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Linear regression is a classic method of data analysis. In recent years, sketching—a method of dimension
reduction using random sampling, random projections or both—has gained popularity as an effective
computational approximation when the number of observations greatly exceeds the number of variables.
In this paper, we address the following question: how does sketching affect the statistical properties
of the solution and key quantities derived from it? To answer this question, we present a projector-
based approach to sketched linear regression that is exact and that requires minimal assumptions on
the sketching matrix. Therefore, downstream analyses hold exactly and generally for all sketching
schemes. Additionally, a projector-based approach enables derivation of key quantities from classic linear
regression that account for the combined model- and algorithm-induced uncertainties. We demonstrate
the usefulness of a projector-based approach in quantifying and enabling insight on excess uncertainties
and bias-variance decompositions for sketched linear regression. Finally, we demonstrate how the insights
from our projector-based analyses can be used to produce practical sketching diagnostics to aid the design
of judicious sketching schemes.
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1. Introduction

Linear regression is a classic method of data analysis that is ubiquitous across numerous domains. In
recent years, sketching—a method of dimension reduction using random sampling, random projections
or a combination of both—has gained popularity as an effective computational approximation when the
number of observations greatly exceeds the number of variables. In this paper, we address the following
question: how does sketching affect the statistical properties of the solution and key statistical quantities
derived from it?

To answer this question, we begin with the simplest class of linear regression problems, those
of full column rank because they are well-posed, and regularization is not required to ensure the
existence of a unique solution in exact arithmetic. We present a projector-based approach to sketched
linear regression that is exact and that requires no additional assumptions on the sketching matrix.
Consequently, downstream analyses derived from this formulation of the sketched solution hold exactly
and generally for all sketching schemes, while accounting for both model- and algorithmic-induced
uncertainties.

© The Author(s) 2021. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

120Z 4890100 L€ U 1sonB Aq 858/ +£9/9 1 00EEY/IBIBWIIEE0L 01 /10P/3[0le-90UBAPE/IBIBWI/WO0D"dNO"0IWSPEOE//:SARY WO} PAPEOIUMOQ


https://doi.org/10.1093/imaiai/iaab016

2 J.T.CHI AND I. C. F. IPSEN

Our paper extends previous work on the combined model- and algorithm-induced uncertainties of
the sketched solution to exact expressions that hold generally for all sketching schemes. Specifically,
we extend existing work on the total expectation and variance of the sketched solution from specific
sampling schemes [22, 23] to all sketching schemes. Due to the assumptions and limitations of a
Taylor expansion approach to the solution in [22, 23], the expressions for the total uncertainties there
are restricted to specific sampling schemes. By contrast, our expressions hold for many commonly
used sketching schemes not covered by [22, 23]. These include sketching with fast Fourier Johnston—
Lindenstrauss transforms (FJLTs), Gaussian random matrices and random row-mixing transformations
followed by uniform sampling.

We demonstrate the usefulness of a projector-based approach in quantifying and enabling insight on
excess uncertainties arising from the randomness in the sketching algorithm. We highlight this through
geometric insights and interpretation for the excess bias and variance and analyses of total and excess
bias-variance decompositions for sketched linear regression. Finally, we demonstrate how the insights
from our projector-based analyses can be used to produce practical sketching diagnostics to aid the
design of judicious sketching schemes.

1.1 Related work

Randomized sketching is a form of preconditioning. It was introduced in [29] for data-oblivious random
projections but first applied to least squares problems in [8] and explicitly presented as a preconditioner
for least squares problems in [1, 28]. Its many variants can be classified [35, Section 1] according to
whether they achieve row compression [2, 8,9, 17, 22, 23, 27, 28, 39], column compression [1, 18, 25,
35, 41] or both [26]. We focus on row-sketched linear regression, where the number of observations
greatly exceeds the number of variables. We refer to this simply as sketched linear regression.

Since sketched linear regression has roots in theoretical computer science and numerical analysis,
much emphasis has been on analyzing the error due to algorithmic randomization. Recent works have
made progress toward a combined statistical and algorithmic perspective. These include criteria for
quantifying prediction and residual efficiency [27], bootstrap estimates for estimating the combined
uncertainty [20], approximate expressions for the total expectation and variance of some randomized
sampling estimators [22, 23] and asymptotic analysis of randomized sampling estimators [24].

1.2 Overview

We present results in terms of two regimes. The first regime requires no assumptions on the sketching
matrix beyond its dimensions. Consequently, these results hold generally for all sketching matrices and
provide a worst-case analysis since they hold even for poor choices of sketching schemes.

The second regime presents results conditioned on rank preservation so that the sketched matrix has
the same rank as the original design matrix X. Rank preservation implies that the sketching scheme
successfully preserves the most relevant information in the original response y and design matrix X.
Although these results require an additional assumption, conditioning on rank preservation enables
further insights on how the sketching process affects the solution and other key statistical quantities.
Thus, results from this second regime provide insights from an ideal-case analysis.

2. Sketched Linear Regression

We begin by setting some notation for the rest of this paper. We then review the exact and sketched
linear regression problems, their solutions and other relevant quantities.
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2.1 Preliminaries

Let X € R™ be observed with rank(X) = p. Since X has full column rank, its Moore—Penrose inverse
is a left inverse so that

X'=x"X)"'X"  and X'X=1I,

Let | X]|, denote the Euclidean operator norm of X. The two-norm condition number of X with regard
to left inversion is

iy (X) = X[, IXT .

We additionally use || - ||, to denote the Euclidean vector norm for vectors. The use of || - ||, to denote
either the Euclidean operator or vector norm will be clear from the context. Let I, denote the n x n
identity matrix, and let 0 and 1 denote the vectors of all zeros and ones, respectively. Their lengths will
be clear from the context.

