Tropical South Pacific Ocean: Transfert of diazotroph-derived
615 nitrogen to non-diazotrophic communities and export of diazotrophs. *Biogeosciences Discuss.*

616 Capone, D. G., Burns, J. A., Montoya, J. P., Subramaniam, A., Mahaffey, C., Gunderson, T., Michaels,
617 A. F. and Carpenter, E. J. (2005) Nitrogen fixation by *Trichodesmium* spp.: An important
618 source of new nitrogen to the tropical and subtropical North Atlantic Ocean. *Global*
619 *Biogeochemical Cycles*, **19**.

620 Capone, D. G., Subramaniam, A., Montoya, J. P., Voss, M., Humborg, C., Johansen, A. M., Siefert, R.
621 L. and Carpenter, E. J. (1998) An extensive bloom of the N(2)-fixing cyanobacterium
622 *Trichodesmium erythraeum* in the central Arabian Sea. *Marine Ecology-Progress Series*, **172**,
623 281-292.

624 Capone, D. G., Zehr, J. P., Paerl, H. W., Bergman, B. and Carpenter, E. J. (1997) *Trichodesmium*, a
625 globally significant marine cyanobacterium. *Science*, **276**, 1221-1229.

626 Capotondi, A., Alexander, M. A., Bond, N. A., Curchitser, E. N. and Scott, J. D. (2012) Enhanced
627 upper ocean stratification with climate change in the CMIP3 models. *Journal of Geophysical
628 Research: Oceans*, **117**.

629 Carpenter, E. J., Harvey, H. R., Fry, B. and Capone, D. G. (1997) Biogeochemical tracers of the marine
630 cyanobacterium *Trichodesmium*. *Deep-Sea Research Part I-Oceanographic Research Papers*,
631 **44**, 27-38.

632 Carpenter, E. J., Subramaniam, A. and Capone, D. G. (2004) Biomass and primary productivity of the
633 cyanobacterium *Trichodesmium* spp. in the tropical N Atlantic ocean. *Deep-Sea Research Part
634 I-Oceanographic Research Papers*, **51**, 173-203.

635 Casciotti, K. L., Sigman, D. M., Hastings, M. G., Bohlke, J. K. and Hilkert, A. (2002) Measurement of
636 the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier
637 method. *Analytical Chemistry*, **74**, 4905-4912.

638 Casciotti, K. L., Trull, T. W., Glover, D. M. and Davies, D. (2008) Constraints on nitrogen cycling at
639 the subtropical North Pacific Station ALOHA from isotopic measurements of nitrate and
640 particulate nitrogen. *Deep-Sea Research Part II-Topical Studies in Oceanography*, **55**, 1661-
641 1672.

642 Checkley, D. M. and Entzeroth, L. C. (1985) Elemental and Isotopic Fractionation of Carbon and
643 Nitrogen by Marine, Planktonic Copepods and Implications to the Marine Nitrogen-Cycle.
644 *Journal of Plankton Research*, **7**, 553-568.

645 Checkley, D. M. and Miller, C. A. (1989) Nitrogen Isotope Fractionation by Oceanic Zooplankton.
646 *Deep-Sea Research Part a-Oceanographic Research Papers*, **36**, 1449-1456.

647 Christian, J. R., Lewis, M. R. and Karl, D. M. (1997) Vertical fluxes of carbon, nitrogen, and
648 phosphorus in the North Pacific Subtropical Gyre near Hawaii. *Journal of Geophysical
649 Research-Oceans*, **102**, 15667-15677.

650 Cutter, G. A., Andersson, P., Codispoti, L., Croot, P., Francois, R., Lohan, M., Obata, H. and Van Der
651 Loeff, M. R. (2014) Sampling and Sample-handling Protocols for GEOTRACES Cruises. pp.
652 145.

653 Deniro, M. J. and Epstein, S. (1981) Influence of Diet on the Distribution of Nitrogen Isotopes in
654 Animals. *Geochimica Et Cosmochimica Acta*, **45**, 341-351.

655 Dillon, K. S. and Chanton, J. P. (2005) Nutrient transformations between rainfall and stormwater runoff
656 in an urbanized coastal environment: Sarasota Bay, Florida. *Limnology and Oceanography*, **50**,
657 62-69.

658 Dugdale, R. C. and Goering, J. J. (1967) Uptake of New and Regenerated Forms of Nitrogen in Primary
659 Productivity. *Limnology and Oceanography*, **12**, 196-&.

660 Emerson, S. (2014) Annual net community production and the biological carbon flux in the ocean.
661 *Global Biogeochemical Cycles*, **28**, 2013GB004680.

662 Eppley, R. W. and Peterson, B. J. (1979) Particulate organic-matter flux and planktonic new production
663 in the deep ocean. *Nature*, **282**, 677-680.

664 Falkowski, P. G., Zieman, D., Kolber, Z. and Bienfang, P. K. (1991) Role of Eddy Pumping in
665 Enhancing Primary Production in the Ocean. *Nature*, **352**, 55-58.

666 Fawcett, S. E., Lomas, M., Casey, J. R., Ward, B. B. and Sigman, D. M. (2011) Assimilation of
667 upwelled nitrate by small eukaryotes in the Sargasso Sea. *Nature Geoscience*, **4**, 717-722.

668 Fujiki, L. A., Santiago-Mandujano, F., Lethaby, P., Lukas, R. and Karl, D. (2011) Hawaii Ocean Time-
669 series Data Report 20: 2008. pp. 395.

670 Gerard, T., Lamkin, J., Kelly, T., Knapp, A., Laiz-Carrion, R., Malca, E., Selph, K., Shiroza, A., Stukel,
671 M., Swalethorp, R., Yingling, N. and Landry, M. (In Review) Bluefin Larvae in Oligotrophic
672 Ocean Foodwebs, Investigations of Nutrients to Zooplankton: Overview of the BLOOFINZ-
673 Gulf of Mexico program. *Journal of Plankton Research*.

674 Granger, J., Sigman, D. M., Needoba, J. A. and Harrison, P. J. (2004) Coupled nitrogen and oxygen
675 isotope fractionation of nitrate during assimilation by cultures of marine phytoplankton.
676 *Limnology and Oceanography*, **49**, 1763-1773.

677 Hannides, C. C. S., Popp, B. N., Choy, C. A. and Drazen, J. C. (2013) Midwater zooplankton and
678 suspended particle dynamics in the North Pacific Subtropical Gyre: A stable isotope
679 perspective. *Limnology and Oceanography*, **58**, 1931 - 1946.

680 Hannides, C. C. S., Popp, B. N., Landry, M. R. and Graham, B. S. (2009) Quantification of
681 zooplankton trophic position in the North Pacific Subtropical Gyre using stable nitrogen
682 isotopes. *Limnology and Oceanography*, **54**, 50-61.

683 Hastings, M. G., Sigman, D. M. and Lipschultz, F. (2003) Isotopic evidence for source changes of
684 nitrate in rain at Bermuda. *Journal of Geophysical Research-Atmospheres*, **108**.

685 Hernandez-Guerra, A. and Joyce, T. M. (2000) Water masses and circulation in the surface layers of the
686 Caribbean at 66 W. *Geophysical Research Letters*, **27**, 3497-3500.

