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ABSTRACT: A simplified quasigeostrophic (QG) analytical model together with an idealized numerical model are used
to study the effect of uneven ice–ocean stress on the temporal evolution of the geostrophic current under sea ice. The ten-
dency of the geostrophic velocity in the QG model is given as a function of the lateral gradient of vertical velocity and is
further related to the ice–ocean stress with consideration of a surface boundary layer. Combining the analytical and numer-
ical solutions, we demonstrate that the uneven stress between the ice and an initially surface-intensified, laterally sheared
geostrophic current can drive an overturning circulation to trigger the displacement of isopycnals and modify the vertical
structure of the geostrophic velocity. When the near-surface isopycnals become tilted in the opposite direction to the
deeper ones, a subsurface velocity core is generated (via geostrophic setup). This mechanism should help understand
the formation of subsurface currents in the edge of Chukchi and Beaufort Seas seen in observations. Furthermore, our sol-
utions reveal a reversed flow extending from the bottom to the middepth, suggesting that the ice-induced overturning
circulation potentially influences the currents in the deep layers of the Arctic Ocean, such as the Atlantic Water boundary
current.

KEYWORDS: Arctic; Sea ice; Channel flows; Vertical motion; Ekman pumping; Idealized models; Quasigeostrophic
models

1. Introduction

The ocean currents in the Arctic, especially in submarine
canyons or along the edge of shelf seas, have some different
characteristics from those in mid- and low-latitude oceans,
such as the velocity structure and seasonality. Using data
from a year-long array spanning the shelf break and upper-
slope of the Chukchi Sea, Li et al. (2019) found that the Chukchi
Slope Current (a newly identified northwestward-flowing cur-
rent along the Chukchi slope, see Corlett and Pickart 2017) is
surface intensified in summer and fall, while it is dominated by a
subsurface velocity maximum (∼100-m depth) during winter
and spring (see the schematic in Fig. 1). In their velocity sec-
tions, the subsurface velocity maximum appears as a core sur-
rounded by velocity contours and is thus referred to as a
velocity core. A similar subsurface velocity core was also
observed in the Barrow Canyon throughflow (Itoh et al. 2013;
Weingartner et al. 2017), and the eastward Beaufort shelfbreak
jet at 1528W (Nikolopoulos et al. 2009) and farther east to the
vicinity of Mackenzie Canyon, Beaufort Sea (Lin et al. 2020).
These observations suggest that the subsurface current is com-
mon in the edge of Chukchi and Beaufort Seas and is probably
present in the other areas of the Arctic Ocean.

Recent numerical studies support the presence of the sub-
surface core in the Barrow Canyon throughflow (Spall et al.
2018; Leng et al. 2021) and the Chukchi Slope Current

(Watanabe et al. 2017; Leng et al. 2021). In the model of
Watanabe et al. (2017), the subsurface slope current (referred
to as a “shelfbreak jet”) appears to be related to the depression
of upper isohalines on the shelf side due to shelf water intru-
sion. However, the model of Leng et al. (2021) implies that the
changing structure of the slope current is likely to be dictated
by the flow through Barrow Canyon. At present, it is unclear
which factor dominates the structure of the slope current.

It seems likely that the slope current structure is related to sea
ice, considering that the subsurface core occurs more frequently
during ice-covered periods (Watanabe et al. 2017; Li et al. 2019;
Leng et al. 2021). It has been demonstrated that the interaction
between the ice and the surface current, dubbed the “ice–ocean
governor,” plays a significant role in regulating the speed and
depth of the large-scale Beaufort Gyre in the Canada Basin (e.g.,
Meneghello et al. 2018a, 2020; Wang et al. 2019; Doddridge et al.
2019). Furthermore, the ice–ocean stress has also been suggested
as an explanation for observed subsurface maxima in eddy
kinetic energy in the interior Arctic Ocean}via impacts both on
unstable growth of baroclinic instability and on finite-amplitude
eddies (Meneghello et al. 2021). Nonetheless, little is known
regarding the role of ice–ocean stress along the edge of Chukchi
and Beaufort Seas, where the currents along the topography are
suggested to be distinct from the gyre in the basin interior
(Corlett and Pickart 2017; Watanabe et al. 2017; Spall et al.
2018). It is worth noting that the slope current is laterally sheared
[see, e.g., Fig. 3 in Li et al. (2019) and Fig. 2 in Boury et al.
(2020)] such that the Ekman pumping over the region should be
large in ice-covered periods due to uneven ice–ocean stress. The
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observational study of Meneghello et al. (2018b) suggests that
this is the case, although the altimetry-derived geostrophic veloc-
ity dataset used in their study is too coarse (0.258 3 0.758 resolu-
tion) to distinguish the slope current from the gyre.

