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ABSTRACT

Atlantic Bluefin tuna (ABT) (Thunnus thynnus) travel long distances to spawn in oligotrophic
regions of the Gulf of Mexico which suggests these regions offer some unique benefit to
offspring survival. To better understand how larval survival varies within the GoM a spatially-
explicit, Lagrangian, individual-based model was developed that simulates dispersal and
mortality of ABT early life stages within realistic predator and prey fields during the spawning
periods from 1993-2012. The model estimates that starvation is the largest cumulative source of
mortality associated with an early critical period. However, elevated predation on older larvae is
identified as the main factor limiting survival to late postflexion. As a result, first-feeding larvae
have higher survival on the shelf where food is abundant, while older larvae have higher survival
in the open ocean with fewer predators, making the shelf break an optimal spawning area. The
modeling framework developed in this study explicitly simulates both physical and biological
factors that impact larval survival and hence could be used to support ecosystem based

management efforts for ABT under current and future climate conditions.
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INTRODUCTION

Broadcast spawning fish species, such as Atlantic Bluefin tuna (ABT) (Thunnus thynnus),
typically produce enormous numbers of eggs that experience exceedingly high levels of
mortality upon hatching and throughout the early life stages. Mortality during these stages is a
result of three main sources: predation, starvation, and losses due to advection (e.g. individuals
transported away from habitat needed for settlement). Predation is often considered the largest
source of mortality because it occurs during all early life stages (Peck and Hufnagl, 2012).
However, depending on the species and its habitat, the magnitude of these mortality sources may
vary substantially. For example, advective losses are thought to be a significant source of
mortality for coastal demersal species whose larvae require specific benthic substrates for
settlement (Bailey, 1981). In contrast, starvation is hypothesized to be an important source of
larval mortality for oceanic species that spawn in warm oligotrophic seas (Young and Davis,
1990).

Quantifying mortality of early life stages in the field is exceedingly difficult, hence,
spatially-explicit individual based models (IBMs) provide a useful strategy for investigating the
relationships between mortality and environmental conditions. Many studies have utilized ocean
models to investigate larval mortality. Early spatially-explicit larval IBMs were used to
investigate advection-based losses (Hinckley et al., 1996; Werner et al., 1996; Heath and
Gallego, 1998; Hinrichsen et al., 2002). Later studies included foraging, bioenergetics, and larval
behavior to add further realism and identify key factors that contribute to larval mortality
(Daewel et al., 2008; Fiksen and Jergensen, 2011; Staaterman and Paris, 2014). Despite these
advances, modeling larval growth and mortality is often restricted to statistical relationships with
temperature, idealized prey fields, or static prey fields due to limited observations for
characterizing dynamic zooplankton fields. Including realistic larval prey fields is particularly
relevant for estimating mortality in species like ABT which spawn in tropical regions where prey
availability may be more determinant than temperature for limiting larval growth (Jenkins et al.,
1991; Tanaka et al., 2006).

Due to its high economic value and history of overfishing, ABT ecology has been studied
extensively, including the early life stages. In the subtropical GoM, the life cycle of ABT begins
with adults spawning offshore from April to June (Stokesbury et al., 2004). Females produce
>10 million eggs (Aranda et al., 2013) and individuals hatch in 1-2 days (Tanaka et al., 2014).
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Within 24 days, larvae begin exogenous feeding at a size of ~3 mm length (Malca et al., 2017)
and weigh ~0.1 mg DW (dry weight) (Laiz-Carrién et al., 2015). The pelagic larval duration
lasts 3—4 weeks (Fukuda ef al., 2014), during which time individuals grow quickly (~0.4-0.7 mm
d') (Muhling et al., 2017; Malca et al., 2017). Upon yolk sack absorption, larvae depend entirely
on zooplankton (e.g., ciliates and copepod nauplii) ranging in size from ~100—400 pm to meet
their metabolic requirements (Llopiz et al., 2015; Tilley et al., 2016; Shiroza et al., this issue).
Soon after, larvae begin feeding primarily on mesozooplankton and become increasingly
piscivorous at 6—8 mm (Llopiz and Hobday, 2015; Llopiz et al., 2015; Uriarte et al., 2019).

The extensive research on ABT early life stages provides a unique opportunity for
development of IBMs. In addition, the relationships between lower trophic level dynamics and
larval ecology in the GoM has recently been documented in detail as part of the Bluefin Larvae
in Oligotrophic Ocean Foodwebs: Investigating Nutrients to Zooplankton in the Gulf of Mexico
(BLOOFINZ-GoM) project (Gerard et al., this issue). In this study, we utilize this recent work to
guide the development of a spatially-explicit, Lagrangian, individual-based model (IBM) that
simulates dispersal, growth and mortality with an emphasis on the period from egg to
postflexion. To our knowledge, the model is the first of its kind for ABT in that it incorporates
realistic spatiotemporally varying predator and prey fields that also evolve with simulated larvae
through ontogeny. The modeling framework implemented here provides an important next step
towards recruitment forecasting within an ecosystem based management approach. The goals for
this study were to: 1) estimate annual larval mortality; 2) compare the relative magnitudes of

predation and starvation; and 3) identify regions in the GoM that minimize larval mortality.