687 Hewson, I., Moisander, P. H., Achilles, K. M., Carlson, C. A., Jenkins, B. D., Mondragon, E. A.,
688 Morrison, A. E. and Zehr, J. P. (2007) Characteristics of diazotrophs in surface to abyssopelagic
689 waters of the Sargasso Sea. *Aquatic Microbial Ecology*, **46**, 15-30.

690 Hoering, T. C. and Ford, H. T. (1960) The Isotope Effect in the Fixation of Nitrogen by Azotobacter.
691 *Journal of the American Chemical Society*, **82**, 376-378.

692 Hofmann, E. E. and Worley, S. J. (1986) An investigation of the circulation of the Gulf of Mexico.
693 *Journal of Geophysical Research: Oceans*, **91**, 14221-14236.

694 Holl, C. M., Villareal, T. A., Payne, C. D., Clayton, T. D., Hart, C. and Montoya, J. P. (2007)
695 Trichodesmium in the western Gulf of Mexico: 15N2-fixation and natural abundance stable
696 isotope evidence. *Limnology and Oceanography*, **52**, 2249-2259.

697 Holmes, R. M., Aminot, A., Kerouel, R., Hooker, B. A. and Peterson, B. J. (1999) A simple and precise
698 method for measuring ammonium in marine and freshwater ecosystems. *Canadian Journal of
699 Fisheries and Aquatic Sciences*, **56**, 1801-1808.

700 Howe, S., Miranda, C., Hayes, C., Letscher, R. and Knapp, A. N. (2020) The dual isotopic composition
701 of nitrate in the Gulf of Mexico and Florida Straits. *Journal of Geophysical Research: Oceans*,
702 **125**, e2020JC016047.

703 Karl, D., Letelier, R., Tupas, L., Dore, J., Christian, J. and Hebel, D. (1997) The role of nitrogen
704 fixation in biogeochemical cycling in the subtropical North Pacific Ocean. *Nature*, **388**, 533-
705 538.

706 Katz, B. G., Sepulveda, A. A. and Verdi, R. J. (2009) Estimating Nitrogen Loading to Ground Water
707 and Assessing Vulnerability to Nitrate Contamination in a Large Karstic Springs Basin, Florida.
708 *Journal of the American Water Resources Association*, **45**, 607-627.

709 Kelly, T. B., Knapp, A. N., Landry, M. R., Selph, K. E., Shropshire, T. A., Thomas, R. and Stukel, M.
710 R. (2021) Lateral advection supports nitrogen export in the oligotrophic open-ocean Gulf of
711 Mexico. *Nature Communications*, **12**.

712 Knapp, A. N., Casciotti, K. L., Berelson, W. M., Prokopenko, M. G. and Capone, D. G. (2016a) Low
713 rates of nitrogen fixation in eastern tropical South Pacific surface waters. *Proceedings of the
714 National Academy of Sciences of the United States of America*, **113**, 4398-4403.

715 Knapp, A. N., Casciotti, K. L. and Prokopenko, M. G. (2018a) Dissolved organic nitrogen production
716 and consumption in eastern tropical South Pacific surface waters. *Global Biogeochemical*
717 *Cycles*, **32**.

718 Knapp, A. N., Difiore, P. J., Deutsch, C., Sigman, D. M. and Lipschultz, F. (2008) Nitrate isotopic
719 composition between Bermuda and Puerto Rico: Implications for N(2) fixation in the Atlantic
720 Ocean. *Global Biogeochemical Cycles*, **22**.

721 Knapp, A. N., Fawcett, S. E., Martínez-Garcia, A., Leblond, N., Moutin, T. and Bonnet, S. (2016b)
722 Nitrogen isotopic evidence for a shift from nitrate- to diazotroph-fueled export production in the
723 VAHINE mesocosm experiments. *Biogeosciences*, **13**, 4645-4657.

724 Knapp, A. N., Hastings, M. G., Sigman, D. M., Lipschultz, F. and Galloway, J. N. (2010) The flux and
725 isotopic composition of reduced and total nitrogen in Bermuda rain. *Marine Chemistry*, **120**, 83-
726 89.

727 Knapp, A. N., Mccabe, K. M., Gross, O., Leblond, N., Moutin, T. and Bonnet, S. (2018b) Distribution
728 and rates of nitrogen fixation in the western tropical South Pacific Ocean constrained by
729 nitrogen isotope budgets. *Biogeosciences*, **15**, 2619-2628.

730 Knapp, A. N., Sigman, D. M. and Lipschultz, F. (2005) N isotopic composition of dissolved organic
731 nitrogen and nitrate at the Bermuda Atlantic time-series study site. *Global Biogeochemical*
732 *Cycles*, **19**.

733 Knapp, A. N., Sigman, D. M., Lipschultz, F., Kustka, A. B. and Capone, D. G. (2011) Interbasin
734 isotopic correspondence between upper-ocean bulk DON and subsurface nitrate and its
735 implications for marine nitrogen cycling. *Global Biogeochemical Cycles*, **25**.

736 Koroleff, F. (1983) Determination of nutrients. In: K. Grasshoff, M. Ehrherd and K. Kremling (eds)
737 *Methods of Seawater Analysis*. 2nd ed., pp. 125-135.

738 Kustka, A. B., Sanudo-Wilhelmy, S. A., Carpenter, E. J., Capone, D., Burns, J. and Sunda, W. G.
739 (2003) Iron requirements for dinitrogen- and ammonium-supported growth in cultures of
740 *Trichodesmium* (IMS 101): Comparison with nitrogen fixation rates and iron: carbon ratios of
741 field populations. *Limnology and Oceanography*, **48**, 1869-1884.

742 Landry, M. R. and Swalethorp, R. (2021) Mesozooplankton biomass, grazing and trophic structure in
743 the bluefin tuna spawning area of the oceanic Gulf of Mexico. *Journal of Plankton Research*,
744 doi: 10.1093/plankt/fbab008.

745 Leichter, J. J., Paytan, A., Wankel, S. and Hanson, K. (2007) Nitrogen and oxygen isotopic signatures
746 of subsurface nitrate seaward of the Florida Keys reef tract. *Limnology and Oceanography*, **52**,
747 1258-1267.

748 Luo, Y.-W., Shi, D., Kranz, S. A., Hopkinson, B. M., Hong, H., Shen, R. and Zhang, F. (2019)
749 Reduced nitrogenase efficiency dominates response of the globally important nitrogen fixer
750 *Trichodesmium* to ocean acidification. *Nature Communications*, **10**, 1521.

751 Luo, Y. W., Doney, S. C., Anderson, L. A., Benavides, M., Berman-Frank, I., Bode, A., Bonnet, S.,
752 Boström, K. H., Böttjer, D., Capone, D. G., Carpenter, E. J., Chen, Y. L., Church, M. J., Dore, J.
753 E., Falcón, L. I., Fernández, A., Foster, R. A., Furuya, K., Gómez, F., Gundersen, K., Hynes, A.
754 M., Karl, D. M., Kitajima, S., Langlois, R. J., Laroche, J., Letelier, R. M., Marañón, E.,
755 Mcgillicuddy Jr, D. J., Moisander, P. H., Moore, C. M., Mouriño-Carballido, B., Mulholland,
756 M. R., Needoba, J. A., Orcutt, K. M., Poulton, A. J., Rahav, E., Raimbault, P., Rees, A. P.,
757 Riemann, L., Shiozaki, T., Subramaniam, A., Tyrrell, T., Turk-Kubo, K. A., Varela, M.,
758 Villareal, T. A., Webb, E. A., White, A. E., Wu, J. and Zehr, J. P. (2012) Database of
759 diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates. *Earth Syst Sci
760 Data*, **4**, 47-73.

