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 2 

Abstract  22 

 23 

The availability of nitrogen (N) in ocean surface waters affects rates of photosynthesis and marine 24 

ecosystem structure. In spite of low dissolved inorganic N concentrations, export production in 25 

oligotrophic waters is comparable to more nutrient replete regions. Prior observations raise the 26 

possibility that di-nitrogen (N2) fixation supplies a significant fraction of N supporting export 27 

production in the Gulf of Mexico. In this study, geochemical tools were used to quantify the relative 28 

and absolute importance of both subsurface nitrate and N2 fixation as sources of new N fueling export 29 

production in the oligotrophic Gulf of Mexico in May 2017 and May 2018. Comparing the isotopic 30 

composition (“15N”) of nitrate with the 15N of sinking particulate N indicates that N2 fixation is 31 

typically not detected and that the majority (>80%) of export production is supported by subsurface 32 

nitrate. Moreover, no gradients in upper ocean dissolved organic N and suspended particulate N 33 

concentration and/or 15N were found that would indicate significant N2 fixation fluxes accumulated in 34 

these pools, consistent with low Trichodesmium spp. abundance. Finally, comparing the 15N of sinking 35 

particulate N captured within vs. below the euphotic zone indicates that regenerated N is low in 15N 36 

compared to sinking N. 37 

 38 
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INTRODUCTION 43 

Primary productivity in the ocean accounts for roughly half of annual global carbon (C) 44 

fixation. Despite low concentrations of inorganic forms of nitrogen (N), such as nitrate (NO3
-) and 45 

ammonium (NH4
+), in many parts of the low-latitude surface ocean, significant rates of C fixation occur 46 

in these seemingly nutrient impoverished regions (Emerson, 2014). Phytoplankton carrying out this 47 

photosynthesis not only play a crucial role in the global C cycle, and thus impact climate, but create the 48 

foundation of the marine food web. Two sources of N that fuel “new” primary production are NO3
-, the 49 

dominant bioavailable form of N in the global ocean, and biologically-mediated di-nitrogen (N2) 50 

fixation (Dugdale & Goering, 1967). New production fueled by subsurface NO3
- in mid- to high-51 

latitude waters is supported by vertical mixing as thermocline stability erodes seasonally, with N2 52 

fixation thought to be more important in thermally stratified low-latitude surface waters. This “new” 53 

production is contrasted with photosynthesis supported by NH4
+, known as “regenerated” production, 54 

that largely cycles in the surface ocean and does not contribute to export (Dugdale & Goering, 1967, 55 

Eppley & Peterson, 1979). While the distribution and rates of N2 fixation in the ocean play a central 56 

role in regulating the fertility and community structure of marine ecosystems, these first-order 57 

properties of marine N2 fixation remain poorly constrained. The highest short-term rates of N2 fixation 58 

have been documented in the tropical North Atlantic (Mahaffey et al., 2005, Sohm et al., 2011) as well 59 

as the western tropical South Pacific (Caffin et al., 2018, Knapp et al., 2018b). The spatial distribution 60 

of elevated 15N2 incubation-based N2 fixation rates (Luo et al., 2012) are consistent with both the 61 

preference of diazotrophs for warm waters (Breitbarth et al., 2007, Stal, 2009) as well as the high 62 

atmospheric dust flux to the North Atlantic (Mahowald et al., 2009, Prospero, 1996) that helps fulfill 63 

the significant iron requirement of the enzyme, nitrogenase, that catalyzes N2 fixation (Berman-Frank et 64 

al., 2001, Kustka et al., 2003). However, field observations are spatially limited, leaving modeling 65 

efforts to identify the regions of the global ocean supporting the largest N2 fixation fluxes under-66 

constrained.   67 

Both N2 fixation rates and fluxes of subsurface NO3
- to surface waters are expected to respond 68 

to global change (Capotondi et al., 2012, Luo et al., 2019, Shi et al., 2012), underscoring the 69 

importance of accurately characterizing their roles in supporting low-latitude C fixation. While 70 

incubation-based estimates of NO3
- uptake and N2 fixation rates are commonly used to evaluate their 71 

respective roles in surface waters (Shiozaki et al., 2018), these measurements have limitations, 72 

including potential bottle effects (Westberry et al., 2012), the inherent short-term nature of the 73 

measurements, and challenges in consistently implementing methodological protocols (White et al., 74 

2020). While incubation-based approaches are valuable, geochemical methods to evaluate NO3
- vs. N2 75 
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fixation fueled export complement our understanding of this process. One geochemical tool to quantify 76 

relative and absolute contributions of subsurface NO3
- and N2 fixation to export production relies on the 77 

distinct isotopic compositions (“15N”) of these two N sources (“15N”, where 15N = 78 

{[(15N/14N)sample/(15N/14N)reference] – 1}*1000, with atmospheric N2 as the reference). N2 fixation 79 

introduces new N to the ocean with a 15N of ~ -2 to 0‰ (Carpenter et al., 1997, Hoering & Ford, 80 

1960, Minagawa & Wada, 1986). In contrast, the 15N of NO3
- mixed up from the subsurface in the 81 

western North Atlantic can range from 2 to 4‰ (Knapp et al., 2008, Knapp et al., 2005, Marconi et al., 82 

2015). Assuming these are the dominant inputs of new N to the euphotic zone, in steady state, the 15N 83 

of N fluxes out of the euphotic zone should reflect the relative importance of these N inputs. This “15N 84 

budget” approach assumes that sinking particulate N (PNsink) is the major flux of N out of the euphotic 85 

zone, and compares the 15N of subsurface NO3
- and N2 fixation with that of PNsink.  86 

Given these assumptions, the relative importance of each source of new N for supporting export 87 

production can be estimated using the two end-member mixing model described in Eqn. 1, where the 88 

fractional importance of N2 fixation for supporting export production (x) is defined as: 89 

PNsink 15N = x(-1‰) + (1 - x)(NO3
-+NO2

- 15N)    Eqn. 1 90 

Rearranging and solving for x yields: 91 

x = (NO3
-+NO2

- 15N – PNsink 15N)/(1 + NO3
-+NO2

- 15N)   Eqn. 2 92 

Multiplying “x” by the PNsink mass flux provides a time-integrated N2 fixation rate that can be 93 

compared with 15N2 incubation-based N2 fixation rate measurements (Knapp et al., 2016a).  94 

Prior 15N budgets have been applied in oligotrophic waters like the Gulf of Mexico (GoM) 95 

where euphotic zone NO3
- concentrations are low and N2 fixation is thought to potentially support a 96 

significant (i.e., >10%) fraction of export production. Although N2 fixation has recently been found to 97 

support the majority of export production at one location in the southwest Pacific Ocean (Knapp et al., 98 

2018b), and in the eastern North Atlantic N2 fixation has been found to support up to 40% of export 99 

(Bourbonnais et al., 2009), even in regions where N2 fixation rates are relatively high, 15N budgets 100 

indicate that subsurface NO3
- fuels the majority of export production in the oligotrophic Atlantic and 101 

Pacific gyres (e.g., (Altabet, 1988, Casciotti et al., 2008, Knapp et al., 2016a, Knapp et al., 2005)). 102 

Indeed, when 15N budgets do indicate N2 fixation is a significant N source (Knapp et al., 2018b), 15N2 103 

uptake rates (Caffin et al., 2018) and diazotroph abundance (Stenegren et al., 2018) are notably 104 

elevated and consistent with diazotroph “bloom” conditions that fall outside typical 15N2 uptake 105 
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observations (Luo et al., 2012), thus leaving a clear signature when N2 fixation is a quantitatively 106 

important source of new N supporting export production.  107 

Typical 15N budget results appear consistent with related work indicating that not only is NO3
- 108 

the dominant new N input to low-latitude surface waters, but that its distinct isotopic composition 109 

propagates through geochemical N pools as well as the food web of oligotrophic gyres. At the base of 110 

the food web, this has been shown near Bermuda where, even during stratified summer conditions, 111 

eukaryotes consuming NO3
- are responsible for new production (Fawcett et al., 2011). The importance 112 

of NO3
- as a N source to the low latitude ocean is also evident in the isotopic composition of dissolved 113 

organic nitrogen (DON). Phytoplankton release a fraction of new production as DON (Bronk & Ward, 114 