METHODS

Biogeochemical model description

The BLOOFINZ-Individual Based Model (BLOOFINZ-IBM) developed here is forced with 20
years (1993-2012) of realistic hydrodynamics, zooplankton biomass, temperature, water clarity,
and ambient light fields obtained from the three-dimensional biogoechemical model NEMURO-
GoM (Shropshire et al., 2020). NEMURO-GoM is a highly-modified version of the NEMURO
biogeochemical model (North Pacific Ecosystem Model for Understanding Regional
Oceanography, Kishi ef al., 2007) run in an offline configuration of the MITgcm (Massachusetts

Institute of Technology general circulation model, Marshall ez al., 1997) and forced with
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dynamical fields from a ~4-km horizontal resolution, data-assimilative HY COM (Hybrid
Coordinate Ocean Model, Chassignet et al., 2009; Metzger et al., 2014) simulation of the GoM.
NEMURO-GoM has the same horizontal resolution as the dynamical fields and includes 29
depth-constant levels (10 m intervals from 0 to 150 m and variable resolution deeper). For more
information on the numerical configuration of NEMURO-GoM see Shropshire et al. (2020).
NEMURO-GoM was developed specifically to examine regional zooplankton dynamics
in the GoM and has been extensively validated against a combination of remote and in situ
measurements including: mesozooplankton biomass and grazing rates, microzooplankton grazing
rates, phytoplankton growth rates, net primary production, surface chlorophyll, and vertical
profiles of chlorophyll and nitrate (Shropshire ef al., 2020). The model has eleven state variables:
six non-living pools, two phytoplankton, and three zooplankton functional groups. We briefly
describe the latter, which are used to estimate predator and prey fields for simulated larvae. The
zooplankton community is composed of small zooplankton (SZ), which represents heterotrophic
protists (e.g. ciliates). Metazoan zooplankton are modelled as large zooplankton (LZ) that
represent suspension-feeders and larger predatory mesozooplankton (PZ). Together, these state
variables are used to approximate zooplankton biomass in three size classes 0.02—0.2 mm (SZ),

0.2-1.0 mm (LZ), and 1.0-5.0 mm (PZ).

Lagrangian model description

Lagrangian simulations were performed using the MITgcm floats package (Adcroft et al., 2018)
which incorporates a 4" order Runge-Kutta scheme and is run in parallel with NEMURO-GoM.
To simulate realistic spawning, particles (i.e. eggs) were released daily from April 1% to June 30™
from 1993-2012. The number of eggs released in each grid cell was scaled proportionally to the
Domingues ef al. (2016) ABT habitat index. This index is designed to identify regions (>200 m
isobath) in the GoM where larvae are likely to be found as a function of sea surface temperature
and height, and geostrophic velocity. In total, 750,875 neutrally-buoyant, passive particles were
initialized (mean=413 d!) during the spawning period where initial depths were set randomly
within the mixed layer (5-35 m). Each particle represents a “super individual” (i.e., a group of
1000 physiologically-identical individuals that experience identical environmental forcing)

(Scheffer et al., 1995). Three-dimensional fields of zooplankton biomass, temperature, water
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clarity, and ambient light are interpolated to particle positions every 6 hours. These particle
attributes are then used to simulate growth and mortality of ABT early life stages in the IBM.
For larval ABT, the onset of piscivory is closely timed with the transition from flexion to
postflexion stage, occuring around two weeks post hatch (Blanco et al., 2019; Laiz-Carrion et
al., 2019; Llopiz and Hobday, 2015; Uriarte ef al., 2019). Larvae in the model are tracked for
three weeks, fully encompassing the period when they are obligate planktivores. We focus our
analysis on the period prior to piscivory because NEMURO-GoM does not explicitly simulate
larger motile prey. Although the IBM does not simulate preflexion, flexion, and postflexion
stages directly, we utilize measured weights from larvae collected in the field as a reference for
determining developmental stage of simulated larvae. Based on larvae collected in the GoM,
postflexion occurs at ~6 mm (Shiroza ef al., this issue) which corresponds to ~10 days post hatch
(dph) and 0.54 mg DW based on relationship presented in Malca et al. (2017) and Laiz-Carrion
et al. (2015) (see supplemental S4). Thus, in our model simulated larvae weighing <0.54 mg DW

are considered to be obligate planktivores.

Individual-based model description
The BLOOFINZ-IBM includes three life stages (eggs, yolk-sac, and feeding larvae). Egg stage
duration (hours (h)) is determined from an empirical temperature relationship (h = 4.66-exp(-
0.11:0)), where 0 is temperature (Gordoa and Carreras, 2014). ABT eggs develop quickly in the
warm water of the GoM and hatch within 48 hours. The probability that an egg will hatch is
estimated using a temperature relationship presented in Reglero ef al. (2018). The maximum
probability of hatching (72%) occurs at 25°C; eggs that experience temperature <18°C or >33°C
will not hatch. Upon hatching, particles are classified as yolk-sac larvae, and their lengths are
prescribed based on a length-to-age relationship (Malca et al., 2017). In the model, growth in
weight is dynamic (see eql) while length increases monotonically with age as a function of
temperature with a Qo= 2. That is, growth in length increase exponentially with temperature
such that every +10°C results in a +2-fold change.

Although no function exists for the rate of yolk utilization, exogenous feeding is known to
begin within 2—4 dph (Tanaka et al., 2014). Here, we assume exogenous feeding begins on
average at 2.0 dph to be consistent with otolith-based aging studies in the region (Malca et al.,

2017). The influence of temperature on the yolk-sac stage duration is again included using Q1o =
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2.0. Once exogenous feeding begins, larvae are assumed to have utilized all egg yolk (i.e., there
is no overlap between endogenous and exogenous feeding). Post yolk-sac larval weights are
initialized based on a weight-to-age relationship determined from larvae collected in the GoM
(Malca et al., 2017; Laiz-Carrion et al., 2015).

Finally, to simulate feeding larvae, a bioenergetics model was developed where growth in
mass occurs if the assimilated fraction () of total ingestion (Iit) exceeds the metabolic
requirement (R). Larval weight (W) is updated every 6 hours using (eql). Starvation- and
predation-induced mortality is estimated while larvae grow and are advected through the GoM as

determined by ingestion, metabolism, starvation, and predation submodules described below.