761 Mahaffey, C., Michaels, A. F. and Capone, D. G. (2005) The conundrum of marine N(2) fixation.
762 *American Journal of Science*, **305**, 546-595.

763 Mahowald, N. M., Engelstaedter, S., Luo, C., Sealy, A., Artaxo, P., Benitez-Nelson, C., Bonnet, S.,
764 Chen, Y., Chuang, P. Y., Cohen, D. D., Dulac, F., Herut, B., Johansen, A. M., Kubilay, N.,
765 Losno, R., Maenhaut, W., Paytan, A., Prospero, J. A., Shank, L. M. and Siefert, R. L. (2009)
766 Atmospheric Iron Deposition: Global Distribution, Variability, and Human Perturbations *Annual*
767 *Review of Marine Science*. Vol. 1. pp. 245-278.

768 Marconi, D., Sigman, D. M., Casciotti, K. L., Campbell, E. C., Weigand, M. A., Fawcett, S. E., Knapp,
769 A. N., Rafter, P. A., Ward, B. B. and Haug, G. H. (2017) Tropical Dominance of N2 Fixation in
770 the North Atlantic Ocean. *Global Biogeochemical Cycles*, **31**.

771 Marconi, D., Weigand, M. A., Rafter, P. A., Mcilvin, M. R., Forbes, M., Casciotti, K. L. and Sigman,
772 D. M. (2015) Nitrate isotope distributions on the US GEOTRACES North Atlantic cross-basin
773 section: Signals of polar nitrate sources and low latitude nitrogen cycling. *Marine Chemistry*,
774 **177**, 143-156.

775 Marconi, D., Weigand, M. A. and Sigman, D. M. (2019) Nitrate isotopic gradients in the North Atlantic
776 Ocean and the nitrogen isotopic composition of sinking organic matter. *Deep Sea Research Part*
777 *I: Oceanographic Research Papers*, **145**, 109-124.

778 Marumo, R. and Asaoka, O. (1974) Distribution of pelagic blue-green algae in the North Pacific Ocean.
779 *Journal of the Oceanographical Society of Japan*, **30**, 77-85.

780 McClelland, J. W., Holl, C. M. and Montoya, J. P. (2003) Relating low delta N-15 values of
781 zooplankton to N-2-fixation in the tropical North Atlantic: insights provided by stable isotope
782 ratios of amino acids. *Deep-Sea Research Part I-Oceanographic Research Papers*, **50**, 849-861.

783 Mcilvin, M. R. and Casciotti, K. L. (2011) Technical Updates to the Bacterial Method for Nitrate
784 Isotopic Analyses. *Analytical Chemistry*, **83**, 1850-1856.

785 Minagawa, M. and Wada, E. (1984) Stepwise Enrichment of N-15 Along Food-Chains - Further
786 Evidence and the Relation between Delta-N-15 and Animal Age. *Geochimica Et Cosmochimica
787 Acta*, **48**, 1135-1140.

788 Minagawa, M. and Wada, E. (1986) Nitrogen Isotope Ratios of Red Tide Organisms in the East-China-
789 Sea - a Characterization of Biological Nitrogen-Fixation. *Marine Chemistry*, **19**, 245-259.

790 Monterey, G. and Levitus, S. (1997) Seasonal Variability of Mixed Layer Depth for the World Ocean.
791 In: D. O. C. Noaa, USA (ed) Vol. 14. NOAA, Silver Spring, MD, pp. 100.

792 Montoya, J. P., Carpenter, E. J. and Capone, D. G. (2002) Nitrogen fixation and nitrogen isotope
793 abundances in zooplankton of the oligotrophic North Atlantic. *Limnology and Oceanography*,
794 **47**, 1617-1628.

795 Morey, S. L., Martin, P. J., O'brien, J. J., Wallcraft, A. A. and Zavala-Hidalgo, J. (2003) Export
796 pathways for river discharged fresh water in the northern Gulf of Mexico. *Journal of
797 Geophysical Research: Oceans*, **108**.

798 Morrison, J. M., Merrell Jr, W. J., Key, R. M. and Key, T. C. (1983) Property distributions and deep
799 chemical measurements within the western Gulf of Mexico. *Journal of Geophysical Research:
800 Oceans*, **88**, 2601-2608.

801 Mulholland, M. R., Bernhardt, P. W., Heil, C. A., Bronk, D. A. and O'neil, J. M. (2006) Nitrogen
802 fixation and release of fixed nitrogen by *Trichodesmium* spp. in the Gulf of Mexico. *Limnology
803 and Oceanography*, **51**, 1762-1776.

804 Mulholland, M. R., Bernhardt, P. W., Ozmon, I., Procise, L. A., Garrett, B., M., O'neil, J. M., Heil, C.
805 A. and Bronk, D. A. (2014) Contribution of diazotrophy to nitrogen inputs supporting *Karenia*
806 *brevis* blooms in the Gulf of Mexico. *Harmful Algae*, **38**, 20-29.

807 Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. (1992) *Numerical Recipes in C:
808 The art of scientific computing*, 2nd edition. Vol., Cambridge University Press.

809 Prospero, J. M. (1996) Saharan dust transport over the North Atlantic Ocean and Mediterranean: An
810 overview *Impact of Desert Dust across the Mediterranean*. Vol. 11. pp. 133-151.

811 Prospero, J. M., Barrett, K., Church, T., Dentener, F., Duce, R. A., Galloway, J. N., Levy, H., Moody,
812 J. and Quinn, P. (1996) Atmospheric deposition of nutrients to the North Atlantic Basin.
813 *Biogeochemistry*, **35**, 27-73.

814 Redalje, D. G., Ammerman, J., Herrera, J., Knapp, A., Krause, J., Valdes, D. and Hayward, A. (2019)
815 Nutrients in the Gulf of Mexico: Distributions, Cycles, Sources, Sinks and Processes. In: T. S.
816 Bianchi (ed) *Gulf of Mexico Origin, Waters, and Biota*. Texas A&M University Press, pp. 294.

817 Sanial, V., Moore, W. S. and Shiller, A. M. (2021) Does a bottom-up mechanism promote hypoxia in
818 the Mississippi Bight? *Marine Chemistry*, **235**, 104007.

819 Selph, K. E., Swalethorp, R., Stukel, M. R., Kelly, T. B., Knapp, A. N., Fleming, K., Hernandez, T. and
820 Landry, M. R. (2021) Phytoplankton community composition and biomass in the oligotrophic
821 Gulf of Mexico. *Journal of Plankton Research*, doi: 10.1093/plankt/fbab006.

822 Sharples, J., Moore, C. M., Hickman, A. E., Holligan, P. M., Tweddle, J. F., Palmer, M. R. and
823 Simpson, J. H. (2009) Internal tidal mixing as a control on continental margin ecosystems.
824 *Geophysical Research Letters*, **36**.