1999, Bronk & Ward, 2000, Bronk & Ward, 2005, Ward & Bronk, 2001). The distinct 15N of surface 115 

ocean DON in the subtropical North Pacific versus the subtropical North Atlantic reflects the difference 116 

in 15N of subsurface NO3
- of the two basins (Knapp et al., 2011), again emphasizing the primary role 117 

of NO3
- in supporting low-latitude production. Similarly, the 15N of suspended particulate N (PNsusp) 118 

in the surface ocean, a fraction of which includes living phytoplankton, also exhibits variations that 119 

track regional differences in the 15N of subsurface NO3
-. For example, surface ocean PNsusp 15N 120 

ranges from 5 to 15‰ in regions with relatively high subsurface NO3
- 15N such as in oxygen deficient 121 

zones (Knapp et al., 2016a, White et al., 2013). In contrast, the relatively low 15N of PNsusp in surface 122 

waters of the Sargasso Sea typically ranges from -1 to 0‰ (Altabet, 1988) and subsurface NO3
- 15N is 123 

particularly low, 2 to 4‰ (Knapp et al., 2008, Marconi et al., 2017). Regional variations in subsurface 124 

NO3
- 15N are also evident further up the food web in the 15N of zooplankton biomass, which is higher 125 

in the North Pacific (Hannides et al., 2009) than North Atlantic (McClelland et al., 2003).       126 

While results from prior 15N budgets might lead to the expectation that subsurface NO3
- is the 127 

dominant source of new N to GoM surface waters, the same environmental conditions that are thought 128 

to support significant rates of N2 fixation in the tropical North Atlantic are also commonly found in the 129 

GoM. Modest N2 fixation rates, up to 2.3 nmol N L-1 d-1, have been measured on the West Florida Shelf 130 

(Mulholland et al., 2006, Mulholland et al., 2014) and off of the northern GoM shelf, 85 µmol N m-2 d-1 131 

(Holl et al., 2007), but the contribution of N2 fixation to export production in the open waters of the 132 

GoM has not been quantified. Here we apply 15N budgets to evaluate the relative importance of 133 

subsurface NO3
- and N2 fixation for supporting export production in the oligotrophic GoM, as well as to 134 

estimate geochemically-derived rates of N2 fixation. A novel addition to these 15N budgets is the 135 

inclusion of estimates of zooplankton NH4
+ and/or urea excretion as a secondary mechanism of N 136 

export from the euphotic zone. 137 
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METHODS 138 

Sample collection 139 

Samples were collected for inorganic nutrient concentration and isotopic analysis on the NOAA 140 

Ship Nancy Foster from May 11-29 of 2017 (“NF1704”) and April 30 to May 19 of 2018 (“NF1802”) 141 

in the deep waters of the northern and central GoM (Fig. 1). Samples were also collected for DON 142 

concentration and isotopic analysis on the NF1802 cruise. Details of the cruises can be found in (Gerard 143 

et al., In Review). Briefly, samples were collected during five Lagrangian experiments of two- to four-144 

day duration (i.e. “cycles”), each initiated with the deployment of free-drifting, mixed-layer-drogued 145 

sediment traps and concluded with their recovery. The length of trap deployment was chosen to 146 

accommodate multiple cycles per cruise, with longer cycles conducted where patches of bluefin tuna 147 

larvae were observed. Cycles over the course of the two cruises were sequentially numbered, with the 148 

first three cycles on the 2017 cruise referenced as NF1704-C1 (C1), NF1704-C2 (C2), and NF1704-C3 149 

(C3), and the two cycles on the 2018 cruise referenced as NF1802-C4 (C4), and NF1802-C5 (C5). 150 

During the Lagrangian experiments, water-column samples were collected from Niskin bottles 151 

deployed on a CTD-rosette close to the drifting sediment trap array at ~0200 local time each day. 152 

Nutrient samples were collected in the dark to accommodate pre-dawn sampling for light incubation 153 

experiments (Yingling et al., 2021). Nutrient samples passed an acid-cleaned 0.2-µm membrane filter 154 

and were stored frozen at -20 ºC in acid-washed HDPE bottles for analysis on land, per GEOTRACES 155 

protocols (Cutter et al., 2014). The depth of the mixed layer, defined as the depth at which density 156 

increased by 0.125 kg m-3 (Monterey & Levitus, 1997), ranged from 21-36 m during NF1704 (C1-C3) 157 

and 11-27 m during NF1802 (C4-C5). 158 

 159 

NO3
-+NO2

-, ammonium, phosphate, and DON concentrations  160 

The concentrations of NO3
-+nitrite (NO3

-+NO2
-) in water-column samples were measured using 161 

a chemiluminescent method with a lower quantification limit of 0.1 µM and mean standard deviation of 162 

0.1 µM (Braman & Hendrix, 1989). Concentrations of NH4
+ were quantified using the fluorescent 163 

OPA method with a lower limit of 25 nM and mean standard deviation of 20 nM (Holmes et al., 164 

1999). Soluble reactive phosphorus (PO4
3-) concentration measurements were made using colorimetric 165 

methods with a lower quantification limit of 50 nM (Koroleff, 1983). Concentrations of total dissolved 166 

nitrogen (TDN) were measured using persulfate oxidation of TDN to NO3
- according to (Knapp et al., 167 

2005), and the resulting NO3
- concentration was measured using chemiluminescence as described 168 

above. The concentration of DON was calculated by subtracting the concentrations of NO3
-+NO2

- and 169 
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NH4
+ from the TDN concentration. In samples with undetectable levels of NO3

-+NO2
- (i.e., most 170 

samples in the upper 100 m), the average standard deviation of DON concentration was 0.3 µM, with 171 

a propagated error for DON concentration with detectable levels of NO3
-+NO2

- of 0.32 µM. 172 

 173 

NO3
-+NO2

- 15N, 18O and DON 15N measurements 174 

The 15N of NO3
-+NO2

- in samples was measured using the denitrifier method (Casciotti et al., 175 

2002, Sigman et al., 2001, Weigand et al., 2016) and calibrated using standard bracketing techniques 176 

with IAEA N3 (15N = 4.7‰, 18O = 25.6‰), and USGS 34 (15N = -1.8‰, 18O = -27.9‰), and for 177 

18O, additionally with USGS 35 (18O = 57.5‰) as described by (Mcilvin & Casciotti, 2011). The 178 

mean standard deviation of replicate NO3
-+NO2

- 15N and 18O analyses was <0.2‰. The 15N of TDN 179 

was determined using persulfate oxidation according to (Knapp et al., 2005), with the resulting NO3
- 180 

determined with the denitrifier method after adjusting the sample to pH=4. The 15N of DON was 181 

calculated by mass balance by subtracting the concentration and 15N of NO3
-+NO2

- from the TDN 182 

concentration and 15N. When the concentration of NO3
-+NO2

- was below detection, the average 183 

standard deviation of duplicate analyses of DON 15N was 0.3‰. When the concentration of NO3
-184 

+NO2
- was proportionate to the concentration of DON in the sample the propagated error for replicate 185 

analyses of DON 15N was 0.6‰, determined using a Monte Carlo approach (Press et al., 1992).  186 

 187 

Chlorophyll a concentration, Trichodesmium spp. abundance, and suspended particulate N 188 

concentration and 15N measurements 189 

 The concentration of chlorophyll a was determined by calibrating the CTD fluorescence sensor 190 

with Niskin-bottle based HPLC pigments as described in Selph et al. (2021). Additionally, trichomes of 191 

the diazotroph Trichodesmium spp. were enumerated digitally using an OMAX A355OU camera and 192 