2.2 The exact problem and solution

Given an observed pairy € R” and X € R"*? with rank(X) = p, we assume a Gaussian linear model
y = XB, + ¢ €~ N (0,071, (2.1)
where B, € R? is the true but unobserved coefficient vector and € € R" is a noise vector with a zero

mean multivariate normal distribution and 0 < o2 € R. The unique maximum likelihood estimator of
By is the solution B of the exact linear regression problem

min lly — XBIL. (22)
Since X has full column rank, this problem is well-posed and has the unique solution
B =XTy.
The exact prediction and residual are
§=XB and E=y-XB=y-j,
respectively. The orthogonal projector onto range(X) along null(X7) is
P, = XX = XX'X)"'X7 e R™"
and is also known as the hat matrix [5, 14, 38]. We express the prediction and residual as

y=Py and e=I-Py.
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2.3 The sketched problem and solution

Given an observed matrix-valued random variable S € R™”" with p < r < n, the sketched linear
regression problem

in ||S(y — XB)|13 2.3

&lkgll (y —XB)l3 (2.3)
has the minimum norm solution

B=(SX)"sy,

where S is a sketching matrix. Since we make no assumptions on S beyond its dimensions, the sketched
matrix SX may be rank deficient so that (2.3) may be ill-posed.

By design, S has fewer rows than X. Therefore, the corresponding predictions § = Xﬁ and SX[~3 have
different dimension and cannot be directly compared. To remedy this, we follow previous works [8, 9,
27] and compare the predictions with regard to the original design matrix X. Therefore, the sketched
prediction and residual are

y=XB and é=y-Xp=y-y.

Sketching can be an effective approach in the highly over-constrained case [8, 9, 23, 27, 28, 39],
where n greatly exceeds p. A standard method of computing the exact solution of (2.2) is based on a
QR decomposition, which requires O(n’p) operations. Meanwhile, applying a general sketching matrix
requires O(rnp) operations (fewer when sketching with FJLTs or diagonal sampling matrices) and
solving the reduced dimension problem (2.3) requires O(r*p) operations. Thus, computation of a general
sketched solution requires O(rnp) operations so that sketching can offer substantial computational
savings for very large n with r significantly smaller than n.

We note that there are also other approaches to linear regression. For example, as pointed out by
one of our reviewers, the Cholesky approach or sweep operator operate on the Gram matrix X' X. The
computational cost for solutions involving these is O(np?) (to assemble the Gram matrix) plus O(p°) (to
apply the Cholesky decomposition or sweep operator). Therefore, these algorithms scale readily to the
big n, small p scenario, as they are essentially linear in 7.

The solution of the normal equations XTXé = Xy, however, can be numerically unstable since
for nearly rank-deficient X, ‘the formation of X’ X can result in a significant loss of information’ [11,
Section 5.3.2]. Moreover, the condition number is always [/cz(X)]2 even if the least squares residual is
small. By contrast, the sensitivity from a QR-based solver is quantified by the condition number «, (X)
for small residuals [11, Theorem 5.3.1].

Finally, we note that the sweep operator [19, Sections 7.3—7.6] is designed for efficient computation
of quadratic forms involving inverse covariances associated with multivariate normal distributions.
When applied to a bordered 2 x 2 block matrix with XX in the (1, 1) block and expressions involving y
in the remaining blocks, the sweep operator produces a block matrix with the variance in the (1, 1) block
and the solution and least squares residual in the other blocks. We do not consider the sweep operator
here as it appears to require—either explicitly or implicitly—the formation of XX with its attendant
potential numerical instability.
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3. A Projector-Based Approach

Given a sketching matrix S, we view the sketched problem in (2.3) as a deterministic multiplicative
perturbation of the exact problem in (2.2). Therefore, we derive structural bounds for the sketched
quantities. We begin by presenting an oblique projector for the sketched problem in (2.3) that plays the
role of P in (2.2). This oblique projector enables comparisons between the sketched solution, prediction
and residual and their higher-dimensional exact counterparts.

LeEmmaA 3.1. For the sketched problem in (2.3),
P =X(SX)'S
is an oblique projector where
P.P=P and PX =Xif rank(SX) =p.
These properties follow from the definitions of X" and (SX)T. In general, we have
rank(P) = rank(SX) < rank(X) = rank(P,) = p,

so that range(P) C range(P,). If S preserves rank so that rank(SX) = rank(X), then range(P) =
range(P,). However, null(P) = null(XTSTS) [37, Theorem 3.1], so that null(P) # null(P,) in general.
Finally, if S =1, then P = P_.

Notice that P generalizes P, = USU)Sin[27, (11)], where U is an orthonormal basis for range(X),
for quantifying the prediction efficiency and residual efficiency of sketching algorithms. However, P, is
only defined if rank(SX) = rank(X), and in that case, P,, = P. Since our analyses extend to rank(SX) <
rank(X), we employ the more general P.

Oblique projectors also appear in other contexts. Examples include constrained least squares
[33, 37], weighted least squares [3, 32], discrete inverse problems [12] and the discrete empirical
interpolation method [10, Section 3.1] to name a few. We now present the sketched solution, prediction
and residual for (2.3) in terms of P.

THEOREM 3.1. For the sketched problem in (2.3), the minimum norm solution is
B=X"Py=3+X(P-Py.
Therefore, the sketched prediction y = Xfi and residual e =y — Xﬁ are
y=Py=3+@®—-P)y and € = I-P)y=¢+ (P, —P)y.

The expressions for ﬁ, y and € follow from their definitions in Section 2 and the definitions of P, P,
vy, ﬁ and €. Although the expressions for ﬁ, y and € in Theorem 3.1 are straightforward, they are exact
and hold generally for all sketching schemes.

The significance of Theorem 3.1 is that since it requires no assumptions on S (beyond its
dimensions) or rank(SX), it enables expressions for the total uncertainty due to the combined
model- and algorithm-induced randomness for a// sketching schemes. These include many commonly

120Z 4890100 L€ U 1sonB Aq 858/ +£9/9 1 00EEY/IBIBWIIEE0L 01 /10P/3[0le-90UBAPE/IBIBWI/WO0D"dNO"0IWSPEOE//:SARY WO} PAPEOIUMOQ



6 J.T.CHI AND I. C. F. IPSEN

used sketching schemes not covered by previous work [22, 23]. We comparing Theorem 3.1 to a
corresponding result in [23], reproduced below in Lemma 3.2.

LeEMMA 3.2. ([23, Lemma 1]) For the sketched problem in (2.3), if the following additionally hold—(1)
the sketching matrix S has a single non-zero entry per row, (2) the vector w = diag(S”S) € R” has a
scaled multinomial distribution with expected value E[w] = 1, (3) S preserves rank so that rank(SX) =
rank(X) and (4) the sketched solution admits a Taylor series expansion around E[w]—then

Bw) = B+ X' diag(®)(w — 1) + R(w),

where R(w) is the remainder of the Taylor series expansion.