825 Sharples, J., Tweddle, J. F., Mattias Green, J. A., Palmer, M. R., Kim, Y.-N., Hickman, A. E., Holligan,
826 P. M., Moore, C. M., Rippeth, T. P., Simpson, J. H. and Krivtsov, V. (2007) Spring-neap
827 modulation of internal tide mixing and vertical nitrate fluxes at a shelf edge in summer.
828 *Limnology and Oceanography*, **52**, 1735-1747.

829 Shi, D., Kranz, S. A., Kim, J.-M. and Morel, F. M. M. (2012) Ocean acidification slows nitrogen
830 fixation and growth in the dominant diazotroph *Trichodesmium* under low-iron conditions.
831 *Proceedings of the National Academy of Sciences of the United States of America*, **109**, E3094-
832 100.

833 Shiozaki, T., Bombar, D., Riemann, L., Sato, M., Hashihama, F., Kodama, T., Tanita, I., Takeda, S.,
834 Saito, H., Hamasaki, K. and Furuya, K. (2018) Linkage Between Dinitrogen Fixation and
835 Primary Production in the Oligotrophic South Pacific Ocean. *Global Biogeochemical Cycles*,
836 **32**, 1028-1044.

837 Sigman, D. M., Casciotti, K. L., Andreani, M., Barford, C., Galanter, M. and Bohlke, J. K. (2001) A
838 bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater.
839 *Analytical Chemistry*, **73**, 4145-4153.

840 Sohm, J. A., Webb, E. A. and Capone, D. G. (2011) Emerging patterns of marine nitrogen fixation.
841 *Nature Reviews Microbiology*, **9**, 499-508.

842 Stal, L. J. (2009) Is the distribution of nitrogen-fixing cyanobacteria in the oceans related to
843 temperature? *Environmental Microbiology*, **11**, 1632-1645.

844 Stenegren, M., Caputo, A., Berg, C., Bonnet, S. and Foster, R. A. (2018) Distribution and drivers of
845 symbiotic and free-living diazotrophic cyanobacteria in the western tropical South Pacific.
846 *Biogeosciences*, **15**, 1559-1578.

847 Stukel, M. R., Décima, M., Landry, M. R. and Selph, K. E. (2018) Nitrogen and Isotope Flows Through
848 the Costa Rica Dome Upwelling Ecosystem: The Crucial Mesozooplankton Role in Export
849 Flux. *Global Biogeochemical Cycles*, **32**, 1815-1832.

850 Stukel, M. R., Kelly, T. B., Landry, M. R., Selph, K. E. and Swalethorp, R. (2021) Sinking carbon,
851 nitrogen, and pigment flux within and beneath the euphotic zone in the oligotrophic, open-ocean
852 Gulf of Mexico. *Journal of Plankton Research*, doi: 10.1093/plankt/fbab001.

853 Wada, E., Terazaki, M., Kabaya, Y. and Nemoto, T. (1987) N-15 and C-13 Abundances in the
854 Antarctic Ocean with Emphasis on the Biogeochemical Structure of the Food Web. *Deep-Sea*
855 *Research Part a-Oceanographic Research Papers*, **34**, 829-841.

856 Wankel, S. D., Kendall, C., Pennington, J. T., Chavez, F. P. and Paytan, A. (2007) Nitrification in the
857 euphotic zone as evidenced by nitrate dual isotopic composition: Observations from Monterey
858 Bay, California. *Global Biogeochemical Cycles*, **21**.

859 Ward, B. B. and Bronk, D. A. (2001) Net nitrogen uptake and DON release in surface waters:
 860 importance of trophic interactions implied from size fractionation experiments. *Marine
 861 Ecology-Progress Series*, **219**, 11-24.

862 Wawrik, B., Paul, J. H., Bronk, D. A., John, D. and Gray, M. (2004) High rates of ammonium recycling
 863 drive phytoplankton productivity in the offshore Mississippi River plume. *Aquatic Microbial
 864 Ecology*, **35**, 175-184.

865 Weber, S. C., Peterson, L., Battles, J. J., Roberts, B. J., Peterson, R. N., Hollander, D. J., Chanton, J. P.,
 866 Joye, S. B. and Montoya, J. P. (2016) Hercules 265 rapid response: Immediate ecosystem
 867 impacts of a natural gas blowout incident. *Deep-Sea Research Part II*, **129**, 66-76.

868 Weigand, M. A., Foriel, J., Barnett, B., Oleynik, S. and Sigman, D. M. (2016) Updates to
 869 instrumentation and protocols for isotopic analysis of nitrate by the denitrifier method. *Rapid
 870 Communications in Mass Spectrometry*, **30**, 1365-1383.

871 Westberry, T. K., Williams, P. J. L. B. and Behrenfeld, M. J. (2012) Global net community production
 872 and the putative net heterotrophy of the oligotrophic oceans. *Global Biogeochemical Cycles*, **26**.

873 White, A. E., Foster, R. A., Benitez-Nelson, C. R., Masqué, P., Verdeny, E., Popp, B. N., Arthur, K. E.
 874 and Prahl, F. G. (2013) Nitrogen fixation in the Gulf of California and the Eastern Tropical
 875 North Pacific. *Progress in Oceanography*, **109**, 1-17.

876 White, A. E., Granger, J., Selden, C., Gradoville, M. R., Potts, L., Bourbonnais, A., Fulweiler, R. W.,
 877 Knapp, A. N., Mohr, W., Moisander, P. H., Tobias, C. R., Caffin, M., Wilson, S. T., Benavides,
 878 M., Bonnet, S., Mulholland, M. R. and Chang, B. X. (2020) A critical review of the $^{15}\text{N}_2$ tracer
 879 method to measure diazotrophic production in pelagic ecosystems. *Limnology and
 880 Oceanography: Methods*, **18**, 129-147.

881 Wilson, W. D. and Johns, W. E. (1997) Velocity structure and transport in the Windward Islands
 882 Passages. *Deep Sea Research Part I: Oceanographic Research Papers*, **44**, 487-520.

883 Yingling, N., Kelly, T. B., Shropshire, T. A., Landry, M. R., Selph, K. E., Knapp, A. N., Kranz, S. A.
 884 and Stukel, M. R. (2021) Taxon-specific phytoplankton growth, nutrient utilization, and light
 885 limitation in the oligotrophic Gulf of Mexico. *Journal of Plankton Research*.

886 Zhang, R., Wang, X. T., Ren, H., Huang, J., Chen, M. and Sigman, D. M. (2020) Dissolved Organic
 887 Nitrogen Cycling in the South China Sea From an Isotopic Perspective. *Global Biogeochemical
 888 Cycles*, **34**, e2020GB006551.

889 **Legends for Tables and Figures**

890 Table I. The mass and isotopic composition of the sinking particulate nitrogen flux captured in drifting
 891 sediment traps, and results of $\delta^{15}\text{N}$ budgets for traps deployed below the base of the euphotic zone for
 892 2017 and 2018 cruises, including the range in $\text{NO}_3^- + \text{NO}_2^-$ $\delta^{15}\text{N}$ end-member, fraction of export
 893 supported by N_2 fixation ("F_{N2fix}") and N_2 fixation rate determined by multiplying PN_{sink} flux by F_{N2fix}.
 894 The fractional importance of N_2 fixation and geochemical N_2 fixation rate estimates include
 895 contributions from zooplankton excretion at depth (Table II), see text for details.