W1 = Wy + (Ieor - @ — R) (eql)

Ingestion module

Clearance rate (m? larva! d!) is modeled as a function of the two-dimensional field of view
fraction (), sensory radius (sp) when feeding on zooplankton prey (i.e. p = SZ, LZ, PZ), fraction
of time spent feeding in a day (At), and the average swimming speed of larvae (v). Clearance rate
is then multiplied by prey biomass (p(i,j,k,t)) at the simulated larvae’s instantaneous local
position and time to estimate encounter rate (mg C d!). The product of the encounter rate and

capture success (op) gives ingestion rate (Ip, mg C d!):
— 2 .y, -n(i i .
[, = @msp-v-At p(,j, k t) Op (eq2)

Field of view in larval fish is determined by the orientation of eyes on the head. Here, we
assume that larvae do not perceive prey below their horizontal plane (¢ = 0.5). A swimming
speed of 2 body lengths s™! is used for all larvae, which is approximately the average cruise
swimming speed observed for cultured larval tuna (Sabate ef al., 2010). Larvae are visual feeders
(Llopiz and Hobday, 2015) and hence simulated feeding is restricted to daylight hours. The
number of feeding hours in a day is estimated using an analytical function of latitude and day of
the year. Prey biomass is derived from zooplankton biomass fields estimated by NEMURO-
GoM. Unlike other pelagic larval fish, such as mackerel, which have highly-variable prey
capture success through ontogeny (Hunter, 1972), the capture success for larval tuna in rearing

experiments is high (>70%), even at first-feeding (P. Reglero, unpub.). This is likely due to their



217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

large mouth size relative to prey (Shiroza et al., this issue) and hence the capture success is
assumed to be constant (80%). An upper limit for ingestion is set using a temperature-dependent
gut turnover time (3 h at 26 °C (Young and Davis, 1990), with a Q10=2.0) and a full gut size
equivalent to 10% body mass.

Ingestion is most sensitive to visual sensory radius because it is a squared term. Hence, many
mathematical formulations of sensory radius have been determined from laboratory feeding
studies (Hunter, 1972), by examining the anatomy of the eye (Hilder et al., 2019), or derived
theoretically (Aksnes and Giske, 1993). To estimate sensory radius, we utilize a recently
determined anatomical relationship for the visual acuity of larval tuna (Hilder et al., 2019) along
with a theoretical model of visual predation derived by Aksnes and Utne (1997) to account for
the impact of light and water clarity. This formulation computes sensory radius as a function of
larval length, prey size, water clarity, and ambient light (see online Appendix 1). Because the
IBM includes many parameters (see Table S1) we conducted a parameter sensitivity experiment
using a simple individual parameter perturbation where each parameter was varied by + 10% to

investigate the impact on survival to postflexion (Fig. S1) and postflexion age (Fig. S2).

Prey field module

For larval ABT, prey size range changes rapidly through ontogeny. This shift is parameterized
in the model based on gut content measurements from larvae collected during BLOOFINZ-GoM
cruises (Shiroza et al., this issue). Specifically, we determine upper and lower bounds of prey
size as a function of larval length and use this to calculate the fraction of SZ (0.02 — 0.2 mm), LZ
(0.2 — 1 mm), and PZ (1 — 5 mm) biomass that is available to simulated larvae as they grow (Fig.
1A). We note that density-dependent factors are not included in our model and hence larvae do
not feed on one another or reduce zooplankton biomass in a given grid cell. The biomass of LZ
and PZ are assumed to be evenly distributed over their respective size ranges which is supported
by mesozooplankton biomass measurements in the region (Landry and Swalethorp, this issue).
By contrast, SZ biomass is assumed to follow a size spectra relationship with a slope of zero (i.e.

biomass within 0.002-0.02 mm is equal to biomass within 0.02-0.2 mm).

Metabolic requirement module
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The metabolic requirement (R, mg C d™') is estimated from a weight-to-age relationship based on
larvae collected in the GoM (Malca et al., 2017; Laiz-Carrion et al., 2015) (Fig. 1B). The
derivative of this relationship gives average growth rate in mass (dW/dA). To convert to carbon,
the growth rate is multiplied by a carbon to dry weight ratio (ct= 0.4; (Omori, 1969)). The
ingestion required to meet the observed growth rate can then be estimated by dividing by the
approximate gross growth efficiency of larvae (€ = 0.3; (Houde, 1989)). Multiplying by the
difference between the approximate absorption efficiency (a = 0.7; (Houde, 1989)) and € gives
an estimate of metabolic requirement. Finally, the impact of temperature on metabolic
requirement is included using Q1o = 2.0, yielding (eq3) where tc is the temperature coefficient,
0(1,),k,t) is water temperature at an instantaneous local position and time, and Oavg represents the
average water temperature that field-collected larvae experience prior to being collected
(assumed to be 26°C).

dw a—e iikt)—
R — a . Cf . T . etC(e(lr]!k!t) ean) (eq3)

Starvation module

To determine the probability of starvation for simulated larvae, we first identify a maximum
weight at age, defined as an exponential fit to the field-collected larvae in the upper quartile of
the weight-age relationship (Fig. 1B). The actual-weight:maximum-weight ratio is used as a
metric of larval condition. We then fit a probability distribution function to the condition values
for field-collected larvae and use the associated cumulative distribution function (CDF) to
determine the probability of a larvae having a given condition value or lower. Finally, we
perform a reflection of the CDF (i.e. 1-CDF so that low probability results in high mortality) and
scale the CDF by a maximum starvation rate parameter (0.3 d'), which yields a sigmoidal
function that provides a rate of mortality due to starvation given the condition (simulated-
weight:maximum-weight) of a simulated larva (Fig. 1C). Simulated larvae experience elevated
starvation of 1.0 d”! if their weight falls below 25% of the maximum-weight to account for
irreversible starvation (i.e., “point-of-no-return”, (Yin and Blaxter, 1987)). The number of
individuals in a particle (i.e. super individual) is stepped forward in time using the generalized
form N(t+1) = N(t) — dt [m-N(t)], where N is the number of larvae, dt is the time step, and m is
the mortality rate (d).
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Predation module