ToupLite software as described in (Selph et al., 2021). Suspended particulate organic nitrogen (PNsusp) 193 

was collected by filtering 2.2 L of water onto a pre-combusted (450 °C for 4 h) Whatman glass fiber 194 

filter and its mass and isotopic composition was determined by an elemental analyzer interfaced to an 195 

isotope ratio mass spectrometer at the UC Davis Stable Isotope Facility with a lower detection limit of 196 

2.2 µg N and precision of ±0.3‰ for 80 µg N samples. 197 

 198 

Sinking particulate N flux and 15N measurements 199 
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Surface-tethered, VERTEX-style particle-interceptor traps (PIT) were deployed at three depths: a 200 

“shallow” trap deployed at 60 m, below the mixed layer; a “mid-depth” trap deployed just below the 201 

base of the euphotic zone (i.e., 117 m on C5, 140 m on C1-C3, and 151 m on C4); and a “deep” trap 202 

deployed at 231 m. PIT tubes (8:1 aspect ratio, baffle on top constructed of smaller tubes with 8:1 203 

aspect ratio) were deployed with a formalin-brine for 2.2 to 4.5 days. After recovery, they were filtered 204 

through a 100-μm filter and swimmers were removed during inspection at 25X magnification (Zeiss 205 

stereomicroscope). Triplicate brine tubes were then filtered through pre-combusted Whatman glass 206 

fiber filters and the N mass flux (“PNsink flux”) and 15N of the PNsink flux were determined as 207 

described above for suspended particles. A complete description of the sediment trap deployment and 208 

sample collection is given in (Stukel et al., 2021).  209 

 210 

Zooplankton excretion flux and its isotopic composition 211 

Estimates of N loss from the euphotic zone due to excretion of diel migrant zooplankton at their 212 

mesopelagic daytime depths were calculated from the size-fractioned biomass measurements of 213 

(Landry & Swalethorp, 2021) and the empirical allometric relationship of Ikeda (1985) for ammonium 214 

and/or urea excretion (E: µg N organism-1  h-1): 215 

                                           lnE = -2.176 + 0.829 ln Ci + 0.0648 T 216 

where Ci is the average carbon content of individual zooplankters in size fraction i and T (°C) is the 217 

environmental temperature at 300-500 m. Mesozooplankton were collected daily during experimental 218 

cycles at mid-day and mid-night with a 1-m diameter ring net (0.2-mm Nitex mesh) towed obliquely 219 

through the euphotic zone. The collected organisms were wet sieved through nested Nitex screens of 5, 220 

2, 1, 0.5 and 0.2 mm Nitex mesh to produce 5 size classes of 0.2-0.5, 0.5-1, 1-2, 2-5 and >5 mm. Size 221 

fractions were oven dried (60°C) for total dry weight, ground to a powder, and analyzed for C and N 222 

content and isotopes (13C and 15N) by an elemental analyzer coupled to an isotope ratio mass 223 

spectrometer (EA-IRMS) (Owens and Rees, 1989). For each pair of day-night samples, migrant 224 

biomass was determined as the difference between night–day carbon for each size fraction. For 225 

individual carbon contents, Ci, in the Ikeda (1985) equation, we used mean values of 2.4, 7.4, 41, 140 226 

and 2782 µg C ind-1 for the 0.2-0.5 to >5 mm size fractions, respectively (Landry et al., 2001).  Migrant 227 

abundances in each size fraction were calculated from measured C biomass and the individual Ci 228 

estimates, and migrants were assumed to spend 12 h d-1 at mesopelagic depths (300-500 m).   229 

Since few have measured it directly, we consider the 15N of zooplankton excretion to be 230 

relatively uncertain. Consequently, we used lower and upper bound estimates, 3‰ and 5‰, 231 
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respectively, for the magnitude of the isotope effect associated with zooplankton N excretion. The 3‰ 232 

estimate reflects the difference between the 15N of copepod and doliolid biomass and excreted N in the 233 

northwest Pacific Ocean (Checkley & Miller, 1989). This estimate is also consistent with prior studies 234 

of N isotopic enrichment in food webs (Checkley & Entzeroth, 1985, Deniro & Epstein, 1981, 235 

Minagawa & Wada, 1984, Wada et al., 1987). The 5‰ estimate comes from organismal N mass and 236 

isotopic observational and modeling constraints (Stukel et al., 2018). Uncertainties in the day-night 237 

biomass of each size class were propagated through all measurements using Monte Carlo approaches. 238 

 239 

RESULTS 240 

NO3
-+NO2

- concentration, 15N, 18O 241 

 The concentration of NO3
-+NO2

- in the upper 100 m was <0.1 µM and increased with depth 242 

(Figs. 2 and 3). Water-column profiles of thermocline NO3
-+NO2

- 15N and 18O show similar trends 243 

among the cycles and little variation on potential density surfaces, with a NO3
-+NO2

- 15N maximum of 244 

~5‰ at 650 m, which decreases up through the shallower thermocline to a minimum of 2.0 to 3.0‰ at 245 

231 m (Figs. 2 and 3). The 18O of NO3
-+NO2

- throughout the water column was largely 1.5 ± 0.5‰ 246 

(Fig. 3), with the 18O of NO3
-+NO2

- in samples shallower than 150 m >3.0‰ in the same samples with 247 

elevated NO3
-+NO2

- 15N (Fig. 3).  248 

  249 

DON and PNsusp concentration and 15N 250 

DON concentration in the NF1802 samples was largely consistent among stations (Fig. 4). 251 

Profile concentrations averaged between 4 and 5 µM in the upper 100 m. The mean 15N of DON 252 

varied between 3.0 and 3.5‰, but showed more variability among stations than DON concentration 253 

(Figs. 4 and 5). Exceptions to these mean values include a station from C5 near the shelf/slope break 254 

where higher DON concentration (7.3 µM) was found in surface waters with a relatively elevated 15N 255 

of 4.5‰ (Fig. 4). This surface water sample also had a relatively low salinity (35.28) compared with the 256 

underlying 40 m sample (36.45). However, other samples further offshore with a similar salinity, 35.0 257 

to 36.0, had a 15N between 3.0 and 4.0‰ (Fig. 4). Other samples near the shelf/slope break collected 258 

from 75 and 100 m with relatively high DON 15N, from 4.0 to 6.0‰, had salinities >36. Additionally, 259 

two stations further offshore had 15N DON <3‰ at several depths in the upper 100 m (Fig. 4). All 260 
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samples at these stations had salinity >36. No significant changes in DON concentration or 15N were 261 

found over the course of the Lagrangian cycles (Figs. 4 and 5). 262 

The mean PNsusp concentration in the upper 100 m on the NF1704 cruise was ~1.0 µM, and 263 

ranged from 0.7 to 2.0 µM and was higher than the mean PNsusp concentration on the NF1802 cruise 264 

(mean ~0.6 µM, ranging from 0.3 to 1.3 µM) (Fig. 5) (Table III). The mean 15N of PNsusp on NF1704, 265 

1.0 to 2.0‰, was not significantly different from that on NF1802, 1.0 to 2.5‰. Finally, like DON, we 266 

found no significant gradients with depth or over the course of the Lagrangian cycles for either PNsusp 267 

concentration or 15N in the upper 100 m (Fig. 5) (Table III). 268 

 269 

The flux and isotopic composition of PNsink and zooplankton excretion 270 

The largest flux of N out of the euphotic zone was the PNsink flux. The range and mean PNsink 271 

mass flux ( 1 S.D.) and mean, mass-weighted 15N of the PNsink flux ( 1 S.D.) for each cycle, 272 

determined by averaging the PNsink collected in three brine tubes per floating sediment trap deployment, 273 

is reported in Table I (Fig. 2). The mean PNsink mass flux into the 60 m traps, representing upper 274 

euphotic zone export from the mixed layer, ranged from 0.59  0.04 (C4) to 1.53  0.6 (C1) mmol N m-275 