896 Table II. The ammonia+urea excretion flux by vertically migrating zooplankton and its estimated
 897 isotopic composition. All zooplankton size fractions were summed and the bulk zooplankton isotopic
 898 composition represents the mass-weighted mean $\delta^{15}\text{N}$ of all zooplankton size fractions in each cycle.
 899 The estimated $\delta^{15}\text{N}$ of the excretion flux is calculated by: 1) assuming a difference of 3‰ between the
 900 $\delta^{15}\text{N}$ of bulk zooplankton biomass and the $\delta^{15}\text{N}$ of the excretion (next to last column) (Checkley and
 901 Miller, 1989), and, 2) modeling zooplankton size and fraction of biomass below the euphotic zone, and
 902 assuming an isotope effect of 5‰ for zooplankton excretion (last column) (Stukel *et al.*, 2018). See text
 903 for details.

907 Table III. The mean concentration and $\delta^{15}\text{N}$ of suspended particulate organic nitrogen (PN_{susp}) \pm 1
908 standard deviation with depth for each Cycle.

909 Figure 1. Map of sampling locations for the 2017 (C1, pink, C2, light blue, and C3, green) and 2018
910 (C4, red, and C5, dark blue) cruises.

911 Figure 2. Measurements supporting $\delta^{15}\text{N}$ budget calculations, including the concentration (open circles)
912 and $\delta^{15}\text{N}$ (filled circles) of $\text{NO}_3^- + \text{NO}_2^-$ as well as PN_{sink} $\delta^{15}\text{N}$ (filled triangles) from the 2017 (a) and
913 2018 (b) cruises, with “C1” represented by solid pink lines, “C2” represented by dashed light blue lines,
914 “C3” represented by dotted green lines, “C4” represented by solid red lines, and “C5” represented by
915 dashed dark blue lines. The arrows on the x-axes represent the $\delta^{15}\text{N}$ associated with N_2 fixation inputs.
916 Error bars represent ± 1 S.D. and are smaller than the symbol size for $\text{NO}_3^- + \text{NO}_2^-$ concentration and
917 often the $\text{NO}_3^- + \text{NO}_2^- \delta^{15}\text{N}$ measurements.

918
919 Figure 3. The concentration, $\delta^{15}\text{N}$, and $\delta^{18}\text{O}$ of $\text{NO}_3^- + \text{NO}_2^-$ from the NF1704 (filled squares) and
920 NF1802 (filled circles) cruises plotted vs. depth (a, b, and c, respectively) and on sigma theta surfaces
921 (d, e, and f, respectively). Error bars represent ± 1 S.D. and are smaller than the symbol size for $\text{NO}_3^- + \text{NO}_2^-$
922 concentration. Colors follow from Figure 2.

923
924 Figure 4. Location of sampling during the 2018 cruise (a) with concentration (b) and $\delta^{15}\text{N}$ (c) of DON
925 in the upper 150 m. Cross section begins at southwest end and finishes at northeast end of transect.
926 Salinity contours overlay DON concentration and $\delta^{15}\text{N}$ color contours in panels (b) and (c),
927 respectively.

928
929 Figure 5. Cycle-mean (± 1 S.D., with cycle colors following from previous figures) upper water column
930 *Trichodesmium* spp. trichome abundance (bow tie symbol) (a); chlorophyll *a* concentration (filled
931 diamonds) (b), PN_{susp} concentration (open circles) and DON concentration (filled circles) (c), and
932 PN_{susp} $\delta^{15}\text{N}$ (open circles) and DON $\delta^{15}\text{N}$ (filled circles) (d).

933
934 Figure 6. Schematic of nitrogen pools and fluxes to, from, and within the euphotic zone in the
935 oligotrophic Gulf of Mexico. Dashed lines represent low- $\delta^{15}\text{N}$ fluxes, with solid lines representing
936 transfers of relatively high $\delta^{15}\text{N}$. The mean flux magnitudes for fluxes out of the euphotic zone
937 quantified in this study, PN_{sink} and zooplankton excretion, are shown in bold, with units of $\mu\text{mol N m}^{-2}$
938 d^{-1} , as well as their representative isotopic composition. The mean concentrations and $\delta^{15}\text{N}$ of PN_{susp}
939 and DON in the euphotic are reported with concentration in units of μM . The $\delta^{15}\text{N}$ budgets described in
940 the text compare the $\delta^{15}\text{N}$ of subsurface NO_3^- with the $\delta^{15}\text{N}$ of the PN_{sink} flux and the estimate of
941 zooplankton excretion below the euphotic zone. Regenerated NH_4^+ represents an important low- $\delta^{15}\text{N}$ N
942 source fueling phytoplankton in the euphotic zone.

943
944
945
946
947
948

Table I. Mass and isotopic composition of sinking particulate nitrogen flux captured in floating sediment traps and fraction of export supported by N_2 fixation, as well as geochemically-based N_2 fixation rate. Fractional importance of N_2 fixation and geochemical N_2 fixation rate estimates include contributions from zooplankton excretion at depth (Table II), see text for details.

Year	Cycle	Trap Depth (m)	Mass flux range (mmol N m ⁻² d ⁻¹)	Mean mass flux (± 1 S.D.) (mmol N m ⁻² d ⁻¹)	PN _{sink} δ ¹⁵ N range (% vs. N_2 in air)	Mean PN _{sink} δ ¹⁵ N (± 1 S.D.) (% vs. N_2 in air)	NO ₃ ⁻ +NO ₂ ⁻ δ ¹⁵ N (% vs. N_2 in air)	F _{N2fix} (%)	N ₂ fix rate ($\mu\text{mol N m}^{-2} \text{d}^{-1}$)
2017	1	60	1.01 - 2.10	1.53 ± 0.6	2.7 - 3.2	2.9 ± 0.3	3.2 to 3.8‰	0	0
		140	0.44 - 0.49	0.46 ± 0.02	4.5 - 5.1	4.9 ± 0.3			
		231	0.17 - 0.20	0.19 ± 0.02	4.1 - 4.5	4.2 ± 0.3			
2017	2	60	0.79 - 0.88	0.82 ± 0.05	1.9 - 2.9	2.5 ± 0.6	3.1 to 3.7‰	18 ± 8	90 ± 40
		140	0.38 - 0.72	0.52 ± 0.18	2.8 - 2.9	2.9 ± 0.1			
		231	0.19 - 0.25	0.22 ± 0.03	3.3 - 3.9	3.6 ± 0.3			
2017	3	60	0.83 - 1.28	0.98 ± 0.26	1.4 - 1.8	1.6 ± 0.3	2.8 to 3.8‰	0 ± 30	0 ± 336
		140	1.01 - 1.34	1.1 ± 0.18	1.0 - 1.3	3.9 ± 1.5			
		231	0.32 - 0.55	0.4 ± 0.13	3.5 - 3.9	3.6 ± 0.2			
2018	4	60	0.45 - 0.62	0.59 ± 0.04	2.4 - 2.7	2.5 ± 0.2	2.0 to 2.2‰	0	0
		151	0.38 - 0.57	0.47 ± 0.10	3.4 - 3.7	3.8 ± 0.4			
		231	0.23 - 0.25	0.25 ± 0.01	4.5 - 4.9	4.7 ± 0.2			
2018	5	60	1.00 - 1.13	1.08 ± 0.07	3.6 - 4.0	3.8 ± 0.2	2.9 to 3.8‰	0	0
		117	0.67 - 1.03	0.87 ± 0.18	4.5 - 4.7	4.6 ± 0.1			
		231	0.30 - 0.34	0.32 ± 0.02	4.8 - 5.1	5.0 ± 0.2			