These findings motivate us to establish a theoretical frame-
work, not only to explain the formation of the subsurface veloc-
ity core seen in observations, but to clarify the effect of uneven
ice–ocean stress on the evolution of the geostrophic current.
The theoretical framework in this paper is on the basis of
the quasigeostrophic (QG) formulation in combination with
Ekman boundary conditions. We also set up an idealized
numerical model to support the analytical results. The paper is
organized as follows: section 2 describes the QG model and the
idealized numerical model. Section 3 gives the analytical solu-
tions. In section 4, we compare the analytical solutions to the
numerical results and propose a mechanism for the overturn-
ing-induced modification of the geostrophic current. Finally, we
summarize and discuss the findings of our work in section 5.

2. Analytical and numerical models

a. The QG model

The basic assumption in this study is that an initially sur-
face-intensified, laterally sheared current will develop a

subsurface maximum in velocity through ice–ocean stress and
Ekman layer dynamics. The observational subsurface velocity
core in the Chukchi Slope Current is of order 0.1 m s21 and
has a length scale of 10 km (Li et al. 2019). For the typical ref-
erence Coriolis parameter f0 5 O(1024) s21, the Rossby num-
ber is small (order 0.1) and thus the QG model is valid for
theoretical analysis. We introduce the QG model on an f
plane with consideration of a northward-flowing current
through a meridional channel (Fig. 2). The channel is set in
the Cartesian coordinate system, with a length of Y, a width
of B, and a depth of H. The initial current is surface-intensi-
fied and laterally sheared, extending down to a depth of H0,
with a uniform width of l. Along-channel variations are assumed
to be negligible (­F/­y 5 0, F is any variable) so as to focus on
the temporal evolution. The resulting simplified QG equations
for the momentum, density, and continuity are given by

2f0yg 5 2
1
r0

­P
­x

, (1)

­yg
­t

1 f0u 5 0, (2)

­r

­t
1w

­r

­z
5 0, (3)

FIG. 1. (a) Schematic circulation of the Chukchi and Beaufort Seas and place names. The red
stars mark the locations where a subsurface velocity core has been observed. (b),(c) Schematic
summer/fall and winter/spring velocity structures in the region of Chukchi shelf break and slope.
Blue contours indicate the northwestward Chukchi Slope Current, opposite to the southeastward
flows (Chukchi shelfbreak jet and Atlantic Water boundary current) indicated by red contours.

J OURNAL OF PHY S I CAL OCEANOGRAPHY VOLUME 521192

Brought to you by MBL/WHOI Library | Unauthenticated | Downloaded 07/05/22 02:04 PM UTC



­u
­x

1
­w
­z

5 0, (4)

where yg (geostrophic) and u (ageostrophic) are along- and
cross-channel velocities, with P being pressure, f0 the Coriolis
parameter, and r0 the reference density; r is the varying den-
sity and is modified by vertical velocity w via advecting a
background mean density gradient ­r=­z. We drop advection
in the x direction in Eq. (3). This is because u is ageostrophic
and hence small, and that this advects a perturbation density
gradient, which is also small}making the term small com-
pared to the vertical advection term. Note that the QG den-
sity and continuity equations are applicable for all depths,
whereas the momentum equations are not valid in the surface
boundary layer since the viscosity is not included.

Eliminating the time derivatives by combining Eqs. (1)–(4)
gives a homogeneous form of the QG omega equation:

N2 ­
2w
­x2

1 f 20
­2w
­z2

5 0, (5)

where N2 5 2 g=r0
( )

­r=­z
( )

is the square of the buoyancy fre-
quency, and g is the gravitational acceleration. For details
regarding the derivation of the omega equation, see Hoskins
et al. (1978). This equation will be solved subject to boundary
conditions on w at the surface, bottom, and lateral sides,
which are described in detail in section 3a.

Equation (3) can be rewritten as

g
r0

­r

­t
2 N2w5 0: (6)

If the buoyancy frequency is taken to be constant, partial
derivative of Eq. (6) with respect to x gives

g
r0

­

­t
­r

­x

( )
2 N2 ­w

­x
5 0, (7)

where ­r/­x can be replaced by ­yg/­z according to the ther-
mal wind relation:

f0
­yg
­z

52
g
r0

­r

­x
, (8)

then, Eq. (7) becomes

­

­t
­yg
­z

( )
52

N2

f0

­w
­x

: (9)

Assuming yg ≡ 0 as z → 2‘, and integrating Eq. (9) verti-
cally from2‘ to z5 0, yields

­ys
­t

52
N2

f0

­

­x

�0

2‘
wdz, (10)

where ys is the surface geostrophic velocity. This equation
indicates that the evolution of the geostrophic current
depends on the lateral gradient of vertical velocity. Once ys
and w are resolved, the geostrophic velocity in the interior is
determined by

­yg
­t

5
­ys
­t

1
N2

f0

­

­x

�0

z
wdz: (11)

b. The idealized numerical model

Following the analytical model, we set up a numerical
channel on the f plane using the Massachusetts Institute of
Technology general circulation model (MITgcm) (Marshall
et al. 1997). The channel is configured on a 10 km (length)
3150 km (width) Cartesian grid with a uniform horizontal
resolution of 2 km. The depth of the channel is 500 m and is
divided into 48 vertical levels. The layer thickness increases
gradually from 2 m at the top layer to 25 m at the bottom
layer. Periodic boundary conditions are applied on the
southern and northern boundaries so that along-channel
variations are negligible (the model is approximately two
dimensional). There is no drag at the bottom.

