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ABSTRACT 34 

Atlantic Bluefin tuna (ABT) (Thunnus thynnus) travel long distances to spawn in oligotrophic 35 

regions of the Gulf of Mexico which suggests these regions offer some unique benefit to 36 

offspring survival. To better understand how larval survival varies within the GoM a spatially-37 

explicit, Lagrangian, individual-based model was developed that simulates dispersal and 38 

mortality of ABT early life stages within realistic predator and prey fields during the spawning 39 

periods from 1993-2012. The model estimates that starvation is the largest cumulative source of 40 

mortality associated with an early critical period. However, elevated predation on older larvae is 41 

identified as the main factor limiting survival to late postflexion. As a result, first-feeding larvae 42 

have higher survival on the shelf where food is abundant, while older larvae have higher survival 43 

in the open ocean with fewer predators, making the shelf break an optimal spawning area. The 44 

modeling framework developed in this study explicitly simulates both physical and biological 45 

factors that impact larval survival and hence could be used to support ecosystem based 46 

management efforts for ABT under current and future climate conditions. 47 
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INTRODUCTION 65 

Broadcast spawning fish species, such as Atlantic Bluefin tuna (ABT) (Thunnus thynnus), 66 

typically produce enormous numbers of eggs that experience exceedingly high levels of 67 

mortality upon hatching and throughout the early life stages. Mortality during these stages is a 68 

result of three main sources: predation, starvation, and losses due to advection (e.g. individuals 69 

transported away from habitat needed for settlement). Predation is often considered the largest 70 

source of mortality because it occurs during all early life stages (Peck and Hufnagl, 2012). 71 

However, depending on the species and its habitat, the magnitude of these mortality sources may 72 

vary substantially. For example, advective losses are thought to be a significant source of 73 

mortality for coastal demersal species whose larvae require specific benthic substrates for 74 

settlement (Bailey, 1981). In contrast, starvation is hypothesized to be an important source of 75 

larval mortality for oceanic species that spawn in warm oligotrophic seas (Young and Davis, 76 

1990). 77 

 Quantifying mortality of early life stages in the field is exceedingly difficult, hence, 78 

spatially-explicit individual based models (IBMs) provide a useful strategy for investigating the 79 

relationships between mortality and environmental conditions. Many studies have utilized ocean 80 

models to investigate larval mortality. Early spatially-explicit larval IBMs were used to 81 

investigate advection-based losses (Hinckley et al., 1996; Werner et al., 1996; Heath and 82 

Gallego, 1998; Hinrichsen et al., 2002). Later studies included foraging, bioenergetics, and larval 83 

behavior to add further realism and identify key factors that contribute to larval mortality 84 

(Daewel et al., 2008; Fiksen and Jørgensen, 2011; Staaterman and Paris, 2014). Despite these 85 

advances, modeling larval growth and mortality is often restricted to statistical relationships with 86 

temperature, idealized prey fields, or static prey fields due to limited observations for 87 

characterizing dynamic zooplankton fields. Including realistic larval prey fields is particularly 88 

relevant for estimating mortality in species like ABT which spawn in tropical regions where prey 89 

availability may be more determinant than temperature for limiting larval growth (Jenkins et al., 90 

1991; Tanaka et al., 2006). 91 

Due to its high economic value and history of overfishing, ABT ecology has been studied 92 

extensively, including the early life stages. In the subtropical GoM, the life cycle of ABT begins 93 

with adults spawning offshore from April to June (Stokesbury et al., 2004). Females produce 94 

>10 million eggs (Aranda et al., 2013) and individuals hatch in 1–2 days (Tanaka et al., 2014). 95 
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Within 2–4 days, larvae begin exogenous feeding at a size of  ~3 mm length (Malca et al., 2017) 96 

and weigh ~0.1 mg DW (dry weight) (Laiz-Carrión et al., 2015). The pelagic larval duration 97 

lasts 3–4 weeks (Fukuda et al., 2014), during which time individuals grow quickly (~0.4–0.7 mm 98 

d-1) (Muhling et al., 2017; Malca et al., 2017). Upon yolk sack absorption, larvae depend entirely 99 

on zooplankton (e.g., ciliates and copepod nauplii) ranging in size from ~100–400 μm to meet 100 

their metabolic requirements (Llopiz et al., 2015; Tilley et al., 2016; Shiroza et al., this issue). 101 

Soon after, larvae begin feeding primarily on mesozooplankton and become increasingly 102 

piscivorous at 6–8 mm (Llopiz and Hobday, 2015; Llopiz et al., 2015; Uriarte et al., 2019).  103 