In NEMURO-GoM, mortality on PZ (Mpz, mg C m™ d'!) is modeled as a function of PZ biomass
with a quadratic formulation (Mpz = [PZ]*m(0), where m is a mortality parameter scaled by a
function of temperature). This formulation is commonly used in biogeochemical models as a
closure term to represent implicit loss on the highest trophic level due to an un-modeled predator
that covaries in abundance with its prey. Hence, Mpz can be treated as an approximate predation
rate for large mesozooplankton. We note that both PZ biomass and grazing rates in NEMURO-
GoM have been validated with field measurements which provides some confidence in the Mpz
rates (Shropshire et al., 2020). Next, to estimate predation on ABT early life stages, we assume
that predators feeding on ABT stages prior to postflexion (~1—6 mm) are broadly similar to
predators feeding on PZ (defined as 1-5 mm mesozooplankton) given their overlap in size. With
this assumption, predation can be estimated for eggs or larvae by scaling Mpz by a function of
size because detection distance, and hence prey capture, is limited by prey size (herein Mpz is
normalized by PZ biomass to give a specific predation rate, (d!)). The scaling function used in
our predation formulation is derived in online appendix 1 and simplifies to MLt = Mpz(i,],k,t) -
(LLt/Lez)?, where Mt (d!) is the predation rate on larvae and Lit and Lpz are larval length (mm)
and PZ length (mm), respectively (Fig. 1D). For predation on eggs LLt represents egg diameter.
It is important to note that our predation formulation further assumes that (1) predator size
increases with larval size such that escape and capture response increase proportionally, (2) the
predator community is dominated by visual predators, and (3) the predator community

composition does not change as larvae grow.

RESULTS

Validation of the individual based model

The BLOOFINZ-IBM was first validated by investigating larval dietary composition (Fig. 2A).
In both the guts of field-collected and simulated larvae, mesozooplankton (>200 pum) constitute
the majority of larval diet. Model and field measurements align with previous studies showing
high dietary contributions from mesozooplankton (Young and Davis, 1990; Llopiz and Hobday,
2015; Tilley et al., 2016). Across larval size classes, mesozooplankton contributed 27—-100%
(95% CI) in field-collected larvae and 4-100% in simulated larvae. The majority of variability

10
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occurs in first-feeding larvae (3—4 mm size class), where mesozooplankton contributed 27-100%
(median = 85%) for field-collected larvae and 4-99% (median = 59%) for simulated larvae.
Dietary contribution in the 4-9 mm size class varied from 76—100% (median = 100%) for field-
collected larvae and 66—-100% (median = 85%) for simulated larvae. We note that while larvae
are known to become increasingly piscivorous after post-flexion, only five instances of piscivory
were identified in the guts of 75 postflexion larvae (5.1-8.5 mm) collected during the
BLOOFINZ cruises (Shiroza et al., this issue) providing further confidence in model simulated
prey fields prior to postflexion.

Larval weights simulated by BLOOFINZ-IBM also closely match observations with a
correlation of 0.94 (p<0.01) (Fig. 2B). On average, field-collected larvae reached postflexion
weight at 10.33 dph (Malca et al., 2017; Laiz-Carrion et al., 2015) while simulated larvae were
10.37 dph. Herein 10 dph is referenced as “early postflexion” larvae and 3 dph is referenced as
“first-feeding” larvae. The age of postflexion for simulated larvae varied from 8.5-14.5 (95% CI)
dph. Larvae advected on the shelf reached postflexion more quickly because of the abundant
food. In contrast, larvae reached this stage much later in the highly oligotrophic regions of the
GoM. Prior to postflexion, field-collected larvae weigh 0.24 + 0.13 mg DW while simulated
larvae weigh 0.27 + 0.13 mg DW. Although our model is expected to become more inaccurate as
individuals move towards an increasingly piscivorous diet, we find nearly identical agreement
between weights of simulated and field-collected postflexion larvae. On average, field-collected
postflexion larvae weigh 1.03 + 0.59 mg DW while simulated larvae evaluated at the same age

weigh 1.04 + 0.60 mg DW.

Temporal variability in larval survival

During the first week after spawning, the model predicts two significant mortality events (Fig.
3A). The first event involves hatching success. Eggs hatch in 1848 hours (mean = 26 hours),
with >28% of eggs never hatching and hence survival declines rapidly within the first two days
post-spawning. Mortality slows briefly once individuals become yolk-sac larvae, with only
marginally higher predation relative to eggs. Exogenous feeding begins on average at 2.12 dph
and within 24 hours the model predicts a second mortality event associated with a distinct critical
period lasting ~3 days (3—6 dph). During this time, survival decreases by an order of magnitude.

Across all 20-years of the simulation, survival to postflexion averaged 0.24 + 0.05% and varied

11
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from 0.12-0.32% (Fig. 3B). This result suggests that recruitment in the western ABT stock could
vary by a factor of 2.7 due to interannual variability in early life stage mortality alone. In terms
of model sensitivity, we find that survival to postflexion was most sensitivity to the parameters:
HatchProb pl1-3 (hatching probability coefficients), € (gross growth efficiency), GutTurn (gut
turnover time), and GutFull (gut fullness) (Fig. S1). Similarly, the age when larvae reached
postflexion was also most sensitive to these parameters as well as FieldSampleTmpAvg (average
water temperature of collected larvae) and Age2Length pl (slope of the growth in length curve)
(Fig. S2).

Sources of larval mortality

Our analysis reveals that starvation is the largest cumulative source of mortality prior to
postflexion (Fig. 4A), accounting for 49% of all larvae followed by hatching success (29%) and
predation (20%). An additional 2% of total mortality was associated with advection out of the
GoM. Across years, mortality contributions were consistent and varied by <1%. Contributions
are robust even when losses are evaluated over the entire three-week drift because of high
mortality rates during the first week of life. Prior to postflexion, total mortality varied from 0.06—
0.93 d'! (mean = 0.53 d'!) which is slightly lower than 0.66 d"! estimated by Davis et al. (1991).
Starvation varied from 0-0.82 d™! (mean = 0.35 d!) while predation varied from 0.05-0.34 d!
(mean = 0.16 d''). Maximum mortality occurs at 4 dph, corresponding to the maximum rate of
starvation (Fig. 4A). This result indicates that simulated larvae begin to starve <48 hours after
the onset of exogenous feeding, which agrees closely with results from laboratory feeding
experiments of larval tuna (Tanaka et al., 2008).