The model uses the nonlinear seawater state equation of
Jackett and McDougall (1995) and nonlocal K-profile param-
eterization (KPP) scheme of Large et al. (1994). Horizontal
viscosity is modified from the scheme of Leith (1996) to sense
the divergent flow (Fox-Kemper and Menemenlis 2008). We
set the nondimensional Leith biharmonic viscosity factor to
be 1.5 for both the vorticity part and the divergence part. The
ocean model is coupled to a variant of the viscous-plastic
dynamic–thermodynamic sea ice model (Zhang and Hibler
1997) as described by Losch et al. (2010).

The numerical model is initialized with the temperature,
salinity, and geostrophic velocity fields. We set the initial tem-
perature to be 08C throughout the channel and calculate the
salinity from the temperature and density fields using the
equation of state of seawater (the initial geostrophic velocity
and density are given in section 4). The initial sea ice covers
the whole domain with a uniform thickness of 1 m. We also
input a constant downward shortwave radiation (20 W m22)
and longwave radiation (180 W m22) (representative winter-
time values in the Arctic) such that the sea ice is maintained.

FIG. 2. Schematic channel for the analytical and numerical mod-
els; Y is the channel length, B is the channel width, and H is the
channel depth. The initial current flowing northward along the
channel is surface intensified and laterally sheared, with a depth of
H0 and a width of l.
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3. Analytical solutions to the QG model

a. Solving the QG omega equation

1) SURFACE BOUNDARY CONDITION

The ice–ocean stress depends on the relative velocity between
the ice and ocean and can be calculated using a quadratic drag
law (e.g., Meneghello et al. 2020), t 5 ar0CDi|uice 2 us|(uice2 us),
where a is the sea ice concentration, CDi is the dimension-
less drag coefficient, uice is the ice velocity, and us is the sur-
face geostrophic velocity. If the ice motion is assumed to be
negligible, the ice–ocean stress can be simplified as a func-
tion of the surface geostrophic velocity. For the case that
the current is flowing along the meridional channel, we need
only consider the meridional ice–ocean stress:

ty 5 2ar0CDiy
2
s , (12)

which means that a northward surface velocity would give rise
to a southward ice–ocean stress. Due to the presence of the lat-
eral shear in the surface geostrophic velocity, the resulting ice–
ocean stress is uneven. On the west side of the velocity maxi-
mum, the ice–ocean stress has a negative curl (­ty/­x , 0) due
to the positive velocity shear (­ys/­x . 0). On the east side of
the velocity maximum, the stress curl is positive (­ty/­x . 0),
corresponding to the negative velocity shear (­ys/­x , 0). This
yields a symmetrical distribution of Ekman downwelling and
upwelling as illustrated in Fig. 3.

The vertical velocity in the surface boundary layer (2d # z# 0,
d is the boundary layer depth) is obtained by combining the
Ekman horizontal velocity and the continuity equation. If the
ice–ocean stress is nondivergent, we have

w 5 1 2 exp
z
DE

( )
cos

z
DE

( )[ ]
wE, (13)

whereDE is the Ekman depth, and

wE 5
1

f0r0

­ty

­x
(14)

is the Ekman pumping (note that zonal stress is neglected). It
is appropriate to set d 5 (p/2)DE, so that w 5 wE at z 5 2d.
Namely, the Ekman pumping is treated as a boundary condi-
tion to drive the vertical motions in the interior.

2) INTERIOR SOLUTION

The vertical velocity in the interior (2H # z , 2d) is
obtained by solving the QG omega equation [Eq. (5)]. Using
the method of separation of variables with the following
boundary conditions:

w 0, z( ) 5 0, w B, z( ) 5 0,

w x, 2 d( ) 5 wE, w x, 2 H( ) 5 0,

we find an analytical solution:

w x, z( ) 5
∑‘
k51

aksinh
kpN
f0B

z 1 H( )
[ ]

sin
kp
B

x

( )
, (15)

with

ak 5
2

B sinh
kpN
f0B

H 2 d( )
[ ] �B

0
wE x( )sin kp

B
x

( )
dx, k 5 1, 2, 3,…

(16)

b. Solving the evolution equation

By combining Eqs. (10) and (12)–(16) and replacing the
quadratic ice–ocean stress with a linear drag,

t̂y 5 2ar0CDiVys, (17)

we derive a linear evolution equation for the surface geo-
strophic velocity (see the derivation in the appendix):

­ys
­t

2 Vm
­2ys
­x2

5 0, (18)

where V is the zonal average of the initial surface velocity,
and m5 aCDiN2HE=f 20 is a parameter (HE is the significant
height of Ekman pumping). Note that Eq. (18) is of the same
form as the heat (or diffusion) equation, where the coefficient
Vm can be regarded as a rate at which the surface geostrophic
flow expands.