2 d-1 (Table I). Mean PNsink fluxes out of the euphotic zone, as recorded by the mid-depth trap, ranged 276 

from 0.46  0.02 (C1) to 1.1  0.18 (C3) mmol N m-2 d-1 (Table I). The mean PNsink mass flux 277 

decreased with depth except for C3, when the PNsink flux in the 140 m trap was larger than (although 278 

not significantly different from) that captured in the 60 m trap, 1.1  0.18 vs. 0.98  0.26 mmol N m-2 279 

d-1, respectively (Table I). The PNsink flux in the 231 m trap was 35 to 50% of the PNsink flux at the base 280 

of the euphotic zone (Table I). The mean 15N of the PNsink flux at 60 m, ranging from 1.6  0.3‰ (C3) 281 

to 3.8  0.2‰ (C5), was lower than the 15N of PNsink flux in the deeper traps (Fig. 2, Table I). The 282 

15N of the PNsink flux in the deepest two traps were typically more similar to each other than the 15N 283 

of the PNsink flux in the euphotic zone, and the mean 15N for both of the deeper traps ranged from 2.9 284 

 0.1‰ (C2, 120 m) to 5.0  0.2‰ (C5, 231 m) (Table I). Finally, we note that the 15N of the PNsink 285 

flux was always higher than the 15N of PNsusp. 286 

Since we observed no gradients either with depth or over the course of Lagrangian sampling in 287 

either PNsusp or DON concentration in the euphotic zone (Table III, Figs. 4 and 5), the only other 288 

quantifiable pathway for N loss from the euphotic zone is via excretion or defecation of nitrogenous 289 

waste from vertically migrating zooplankton at depth or mortality of these organisms at their daytime 290 

resting depths. The estimated rates of zooplankton N excretion, in the form of NH4
+ (Checkley & 291 

Miller, 1989) and urea (Bidigare, 1983), below the euphotic zone are reported in Table II. The mean 292 
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excretion rates of all vertically migrating zooplankton size classes were summed for each cycle, and 293 

range from 19.6  49.1 (C1) to 171.7  103.3 (C5) µmol N m-2 d-1 (Table II), with detailed descriptions 294 

of these fluxes in (Landry & Swalethorp, 2021). These zooplankton excretion fluxes are roughly an 295 

order of magnitude smaller than the PNsink fluxes below the euphotic zone (Tables I and II). Although 296 

we could not quantify zooplankton mortality or defecation at depth, we believe these fluxes are also 297 

small relative to PNsink and hence neglect them in further calculations. Estimates of the 15N of 298 

zooplankton excretion assuming a 3‰ isotope effect range from 0.6 to 3.1‰ and are similar to or lower 299 

than the 15N of both subsurface NO3
-+NO2

- and the PNsink flux (Table I), which range from -0.8 to 300 

1.7‰ using the 5‰ isotope effect (Table II). 301 

 302 

DISCUSSION 303 

Comparison with prior regional observations 304 

 Water column profiles of NO3
-+NO2

- concentration and isotopic composition from these cruises 305 

were consistent with prior regional observations (Howe et al., 2020). In particular, the decreasing NO3
-306 

+NO2
- 15N up through the thermocline (Fig. 3) has been observed previously in the GoM and North 307 

Atlantic and is consistent with prior characterizations of the isotopic composition of NO3
-+NO2

- in 308 

regional water masses including the GoM (Howe et al., 2020), the Florida Straits (Leichter et al., 309 

2007), and the North Atlantic (Knapp et al., 2008, Marconi et al., 2015, Marconi et al., 2019). The 310 

increasing 15N and 18O of NO3
-+NO2

- in the upper 150 m is consistent with NO3
- assimilation at the 311 

base of the euphotic zone as has been observed previously in the region (Howe et al., 2020, Knapp et 312 

al., 2005). The similarities of GoM samples to NO3
-+NO2

- concentration, 15N, and 18O from the 313 

North Atlantic are consistent with the Loop Current importing thermocline water from the tropical and 314 

subtropical North Atlantic into the GoM (Hernandez-Guerra & Joyce, 2000, Hofmann & Worley, 1986, 315 

Morrison et al., 1983, Wilson & Johns, 1997), as well as the relatively short residence time of water in 316 

the GoM (Amon et al., 2020). The latter prevents N inputs from the Mississippi River, submarine 317 

groundwater discharge, and N2 fixation from significantly modifying the concentration and isotopic 318 

composition of NO3
-+NO2

- before leaving the GoM (Howe et al., 2020).  319 

 To the best of our knowledge, these measurements of DON 15N are the first reported from the 320 

GoM. As was found for the concentration and isotopic composition of NO3
-+NO2

-, these DON 321 

observations are consistent with regional observations from the Sargasso Sea, between 3.0 and 4.0‰ 322 

(Figs. 4, 5) (Knapp et al., 2005, Knapp et al., 2011). The sample from C5 near the shelf/slope break 323 

with elevated DON concentration and 15N and slightly lower salinity was collected near DeSoto 324 
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Canyon, and it is possible that the surface sample included freshwater DON, possibly from the 325 

Mississippi-Atchafalaya River System, other riverine (e.g., Apalachicola) inputs, benthic DON, and/or 326 

submarine groundwater discharge (Morey et al., 2003). Alternatively, the elevated concentration and 327 

isotopic composition may reflect production of DON near the shelf/slope break (Kelly et al., 2021) that 328 

underwent subsequent consumption with isotopic fractionation (Knapp et al., 2018a, Zhang et al., 329 

2020). Other samples collected near the shelf/slope break with elevated DON 15N values deeper in the 330 

water column are not associated with a decrease in DON concentration between the surface and 331 

subsurface, indicating a different DON source and not remineralization with depth as a likely 332 

explanation with benthic sources potentially including submarine groundwater discharge (Sanial et al., 333 

2021). A distinct DON source, such as benthic organic matter and/or submarine groundwater discharge, 334 

may also be responsible for the low-15N DON (1.7‰) observed near De Soto Canyon (Fig. 4).  335 

While 100 m samples collected offshore with relatively low DON 15N (<3‰) and salinity >36 336 

were not associated with elevated Trichodesmium spp. trichome abundance, they may reflect recent 337 

low-15N inputs not captured by Trichodesmium spp. abundance at the time of sampling. It is also 338 

notable that while Trichodesmium spp. were most abundant in the upper 20 m (Fig. 5) (Selph et al., 339 

2021), consistent with prior observations of their depth distribution (Capone et al., 2005), the 15N of 340 

DON was not significantly lower in the upper 20 m than throughout the upper 100 m (Figs. 4 and 5). 341 

Thus, if DON was released by Trichodesmium spp., it did not accumulate to detectable levels in this 342 

pool (Knapp et al., 2011), but instead may have been assimilated by other phytoplankton that could 343 

then contribute to the sinking flux (e.g., (Bonnet et al., 2016, Knapp et al., 2016b)). We note that 344 

Trichodesmium spp. trichome abundance was low compared to prior work in the Atlantic, where an 345 

average of >2000 trichomes L-1 was observed (Carpenter et al., 2004). No significant trends in DON 346 

concentration or 15N with depth were observed, which is also consistent with losses of DON not 347 

typically observed in the upper 100 m in oligotrophic regions, but instead seen at or below 150 m 348 

(Knapp et al., 2011). Finally, there is no evidence for differences in DON concentration in the upper 50 349 

m vs. the 50 to 100 m depth horizons (Figs. 4 and 5), as would be consistent with DON consumption 350 

within the euphotic zone observed in regions transitional between productive and oligotrophic regions 351 

(Knapp et al., 2018a, Zhang et al., 2020). 352 

  The mean PNsusp concentration on these cruises, in particular on the NF1704 cruise, was higher 353 

than is typically found in oligotrophic environments such as Bermuda and Hawaii. The concentrations 354 

of PNsusp on NF1802 were closer to those typically observed in oligotrophic euphotic zones such as 355 

near Hawaii and Bermuda, where PNsusp concentrations are typically 0.3 to 0.4 µM (Altabet, 1988, 356 
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Fujiki et al., 2011). It is not clear why the PNsusp was twice as high on NF1704 compared to NF1802, as 357 

chlorophyll a concentrations in the upper 50 m were not meaningfully different between the two years 358 