The extensive research on ABT early life stages provides a unique opportunity for 104 

development of IBMs. In addition, the relationships between lower trophic level dynamics and 105 

larval ecology in the GoM has recently been documented in detail as part of the Bluefin Larvae 106 

in Oligotrophic Ocean Foodwebs: Investigating Nutrients to Zooplankton in the Gulf of Mexico 107 

(BLOOFINZ-GoM) project (Gerard et al., this issue). In this study, we utilize this recent work to 108 

guide the development of a spatially-explicit, Lagrangian, individual-based model (IBM) that 109 

simulates dispersal, growth and mortality with an emphasis on the period from egg to 110 

postflexion. To our knowledge, the model is the first of its kind for ABT in that it incorporates 111 

realistic spatiotemporally varying predator and prey fields that also evolve with simulated larvae 112 

through ontogeny. The modeling framework implemented here provides an important next step 113 

towards recruitment forecasting within an ecosystem based management approach. The goals for 114 

this study were to: 1) estimate annual larval mortality; 2) compare the relative magnitudes of 115 

predation and starvation; and 3) identify regions in the GoM that minimize larval mortality.  116 

 117 

METHODS 118 

Biogeochemical model description  119 

The BLOOFINZ-Individual Based Model (BLOOFINZ-IBM) developed here is forced with 20 120 

years (1993–2012) of realistic hydrodynamics, zooplankton biomass, temperature, water clarity, 121 

and ambient light fields obtained from the three-dimensional biogoechemical model NEMURO-122 

GoM (Shropshire et al., 2020). NEMURO-GoM is a highly-modified version of the NEMURO 123 

biogeochemical model (North Pacific Ecosystem Model for Understanding Regional 124 

Oceanography, Kishi et al., 2007) run in an offline configuration of the MITgcm (Massachusetts 125 

Institute of Technology general circulation model, Marshall et al., 1997) and forced with 126 
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dynamical fields from a ~4-km horizontal resolution, data-assimilative HYCOM (Hybrid 127 

Coordinate Ocean Model, Chassignet et al., 2009; Metzger et al., 2014) simulation of the GoM. 128 

NEMURO-GoM has the same horizontal resolution as the dynamical fields and includes 29 129 

depth-constant levels (10 m intervals from 0 to 150 m and variable resolution deeper). For more 130 

information on the numerical configuration of NEMURO-GoM see Shropshire et al. (2020). 131 

NEMURO-GoM was developed specifically to examine regional zooplankton dynamics 132 

in the GoM and has been extensively validated against a combination of remote and in situ 133 

measurements including: mesozooplankton biomass and grazing rates, microzooplankton grazing 134 

rates, phytoplankton growth rates, net primary production, surface chlorophyll, and vertical 135 

profiles of chlorophyll and nitrate (Shropshire et al., 2020). The model has eleven state variables: 136 

six non-living pools, two phytoplankton, and three zooplankton functional groups. We briefly 137 

describe the latter, which are used to estimate predator and prey fields for simulated larvae. The 138 

zooplankton community is composed of small zooplankton (SZ), which represents heterotrophic 139 

protists (e.g. ciliates). Metazoan zooplankton are modelled as large zooplankton (LZ) that 140 

represent suspension-feeders and larger predatory mesozooplankton (PZ). Together, these state 141 

variables are used to approximate zooplankton biomass in three size classes 0.02–0.2 mm (SZ), 142 

0.2–1.0 mm (LZ), and 1.0–5.0 mm (PZ). 143 

 144 

Lagrangian model description 145 

Lagrangian simulations were performed using the MITgcm floats package (Adcroft et al., 2018) 146 

which incorporates a 4th order Runge-Kutta scheme and is run in parallel with NEMURO-GoM. 147 

To simulate realistic spawning, particles (i.e. eggs) were released daily from April 1st to June 30th 148 

from 1993–2012. The number of eggs released in each grid cell was scaled proportionally to the 149 

Domingues et al. (2016) ABT habitat index. This index is designed to identify regions (>200 m 150 

isobath) in the GoM where larvae are likely to be found as a function of sea surface temperature 151 

and height, and geostrophic velocity. In total, 750,875 neutrally-buoyant, passive particles were 152 

initialized (mean=413 d-1) during the spawning period where initial depths were set randomly 153 

within the mixed layer (5–35 m). Each particle represents a “super individual” (i.e., a group of 154 

1000 physiologically-identical individuals that experience identical environmental forcing) 155 