For the given initial velocity ys(x, 0), solving Eq. (18) by the
method of separation of variables with Dirichlet boundary
conditions ys(0, t)5 ys(B, t)5 0 yields

ys x, t( ) 5 ∑‘
k51

ck exp
2k2p2

B2 mVt

( )
sin

kp
B

x

( )
, (19)

with

ck 5
2
B

�B

0
ys x, 0( )sin kp

B
x

( )
dx, k 5 1, 2, 3,… (20)

Since the surface geostrophic velocity ys(x, t) is known, we
can calculate the ice–ocean stress t y(x, t) from Eq. (17), the

FIG. 3. Schematic showing a symmetrical distribution of Ekman
downwelling and upwelling driven by ice–ocean stress curl. The ice
motion is neglected and the northward geostrophic velocity ys gives
rise to the southward ice–ocean stress ty. The Ekman transport UE

driven by uneven ice–ocean stress is convergent on the west side
and divergent on the east side.
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Ekman pumping wE(x, t) from Eq. (14), the vertical velocity
w(x, z, t) from Eqs. (13) and (15), the density r(x, z, t) from
Eq. (6), and the geostrophic velocity yg(x, z, t) from Eq. (11).

4. Comparison between the analytical and numerical
solutions: Case study

In this section, the QG model and the idealized numerical
model are applied to study the evolution of an initially sur-
face-intensified, laterally sheared geostrophic current (Fig. 4):

yg x, z, 0( ) 5 ys cos pz=H0
( )

1 1
[ ]

=2,2H0 # z # 0,

0,2H # z ,2H0,

{

with

ys x, 0( ) 5 0, 0 # x , l, 2l , x # 3l,

Vmsin p x 2 l( )=l[ ]
, l # x # 2l,

{

where l 5 B/3, and Vm is the maximum value of the initial sur-
face velocity. The initial density is set to accommodate the geo-
strophic velocity according to the thermal wind relation. The
vertical profile of density at the center of the channel is given by

r B=2, z, 0
( )

5 rb 2 r0N
2=g

( )
z 1 H( ),

where rb is the bottom density. With such initial conditions,
­yg/­z and ­r/­x are continuous everywhere.

Parameters for the case study for both the analytical and
numerical models are listed in Table 1. In addition, we set the
surface boundary layer depth d to be 20 m in the analytical
model and specify a minimum boundary layer depth of 20 m
in the KPP scheme in the numerical model. Using Eq. (A9),
the significant height of Ekman pumping HE is estimated to
be 218.5 m.

a. Evolution of the geostrophic current

The evolution of the surface geostrophic velocity under the
effect of ice–ocean stress acts like a horizontal diffusion of
momentum. The diffusion coefficient given by Vm is esti-
mated to be 258.4 m2 s21 using the parameters in Table 1. As
shown in Figs. 5a and 5b, both the analytical and numerical
geostrophic currents expand from the center at higher veloc-
ity to the west and east at lower velocities. This process is
accompanied by the attenuation of the lateral velocity shear.
Notably, the surface velocity maximum decays quickly from
0.2 to ∼0.1 m s21 (a decline of 50%) in just 10 days and con-
tinues to decrease over time. Furthermore, the Ekman pump-
ing induced by ice–ocean stress curl is dominated by the
symmetrically distributed Ekman downwelling and upwelling
(Figs. 5c,d), which decays over time in response to the attenu-
ation of the surface velocity shear. Note that the analytical
solutions are somewhat different from the numerical results.
Part of the difference can be attributed to the different treat-
ments of ice–ocean stress. For example, the linear stress
[Eq. (17)] used in the analytical model has enlarged the stress
curl near the two edges of the current compared to the qua-
dratic form [Eq. (12)]. Thus, the analytical geostrophic cur-
rent appears to be more expansive than the numerical one (cf.
Figs. 5a,b).