(Fig. 5), nor were other productivity metrics (Yingling et al., 2021). The similarity of the mean 15N of 359 

PNsusp on both cruises suggests similar N supply and cycling mechanisms were at work during both 360 

cruises. Regardless, the 15N of this PNsusp was higher than that typically observed in the Sargasso Sea, 361 

-1 to 0‰ (Altabet, 1988, Fawcett et al., 2011), or in other tropical Atlantic regions where diazotrophs 362 

are abundant (Montoya et al., 2002). 363 

The PNsink mass fluxes captured in the sub-euphotic zone traps are somewhat lower than 364 

observations closer to the northern Gulf of Mexico shelf/slope break region (Hung et al., 2004; Hung et 365 

al., 2010), but similar to other observations from the Gulf from deeper waters (Maiti et al., 2014). 366 

Additionally, these PNsink fluxes are similar to results from the Sargasso Sea (Altabet, 1988) and are 367 

somewhat higher than fluxes in the oligotrophic North (Casciotti et al., 2008, Christian et al., 1997) and 368 

South Pacific (Knapp et al., 2016a). Finally, the elevation of the 15N of the PNsink flux relative to the 369 

15N of PNsusp is consistent with prior observations (Altabet, 1988, Altabet et al., 1991, White et al., 370 

2013). 371 

 372 

15N budget constraints on the sources of N fueling export production in the GoM 373 

In spite of low inorganic nutrient concentrations, oligotrophic surface waters still support rates 374 

of export production comparable to regions with higher surface nutrient concentrations (Emerson, 375 

2014). Older 15N budgets in a similarly stratified oligotrophic region near Hawaii have suggested that 376 

N2 fixation provides as much as 50% of the N supporting export production (Karl et al., 1997; Dore et 377 

al., 2002). However, more recent 15N budgets, employing sensitive methods to measure the 15N of 378 

NO3
- present at lower concentrations immediately below the euphotic zone indicate that export 379 

production is primarily fueled by NO3
- near Hawaii (Casciotti et al., 2008), assuming that the PNsink 380 

flux is the primary N loss pathway from the euphotic zone. Even though PNsink is the largest flux of N 381 

out of the euphotic zone, zooplankton vertical migration and mortality or N excretion at depth and 382 

vertical mixing of DOM and/or POM can also be an important vector for C and N loss from surface 383 

waters (Emerson, 2014) (Fig. 6). In the Sargasso Sea near Bermuda, previous 15N budgets have 384 

considered the potential importance of DON and PNsusp consumption as a N source fueling export 385 

production (Knapp et al., 2005). In this previous study, with DON concentration and 15N similar to 386 

those in the GoM, calculated DON and PNsusp consumption did not play a quantitatively important role 387 

supporting export (Knapp et al., 2005). Since a stably stratified water column suggested weak mixing 388 
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and DON and PNsusp vertical gradients were not pronounced (Table III, Figs. 4 and 5), and since no 389 

significant gradients were observed over the duration of the Lagrangian cycles either, we cannot 390 

include PNsusp or DON in these 15N budget calculations. However, we note that consumption of either 391 

PNsusp or DON at rates sufficient to support the magnitude of export production observed in the mid-392 

depth trap would be difficult to resolve in these measurements. For instance, if the PNsink flux in the 393 

sub-euphotic trap of C1, 0.46 mmol N m-2 d-1 (Table I) was entirely supported by the consumption of 394 

DON or PNsusp occurring equally throughout the upper 100 m, it would correspond to a loss of 4.6 nM 395 

N d-1 from the DON or PNsusp pool, not detectable in these concentration measurements over the course 396 

of the 2-4 day cycles. 397 

 With the exception of a recent study (Stukel et al., 2018), previous 15N budgets have not 398 

quantified zooplankton N excretion at depth as another N loss term. Here, we include zooplankton 399 

excretion below the euphotic zone with the PNsink flux in Eqn. 1 to estimate the 15N of total N loss 400 

from the euphotic zone and compare that with the 15N of the presumed largest source of N fueling 401 

export, subsurface NO3
-; Fig. 6 illustrates this conceptually and includes the 15N of N pools and fluxes 402 

in this study. If the 15N of the combined, mass-weighted N loss terms is lower than the 15N of 403 

subsurface NO3
- it implies that the 15N budget is imbalanced and an additional source of N to the 404 

euphotic zone with a lower 15N is required to balance the isotopic composition of N losses. Here, we 405 

assume N2 fixation is the best candidate for that low-15N N source, which introduces N with a 15N 406 

between -2 and 0‰ to the euphotic zone (Carpenter et al., 1997, Hoering & Ford, 1960, Minagawa & 407 

Wada, 1986). However, we note that atmospheric deposition of N has a similarly low 15N signature 408 

(Dillon & Chanton, 2005, Hastings et al., 2003, Knapp et al., 2010). 409 

 First considering the 15N of the source NO3
-, we see that water column samples collected 410 

shallower than 231 m show elevation in NO3
-+NO2

- 15N and 18O as the NO3
-+NO2

- concentration 411 

decreases (Figs. 2 and 3). This increase in both the 15N and 18O of NO3
-+NO2

- reflects NO3
- 412 

assimilation, as is commonly observed below the euphotic zone (Granger et al., 2004, Knapp et al., 413 

2008, Wankel et al., 2007), and thus does not represent the 15N of the source NO3
-. Given the 414 

difficulty in identifying the precise NO3
-+NO2

- source depth, we evaluate a range in NO3
-+NO2

- 15N 415 

end-members, including the shallow NO3
-+NO2

- 15N minima in each profile, as well as the NO3
-+NO2

- 416 

15N in the sample collected immediately below the 15N minima, in the 15N budget calculations (Eqn. 417 

1) (Table I). Using a range of NO3
-+NO2

- 15N values for the end-member when calculating the 418 

importance and rate of N2 fixation allows for variability in the depth from which NO3
-+NO2

- is being 419 
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mixed into the euphotic zone via, e.g., internal waves breaking near the continental shelf (Sharples et 420 

al., 2009, Sharples et al., 2007) and/or eddy pumping (Falkowski et al., 1991).  421 

 Next, we consider the mass flux and isotopic composition of N loss pathways from the euphotic 422 

zone. The two loss terms included in the 15N budget calculations are the PNsink flux and zooplankton 423 

excretion. As described above, the PNsink flux is roughly an order of magnitude larger than the 424 

zooplankton excretion flux (Tables I and II, Fig. 6). Because the 15N of zooplankton excretion is lower 425 

than the 15N of the PNsink flux, the 15N of the combined export fluxes is close to, but up to 0.3‰ 426 

lower than, the 15N of the PNsink flux. Including the mass-weighted 15N of the zooplankton excretion 427 

flux estimated according to Checkley and Miller (1989) (Table II) together with the PNsink flux 428 

modifies the 15N of the combined flux most significantly for C2, where it increases the importance of 429 

N2 fixation from supporting ~10 to 18% of export production. When evaluating the 15N budgets, we 430 

include both the range in the 15N of the NO3
-+NO2

- end-member as well as the standard deviation 431 

associated with the PNsink 15N measurement in our uncertainty estimates (Table I). 432 

 Using these constraints in Eqn. 2 indicates that N2 fixation was not detected as a N source 433 

supporting export production in four of the five cycles (Table I). This is qualitatively evident from 434 

comparing the 15N of the dominant N loss term, the PNsink flux, with the 15N of subsurface NO3
-435 