Table II. Ammonia excretion flux by diel vertically migrating zooplankton and estimated isotopic composition. The same number of net tows (n) per cycle were used to determine the zooplankton excretion flux as well as the mean δ¹⁵N of zooplankton. Within each tow, zooplankton were sorted into five size classes. The ZP δ¹⁵N reported below represents the mass-weighted mean of all size classes from all tows per cycle. See Landry and Swalethorpe (2021) for additional details.

Year	Cycle	Export Depth (m)	Net tows (n)	Mass flux range (μmol N m ⁻² d ⁻¹)	Mean mass Flux (± 1 S.D.) (μmol N m ⁻² d ⁻¹)	Mean ZP δ ¹⁵ N (± 1 S.D.) (% vs. N_2 in air)	Excreted δ ¹⁵ N* (± 1 S.D.) (% vs. N_2 in air)	Excreted δ ¹⁵ N# (\pm error) (% vs. N_2 in air)
2017	1	100	7	-37.0 to 49.2	19.6 ± 49.5	6.0 ± 1.3	3.0 ± 1.3	1.7 ± 0.7
		100	4	49.0 to 119.8	84.4 ± 50.1	4.1 ± 1.2	1.1 ± 1.2	-1.8 ± 0.4
		100	8	-52.0 to 126.8	41.9 ± 85.5	4.1 ± 1.2	1.1 ± 1.2	-1.1 ± 0.4
2018	4	100	9	-69.5 to 138.5	37.7 ± 87.2	3.6 ± 1.4	0.6 ± 1.4	-1.1 ± 0.2
		100	9	81.9 to 309.0	171.7 ± 103.3	6.1 ± 1.0	3.1 ± 1.0	0.2 ± 0.3

*Estimated according to Checkley and Miller (1989), where δ¹⁵N of excretion flux is 3‰ lower than the δ¹⁵N of zooplankton

#Estimated using a 5% isotopic effect for zooplankton excretion as outlined in Stukel et al. (2018).

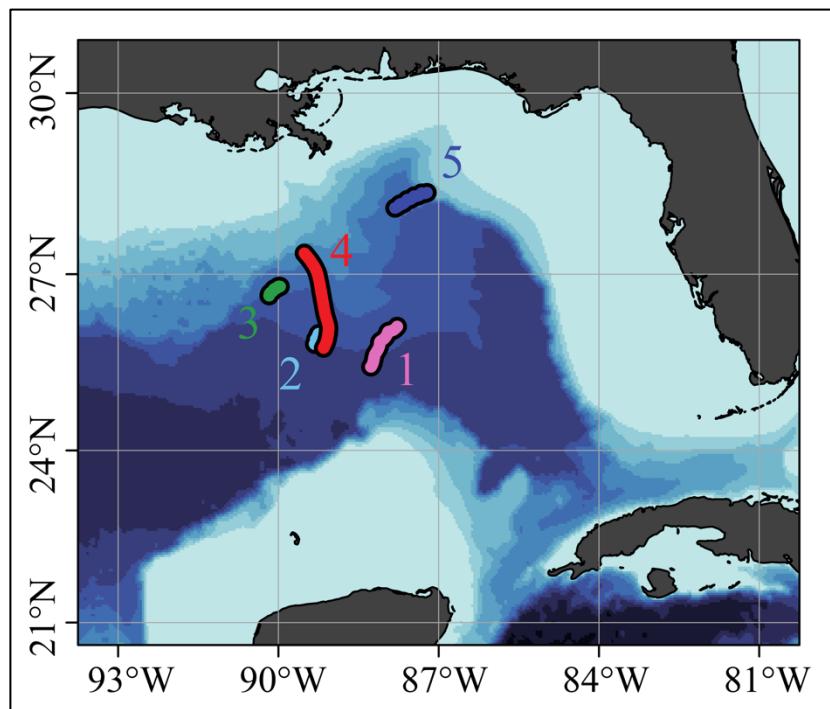
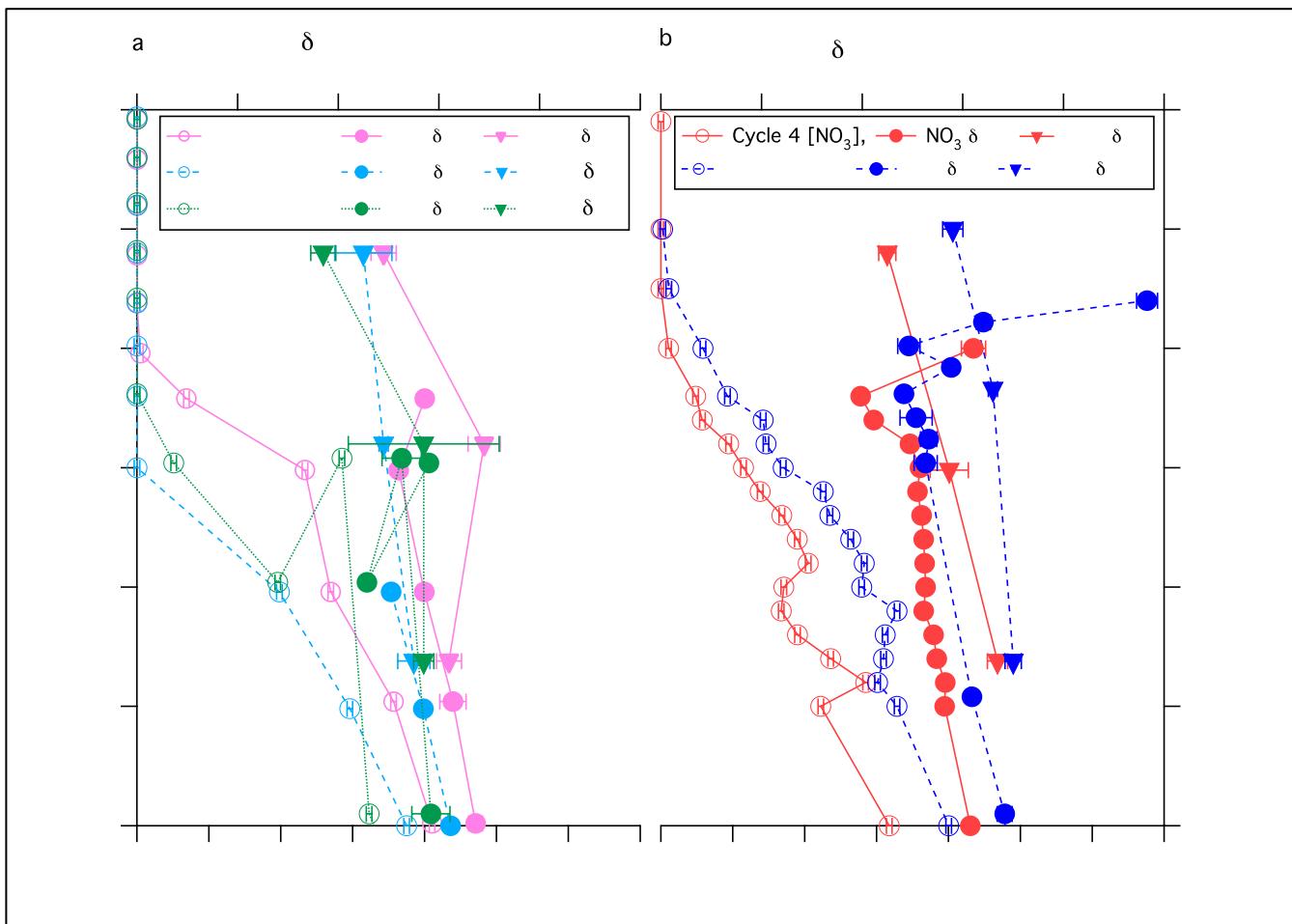