The geostrophic velocity in the interior evolves as well.
As shown in Fig. 6, a subsurface velocity core is formed in the
central channel (between x 5 50 and 100 km) in both analyti-
cal and numerical sections (e.g., Figs. 6e,f). This suggests that
the geostrophic current changes from being surface intensified
to subsurface intensified due to ice–ocean stress. Figure 7 fur-
ther shows that the velocity core shifts rapidly from the sur-
face down to a depth of 50 m in the first 10 days and remains
in the subsurface thereafter. Such modification of geostrophic
velocity is a result of the displacement of isopycnals as

FIG. 4. (a) Vertical section of the along-channel geostrophic
velocity (color) overlain by isopycnals (white contours) for the ini-
tial state. (b),(c) Vertical profiles of the initial geostrophic velocity
and density at x5 75 km.

TABLE 1. Parameters for the case study for both the analytical
and numerical models.

Parameter Value Unit

Sea ice concentration, a 1 }

Ice–ocean drag coefficient, CDi 5.5 3 1023 }

Coriolis parameter, f0 1.4 3 1024 s21

Reference density, r0 1 3 103 kg m23

Buoyancy frequency, N 0.01 s21

Gravitational acceleration, g 9.8 m s22

Depth of initial current, H0 350 m
Maximum initial velocity, Vm 0.2 m s21

Channel depth, H 500 m
Channel width, B 150 km
Bottom density, rb 28 kg m23
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required by the thermal wind relation [Eq. (8)]. The symmet-
rically distributed Ekman downwelling and upwelling can set
up an overturning to move the isopycnals (downward/upward
displacement by downwelling/upwelling), and this then results
in a changed thermal wind shear (this is discussed in detail in
section 4d). As the velocity maximum deepens, the near-
surface isopycnals (e.g., the 23 kg m23 contour) become tilted
in the opposite direction to the deeper ones (Fig. 6), and the
vertical shear above the velocity maximum turns negative
(Fig. 8).

The vertical shear near the bottom is also negative, corre-
sponding to a reversed (southward) flow that extends from
the bottom to the middepth (Fig. 6). Note that the analytical
reversed flow is relatively steady (Fig. 7a), while the numeri-
cal one tends to be more intensive over time (Fig. 7b). This
may be a result of the quadratic drag law used in the numeri-
cal model, which is stronger near the center of the current. In
addition, the analytical section captures two reversed jets near
the western and eastern boundaries (e.g., Fig. 6e), but the
numerical section does not. This is due to the Ekman pumping

in the analytical model expanding more than in the numerical
model (see the analysis in the following section).

b. Overturning circulation

The vertical motions in the interior are dominated by the
symmetrically distributed downwelling and upwelling as a
result of the penetration of Ekman pumping (Fig. 9). In the
analytical model, the downwelling/upwelling extends from the
center of the channel to the western/eastern boundary (see,
e.g., Fig. 9e), in response to the expansion of the surface geo-
strophic current (Fig. 5a). This produces negative gradient of
vertical velocity (­w/­x , 0) near the two side boundaries.
According to Eq. (11), ­w/­x , 0 requires ­(yg 2 ys)/­t , 0,
i.e., yg tends to be more negative over time (note that ys
remains small to accommodate the Dirichlet boundary condi-
tion). This is responsible for the formation of the two reversed
jets near the western and eastern boundaries in the analytical
model (see Fig. 6e).

In the numerical model, the symmetrically distributed
downwelling and upwelling are also evident, although there

FIG. 5. (a) Analytical and (b) numerical distributions of the surface geostrophic velocity at t5 0, 5, 10, and 25 days.
(c) Analytical and (d) numerical distributions of the Ekman pumping at t5 5, 10, and 25 days.
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are some other signals with smaller scales (Figs. 9b,d,f). Note
that the dominant downwelling and upwelling in the numeri-
cal model are not so expansive as in the analytical model.
Instead, they appear to be close to each other, residing in the
central channel. In this case, there is no reversed jet near the
western or eastern boundary (see Figs. 6b,d,f).

Recall the continuity equation ­u/­x1 ­w/­z5 0. It is appro-
priate to define a streamfunction c that satisfies u5 2­c/­z and
w 5 ­c/­x. Since w is already resolved, we calculate c by inte-
grating w along x and deduce u by2­c/­z. The resulting stream-
function reveals an anticlockwise overturning circulation, which
extends from the surface down to the deep interior (Fig. 10). The

FIG. 6. Vertical sections of the along-channel geostrophic velocity (color) overlain by isopycnals (white contours) at
t 5 5, 10, and 25 days: (left) the analytical solutions and (right) the numerical solutions. Bold black line in each panel
shows the zero-velocity contour.

L E NG E T A L . 1197JUNE 2022

Brought to you by MBL/WHOI Library | Unauthenticated | Downloaded 07/05/22 02:04 PM UTC



upper arm of the overturning is westward, confined in the surface
boundary layer, and fed by the stress-induced Ekman flow
(see Figs. 11a,b for the zonal velocity). In the interior, the east-
ward velocity is much weaker but spans a wider range of depth
(Figs. 11c,d). The depth-integrated westward transport in the sur-
face boundary layer (approximately the Ekman transport) is
equal to the eastward transport in the interior.