The assumptions in [23, Lemma 1] and its other versions in [23] limit their scope to sampling
schemes where the expected value of the sampling weights vector is known. Consequently, downstream
analysis of the total expectation and variance of the sketched solution using these in [23] are also limited
to those same sampling schemes.

Therefore, Theorem 3.1 extends the pioneering work on quantifying the total uncertainties for
sketched in linear regression in [22, 23] in the following ways.

1. First, Theorem 3.1 places no assumptions on S or rank(SX) so that it applies generally to all
sketching schemes. In practice, a wide variety of sketching schemes are used. These include
sketching with fast FILTs, Gaussian transforms and combinations of FJLTs followed by uniform
sampling, to name a few. Unfortunately, the analysis in [23] does not apply to these.

2. Secondly, Theorem 3.1 is exact so that downstream analysis with these expressions do not hinge
on the assumptions required for approximations.

3. Thirdly, framing the sketched solution in terms of the difference between the orthogonal projector
P, for the exact problem and oblique projector P for the sketched problem affords additional
geometric insight that we detail later in Sections 4— 6.

4. Finally, a projector-based approach greatly simplifies the proofs so that Theorem 3.1 does not
require the heavy-duty matrix algebra used to produce the approximate yet more restrictive
existing results in [22, 23].

Applying Theorem 3.1 and [11, (5.3.16)], which implies that

Iyl iyl _ 1
IXI, 181, — IXBll, — cos®

produces the following relative error bounds for the sketched solution and prediction.

CoroLLARY 3.1. For the sketched problem in (2.3), let 0 < 6 < 7 be the angle between y and
range(X). Then, the minimum norm sketched solution E satisfies

1B — Bl Iyl IP — Pyl
T2 < p(X) —2— |IP = Py l, <ip(X) ——22.

18Il X112 11811 cos §
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TOTAL AND EXCESS UNCERTAINTIES FOR SKETCHED LINEAR REGRESSION 7

The sketched prediction y = X8 satisfies

Iy =¥l _ [P —Pyll
A~ ~ .
¥l cos 6

The bounds in Corollary 3.1 are tight for S = I,. Corollary 3.1 implies that the sensitivity of ﬁ
to multiplicative perturbations depends on the deviation of P from being an orthogonal projector onto
range(X), quantified by ||[P — P,||,. This distance is amplified, as expected, by the conditioning of X
with regard to (left) inversion and by the closeness of y to range(X). Corollary 3.1 is an absolute and
relative bound since ||[P [, = 1.

In contrast to multiplicative perturbation bounds for eigenvalue and singular value problems [15, 16],
Corollary 3.1 does not require S to be non-singular or square. We do not view weighted least squares
problems [11, Section 6.1] as multiplicative perturbations since they employ non-singular diagonal
matrices S for regularization or scaling of discrepancies.

In contrast to additive perturbation bounds ([11, Section 5.3.6], [13, Section 20.1], [31, (3.4)]),
Corollary 3.1 requires neither the square of the condition number nor rank(SX) = rank(X). Therefore,
the minimum norm sketched solution § and its residual € are less sensitive to multiplicative perturba-
tions than to additive perturbations. Extensive discussions of multiplicative perturbation bounds and
comparisons to their additive counterparts are presented in [15, 16], where the purpose is the derivation
of relative error bounds. Here, we employ multiplicative ones because they appear naturally since the
perturbation arises from the multiplication of X by a sketching matrix.

Compared with [34], where the perturbation theory is targeted at additive perturbations, we also
make extensive use of projectors. However, the bounds in [34, Chapter III] concern least squares
problems in their most general form, where X can be rank deficient so that its Moore—Penrose inverse
is ill-posed. Consequently, the derivations rely on expanding acute perturbations of the Moore—Penrose
inverse as well as asymptotic forms and derivatives of the Moore—Penrose inverse.

Corollary 3.1 improves on existing structural bounds for sketched least squares algorithms, such as
[9, Theorem 1] reproduced in Lemma 3.3 below.

Lemma 3.3. ([9, Theorem 1]) For the sketched problem in (2.3), if ||[Pyyll, = ¥ |lyll, for some 0 <
y < land [[€]l, < (1+n) [l€],, then

BBl /21

1Bl

Corollary 3.1 improves on [9, Theorem 1] in the following ways. First, the bound for B in
Corollary 3.1 is more general and tighter as it does not exhibit nonlinear dependencies on the
perturbations. Secondly, Corollary 3.1 holds under weaker assumptions. The first inequality for the
sketched solution in Corollary 3.1 requires only that ﬁ # 0. The second inequality for the sketched
solution requires only that y ¢ range(X) and y ¢ range(X™).

4. Model- and Algorithm-Induced Uncertainties

The solution ﬁ of the exact problem in (2.2) has desirable statistical properties since it is an unbiased
estimator of the true coefficient vector B, and it has minimal variance among all linear unbiased
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8 J.T.CHI AND I. C. F. IPSEN

estimators of B, e.g. [30, Chapter 3, Section 3d]. A question one might ask is the following: how
does sketching affect the statistical properties of the solution ﬁ of (2.3)?

To answer this question, we derive the total expectation and variance due to the combined model-
and algorithm-induced uncertainties for the sketched solution § and compare them with those of the
exact solution ﬁ Since our expressions rely on Theorem 3.1, our results extend the work in [22, 23] to
all sketching schemes.

We briefly review the model-induced uncertainty from a Gaussian linear model in Section 4.1.
We then derive the expectation and variance of B conditioned on the algorithm-induced uncertainty
in Section 4.2. Next, we employ the law of total expectation, e.g. [4, Theorem 4.4.3], to derive the total
expectation and variance for the combined model- and algorithm-induced uncertainties in Section 4.3.
Finally, we visit the total expectation and variance conditioned on sketching schemes that preserve rank
in Section 4.4. While the latter require an additional assumption, they enable insights that we elaborate
on later.