949
950
951
952

Table III. Mean concentration and nitrogen isotopic composition of suspended particulate organic nitrogen (PN_{susp}) \pm 1 standard deviation.

Cycle	Depth	PN _{susp} (μ M) (\pm 1 S.D.)	PN _{susp} $\delta^{15}\text{N}$ (\pm 1 S.D.)	n
1	5	1.25 \pm 0.23	1.41 \pm 0.75	4
1	20	0.95 \pm 0.05	1.47 \pm 0.87	4
1	30	0.89 \pm 0.11	1.43 \pm 0.72	4
1	50	1.10 \pm 0.24	1.92 \pm 0.50	4
1	70	0.93 \pm 0.21	2.22 \pm 1.44	4
1	100	1.02 \pm 0.08	1.26 \pm 0.91	4
2	5	1.13 \pm 0.35	1.05 \pm 1.37	3
2	20	0.90 \pm 0.25	1.01 \pm 1.18	3
2	40	0.88 \pm 0.15	1.54 \pm 0.97	3
2	60	0.90 \pm 0.14	1.22 \pm 0.75	3
2	80	1.09 \pm 0.25	1.57 \pm 1.59	3
2	115	0.85 \pm 0.05	1.92 \pm 1.26	3
3	5	1.26 \pm 0.26	1.03 \pm 0.49	4
3	20	1.10 \pm 0.22	0.94 \pm 1.27	4
3	40	1.21 \pm 0.53	1.37 \pm 0.31	4
3	60	1.17 \pm 0.14	2.33 \pm 0.75	4
3	80	1.02 \pm 0.32	2.52 \pm 1.75	4
3	115	1.04 \pm 0.52	2.50 \pm 0.72	4
4	5	0.56 \pm 0.04	2.02 \pm 2.33	5
4	20	0.52 \pm 0.07	1.88 \pm 1.90	5
4	40	0.48 \pm 0.08	2.48 \pm 2.45	5
4	55	0.42 \pm 0.03	1.99 \pm 1.40	5
4	80	0.48 \pm 0.06	1.66 \pm 1.95	5
4	114	0.52 \pm 0.10	1.67 \pm 2.41	5
5	5	0.78 \pm 0.14	3.01 \pm 0.88	5
5	12	0.67 \pm 0.05	2.39 \pm 0.58	4
5	24	0.73 \pm 0.29	2.76 \pm 1.37	5
5	42	0.74 \pm 0.22	2.47 \pm 1.65	5
5	60	0.55 \pm 0.05	0.25 \pm 0.37	3
5	70	0.72 \pm 0.12	2.90 \pm 0.14	2
5	80	0.98 \pm 0.51	2.36 \pm 1.57	2
5	90	0.49 \pm 0.04	2.30 \pm 1.0	2
5	100	0.45	-0.77	1