Ideally, the zonal velocity in the interior should be balanced
by the local acceleration as suggested by Eq. (2), i.e.,
u 5 2(­yg/­t)/f0. However, Fig. 11c shows that the analytical
output of 2(­yg/­t)/f0 is weaker than the analytical output of
u at x5 75 km. This is the limitation of the analytical solution.
Recall that the analytical ys is obtained by solving the evolu-
tion Eq. (18), which uses the linear ice–ocean stress and
assumes a constant significant height of Ekman pumping HE

(see the appendix). Note, however, HE should be time and
space dependent because wE has different modes as it evolves,
although the second mode remains dominant. The assumption
that HE is constant has greatly simplified the equation but
inevitably introduced errors into the final results. On the one
hand, the analytical solution underestimates ­w/­x near the
center of the channel compared to the numerical result and thus
underestimates ­ys/­t and ­yg/­t [according to Eqs. (10) and
(11)]. On the other hand, there is too much Ekman transport in
the surface boundary layer that is further circulated in the over-
turning to feed the interior eastward transport, leading to an
overestimate of the zonal velocity. Consequently, 2(­yg/­t)/f0 is
weaker than u as seen in Fig. 11c. In the numerical model,
2(­yg/­t)/f0 and u are approximately balanced (Fig. 11d), sug-
gesting that the QG approximation [e.g., Eq. (2)] is reasonable.

c. Scaling

From the QG omega equation [Eq. (5)], we derive a scaling
for the depth from which waters are drawn up to the surface
by the overturning circulation, D 5 (f0L)/N (L is the horizontal

length scale of the flow). Using the parameters in Table 1, D is
estimated to be 334.2 m. Thus, the overturning could reach the
bottom over the shelf (e.g., the Chukchi shelf). In the appendix
we also derive a scaling for the significant height of Ekman
pumping HE, which characterizes the depth to which the indi-
rect effect of Ekman pumping is felt. Note that the vertical
velocity w in the interior is due to the penetration of Ekman
pumping and the streamfunction of overturning circulation is
an integral of w along x. Therefore, HE is of the same vertical
length scale as the overturning. It is also noted that the penetra-
tion of Ekman pumping is limited by the finite bottom depth H
by a coefficient cosh H2 d( )=D[ ]

2 1
{ }

=sinh H2 d( )=D[ ]
rang-

ing between 0 and 1. In the extreme case where the channel is
infinite deep (H → 1‘), the coefficient approaches 1 andHE is
equivalent to D. With HE 5 O(f0L/N) the scale of the parame-
ter m in Eq. (18) can be expressed as the horizontal length scale
of the flow L times aCDiN/f0, i.e., m 5 O(aCDiNL/f0). For typi-
cal parameters, m 5 O(L) but it could be larger for weaker
stratification.

The time scale for the evolution of the geostrophic current
due to uneven ice–ocean stress is derived from Eq. (18) and is
of the form T 5 f0L/(aCDiNV), where V is the velocity scale.
For the case V5 0.1 m s21, T is approximately 7 days. This scal-
ing characterizes the time for the lateral expansion of the sur-
face geostrophic current and the decay of the strength of the
velocity core. Although T ≈ 7 days is a linear estimate, it is gen-
erally consistent with the resolved time evolution [e.g., in Fig. 7,
the strength of the velocity core decays over O(10) days]. Note
also that T is much larger than the time scale for the geostrophic
adjustment (1/f0 ≈ 2 h), and thus the temporal Rossby number
1/(f0T) is small. This is required by the QG theory.

d. Mechanism for the overturning-induced modification
of the geostrophic current

In light of the analytical and numerical results, we propose
a mechanism of how the overturning circulation modifies the

FIG. 8. Depth–time plot of the vertical shear at x 5 75 km:
(a) the analytical solution and (b) the numerical solution. The black
dashed lines show the zero-shear contours.

FIG. 7. Depth–time plot of the along-channel geostrophic veloc-
ity at x 5 75 km: (a) the analytical solution and (b) the numerical
solution. The solid black line (with squares) indicates the velocity
maximum. The dashed black line is the zero-velocity contour.
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geostrophic velocity and density structures. Consider the case
that the geostrophic current is initially surface intensified and
laterally sheared, which extends down to a depth at and below
which the isopycnal slope is zero (Fig. 12). The presence of
the overturning circulation can cause the displacement of iso-
pycnals as suggested by Eq. (6). Specifically, the downwelling
component (w , 0) of the overturning means a downward
advection of light water, which moves isopycnals downward
and results in the decline in local density (­r/­t , 0). In con-
trast, the upwelling component (w . 0) of the overturning
transports heavy water upward. This causes the upward dis-
placement of isopycnals and the increase in local density
(­r/­t . 0). Note that the vertical velocity near the base of the
surface boundary layer is approximately the Ekman pumping,
which is large enough to reverse the tilt of the near-surface