4.1 Model-induced uncertainty

We refer to the randomness implied by a Gaussian linear model as the model-induced uncertainty. Since
the noise vector has mean and variance equal to

— _ 2
Ey[e] =0 and Vary[e] =071,

the exact solution f has mean and variance equal to

~

E,[B1 =8, and Var,[f]=c?X"X)"" e R"?. (4.1)

It is well known that the variance of ﬁ depends on the conditioning of X [31, Section 5].

A difficulty in analyzing row-sketching (2.3), coupled with general concern regarding first-order
expansions like the ones in [22, 23], is potential rank deficiency in the sketched matrix so that
rank(SX) < rank(X). In this case, (SX)' cannot be expressed in terms of SX. Thus, we introduce a
projector that quantifies the bias arising from rank deficiency in SX.

For the sketched problem in (2.3),

Py = (SX)T(SX) € R
is an orthogonal projector with the following consequences:
PX=XP, and P;= Ip if rank(SX) = p.

Orthogonality follows from (Py)? = P, and (P,)7 = P, which follow from the fact that (SX)*
is a Moore—Penrose generalized inverse. If rank(SX) < p, then P, characterizes the subspace of
range(X) onto which P projects. The name bias projector will become apparent in Theorem 4.1, where
P, quantifies the bias in f.
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TOTAL AND EXCESS UNCERTAINTIES FOR SKETCHED LINEAR REGRESSION 9

4.2 Conditional expectation and variance

We condition on a given sketching matrix S and derive the conditional model-induced expectation and
variance of the sketched solution . Theorem 4.1 below shows that the conditional expectation depends
on the bias projector Py, while the conditional variance depends on the oblique projector P.

For the sketched problem in (2.3), the solution B has conditional expectation

E,[BIS] = PyBy = By — (I— Py)By,

where I — P quantifies the rank deficiency of SX and conditional variance

Var,[B|S] = o (X*P) (XTP)T

Var,[B] + o> X (PPT - Px) xhH,

where PPT — P, represents the deviation of P from being an orthogonal projector onto range(X).

Proof. For the conditional expectation, we employ the second expression for ﬁ in Theorem 3.1. The
result follows from the fact that X' is a left inverse for X and the definition of Py.

For the first expression for the conditional variance, we apply the definition of the variance
conditioned on S to the first expression for B in Theorem 3.1. We combine this with the expression
for the conditional expectation for § to obtain

Var,[B1S] = E,[BB’ 1S]—E,[B|S] E,[BISI”
= (XTB) Bylyy"1 (XP) " — (ByBy) By (42)

Expanding the middle term in the first summand gives

Eylyy'] = (XBy)(XBp)" + Ey[ee’]

(XBy) XB) T + 01, (4.3)

We then substitute (4.3) into (4.2). Using the fact that X'PX = P, and canceling terms produces the
first expression. For the second expression for the conditional variance, we use the facts that

XP, =X" and X'(XNHT = X™X)"!
to rewrite Vary[ﬁ] in (4.1) as
A 2 N
Var [B] = o X'P (X" (4.4)
The result follows from adding and subtracting (4.4) in the first expression for the conditional variance.

For the interpretation of I — Py, notice that if SX has full column rank, then P, = I. Therefore,
I — P, represents the deviation of SX from having full column rank.
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10 J.T.CHI AND . C. F. IPSEN

For the interpretation of PP’ — P,, notice that since range(P) C range(P,), P projects onto a
subspace of range(X). If additionally, P is an orthogonal projector, symmetry requires S = I, so that
P=PP’ = P, . Therefore, ppT — P, represents the deviation of P from being an orthogonal projector
onto range(X). O

Theorem 4.1 shows that the conditional expectation of ﬁ depends on the rank deficiency of SX. In
particular, the conditional bias of B is proportional to the deviation I — Py of SX from having full column
rank. To see this, notice that conditioned on SX having full column rank, Py = I. In this case, I — P
vanishes and ﬁ is a conditionally unbiased estimator of B, with

Ey[B | rank(SX) = rank(X)] = B,.

Since this holds for any S, the conditional bias of ﬁ depends only on rank(SX).
Theorem 4.1 also shows that the conditional variance of B depends on the deviation of P from being
an orthogonal projector onto range(X). In particular, the conditional variance Vary[B | S] is close to the

model variance Vary[ﬁ] if P is close to P,. In the extreme case that S = I, the conditional variance is
identical to the model variance. Corollary 4.1 follows directly from Theorem 4.1 and further highlights
the relevance of I — Py and PP7 — P_.

Given the assumptions in Theorem 4.1, we have

IE,IBIST—Boll, < IT—"Poll5 lIBoll

and

| Var, [B| 8] — Var, [B]Il,

. < |PPT —P|,.
I Var, [B]ll,

The relative conditional variance follows from Theorem 4.1 and the facts that || X ll5 | xhHT I, =
IXFXH T, XT(XHT = (XTX)~! and 62 > 0 so that || Vary[ﬁ]n2 £ 0.

Corollary 4.1 shows that the relative differences in the conditional bias and variance can be
expressed solely in terms of I — Py and PP’ — P,. In particular, the conditional bias of § increases with
rank deficiency in SX. Additionally, the relative difference between conditional and model variances
increases with the deviation of P from P, .

Therefore, Corollary 4.1 shows that unbiasedness is more readily achievable since it requires only
that SX have full column rank. Meanwhile, the conditional variance of § is guaranteed to be at least as
large as Vary[ﬁ], with equality only when S = I, so that P = P,. In this case, the sketched problem in
(2.3) becomes the exact problem in (2.2).

4.3 Total expectation and variance

We now view the sketching matrix S as a matrix-valued random variable and derive the total expectation
and variance of the sketched solution §. We employ the expressions for the conditional expectation and
variance in Section 4.2 and the law of total expectation.
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TOTAL AND EXCESS UNCERTAINTIES FOR SKETCHED LINEAR REGRESSION 11
For the sketched problem in (2.3), the solution [~3 has total expectation
E[B] = Bo - (I - Es[PO]) Bo
and total variance

Var[B] = Var[p] + o2 X' (IES[PPT = Px) (XN + Var,[PyB,].