954 **Figures**
955

956 **Fig. 1**
957

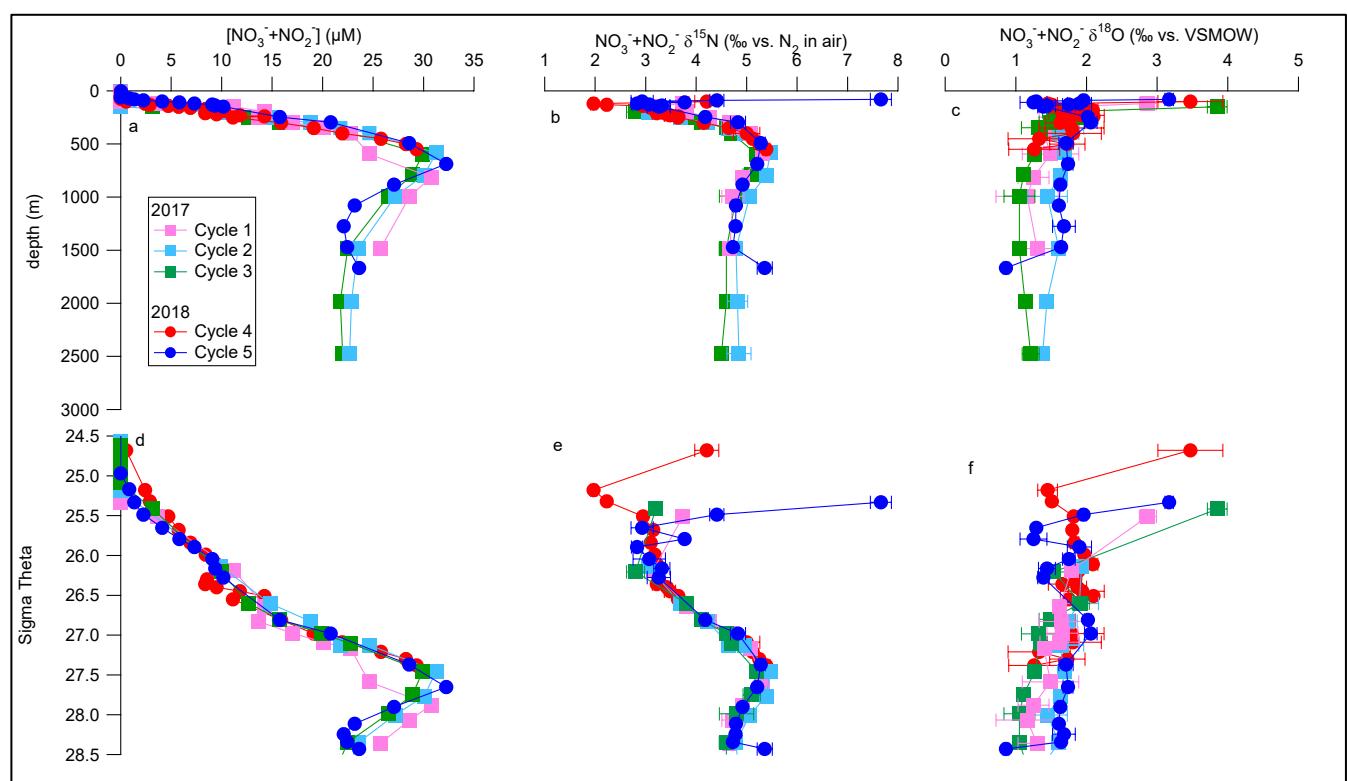

958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984

Fig. 2

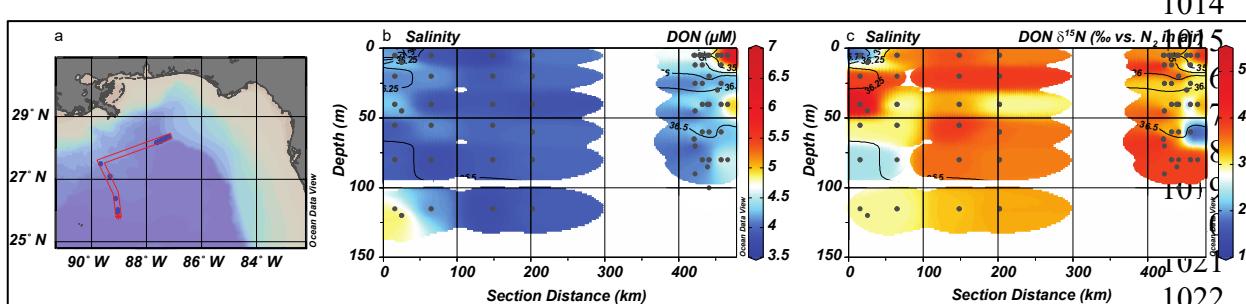

1009
1010
1011

Fig. 3.

1012

1013

Figure 4.

1014

1023

1024

1025

Fig. 5

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

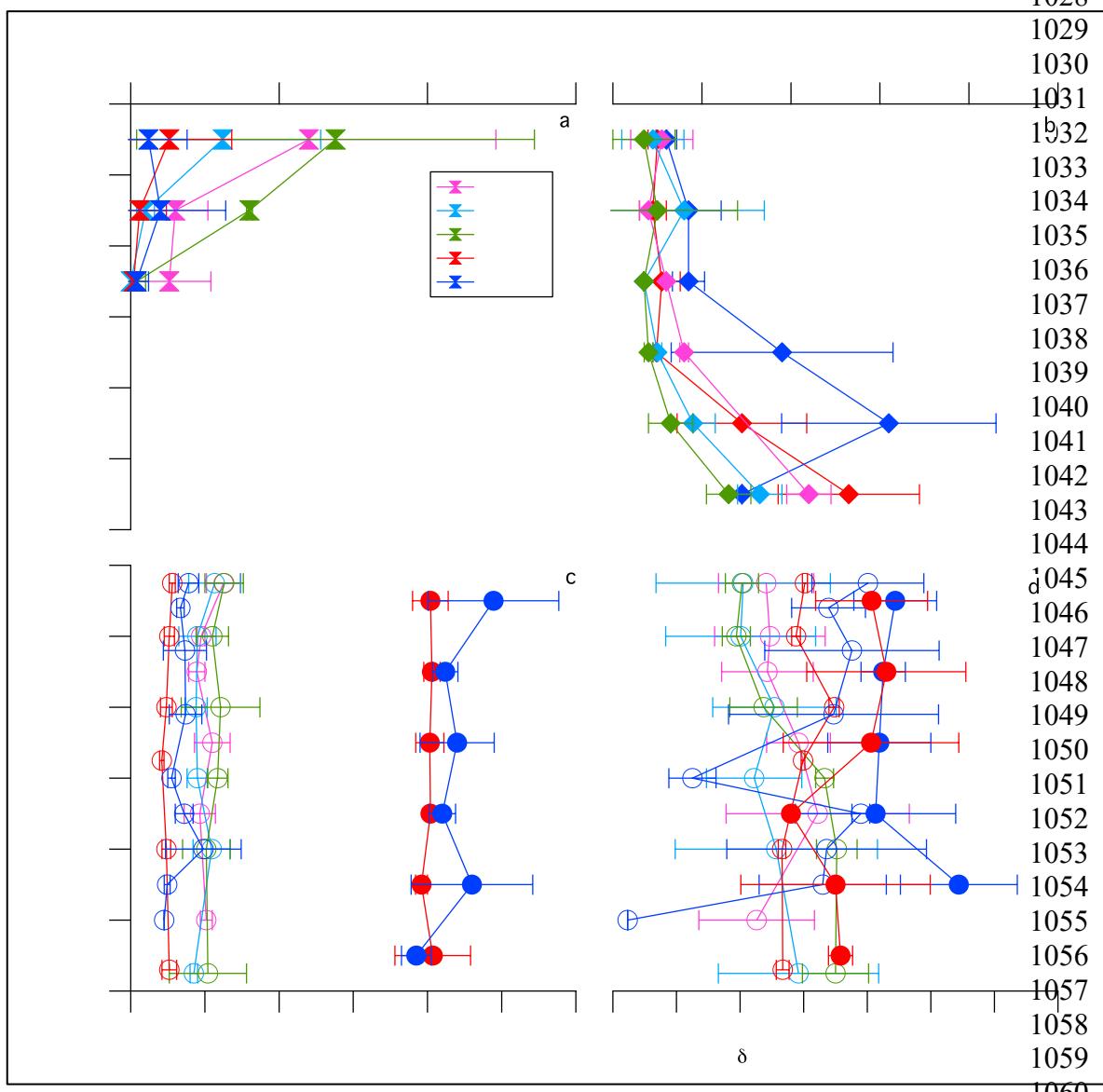
1051

1052

1053

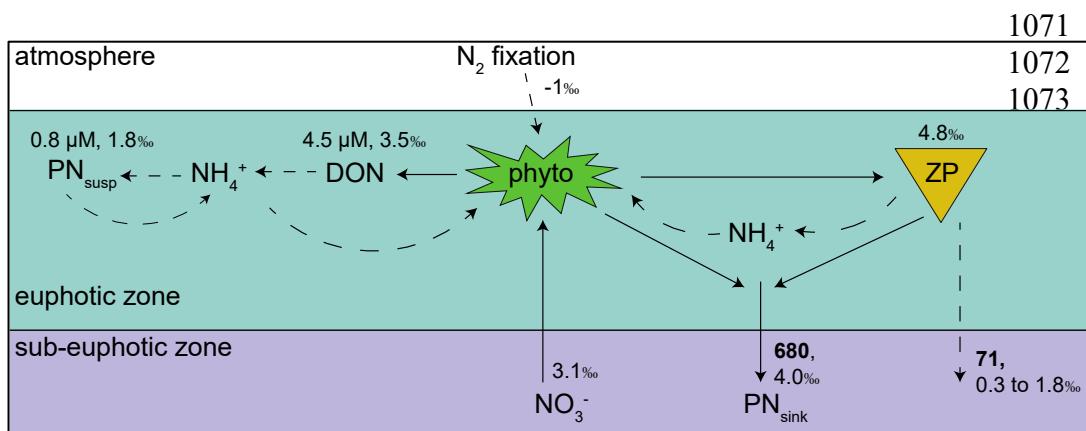
1054

1055


1056

1057

1058


1059

1060

1061

1062
1063
1064
1065
1066
1067
1068 **Fig. 6**
1069
1070