isopycnal (­r/­x changes from being negative to positive).
At a deeper depth the vertical velocity is smaller and the
isopycnal is steeper. In this case, the isopycnal tilt can hardly
be reversed, i.e., ­r/­x remains negative. Accordingly, there
must be a critical depth at which the isopycnal slope is zero
(­r/­x 5 0) and the geostrophic velocity reaches a maximum
(­yg/­z 5 0). This explains the formation of the subsurface
velocity core in the analytical and numerical sections (see,
e.g., Figs. 6e,f).

It is also worth noting that, in the initial state, the near-bot-
tom isopycnal is horizontal and is easily tilted by even weak
vertical velocity. As the near-bottom isopycnal is forced by
the overturning to rotate anticlockwise slightly, the corre-
sponding vertical shear turns negative (­yg/­z , 0). Conse-
quently, a reversed flow that extends from the bottom to the

FIG. 9. Vertical sections of the vertical velocity at t5 5, 10, and 25 days: (left) the analytical
solutions and (right) the numerical solutions.
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middepth is generated. As noted above in section 4a, the
reversed flow in the numerical model tends to be more inten-
sive over time. This should be due to the overturning circula-
tion that resides in the central channel (Figs. 10b,d,f), rather
than expanding toward the western and eastern boundaries as
in the analytical model (Figs. 10a,c,e).

5. Summary and discussion

In this study, we have established a simple theoretical
framework based on a QG model to study the temporal evo-
lution of a geostrophic current under sea ice. By solving the
QG omega equation and a derived evolution equation, we
obtained analytical solutions for the vertical velocity (as a
function of Ekman pumping) and the evolving geostrophic

velocity. These solutions are also supported by the results
from an idealized numerical model.

The main finding in this work is that the uneven stress
between the ice and an initially surface-intensified, laterally
sheared geostrophic current can produce an overturning cir-
culation to trigger the displacement of isopycnals and modify
the vertical structure of the geostrophic velocity. As the near-
surface isopycnals are forced to be tilted in the opposite direc-
tion to the deeper ones, a subsurface velocity core is thus
generated (via geostrophic setup). This mechanism should
help understand the formation of the subsurface velocity core
in the Chukchi Slope Current (Li et al. 2019). In addition, our
solutions show that the subsurface velocity core is present in
the steady state (see Fig. 7, the velocity maximum remains in
the subsurface to the end of calculation), suggesting the

FIG. 10. Vertical sections of the overturning streamfunction at t5 5, 10, and 25 days: (left) the
analytical solutions and (right) the numerical solutions.
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persistence of the subsurface current under sea ice (if not
affected by other forcings). This is consistent with the obser-
vational result that the subsurface slope current is present
through winter and spring (Li et al. 2019) when the Chukchi
slope region is covered by sea ice.

Our analytical and numerical solutions also capture a
reversed flow extending from the bottom to the middepth,
implying that the effect of ice–ocean stress is not limited to
the upper ocean. Recent shipboard and mooring observations
have shown the presence of a southeastward current residing
on the midslope of Chukchi Sea, beneath the northwestward
Chukchi Slope Current (Corlett and Pickart 2017; Li et al.

2019; Stabeno and McCabe 2020). This current is known to be
the onshore branch of the Atlantic Water boundary current
system in the western Arctic Ocean, which advects the Atlantic
Water emanating from the Chukchi Gap, with a contribution
from an interior branch through the Chukchi Borderland (Li
et al. 2020). Since the subsurface velocity core in the slope cur-
rent is likely to be related to sea ice, it would be instructive to
consider the response of the Atlantic Water boundary current
to the interaction between the ice and the slope current in the
future work.

The Chukchi Slope Current is flowing along the continental
slope with its onshore part reaching the bottom topography

FIG. 11. Vertical profiles of zonal velocity (solid lines) at x 5 75 km at t 5 5, 10, and 25 days:
(a),(b) in the surface boundary layer and (c),(d) in the interior. Panels (a) and (c) are deduced
from the analytical overturning streamfunction by u 5 2­c/­z and (b) and (d) are from the
numerical output. The dashed lines in (c) and (d) indicate the vertical profiles of2(­yg/­t)/f0.
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(Corlett and Pickart 2017; Li et al. 2019). Therefore, the bot-
tom slope and friction are likely to influence the modification
of the slope current triggered by uneven ice–ocean stress.
This is the case in our idealized numerical model. For exam-
ple, when the model considers bottom friction, the reversed
flow is weakened and does not extend upward so much as in
the slip-bottom case. Furthermore, when a bottom slope is
introduced, the overturning can reach the slope and result in
a reversed flow spanning from the shelf break offshore to the
deep region (not shown). This suggests that the ice–ocean
stress could potentially enhance the eastward-flowing Chukchi
shelfbreak jet, onshore of the slope current.