To better understand why first-feeding larvae frequently starve, we investigated how prey
availability evolves as larvae develop in the model. In NEMURO-GoM, SZ biomass is typically
greater than LZ biomass by a factor of 3—4 in the open-ocean GoM. Hence, as larvae age and
feed less on microzooplankon (SZ), they also experience a decrease in prey concentration as a
result of a shift in prey size range. Prey biomass for first-feeding larvae averages 0.60 + 0.85 mg
C m? while early postflexion larvae experience prey fields with 25% lower zooplankton biomass
(Fig. S3F). In addition, first-feeding larvae have lower total metabolic requirements, which
averages 0.007 mg DW d! and increases by a factor of 7.5 for early postflexion larvae (Fig.

S3A). Despite these advantages, first-feeding larvae commonly starve as estimated by our model.

12
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This is a result of low clearance rates due to small sensory radii and slow swimming speeds,
which aligns with previous findings from early larval fish feeding experiments (Hunter, 1972).
From first-feeding to early postflexion, clearance rates of larvae increase by more than an order
of magnitude (18 L d'—480 L d"!, Fig. S3E) leading to substantially lower starvation rates for
larvae that survive the critical period. However, predation becomes an increasingly important
source of mortality as larvae grow because their increased size allows predators to detect them
more easily. At 7.75 dph predation becomes the largest source of mortality as estimated by our

model (Fig. 4A).

Spatial variability in starvation and predation

In the BLOOFINZ-IBM simulation, only a small fraction of particles are advected to the inner
shelf over the course of their three-week drift. To better understand the tradeoff between
predation and starvation on the shelf, we conducted an experiment in which the BLOOFINZ-
IBM was run with random spawning throughout the domain (Fig. S4B). That is, eggs were not
initialized in proportion to the Domingues ef al. (2016) habitat index as was done in the original
simulation (Fig. S4A). To calculate average mortality rates across the GoM, all particles in the
random spawning simulation were first organized within 0.12° x 0.12° spatial bins. Because of
the large difference in number of individuals across ages, particles within a bin were then
organized by age and their averaged weight and mortalities computed. Finally, average
mortalities from egg to postflexion were calculated by averaging over all binned ages weighing
<0.54 mg DW (i.e. observed postflexion weight).

Strong spatial variability in starvation and predation is predicted by the model with
elevated rates of starvation in the open-ocean GoM and elevated rates of predation on the shelf
(Fig. 4B,C). In the open-ocean GoM (>1000 m isobath), starvation varied from 0.18-1.38 d!
(95% CI, mean = 0.40 d') while predation varied from 0.08-0.37 d"! (mean = 0.16 d"!). Within
this region, starvation is greatest in the Loop Current and the north-western open-ocean GoM
driven by low zooplankton biomass and increased temperature (Fig. 4A). By contrast, the shelf
(<50 m isobath) supports high zooplankton biomass resulting in lower starvation rates but also
supports greater abundances of predators. In this region, starvation varied from 0.07-0.26 d’!

(mean = 0.11 d"") while predation varied from 0.21-1.34 d! (mean = 0.60 d™!).
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Spatial variability in larval survival

To investigate spatial variability in survival to postflexion, all particles from the random
spawning simulation were again categorized within spatial and age bins as described in the above
section (Fig. 5C). Next, the average weight and number of living individuals per particle (i.e. 0-
1000) were computed for each age. Survival to postflexion was then determined from the
average number of living individuals at the binned age when larvae reached postflexion weight
(i,e, first binned age with an average weight > 0.54 mg DW). Calculating survival based on
average weight-at-age criteria allows one to take into account super individuals that don’t reach
postflexion weight. In addition, we repeated this analysis by organizing particles based on their
spawning location (Fig. 5A). The first approach provides insight on how average conditions in
the GoM impact survival while the latter provides insight on suitability of spawning locations.
Both approaches reveal that the outer shelf and shelf break regions of the GoM are optimal for
larval survival, minimizing the risks of starvation and predation. Based on particle spawning
location, survival to postflexion varied from 0.005-5.78% (95% CI, mean = 0.24%) in the open-
ocean GoM, <0.001-1.04% (mean = 0.20%) on the shelf, and 0.015-4.64% (mean = 0.59%) on
the shelf break (<1000 m and >50 m isobaths).

To better understand the impact of predation on survival, which is the major source of
mortality for older larvae, larval survival was investigated out to 7 days after postflexion (Fig.
5B,D). While the model cannot simulate prey fields of piscivorous larvae, starvation is thought
to be uncommon for late postflexion larvae, as witnessed by elevated growth rates after the
initiation of piscivory (Tanaka et al., 2014). Indeed, the model estimates that starvation is
substantially reduced after larvae reach postflexion. This offers some confidence that the model
may provide reasonable simulations until the point where larvae develop stronger swimming
behavior after metamorphosis at ~25 dph (Fukuda et al., 2014). For late postflexion larvae,
survival decreases by more than two orders of magnitude on the shelf and varies from <0.001—
0.01% (mean = 0.001%). Survival decreases more slowly offshore and varies from <0.001—
0.48% (mean = 0.006%) in the open-ocean GoM, and <0.001-0.23% (mean = 0.01%) on the
shelf break. This suggests that while conditions on the shelf are ideal for survival of younger
larvae, survival is ultimately limited by higher rates of predation on older individuals (see

Discussion).
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Habitat suitability

Starvation and predation were also evaluated in an Eulerian framework to further characterize
larval mortality in the GoM. Since we do not assume that past conditions influence an
individual’s susceptibility to predation (i.e. the physiological condition of an individual does not
impact escape response), mortality due to predation for a given age can be calculated at each grid
point in the domain using the predation formulation (Fig. 6E-J). In contrast, starvation is a
function of previous environmental forcing and hence cannot be evaluated in an Eulerian
framework. Instead, to quantify susceptibility to starvation, we developed a food limitation index
(FLI). The FLI is defined as the ratio of metabolic requirement to total assimilated ingestion (FLI
=R / (Lot -@)), where values >1.0 indicate food limitation. These maps provide snapshots of
whether a larva at a given age could satisfy its metabolic requirements at any time and location
in the GoM (Fig. 6A-D).