Proof. For the total expectation, we combine our expression for Ey[ﬁ | S] from Theorem 4.1 with the
law of total expectation. For the total variance, we apply the expression for the total expectation in the
definition of the variance to obtain

Var[B] = E[BB' | - E[BIE[R)”
= B, [E, [BB [ S]] - (E,[PyIBo) (ES[Py1B,)" (4.5)
From (4.2) and (4.3), we have
By [BB"[S] = X PPT (X)) + (ByB) (PyB). (4.6)

Inserting (4.6) into (4.5) then gives us
Varlp] = o2X'E, [PPT ] xHT

+E, [ (Pobo) (PoBo) "] — (EL[PyIB0) (Eo[Po1Bo) "

Varg[PoBy]

where the latter two terms in the above expression are equal to Var [PB,]. Finally, using the fact that
XTPX XHT = (XTX)~!, we add and subtract Var[B] from the above expression to obtain the result. [J

Theorem 4.2 shows that the total bias of ﬁ is proportional to the expected deviation of the matrix-
valued random variable SX from having full column rank. Therefore, after accounting for both the
model- and algorithm-induced uncertainties, the bias of B depends on the expected value of P. Notice,
however, that the expectation [E [Py] of a projector P is not a projector in general.

Theorem 4.2 also shows that the total variance of ﬁ can be decomposed into the following three
components:

1. the inherent model variance in ﬁ,

2. the expected deviation of the matrix-valued random variable P from being an orthogonal
projector onto range(X) and

3. the variance in the rank deficiency of the matrix-valued random variable SX as captured through
the bias projector Py.
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12 J.T.CHI AND . C. F. IPSEN

Corollary 4.2 follows from Theorem 4.2. It shows how rank deficiency, as quantified by I — P, and
the deviation of P from being an orthogonal projector, as quantified by PP7 — P, affect the relative
differences between the total and model uncertainties.

Given the assumptions in Theorem 4.2, we have

IEB] — Boll, < 1T —E[Pylll, 1Byl
and

| Var[B] — Var,[B]Il,
I Vary[B]]l,

II'Vary[(X— Py)Bolll,

< IE([PPT] — Pyl + )
| Vary [B]ll

Compared with Corollary 4.1, where the difference between the conditional and model variance
depends only on PP” — P, Corollary 4.2 shows that the difference between the total and model variance
depends on two sources. The first is the expected deviation of P from being an orthogonal projector as
quantified in ]ES[PPT ] — P,. The second is the ratio of the variance of the estimation distortion due to
rank deficiency to the model variance. If the variance in the distortion due to rank deficiency is small
relative to the model variance, then this latter term is likewise small.

4.4 Total uncertainties conditioned on rank preservation

In the previous sections, we worked toward deriving unconditional expressions quantifying the com-
bined model- and algorithm-induced uncertainties in sketched linear regression. Since those expressions
require no assumptions on the sketching matrix S beyond its dimensions, they hold exactly and in general
for all sketching schemes.

We now present results that condition on sketching matrices that preserve rank so that rank(SX) =
rank(X). Although these results require an additional assumption, conditioning on rank preservation
enables further insight, which we detail below and in other following sections. .

For the sketched problem in (2.3) conditioned on rank(SX) = rank(X), the solution B has total
expectation

E[B] = By
and total variance
Var[B] = Var[p] + o2 X' (ES[PPT 1- Px) xhHT.

The expressions for the total expectation and variance follow from Theorem 4.2 and the fact that
E,[Pg | rank(SX) = rank(X)] = I. Corollary 4.3 shows that conditioning on rank preservation, the
sketched solution B is an unbiased estimator of B,. Later, in Corollary 5.3, we will find that even in
these cases, however, the total variance of ﬁ is at least as great as the model variance Var[ﬁ].

Compared with [23, Lemma 2] which also assumes rank preservation, Corollary 4.3 is more general
in that it holds for all sketching matrices, without restriction to specific kinds of sampling matrices.
Additionally, [23, Lemma 2] has an additional term due to the variance of the Taylor expansion

120Z 4890100 L€ U 1sonB Aq 858/ +£9/9 1 00EEY/IBIBWIIEE0L 01 /10P/3[0le-90UBAPE/IBIBWI/WO0D"dNO"0IWSPEOE//:SARY WO} PAPEOIUMOQ



TOTAL AND EXCESS UNCERTAINTIES FOR SKETCHED LINEAR REGRESSION 13

remainder. Corollary 4.3 lacks this term since the projector-based formulation of the ﬁ in Theorem 3.1
holds exactly without any additional assumptions.

5. Total Excess Bias and Variance

We summarize and interpret the excess bias and excess variance attributable to algorithm-induced
uncertainties. These represent the additional bias and variance in the sketched solution § beyond the
model bias Bias(ﬁ, By) and model variance Var(é) arising from the assumptions of a Gaussian linear
model. We show that the projector-based approach in Theorem 3.1 enables insight and understanding
into the sources of excess bias and variance.

For the problem in (2.3), the solution B has total excess bias equal to

# = (EPy] — DB,
and total excess variance equal to

¥ = o2xt (]ES[PPT ]—Px) (XN + Var,[PoB,] -
—_————

T Ty

Corollary 5.1 follows from Theorem 4.2 and the fact that the exact solution ﬁ is an unbiased
estimator of B,. Recall that E([P,] — I represents the expected deviation of the sketched matrix SX from
having full column rank. Therefore, the excess bias % represents the expected estimation distortion
under rank deficiency from sketching.

Corollary 5.1 shows that we can decompose the excess variance ¥ due to randomness in the
sketching algorithm into two sources. The first source ¥} is due to the expected deviation of the oblique
projector P from being an orthogonal projector onto range(X). The second source ”I/PO arises from
the variance of the estimation distortion under rank deficiency from sketching. Conditioning on rank
preservation so that rank(SX) = rank(X) presents simplifications that enable additional insights on the
total excess bias and variance. .

For the problem in (2.3) conditioned on rank(SX) = rank(X), the solution f has zero total excess
bias and total excess variance equal to

v = o2xt (IES[PPT]—PX) xhHT .

o

Corollary 5.2 follows from Corollary 4.3. Conditioning on rank preservation, both the excess bias #
and the excess variance due to rank deficiency ¥p, vanish. Therefore, the excess variance conditioned
on rank preservation ¥ is equal to ¥p, which quantifies the excess variance arising from the expected
deviation of P from P,.