+NO2
- (Fig. 2), and is consistent with the low abundance of Trichodesmium spp. in this study, <10 436 

trichomes L-1 (Fig. 5) (Selph et al., 2021) compared with prior work where >2000 trichomes L-1 have 437 

been observed in the tropical North Atlantic, e.g. (Capone et al., 1998, Capone et al., 1997, Carpenter 438 

et al., 2004). We see that the 15N of the PNsink + zooplankton excretion fluxes is nearly always higher 439 

than the 15N of subsurface NO3
-+NO2

- (Fig. 2, Tables I and II). Only in C2 during the 2017 cruise was 440 

the 15N of the combined export fluxes lower than the 15N of subsurface NO3
-+NO2

- (i.e., 2.6‰ vs. 3.1 441 

to 3.7‰, respectively) (Fig. 2) (Table I), allowing for an input from a low-15N N source to balance the 442 

15N of N inputs to and loss from the euphotic zone. N2 fixation is estimated to have supported 18 ± 8% 443 

of export production during C2 (Table I). Multiplying this fractional importance of N2 fixation by the 444 

combined PNsink and zooplankton excretion fluxes yields an estimated N2 fixation rate of 90 ± 40 µmol 445 

N m-2 d-1 during C2 (Table I). Additionally, the range in the 15N of subsurface NO3
-+NO2

-, the large 446 

standard deviation associated with the PNsink 15N measurement, and the high PNsink flux indicates that 447 

N2 fixation during C3 supported 0 ± 30% of export production, corresponding to N2 fixation rates of 0 448 

± 336 µmol N m-2 d-1 (Table I). The detection of N2 fixation during the 2017 and not 2018 cycles is 449 

consistent with the higher, albeit still very low, abundance of Trichodesmium spp. in 2017 vs. 2018 450 

(Fig. 5) (Selph et al., 2021). These geochemically-derived N2 fixation rates are also consistent with the 451 
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range of previously reported 15N2 uptake rates from the northern Gulf of Mexico (Redalje et al., 2019) 452 

and references therein). In particular, (Weber et al., 2016) reported low rates of 0.07 to 0.37 nmol N L-1 453 

d-1 in July 2013 near the northern Gulf of Mexico shelf break, while (Holl et al., 2007) reported July 454 

2000 rates of 85 ± 18 µmol N m-2 d-1 from sites near to this study area. This range in previously 455 

reported 15N2 uptake rates largely brackets the geochemical estimates of N2 fixation rates from this 456 

study (Table I). The N2 fixation rates estimated from these 15N budgets are relatively low compared 457 

with those found throughout the global ocean (Luo et al., 2012), and are consistent with previous work 458 

that found a minor role for N2 fixation supporting export production in the nearby Sargasso Sea 459 

(Altabet, 1988, Fawcett et al., 2011, Knapp et al., 2005). 460 

 We note that low rates of N2 fixation (<50 µmol N m-2 d-1) by all diazotrophs may have 461 

occurred in the study region and not been detected by the 15N budget (Knapp et al., 2005). However, 462 

prior work in the Arabian Sea comparing Trichodesmium spp. trichome abundance and PNsink 15N only 463 

observed a depression in the 15N of PNsink when >2000 trichomes L-1 were observed (Capone et al., 464 

1998). To explore the quantitative potential for N2 fixation by Trichodesmium spp. at the trichome 465 

abundances observed in this study to influence the 15N of PNsusp and/or the 15N of DON, we consider 466 

the following. If there were 10 Trichodesmium spp. trichomes L-1 in all of our study locations and times 467 

(Fig. 5) (Selph et al., 2021) fixing at a rate of 1.0 pmol N trichome-1 hr-1 (Capone et al., 1998), and N2 468 

fixation occurred over a 12-hr photoperiod, that would correspond to 120 pM N fixed d-1. We could 469 

further make the (unrealistic) assumption that all of that newly fixed N accumulated as DON, none 470 

went into Trichodesmium spp. biomass, none went into higher trophic levels, no Trichodesmium spp. 471 

sank out (Hewson et al., 2007, Marumo & Asaoka, 1974), and none of the DON was advected away 472 

due to circulation. Making the same assumptions to maximize newly fixed N accumulation in the DON 473 

pool, and sustaining that rate of N2 fixation over 100 days, this would only correspond to an 474 

accumulation of 12 nM DON. This quantity of newly fixed N would not be detectable in terms of 475 

concentration or isotopic composition in the DON or PNsusp pools (Knapp et al., 2008, Knapp et al., 476 

2005, Knapp et al., 2011). In contrast to the mass and isotopic inertia of the PNsusp and especially the 477 

DON pools, the short time period over which the PNsink flux integrates over means the PNsink flux is the 478 

most responsive to small changes in the relative source of new N fueling export, and thus the best target 479 

for detecting N2 fixation inputs (Altabet, 1988, Karl et al., 1997). Given that Thorpe-scale analyses 480 

indicate that vertical NO3
- transport at the time of sampling was low, N fueling the PNsink flux may have 481 

originated from upwelling of NO3
- near the shelf break (Sharples et al., 2009, Sharples et al., 2007) and 482 

lateral advection of resulting organic N (Kelly et al., 2021). Finally, we note that while we have 483 



 17 

assumed that any low-15N inputs to the system are from N2 fixation, the rate of N2 fixation estimated 484 

by the 15N budget for Cycle 2, 90 µmol N m-2 d-1 (Table I) is comparable to rates of atmospheric NO3
-485 

+NO2
- deposition in the region, 20 to 30 µmol N m-2 d-1  (Hastings et al., 2003, Katz et al., 2009, 486 

Prospero et al., 1996), which has a similarly low 15N (Dillon & Chanton, 2005, Hastings et al., 2003, 487 

Knapp et al., 2010). Given the low diazotroph abundance observed on these cruises (Selph et al., 2021), 488 

atmospheric deposition of low-15N N may contribute to the low-15N PNsink flux observed in Cycle 2.  489 

 490 

Mixed layer vs. sub-euphotic zone PNsink 15N: the 15N associated with regenerated production 491 

To the best of our knowledge, the PNsink flux and its 15N have not been reported from sediment 492 

traps deployed within the euphotic zone before. The results from this study show that the PNsink flux 493 

leaving the upper euphotic zone typically exceeds the PNsink flux leaving the base of the euphotic zone. 494 

On the NF1802 cruise, the PNsink flux in the sub-euphotic zone trap was 81% (C4) and 82% (C5) of the 495 

PNsink flux captured in the 60-m trap. On the NF1704 cruise, this ratio varied from 30 to 112% 496 

(although the C3 measurement of 112% was not significantly different from the PNsink flux measured in 497 

the 60-m trap) (Table I). Taken together, these results suggest that more particles were consumed in the 498 

vicinity of the deep chlorophyll maximum than were produced at that depth, with the net consumption 499 

of those particles contributing to regenerated production (Stukel et al., 2021). Importantly, the 15N of 500 

the PNsink flux in the 60 m traps was 0.4 to 2.0‰ lower than that in the deeper traps in all cycles (Fig. 501 

2) (Table I). The 15N of the PNsink flux in the 50 m traps ranged from 1.6  0.3‰ to 3.8  0.2‰ (Table 502 

I). Interestingly, although perhaps not surprising given the small sample size, the 15N increase between 503 

the 60 m and mid-depth traps does not appear related to the ratio of the PNsink flux captured in the mid-504 

depth vs. euphotic zone traps, which would be expected if flux attenuation between the traps was 505 

significant and associated with an isotope effect for N degradation. Regardless, the difference in 15N 506 

of the PNsink flux between the euphotic and sub-euphotic zone is consistent with regenerated production 507 

supported by low-15N N. This is also consistent with high rates of NH4
+ regeneration that have been 508 

found in the northern Gulf of Mexico to be the primary source of N fueling primary productivity (Bode 509 

& Dortch, 1996, Wawrik et al., 2004). Regenerated NH4
+ is expected to be relatively low in 15N 510 

whether it originates from zooplankton excretion (Checkley & Miller, 1989) (Deniro & Epstein, 1981, 511 

Minagawa & Wada, 1984, Wada et al., 1987), or from the degradation of DON (Knapp et al., 2018a, 512 