Daily FLI and predation maps were computed each day over the 20-year simulation during
the spawning period. Consistent with the high rates of starvation estimated by the model, we find
that average prey biomass in the open-ocean GoM is insufficient to meet metabolic requirements
for first-feeding larvae (Fig. 6A,C). Food limitation is so severe that metabolic requirement
commonly exceeds assimilated ingestion by an order of magnitude. In terms of daily spatial
extent, food limitation for first-feeding larvae varies from 82—98% (95% CI, mean = 95%) of the
open-ocean GoM. Food limitation decreases in severity and extent for early postflexion larvae
(Fig. 6B,D) varying from 26—88% (mean = 72%) and is typically confined to the Loop Current
and GoM interior where Loop Current eddies are common (Fig. 6B). The spatial extent of food
limitation increased from April to June for both first-feeding and early-postflexion larvae driven
by decreased prey biomass. We note that increased temperature later in the spawning period had
an approximately neutral impact on food limitation because larvae grew (in length) faster, which
increased their clearance rates, but also had greater metabolic requirements. On average, food
limitation for first-feeding larvae covered 92% of the open-ocean GoM in April, 95% in May,
and 97% in June. For early postflexion larvae, food limitation has greater variability across the
spawning period covering 55% of the region in April, 74% in May, and 83% in June.

Predation maps show the expected inverse relationship, with elevated predation on the shelf
relative to open-ocean regions (Fig. 6 E-J). In the open-ocean GoM, predation is quite consistent

across the spawning period averaging 0.06 d™! for first-feeding larvae and 0.20 d™! for early
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463  postflexion larvae. This consistency is driven by decreased zooplankton biomass (decreasing
464  predation) and increased temperature (increasing predation) across the spawning period which
465  act as competing factors that largely cancel. By contrast, predation on the shelf increases across
466  the spawning period driven by higher zooplankton biomass and temperature. For early

467  postflexion larvae on the shelf, predation is on average 1.10 d”! in April, 1.30 d”! in May, and
468  1.48 d’!in June.

469

470  DISCUSSION

471  ABT are highly selective spawners with adults traveling long distances from feeding grounds in
472 the North Atlantic to spawning grounds in the GoM (Block ef al., 2001). Once in the GoM,

473  adults spawn offshore over a short period of 6-8 weeks (Muhling ef al., 2010). This highly

474  selective behavior suggests that there is some unique characteristic of the open ocean GoM that
475  favors offspring survival. Previous studies have statistically identified larval habitat within the
476  GoM (Lindo-Atichati et al., 2012; Wilson ef al., 2005). However, the underlying mechanisms
477  that make the open-ocean GoM more favorable for larval survival than shelf regions, and to a
478  larger extent, more favorable than surrounding seas has yet to be identified. Understanding the
479  spatial variability in larval survival within the GoM is the primary objective of this study and can
480  provide insight into the factors that create optimal spawning locations. Identifying these factors
481  and monitoring their year-to-year variability could provide valuable information to help better
482  predict ABT recruitment fluctuations.

483

484  Model-data misfits

485  The BLOOFINZ-IBM successfully resolves key dynamics pertaining to larval ecology of ABT,
486  including realistic larval diet and weight as a function of age, stage duration, required time for
487  the onset of starvation, and a distinct critical period that aligns with theory (Hjort, 1914).

488  However, some model-data discrepancies exist. The model slightly overestimates the

489  contribution of microzooplankton to larval diet across all size classes. This discrepancy may
490  result from poor preservation of soft-bodied microzooplankton (e.g., aloricate ciliates) in fish gut
491  contents, leading to an underestimate in the field data. Alternately, this model-data mismatch
492  may arise from an overestimation of SZ biomass by NEMURO-GoM or errors in the IBM

493  ingestion formulation. Simulated larvae have strict size-thresholds for prey availability that
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change with age, but are otherwise not selective. However, optimal foraging theory suggests that
when multiple prey types are available, larvae should preferentially feed on larger, more calorie-
rich prey items (Crowder, 1985; Barnes ef al., 2010). Indeed, Shiroza et al. (this issue) found
that larvae were more selective for appendicularians and podonid cladocerans when these taxa
were more abundant. Further realism could be added to our ingestion formulation by
incorporating optimal foraging decisions (Visser and Fiksen 2013).

Model estimates of larval weight were found to agree closely with observations, even after
early postflexion, when larvae are known to become increasingly piscivorous. However, during
the first few days of exogenous feeding (i.e. 3—6 dph), the model notably underestimates larval
weights. On average, simulated larvae were 31% lighter relative to field-collected larvae (data:
0.13 £ 0.05 mg DW vs model 0.09 + 0.01 mg DW). This discrepancy may occur because
endogenous and exogenous feeding does not overlap in our model. In reality, larvae may feed
exogenously while still utilizing their yolk sac. Furthermore, processes such as micro-scale
turbulence or prey motility that can increase encounter rates under some circumstances are not
included in our model (MacKenzie et al., 1994; Fiksen and MacKenzie, 2002). Such process
may be particularly important for weakly-swimming first-feeding larvae and could be included in

future versions of BLOOFINZ-IBM.

Mortality sources through ontogeny

Our results indicate that predation and starvation are important sources of mortality
throughout the early life stages of ABT, though their magnitude and relative importance varies
spatially and with larval age. Starvation was found to be the largest cumulative source of
mortality accounting for nearly half of individuals spawned. This result was found to be
insensitive to maximum starvation rate and point-of-no-return starvation rate parameter values.
Varying these parameters by +50% resulted in cumulative starvation loss varying from 47-51%.
Our model predicts that most first-feeding larvae quickly reach the point-of-no-return and that
starvation is significantly reduced for those that survive the 3-6 dph critical period. As a result,
total loss due to starvation is largely insensitive to maximum starvation rate. Similarly, because
all larvae die after reaching the point-of-no-return, the elevated starvation rate prescribed during
this period only dictates how quickly larvae die, and hence had little impact on survival to

postflexion. By contrast, the threshold for determining the point-of-no-return (i.e. condition
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value) does have an appreciable impact on total loss due to starvation. Future field and laboratory
studies aimed at quantifying this threshold are needed in order to reduce uncertainty in starvation
estimates.