For further interpretation of ¥#p , we revisit the range and null spaces of P and P,. Recall that if
rank(SX) = rank(X), we have

range(P) = range(P,).
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14 J.T.CHI AND . C. F. IPSEN

The fact that range(P) C range(P,) follows from the identity P,P = P. Additionally, the fact that
range(P,) C range(P) follows from the identity PP, = P,. Equality therefore follows from double
containment. Meanwhile, from [37, Theorem 3.1], we have

null(P) = null(X'STS) # null(X") = null(P,)

in general. Thus, we observe how sketching perturbs the subspaces from the exact problem. If
rank(SX) = rank(X), the sketching and orthogonal projectors, P and P,, have the same range. However,
the dimension reduction achieved through sketching comes at the cost of a perturbation of null(P,).
Therefore, the excess variance arising from the deviation of P from P, reflects the perturbation of
the original subspaces due to algorithm-induced randomness. Specifically, the deviation of P from P, in
”f/Px conditioned on rank preservation reflects the deviation of null(P) from null(P,).
For the problem in (2.3) conditioned on rank(SX) = rank(X), we have

Var[B] = Var[B],

where the = operator denotes the Loewner ordering for symmetric matrices of the same dimension.
Additionally, we have

trace(¥p) > 0  so that trace(Var[ﬁ]) > trace(Var[ﬁ]).

Proof.  Corollary 5.3 follows from the fact that conditioning on rank preservation gives the identity
PP,PT = P,. Therefore, 7p is positive semi-definite since I — P, is idempotent. The variance
inequalities follow from the fact that positive semi-definite matrices have non-negative trace. O

The facts that Var[ﬁ] = Var[ﬁ] and trace(Var[ﬁ]) > trace(Var[ﬁ]) are unsurprising in themselves
since é is the best linear unbiased estimator of B, e.g. [30, Chapter 3, Section 3d]. What is surprising,
however, is that the projector-based approach shows directly that the additional variance is due to the
expected deviation of null(P) from null(P,).

6. Bias-Variance Decompositions

We show that the projector-based approach combined with the total uncertainty quantities from
Section 4.3 further enable bias-variance decompositions that hold generally for all sketching schemes.
We begin by analyzing the mean squared error for the true parameter B,. We then examine the predictive
risk, which in this case is the mean squared error for the true prediction XB,. We employ the MSE(-, -)
and R(-, -) operators to denote the mean squared error and predictive risk between two vectors of the
same dimension, respectively. .

For the problem in (2.3), the solution  has total mean squared error equal to

MSE(B, By = trace{Var[B]} + o2 trace{X" (ES[PPT] - PX) xHTy

+ trace{Var [PyB,1} + || (I — E([Py]) Boll3-
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TOTAL AND EXCESS UNCERTAINTIES FOR SKETCHED LINEAR REGRESSION 15

Proof. We employ the properties of the trace operator and linearity of the trace and expectation to
obtain the well-known bias-variance trade-off in terms of the trace operator

MSE(B,By) = E[IB — Bol3]
E[|B — E[B113] + | EIB] — B, 113
= trace{Var[B]} + [|Bias(B, Bo)lI3.

The result follows directly from applying the expressions for the total variance and bias of B from
Theorem 4.2. (]

Corollary 6.1 directly states how the bias and variance of ﬁ contribute to the total mean
squared error. Specifically, the portion of the total mean squared error due to variance includes
the following: (1) trace{Var[ﬁ]}—the variance due to randomness from the model assumptions; (2)
o2 trace{X" (Es [PPT] — Px) (X™)T}—the excess variance due to the deviation of the oblique projector
P from being an orthogonal projector onto range(X); and (3) trace{Var [PyB,]}—the excess variance
due to rank deficiency arising from randomness in the sketching algorithm. Additionally, the bias
portion of the total mean squared error represents the excess bias due to rank deficiency from the
sketching process.

The total excess mean squared error denotes the portion of the mean squared error attributable
to randomness in the sketching algorithm. This represents the portion of MSE(B,B,) exceeding
MSE (é, MSE(ﬁ, By), the mean squared error due to model-induced randomness. Using the notation in
Section 5, we can rewrite the total mean squared error for the sketched solution fi as

MSE(E, By = MSE(é, Bo) + trace{7p} + trace{"//po} + ||<@||§,

M

where .# denotes the total excess mean squared error. Thus, the excess total mean squared error can be
decomposed into three sources with interpretation as stated above. Conditioning on sketching schemes
that preserve rank provides simplifications and additional insights on the total mean squared error.

For the problem in (2.3) conditioned on rank(SX) = rank(X), the solution f has total mean squared
error

MSE(B,B,) = trace(Var[B]} + o trace(X" (E{[PPT] — P,) (X")7}.
Therefore, we additionally have

MSE (B, B,) > MSE(B. B,).

Proof. The expression for the mean squared error follows from the fact that both B and ﬁ are unbiased
estimators of B, in this case. Therefore, the mean squared error is the trace of the variance. For the
inequality, we again employ the properties of the trace operator and linearity of the trace and expectation
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16 J.T.CHI AND . C. F. IPSEN

to obtain
MSEB,B,) = E[lIB — Boll3]

trace{E[(B — By) (B — By) "1} = trace(Var(B)}
= o2 trace{(X"X) "1} + 0% trace(X| (ES[PPT] _ Px) xhHTy

> MSE@, By).

Once again, conditioning on rank preservation gives us PPXPT = P, so that ¥} is positive semi-definite
since I — P, is idempotent. Since the trace of a positive semi-definite matrix is non-negative, the result

follows from the fact that ﬁ is an unbiased estimator of B,. O

Corollary 6.2 shows that when conditioning on rank preservation, the excess bias and variance due
to rank deficiency, % and 7/1,0, vanish. Therefore, the excess total mean squared error in this case is
simply

M = o trace(X" (]ES[PPT 1— PX) (XM} = trace(7p_}.

As we saw in the explanation of ¥p following Corollary 5.2, p_in this case quantifies the excess
variance due to the deviation of null(P) from null(P,).

Corollary 6.2 also shows that even conditioning on rank preservation so that ﬁ is an unbiased
estimator of B, the total mean squared error of ﬁ is at least as great as that of ﬁ The decomposition of
the total mean squared error in Corollary 6.2 shows that there are two reasons for this. First, ﬁ inherits
the model variance Var(ﬁ). Second, ﬁ additionally acquires excess variance ¥/p_ from the perturbation
of null(P,) through sketching.