The overturning circulation induced by the uneven ice–
ocean stress might affect the shelf–basin exchange. Specifi-
cally, the overturning on the Chukchi shelf break and slope
should be able to reduce the wind-driven off-shelf transport in
the surface boundary layer and enhance the off-shelf transport
in deeper layers. As such, the overturning redistributes the
cross-shelf velocity in the vertical. On the other hand, the
upwelling component of the overturning is likely to transport
nutrient-rich subsurface water upward to the surface and cause
the under-ice phytoplankton blooms. Many observations have
shown that the under-ice production is significant on a pan-
Arctic scale over the past two decades, which would become
increasingly important in future marine Arctic biogeochemical
cycles (Ardyna et al. 2020). Further work is needed to investi-
gate the role of the under-ice overturning circulation in the
transport of volume, heat, freshwater, and nutrients.
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APPENDIX

The Derivation of the Evolution Equation for the
Surface Geostrophic Current under Sea Ice

If we define the significant height of Ekman pumping by

HE 5

�0

2‘
wdz

wE
, (A1)

Eq. (9) can be rewritten as

­ys
­t

52
N2HE

f0

­wE

­x
: (A2)

Integrating w over 2H # z # 0 using Eqs. (12) and (14)
gives

�0

2d
w(x, z)dz 5

1
2

(
p 2 1 2 e2p=2

)
DEwE ≈ DEwE (A3)

and

�2d

2H
w(x, z)dz 5

∑‘
k51

ak
f0B
kpN

cosh
kpN
f0B

H 2 d( ) 2 1
[ ]{ }

sin
kp
B

x

( )
,

(A4)

FIG. 12. Schematic describing the adjustment of the geostrophic velocity and density structures induced by the
overturning circulation.
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where the coefficient ak (k 5 1, 2, 3, … ) is determined by
Ekman pumping:

ak 5
2

B sinh
kpN
f0B

H 2 d( )
[ ] �B

0
wE x( )sin kp

B
x

( )
dx: (A5)

Suppose that the Ekman pumping can be written as a lin-
ear combination of different modes:

wE 5
∑‘
n51

Mnsin
np
B

x
( )

, (A6)

where Mn (n 5 1, 2, 3, … ) represents the significance of
each mode. For the case that the Ekman pumping is driven
by the ice–ocean stress, the second mode should be the
most significant (downwelling west of x 5 B/2 and upwell-
ing east of x 5 B/2), i.e., |M2| .. |Mn|, n Þ 2, and

wE ≈ M2sin
2p
B

x

( )
, (A7)

with a length scale of L 5 B/(2p). Substitution of Eq. (A7)
into Eq. (A5) yields

a2 5
M2

sinh
N
f0L

H 2 d( )
[ ]

and ak (k Þ 2) 5 0. Thus, Eq. (A4) becomes

�2d

2H
w(x, z)dz 5

f0L
N

cosh
N
f0L

H 2 d( )
[ ]

2 1

sinh
N
f0L

H 2 d( )
[ ] wE: (A8)

By combining Eqs. (A3) and (A8), we have

HE ≈ DE 1
f0L
N

cosh
N
f0L

H 2 d( )
[ ]

2 1

sinh
N
f0L

H 2 d( )
[ ] : (A9)

Note that HE is constrained by the channel depth H. As
H → 1‘, HE approaches DE 1 f0L/N, implying that the
less (more) stratified ocean is more (less) likely to be pen-
etrated by Ekman pumping. Using the quadratic ice–
ocean stress (ty 5 2ar0CDiy

2
s ), the Ekman pumping can

be expressed by

wE 5 2
aCDi

f0

­y2s
­x

, (A10)

then, Eq. (A2) becomes

­ys
­t

2 m
­2y2s
­x2

5 0, (A11)

where m5 aCDiN2HE=f 20 is a parameter. It is difficult to
find an accurate analytical solution to Eq. (A11) because of

the presence of the nonlinear term associated with the qua-
dratic ice–ocean stress. To linearize Eq. (A11), we replace
ty with a linear stress t̂y 5 2ar0ĈDiys, where ĈDi is the
drag coefficient. It is appropriate to take ĈDi to be equal to
CDiV (V is the zonal average of the initial surface velocity)
so that t̂y is of the same order as ty. Then, Eq. (A11)
reduces to a solvable linear evolution equation:

­ys
­t

2 Vm
­2ys
­x2

5 0, (A12)

which is of the same form as the heat (or diffusion) equation.
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