Knapp et al., 2011, Zhang et al., 2020) or PNsusp (Hannides et al., 2013). Moreover, multiple lines of 513 

evidence indicate that low-15N forms of N accumulate in the pools associated with regenerated 514 

production. Near Bermuda, (Altabet, 1988) showed that the 15N of PNsusp was ~3‰ lower than that of 515 
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PNsink, while the 15N of PNsink was roughly equivalent to that of subsurface NO3
-. Later, (Fawcett et 516 

al., 2011) found that low-15N N sources supported the organisms carrying out regenerated production 517 

near Bermuda. Additionally, they found that the 15N of eukaryotic phytoplankton near Bermuda was 518 

elevated compared to cyanobacteria and heterotrophic microbes. The 15N of the eukaryotes was 519 

similar to that of subsurface NO3
- and the PNsink flux, while the 15N of cyanobacteria was similar to the 520 

15N of the bulk PNsusp pool and 1 to 5‰ lower than the 15N of subsurface NO3
- (Fawcett et al., 2011). 521 

Together, this evidence indicates that the 15N of regenerated N retained in the euphotic zone should be 522 

1 to 6‰ lower than the 15N of the dominant source of N to surface waters, while the 15N of fluxes of 523 

N to and from should be roughly equivalent. Thus, the magnitude of the 15N increase between the 524 

shallow and mid-depth traps observed in the GoM is broadly consistent with the mechanisms outlined 525 

above that would retain low-15N material in the euphotic zone to support regenerated production and 526 

permit elevated 15N to leave via the PNsink flux.  527 

Interestingly, the 15N of the PNsink flux captured in the 60 m traps, 1.6 to 3.8‰ (Table I), is 528 

relatively high compared to the 15N of PNsusp, 1.2 to 2.5‰ (Fig. 5), suggesting that the 60 m PNsink 529 

flux is supported by allochthonous sources of N, such as subsurface NO3
-, and/or is produced by 530 

organisms feeding relatively high in the food chain. Additionally, the 15N of PNsusp is elevated 531 

compared to that collected near Bermuda, -1 to 0‰ (Altabet, 1988, Fawcett et al., 2011). The 532 

differences in the 15N of PNsusp from the GoM and near Bermuda qualitatively indicate that NO3
- is an 533 

even more important source of new N to surface waters and/or that the ratio of new to regenerated 534 

production is higher in the GoM than near Bermuda. Thus, the isotopic evidence overwhelmingly 535 

indicates that subsurface NO3
-, and not N2 fixation, supports export production in these GoM samples. 536 

However, we acknowledge the possibility that PNsink with a 15N between 2.8 to 4.9‰ could also result 537 

from a linear combination of lateral sources of N with a relatively high 15N, potentially including 538 

Mississippi River and/or other coastal sources, with sources of low-15N N, including N2 fixation, 539 

atmospheric deposition, and/or the consumption of DON with an isotope effect (Knapp et al., 2018a, 540 

Zhang et al., 2020). None of our other measurements, however, show any clear evidence of substantial 541 

riverine or diazotrophic influence (Selph et al., 2021). We also note that our results reflect a relatively 542 

short sampling period, and so does not preclude N2 fixation supporting a higher fraction of export at 543 

other times.  544 

CONCLUSIONS 545 
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 Here we use a geochemical tool, a 15N budget, to evaluate the sources of new N fueling export 546 

production in the oceanic Gulf of Mexico. Measurements of water-column NO3
-+NO2

- 15N were 547 

compared with the 15N of PNsink captured in floating sediment traps deployed below the euphotic zone. 548 

The results of the 15N budgets indicate that subsurface NO3
-+NO2

-, not N2 fixation, is the dominant 549 

source of new N supporting export production in samples collected in the deep waters of the Gulf of 550 

Mexico in May of 2017 and 2018. Geochemically estimated N2 fixation rates, when N2 fixation was 551 

detected at all, were low and consistent with prior 15N2 uptake rates reported from the northern Gulf of 552 

Mexico (Holl et al., 2007). We also report the first measurements of DON 15N from the Gulf of 553 

Mexico, which are similar to prior observations from the Sargasso Sea (Knapp et al., 2005, Knapp et 554 

al., 2011). Finally, the difference in the 15N of PNsink collected in the shallow vs. mid-depth sediment 555 

traps is consistent with regenerated production having a low 15N compared to the 15N of the PNsink 556 

flux captured below the euphotic zone.  557 
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 889 

Legends for Tables and Figures 890 

 891 

Table I. The mass and isotopic composition of the sinking particulate nitrogen flux captured in drifting 892 

sediment traps, and results of δ15N budgets for traps deployed below the base of the euphotic zone for 893 

2017 and 2018 cruises, including the range in NO3
-+NO2

- δ15N end-member, fraction of export 894 

supported by N2 fixation (“FN2fix”) and N2 fixation rate determined by multiplying PNsink flux by FN2fix. 895 

The fractional importance of N2 fixation and geochemical N2 fixation rate estimates include 896 

contributions from zooplankton excretion at depth (Table II), see text for details. 897 

 898 

Table II. The ammonia+urea excretion flux by vertically migrating zooplankton and its estimated 899 

isotopic composition. All zooplankton size fractions were summed and the bulk zooplankton isotopic 900 

composition represents the mass-weighted mean δ15N of all zooplankton size fractions in each cycle. 901 

The estimated δ15N of the excretion flux is calculated by: 1) assuming a difference of 3‰ between the 902 

δ15N of bulk zooplankton biomass and the δ15N of the excretion (next to last column) (Checkley and 903 

Miller, 1989), and, 2) modeling zooplankton size and fraction of biomass below the euphotic zone, and 904 

assuming an isotope effect of 5‰ for zooplankton excretion (last column) (Stukel et al., 2018). See text 905 

for details. 906 
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Table III. The mean concentration and δ15N of suspended particulate organic nitrogen (PNsusp) ± 1 907 

standard deviation with depth for each Cycle.  908 

Figure 1. Map of sampling locations for the 2017 (C1, pink, C2, light blue, and C3, green) and 2018 909 

(C4, red, and C5, dark blue) cruises.  910 

 911 

Figure 2. Measurements supporting 15N budget calculations, including the concentration (open circles) 912 

and δ15N (filled circles) of NO3
-+NO2

- as well as PNsink δ15N (filled triangles) from the 2017 (a) and 913 

2018 (b) cruises, with “C1” represented by solid pink lines, “C2” represented by dashed light blue lines, 914 

“C3” represented by dotted green lines, “C4” represented by solid red lines, and “C5” represented by 915 

dashed dark blue lines. The arrows on the x-axes represent the δ15N associated with N2 fixation inputs. 916 

Error bars represent ±1 S.D. and are smaller than the symbol size for NO3
-+NO2

- concentration and 917 

often the NO3
-+NO2

- 15N measurements.  918 

 919 

Figure 3. The concentration, δ15N, and δ18O of NO3
-+NO2

- from the NF1704 (filled squares) and 920 

NF1802 (filled circles) cruises plotted vs. depth (a, b, and c, respectively) and on sigma theta surfaces 921 

(d, e, and f, respectively). Error bars represent ± 1 S.D. and are smaller than the symbol size for NO3
-922 

+NO2
- concentration. Colors follow from Figure 2. 923 

 924 

Figure. 4. Location of sampling during the 2018 cruise (a) with concentration (b) and δ15N (c) of DON 925 

in the upper 150 m. Cross section begins at southwest end and finishes at northeast end of transect. 926 

Salinity contours overlay DON concentration and 15N color contours in panels (b) and (c), 927 

respectively.  928 

 929 

Figure 5. Cycle-mean (± 1 S.D., with cycle colors following from previous figures) upper water column 930 

Trichodesmium spp. trichome abundance (bow tie symbol) (a); chlorophyll a concentration (filled 931 

diamonds) (b), PNsusp concentration (open circles) and DON concentration (filled circles) (c), and 932 

PNsusp 15N (open circles) and DON 15N (filled circles) (d).  933 

 934 

Figure 6. Schematic of nitrogen pools and fluxes to, from, and within the euphotic zone in the 935 

oligotrophic Gulf of Mexico. Dashed lines represent low-15N fluxes, with solid lines representing 936 

transfers of relatively high 15N. The mean flux magnitudes for fluxes out of the euphotic zone 937 

quantified in this study, PNsink and zooplankton excretion, are shown in bold, with units of µmol N m-2 938 

d-1, as well as their representative isotopic composition. The mean concentrations and 15N of PNsusp 939 

and DON in the euphotic are reported with concentration in units of µM. The 15N budgets described in 940 

the text compare the 15N of subsurface NO3
- with the 15N of the PNsink flux and the estimate of 941 

zooplankton excretion below the euphotic zone. Regenerated NH4
+ represents an important low-15N N 942 

source fueling phytoplankton in the euphotic zone.   943 

 944 

 945 

 946 

 947 

 948 
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 951 

 952 

Table I. Mass and isotopic composition of sinking particulate nitrogen flux captured in floating sediment traps and fraction of export supported by N
2
 fixation, as well as geochemically-based

 N
2
 fixation rate. Fractional importance of N

2
 fixation and geochemical N

2
 fixation rate estimates include contributions from zooplankton excretion at depth (Table II), see text for details.