For the problem in (2.3), the solution B has total predictive risk equal to

R, XBy) = R, XBy) + o trace{E([PPT] — P}
+I(E[PPT] — P)XB, 3.

Proof. Using the properties of the trace operator and the linearity of the trace and expectation, we
obtain the following bias-variance decomposition for the predictive risk:

R, XBy) = E[|I§ — XB, 3] = trace{Var[§]} + |IBias(§, XBy) 13-

The total variance of y follows from applying the law of total expectation to the sketched prediction Py.
The result follows from the facts that ¥ is an unbiased estimator for Xg, so that R(y, XB,) = Var[y] and
P X=X O

Corollary 6.3 shows that the predictive risk can be decomposed into the following three sources:
(1) R(¥, XBy)—the prediction variance inherent in the model; (2) o? trace{IEs[PPT] — P, }—the excess
prediction variance due to the expected deviation of P from P; and (3) ||(]Es[PPT] - PX)XB()H%—the
excess prediction bias arising from the expected deviation of P from P,.
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The excess predictive risk represents the portion of the predictive risk attributable to randomness in
the sketching algorithm. Corollary 6.3 shows that it is equal to

% = o trace(E[PPT] — P} + || (E,[PPT] — P)XB,lI3,

Ay Ty

where the excess predictive variance %y, and excess predictive bias Zp have interpretation as stated
above.

Notice that the bias projector P, does not appear in expressions for the total predictive risk.
Therefore, the predictive risk remains unaffected by expected rank preservation and the effects of
algorithmic-induced randomness on it are restricted to the deviation of P from P,. Thus, compared
with the total variance and mean squared error for the true parameter, the total predictive risk is less
affected by algorithmic-induced randomness. _

For the problem in (2.3) conditioned on rank(SX) = rank(X), the solution B has total predictive risk
equal to

R, XBy) = R, XBy) + 0 trace(E,[PPT] — P,).
Therefore, we additionally have

Ry, XBy) = R(y,XBy).

Corollary 6.4 follows from the following facts when conditioning on rank(SX) = rank(X). First, Py
is an unbiased estimator for X, so that the excess predictive bias %y vanishes. Secondly, PP, PT = P
so that the excess predictive variance %y, is positive semi-definite.

The excess predictive risk in this case is given by

X

A = o trace(E[PPT] — P,} = %y,

representing the excess predictive variance due to the deviation of null(P) from null(P,). Notice that
although the bias projector P, does not appear in the unconditional total predictive risk in Corollary 6.3,
the predictive risk still decreases when conditioning on rank preservation. This is because the predictive
bias Bias(y, Xp,) depends only on the deviation of range(P) from range(P, ). Since these are equal when
conditioning on rank(SX) = rank(X), the predictive bias vanishes in this case.

Notice additionally that although range(P) = range(P,) in this case, we still have null(P) #
null(P,) in general. Therefore, the predictive risk contains excess predictive variance %y, arising from
the expected deviation of null(P) from null(P,).

Corollary 6.4 shows that even when conditioning on sketching schemes that preserve rank so that
y is an unbiased estimator of Xp,), the total predictive risk of ¥ is at least as great as that of y. This is
because y inherits the predictive variance due to model-induced randomness. Additionally, it acquires
excess predictive variance arising from the perturbation of null(P, ) under sketching.
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18 J.T.CHI AND . C. F. IPSEN

7. Sketching Diagnostics

In the previous sections, we observed that the bias, and hence expected accuracy, of the sketched solution
and prediction hinge on rank preservation. A natural consequence is that the bias projector P, proves
ideal for use in a sketching diagnostic. Compared with P € R"*”, which may be computationally
expensive for large n, P, € RP*P can be computed quickly and inexpensively. Moreover, if rank
is preserved, Py = I, so that its two-norm condition number &, (P,) becomes a simple diagnostic
for rank preservation: if «,(Py) = 1, then the sketching process preserves rank. Otherwise, it
does not.

We illustrate how one can employ P as a sketching diagnostic to aid in the practical design of
judicious sketching schemes when y is well represented by the column space of X as indicated by the
angle between y and range(X) in Corollary 3.1. We also show that in this case, P, can be utilized in
selecting a suitable sketching dimension ». Examples illustrating the scenario in which y is not well
represented by the column space of X can be found in [6, Section 2.7]. In those cases, however, the least
squares residual is large so that even numerical accuracy for the full data problem is not guaranteed.
Consequently, we do not highlight experiments involving sketching for those scenarios here.

To simulate realistic regression data satisfying a Gaussian linear model, we build a linear model
based on data from the 2018 American Community Survey (ACS) l-year Public Use Microdata
Sample (PUMS) from the US Census Bureau. The ACS collects population and housing information
on individuals and households across the USA to help guide policy-making. Technical details regarding
the ACS PUMS files can be found at [36]. We employ the ACS PUMS from California as a foundation
for realistic survey data from a large and diverse population.

For our initial response y’, we utilize the gross rent as a percentage of annual household income,
and subset for respondents with responses for this variable. For our initial design X', we employ
the following economic, language and household status variables: food stamp program participation,
primary household language, limited English proficiency status as a household, multigenerational
household status and citizenship status. We also employ the following control variables: age, sex, marital
status and education level of the respondent. We obtain our final design X with n = 105,142 respondents
and p = 21 variables after standard recoding for categorical variables and appending a column of ones
for the intercept. To obtain a Gaussian linear model, we simulate y as follows. We obtain B, by regressing
y’ onto X and then setting entries in the resulting estimator corresponding to non-significant variables
to zero. We then obtain y = X, + ¢, where € follows a zero mean multivariate Gaussian distribution
with 2 = 10712, While problems of size n = 105,142 can be readily solved with modern statistical
software such as R or SAS, this value of n is a function of the example dataset. We employ it to illustrate
the usefulness of P, as a diagnostic when y is well represented by the column space of X. We also
highlight that our analysis applies even in the non-asymptotic regime.