Although starvation contributed the greatest integrated loss, our model predicts that
predation increases consistently over the pelagic larval duration becoming the largest source of
mortality around one week post hatch. Increasing predatory risk could potentially be extrapolated
out until larvae reach metamorphosis at ~22 mm (Fukuda ef al., 2014). In laboratory
experiments, late postflexion larvae and juvenile Pacific bluefin display schooling behavior as
early as 25 dph (Fukuda et al., 2014; Sabate et al., 2010). This indicates that predation likely
remains a significant source of mortality for late postflexion larvae as suggested by our model.
Estimating predation during this stage provides many challenges stemming from simulating prey
fields and behavior. While starvation is likely negligible for older larvae, simulating realistic
ingestion is needed for determining stage duration and hence integrated predation loss. Indeed,
faster growing cohorts have been hypothesized to experience reduced predation (Meekan et al.,
2006). Thus, estimating predation for older larvae will likely require prey fields and ingestion
formulations that account for density-dependent factors, such as piscivory. Although
challenging, accomplishing this task would be particularly relevant for fisheries management
when considering the potential impacts of a warming ocean. Based on our model, increased
temperature will produce a tradeoff between shorter stage duration (decreased predation,
particularly influencing older larvae), and increased metabolic requirements (increased
starvation, particularly influencing younger larvae). Identifying the net effect of this tradeoff will

be key to understanding how larval survival is impacted by future climate.

Spatial variability in larval mortality and survival

The GoM is characterized by strong biogeochemical gradients from shelf to open-ocean.
Our model indicates that these cross-shelf gradients produce tradeoffs between risks of predation
and starvation that are important for determining survival of ABT early life stages. The greatest
rates of starvation estimated by the model occur in the Loop Current and north-western open-
ocean GoM. Elevated starvation rates in these regions are driven by warm temperatures
(increased metabolic requirement) combined with low prey biomass. This result aligns with

previous ichthyoplankton surveys that found low occurrences of larvae in the Loop Current
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556  (Muhling et al., 2010). High starvation rates in the western open-ocean GoM can also be

557  attributed to the Loop Current. Large mesoscale eddies detach aperiodically from the Loop

558  Current every 9.5 months on average and propagate westward, transporting warm oligotrophic
559  water into the western GoM (Sturges and Leben, 2000). Their anti-cyclonic circulation reduces
560 nutrient input to the surface ocean, resulting in bottom-up limitation (Shropshire et al., 2020),
561  and explains the high rates of starvation estimated by the model in this region.

562 On the shelf, simulated larvae were able to largely avoid starvation. Prey was so abundant
563 in this region that larvae quickly became satiated and hence spawning further inshore did not
564  provide an additional growth advantage (Fig. S5). Larvae were most successful if they were
565  spawned near the shelf break where they experienced high prey concentrations during the 3-6
566  dph critical period while predation risk was still low. Individuals spawned in this region were
567  then more likely to be advected further offshore, minimizing predation as they grew and

568 increasing their chance of survival. Such conditions commonly occurred during the model

569  simulation in places like the Yucatan Peninsula. Here, the Loop Current entrains plankton-rich
570  water offshore and could explain why high abundances of larvae have been found in this region
571  previously (Richards et al., 1989). In the northern GoM, larval occurrence maps derived from
572  historical net collections also broadly agree with the region of maximum survival predicted by
573  the model (Muhling et al., 2017). We note that when survival was evaluated for late postflexion
574  larvae, the region of maximum survival again occurred near the shelf break, although shifted
575  further offshore. This result suggests that elevated rates of predation on older larvae is the main
576  factor limiting survival and may help to explain why spawning in the GoM occurs offshore.

577 Identifying why ABT spawn in the GoM as opposed to other nearby seas will require
578 future comparative modeling efforts and is beyond the scope of this study. However, our model
579  reveals that cross shelf transport is an important factor for increasing offspring survival and may
580  be a determining characteristic for ABT spawning grounds. In the GoM, the Loop Current,

581  Mississippi River, and regional wind forcing create pathways for exporting large amounts of
582  shelf water offshore (Ohlmann et al., 2001; Morey et al., 2013; Otis et al., 2019). During its
583  protracted phase, the Loop Current can extend far enough north to directly entrain coastal water
584  offshore (Wiseman and Dinnel, 1988; Schiller et al., 2011). More commonly, large mesoscale
585  eddies generated by the Loop Current entrain shelf water themselves or through the counter

586  vortices they produce. These eddies exist throughout the year and are thought to be the main
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mechanism driving cross-shelf transport in the region (Ohlmann ef al., 2001; Morey, Martin, et
al., 2003; Brokaw et al., 2019). By contrast, the contribution of cross-shelf transport driven by
the Mississippi River and local wind forcing is highly seasonal. During fall and winter, easterly
winds favor transport of riverine water along the coast inhibiting cross-shelf (Walker ef al., 2005;
Morey, Schroeder, et al., 2003). However, during spring and summer, southerly winds favor
Ekman transport to the east of the Mississippi Delta over deeper waters (Ohlmann et al., 2001,
Morey, Schroeder, et al., 2003). In addition, cold fronts during the winter and spring create wind
reversals, which can rapidly transport coastal water offshore. The timing of these cross-shelf
events may provide additional advantages for offspring survival in the GoM. Future studies
should investigate the magnitude of cross-shelf transport in regional oceans adjacent to the GoM

and other spawning grounds to identify the importance of this regional characteristic.

Application to stock assessments and future work

Ocean models are well-suited for evaluating larval mortality for species like ABT
because: 1) early life stages develop in pelagic waters influenced by large-scale ocean circulation
(e.g., Loop Current) that can be well resolved by hydrodynamic models, 2) their pelagic larval
duration is short, and 3) their low-trophic-level food is strongly influenced by bottom-up forcing
resolved by biogeochemical models. The present modeling framework could be updated
routinely to give real-time and future predictions of larval survival. These estimates could
potentially be used to inform future expected recruitment within stock assessment models that
form the basis of catch limits for managing ABT fisheries.