Year Cycle Trap Depth Mass flux range Mean mass flux (±  1 S.D.) PN
sink

 d15N range

(m) (mmol N m-2 d-1) (mmol N m-2 d-1) (‰ vs. N
2
 in air) (± 1 S.D.) (‰ vs . N

2
 in air) (‰ vs. N

2
 in air) (%) ( mol N m-2 d-1)

2017 1 60 1.01 - 2.10 1.53 ±  0.6 2.7 - 3.2  2.9 ±  0.3

140 0.44 - 0.49 0.46 ±  0.02 4.5 - 5.1 4.9 ± 0.3 3.2 to 3.8‰ 0 0

231 0.17 - 0.20 0.19 ±  0.02 4.1 - 4.5 4.2 ± 0.3

2017 2 60 0.79 - 0.88 0.82 ±  0.05 1.9 - 2.9 2.5 ± 0.6

140 0.38 - 0.72 0.52 ±  0.18 2.8 - 2.9 2.9 ± 0.1 3.1 to 3.7‰ 18 ± 8 90 ± 40

231 0.19 - 0.25 0.22 ±  0.03 3.3 - 3.9 3.6 ± 0.3

3 60 0.83 - 1.28 0.98 ±  0.26 1.4 - 1.8 1.6 ± 0.3

140 1.01 - 1.34 1.1 ± 0.18 1.0 - 1.3 3.9 ± 1.5 2.8 to 3.8‰ 0 ± 30 0 ± 336

231 0.32 - 0.55 0.4 ± 0.13 3.5 - 3.9 3.6 ± 0.2

2018 4 60 0.45 - 0.62 0.59 ±  0.04 2.4 - 2.7 2.5 ± 0.2

151 0.38 - 0.57 0.47 ±  0.10 3.4 - 3.7 3.8 ± 0.4 2.0 to 2.2‰ 0 0

231 0.23 - 0.25 0.25 ±  0.01 4.5 - 4.9 4.7 ± 0.2

5 60 1.00 - 1.13 1.08 ±  0.07 3.6 - 4.0 3.8 ± 0.2

117 0.67 - 1.03 0.87 ±  0.18 4.5 - 4.7 4.6 ±  0.1 2.9 to 3.8‰ 0 0

231 0.30 - 0.34 0.32 ±  0.02 4.8 - 5.1 5.0 ± 0.2

N
2
 fix rateF

N2fix
NO

3

-+NO
2

- d15NMean PN
sink

 d15N

Table II. Ammonia excretion flux by diel vertically migrating zooplankton and estimated isotopic composition. The same number of net tows (n) per cycle were used to determine

the zooplankton excretion flux as well as the mean 15N of zooplankton. Within each tow, zooplankton were sorted into five size classes. The ZP d15N reported below represents the 

 mass-weighted mean of all size classes from all tows per cycle. See Landry and Swalethorp (2021) for a dditional details.

Year Cycle Export Depth (m) Net tows Mass flux range Mean mass Flux  (±  1 S.D.) Mean ZP 15N (± 1 S.D.) Excreted 15N* (± 1 S.D.) Excreted 15N# (± error)

(n) ( mol N m-2 d-1) ( mol N m-2 d-1) (‰ vs. N
2
 in air) (‰ vs. N

2
 in air) (‰ vs. N

2
 in air)

2017 1 100 7 -37.0 to 49.2 19.6 ±  49.5 6.0 ± 1.3 3.0 ± 1.3 1.7 ±  0.7

2 100 4 49.0 to 119.8 84.4 ±  50.1 4.1 ± 1.2 1.1 ± 1.2 -1.8 ±  0.4

3 100 8 -52.0 to 126.8 41.9 ±  85.5 4.1 ± 1.2 1.1 ± 1.2 -1.1 ±  0.4

2018 4 100 9 -69.5 to 138.5 37.7 ±  87.2 3.6 ± 1.4 0.6 ± 1.4 -1.1 ±  0.2

5 100 9 81.9 to 309.0 171.7 ±  103.3 6.1 ± 1.0 3.1 ± 1.0 0.2 ±  0.3

*Estimated according to Checkley and Miller (1989), where 15N of excretion flux is 3‰ lower than the 15N of zooplankton
#Estimated using a 5% isotope effect for zooplankton excretion as outlined in Stukel et al. (2018).
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  953 

Cycle Depth PN
susp

 ( M) (± 1 S.D.) PN
susp

 d15N (± 1 S.D.) n

1 5 1.25 ± 0.23 1.41 ± 0.75 4

1 20 0.95 ± 0.05 1.47 ± 0.87 4

1 30 0.89 ± 0.11 1.43 ± 0.72 4

1 50 1.10 ± 0.24 1.92 ± 0.50 4

1 70 0.93 ± 0.21 2.22 ± 1.44 4

1 100 1.02 ± 0.08 1.26 ± 0.91 4

2 5 1.13 ± 0.35 1.05 ± 1.37 3

2 20 0.90 ± 0.25 1.01 ± 1.18 3

2 40 0.88 ± 0.15 1.54 ± 0.97 3

2 60 0.90 ± 0.14 1.22 ± 0.75 3

2 80 1.09 ± 0.25 1.57 ± 1.59 3

2 115 0.85 ± 0.05 1.92 ± 1.26 3

3 5 1.26 ± 0.26 1.03 ± 0.49 4

3 20 1.10 ± 0.22 0.94 ± 1.27 4

3 40 1.21 ± 0.53 1.37 ± 0.31 4

3 60 1.17 ± 0.14 2.33 ± 0.75 4

3 80 1.02 ± 0.32 2.52 ± 1.75 4

3 115 1.04 ± 0.52 2.50 ± 0.72 4

4 5 0.56 ± 0.04 2.02 ± 2.33 5

4 20 0.52 ± 0.07 1.88 ± 1.90 5

4 40 0.48 ± 0.08 2.48 ± 2.45 5

4 55 0.42 ± 0.03 1.99 ± 1.40 5

4 80 0.48 ± 0.06 1.66 ± 1.95 5

4 114 0.52 ± 0.10 1.67 ± 2.41 5

5 5 0.78 ± 0.14 3.01 ± 0.88 5

5 12 0.67 ± 0.05 2.39 ± 0.58 4

5 24 0.73 ± 0.29 2.76 ± 1.37 5

5 42 0.74 ± 0.22 2.47 ± 1.65 5

5 60 0.55 ± 0.05 0.25 ± 0.37 3

5 70 0.72 ± 0.12 2.90 ± 0.14 2

5 80 0.98 ± 0.51 2.36 ± 1.57 2

5 90 0.49 ± 0.04 2.30 ± 1.0 2

5 100 0.45 -0.77 1

Table III. Mean concentration and nitrogen isotopic composition of suspended 

particulate organic nitrogen (PN
susp

) ± 1 standard deviation.  
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Figure 4.   1013 
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