We conduct numerical simulations with y and X and compare each ﬁ to ﬁ obtained on the same data.
We compare performance on four sketching schemes: (1) uniform sampling with replacement (UNIF)
with sampling probabilities ;. = % for 1 < i < n; (2) leverage score sampling with replacement
(LEV) [22, 23] with sampling probabilities 7)., = L where [; denotes the ith leverage score for 1 <
i < n; (3) shrinkage leverage score sampling (SLEV), a convex combination of LEV and UNIF with
sampling probabilities 7y, = &, + (1 — @) 7Ty where @ = 0.9 as recommended in [23] for
1 < i < n; and 4) random projections with a matrix whose entries are standard Gaussian random
variables (NORM). These sketching schemes enter our analysis through the random sketching matrix S.
For UNIF, LEV and SLEYV, the rows of S are the rows sampled from X. For NORM, the entries of S are
standard Gaussian random variables.
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F1G. 1. Simulation results illustrate the pattern between (a) rank preservation and (b) median log relative error of é with respect
to B as a function of sketching method and dimension.

To illustrate how rank preservation varies with , we perform simulations over a range of sketching
dimensions. These range from » = 20 < 21 = p, so that all simulations perform poorly, to » = 100,
where most simulations perform well. We run 100 replicates of each scenario.

Figure 1(a) depicts Pr[k,(Py) = 1], the estimated probability of rank preservation, over the 100
replicates for each scenario. We observe that the r at Pr[«x,(Pg) = 1] > 0.50 corresponds to the r
where the relative error transitions from high to low in Fig. 1(b). NORM, LEV and SLEV achieve
Pr{ky(Py) = 1] > 0.5 at r = 25, r = 30 and » = 30, respectively, and their relative errors likewise drop
then. UNIF achieves Pr[x,(Py) = 1] > 0.5 at » = 65 so it transitions to low relative error at » = 65.
Since we employ « = 0.9 as recommended in [23] for the SLEV sampling probabilities, SLEV is very
similar to LEV and it is unsurprising that they perform similarly with respect to rank preservation and
median relative error.

Figure 1 illustrates that since x,(Py) = 1 correlates with low relative error, it can provide an
inexpensive diagnostic for candidate sketching matrices. Figure 1 also shows that given a class of
sketching matrices, one can employ Pr[x,(P,) = 1] in selecting an appropriate . For example, in
this illustrative problem, the numerical results shown in Fig. | would suggest selecting » = 25 if
employing Gaussian sketching. This may be useful in solving large iterative linear systems where it
may be impractical to hand-select a sketching matrix at each iteration.

8. Extensions to High-Dimensional Scenarios

In this work, we focus on the simplest class of least squares problems, those of full column rank since
they are well-posed and regularization is not required to ensure the existence of a unique solution in exact
arithmetic. Meanwhile, there are many machine learning algorithms for high-dimensional problems,
where the number of columns p greatly exceeds the number of rows n. There already exists some analysis
for sketching in such scenarios. For example, [7, Section 6.2] analyzes the accuracy of the sketched
solution with respect to algorithmic uncertainty only.

During the review of this paper, a referee asked a natural question: can we extend our analysis
to the high-dimensional case by adding a ridge penalty? Indeed, an important open problem is the
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quantification of the combined model- and algorithm-induced uncertainties in sketched linear regression
for high-dimensional problems. Therefore, for completeness, we describe potential extensions for
analyzing under-determined regression scenarios with our projector-based framework from Section 3
here. As an example, we focus on ridge regression for the n < p case, which involves regularization
with the squared £,-norm. Previous work on sketched ridge regression include both the n > p case [40]
and the n < p case [21], where the authors provide a bound for the inflation of the ridge regression risk
function due to sketching with the subsampled randomized Hadamard transform.
Let f(B,.) denote the ridge regression loss function, where

1 A
fB) = Sly = XB, I3+ 18,13, ®.1)
It is well known that the ridge regression solution for the full data problem is
B, = [X™X)~! +21] ' XTy. (8.2)

Noting that (8.1) can be equivalently written as

w1 (2

and applying a random sketching matrix S on the left in the same manner as in (2.3) gives us the
following sketched ridge regression loss function:

1 y X
1= s ) s (2)e

Differentiating g with respect to B,, setting it equal to zero and solving for B, gives the following
sketched ridge regression solution:

2

2

2 1 A
= SISO —XB)II3 + SIS, I3

2

B, = [(SX)TSX+18] ' (8X)Tsy. (8.3)
Rewriting (8.2) and (8.3) in terms of the projectors in Section 3 gives us
B, = [X™X)"1+a1] 'XTPy and B, = [(SX)TSX+1S] ' X'Py (8.4)

for the full data and sketched solutions, respectively. Therefore, we can express the sketched ridge
regression solution in terms of the projectors from Section 3 as

B, = B+ {[(SX)TSX + 8] X - [(XTX) ! 4 a1] ! XTPX} y.

This formulation makes clear why a corresponding analysis of the combined uncertainties for sketched
ridge regression is nontrivial. First, we observe that S enters both multiplicatively and additively within
an inverse. Secondly, S additionally appears in P and the inverse term is multiplied on the left of a
term containing P. Nonetheless, sketching for high-dimensional linear regression problem is relevant in
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many machine learning algorithms. An analysis of its combined uncertainties is an important direction
for future work.

9. Discussion

We presented a projector-based approach for sketched linear regression and analyzed the combined
uncertainties on the sketched solution B from both statistical noise in the model and randomness from
the sketching algorithm. Our results show that the total expectation and variance of § are governed by
the spatial geometry of the sketching process, rather than by structural properties of specific sketching
matrices. Surprisingly, the condition number &, (X) with respect to (left) inversion has far less impact
on the statistical measures than it has on the numerical errors.

Our results demonstrate the usefulness of a projector-based approach in enabling expressions for
quantifying the total and excess uncertainties that hold generally for all sketching schemes. A projector-
based approach also enables insights and interpretations on how the sketching process affects the
solution and other key statistical quantities. Our numerical experiments illustrate the practicality of the
bias projector P, as a computationally inexpensive and effective sketching diagnostic under a Gaussian
linear model when y is well represented by the column space of X.

Finally, we began with the simplest class of least squares problems in this work: those of full column
rank because they are well-posed and regularization is not required to ensure the existence of a unique
solution in exact arithmetic. Consequently, there are many avenues for future work in extending our work
to more complex least squares problems. These include the highly under-determined scenario as well as
their corresponding regularized versions for high-dimensional problems as discussed in Section 8.
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