Further realism could be added to BLOOFINZ-IBM framework for increasing the
model’s utility in management applications. In particular, particles could be initialized based on
annual ichthyoplankton survey data to provide more realistic particle release locations. Realism
could be added by incorporating the impact of maternal effects such as initializing egg weights
based on the condition of spawning females. Because ABT are selective feeders, even within
mesozooplankton size class (Shiroza et al., this issue), added realism may also be achieved by
combining NEMURO-GoM with a zooplankton food web model (Stukel et al., this issue) to
improve ingestion estimates. We note that initial comparisons of ABT recruitment times series
and yearly larval survival predicted by the model do not agree well. This could indicate that the

aforementioned additions are necessary to increase the model’s predictive ability. Alternatively,
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this mismatch could indicate that processes during juvenile stages are also important for accurate
recruitment forecasting.

One of the main advantages of the modeling framework developed here is that it lends
insights into the potential factors that may cause significant changes in recruitment success of
ABT over time. The ABT population has experienced regime-shift-type behavior in the past;
observed recruitment declined dramatically after 1975 and it has been suggested that this is due
to environmental forcing (Brown ef al., 2002). Uncertainty in the cause of recruitment declines
greatly complicates management of the species because assumptions regarding stock
productivity have major influence on reference points, and there is debate over whether the
historically-observed elevated recruitment levels should be expected in the future or if more
recent lower recruitment levels represent a new norm (Porch and Lauretta, 2016). Understanding
mechanisms for variations in recruitment within the early life stages is critical to understanding
whether there is evidence for environmentally-driven shifts in recruitment, or whether these
shifts are the result of other population dynamics such as changes in spatial distribution and
overexploitation (Fromentin ef al., 2014). Modeling work has also suggested that ABT will be
highly impacted by climate change as a result of their narrow temperature preferences for
spawning (Muhling et al., 2011). The present study highlights critical bottlenecks where larvae
experience high mortality, which include temperature-dependent processes, and hence can

provide further insight into the potential impacts of climate change on the species.

CONCLUSIONS

Multiple hypotheses have been formulated to explain why ABT spawn in the open-ocean GoM
given their energy expensive migration from feeding grounds. In addition, other regions in the
Atlantic and Caribbean Seas contain similar conditions to the GoM (e.g. warm oligotrophic
water), yet show no evidence of large-scale spawning. Our results indicate that the GoM may
provide an ideal spawning ground because of the region’s large shelf and strong mesoscale
activity. Together these regional characteristics increase the chance of shelf water entrainment
into highly oligotrophic regions that may be crucial for ensuring both low starvation during the
critical period and low predation later in development. However, future IBM studies that
compare larval mortality in nearby regional oceans are needed to conclusively identify the

importance of cross-shelf transport for spawning grounds. Within the GoM, it has been
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hypothesized that, despite the potential abundant prey on the shelf, ABT spawn in offshore
regions to minimize predation on their larvae. Our results unequivocally support this hypothesis
indicating that although starvation is the largest source of mortality, higher predation rates on

older larvae ultimately limits survival.
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FIGURE LEGNEDS

Fig. 1 — (A) Relationship between larval length (mm) and prey length (mm) from gut content
analysis of 255 individuals collected in the GoM (Shiroza et al., this issue). Upper and lower
bounds of prey size are shown in red. Blue dotted line defines the break between zooplankton
(SZ, 0.02-0.2 mm) and large zooplankton (LZ, 0.2-1 mm) NEMURO-GoM state variables. (B)
Relationship between larval weight (mg DW) and age (days post hatch) for individuals collected
in the GoM. (C) Starvation as a function of an individual’s condition where >1.0 indicates ideal
condition. Condition below 0.25 is used as a threshold for the “point-of-no-return” where larvae
experience irreversible starvation (increased to 1.0 d-1 (not shown)). (D) Predation on egg and
larvae as a function of simulated large mesozooplankton (e.g. PZ, 1-5 mm) biomass and example
curves of individual length at 1, 2, 4, and 8§ mm.

Fig. 2 — Comparisons of mesozooplankton dietary contribution (% of total diet) as a function of
larval length (mm) between field-collected (black) and simulated larvae (red). Whiskers extend
to the 95% confidence interval. Outliers are denoted by (+) for observations and outliers for
model are not shown. (B) Comparison of larval weight (mg DW) as a function of age (days post
hatch) between field-collected larvae (black dots) and simulated larvae. Red line denotes model
average with the 95% CI represented by shaded area. Dashed blue line denotes the average age
simulated larvae reach postflexion.

Fig. 3 — (A) Survival as a function of time (days post spawn) with red shaded area denoting yolk-
sac larvae and blue shaded area denoting the period when individuals begin exogenous feeding.
(B) Survival of larval tuna estimated for each year as a function of age (days post hatch) for each
year (1993-2012) and black is mean of all years.
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Fig. 4 — (A) Mortality rate (d-1) a function of age (days post hatch) with total (red), starvation
(black), and predation (blue) plotted separately. (B) Spatial variability of average starvation (d-1)
prior to postflexion. (C) Spatial variability of predation (d-1) prior to postflexion. Averages in
starvation and predation maps are computed by organizing particles within 0.12° x 0.12° spatial
bins. Black lines denote the shelf break region defined between the 50 m and 1000 m isobath.

Fig. 5 — Spatial variability in larval survival to early postflexion (A,C) and late postflexion
(B,D). Survival is computed by organizing particles based on their spawning location within
0.12° x 0.12° bins (A,B) and based on their time varying location (C,D).

Fig. 6 — Mean and instantaneous food limitation index maps (A-D) and predation maps (E-J) for
the month of May. Average food limitation index map for (A) first-feeding larvae (i.e. 3 dph)
and (B) early postflexion (i.e. 10 dph). Instantaneous food limitation index map on May 15th
1996 for (C) first-feeding larvae and (D) early postflexion. Average predation for (E) first-
feeding larvae, (F) early postflexion larvae, and (G) late postflexion larvae (i.e. 17 dph).
Instantaneous predation map on May 15th 1996 for (H) first-feeding larvae, (I) early postflexion
larvae, and (J) late postflexion larvae.
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