(Scheffer et al., 1995). Three-dimensional fields of zooplankton biomass, temperature, water 156 
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clarity, and ambient light are interpolated to particle positions every 6 hours. These particle 157 

attributes are then used to simulate growth and mortality of ABT early life stages in the IBM. 158 

For larval ABT, the onset of piscivory is closely timed with the transition from flexion to 159 

postflexion stage, occuring around two weeks post hatch (Blanco et al., 2019; Laiz-Carrión et 160 

al., 2019; Llopiz and Hobday, 2015; Uriarte et al., 2019). Larvae in the model are tracked for 161 

three weeks, fully encompassing the period when they are obligate planktivores. We focus our 162 

analysis on the period prior to piscivory because NEMURO-GoM does not explicitly simulate 163 

larger motile prey. Although the IBM does not simulate preflexion, flexion, and postflexion 164 

stages directly, we utilize measured weights from larvae collected in the field as a reference for 165 

determining developmental stage of simulated larvae. Based on larvae collected in the GoM, 166 

postflexion occurs at ~6 mm (Shiroza et al., this issue) which corresponds to ~10 days post hatch 167 

(dph) and 0.54 mg DW based on relationship presented in Malca et al. (2017) and Laiz-Carrión 168 

et al. (2015) (see supplemental S4). Thus, in our model simulated larvae weighing <0.54 mg DW 169 

are considered to be obligate planktivores.  170 

 171 

Individual-based model description 172 

The BLOOFINZ-IBM includes three life stages (eggs, yolk-sac, and feeding larvae). Egg stage 173 

duration (hours (h)) is determined from an empirical temperature relationship (h = 4.66·exp(-174 

0.11·θ)), where θ is temperature (Gordoa and Carreras, 2014). ABT eggs develop quickly in the 175 

warm water of the GoM and hatch within 48 hours. The probability that an egg will hatch is 176 

estimated using a temperature relationship presented in Reglero et al. (2018). The maximum 177 

probability of hatching (72%) occurs at 25°C; eggs that experience temperature <18°C or >33°C 178 

will not hatch. Upon hatching, particles are classified as yolk-sac larvae, and their lengths are 179 

prescribed based on a length-to-age relationship (Malca et al., 2017). In the model, growth in 180 

weight is dynamic (see eq1) while length increases monotonically with age as a function of 181 

temperature with a Q10 = 2. That is, growth in length increase exponentially with temperature 182 

such that every +10°C results in a +2-fold change.  183 

Although no function exists for the rate of yolk utilization, exogenous feeding is known to 184 

begin within 2–4 dph (Tanaka et al., 2014). Here, we assume exogenous feeding begins on 185 

average at 2.0 dph to be consistent with otolith-based aging studies in the region (Malca et al., 186 

2017). The influence of temperature on the yolk-sac stage duration is again included using Q10 = 187 
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2.0. Once exogenous feeding begins, larvae are assumed to have utilized all egg yolk (i.e., there 188 

is no overlap between endogenous and exogenous feeding). Post yolk-sac larval weights are 189 

initialized based on a weight-to-age relationship determined from larvae collected in the GoM 190 

(Malca et al., 2017; Laiz-Carrión et al., 2015).   191 

Finally, to simulate feeding larvae, a bioenergetics model was developed where growth in 192 

mass occurs if the assimilated fraction (α) of total ingestion (Itot) exceeds the metabolic 193 

requirement (R). Larval weight (W) is updated every 6 hours using (eq1). Starvation- and 194 

predation-induced mortality is estimated while larvae grow and are advected through the GoM as 195 

determined by ingestion, metabolism, starvation, and predation submodules described below. 196 

Wt+1 = Wt + (Itot ∙ α − R)         (eq1) 197 

 198 

Ingestion module 199 

Clearance rate (m3 larva-1 d-1) is modeled as a function of the two-dimensional field of view 200 

fraction (φ), sensory radius (sp) when feeding on zooplankton prey (i.e. p = SZ, LZ, PZ), fraction 201 

of time spent feeding in a day (Δt), and the average swimming speed of larvae (v). Clearance rate 202 

is then multiplied by prey biomass (p(i,j,k,t)) at the simulated larvae’s instantaneous local 203 

position and time to estimate encounter rate (mg C d-1). The product of the encounter rate and 204 

capture success (σp) gives ingestion rate (Ip, mg C d-1):  205 

Ip =  φπsp
2 ∙ v ∙ ∆t ∙ p(i, j, k, t) ∙ σp      (eq2) 206 

Field of view in larval fish is determined by the orientation of eyes on the head. Here, we 207 

assume that larvae do not perceive prey below their horizontal plane (φ = 0.5). A swimming 208 

speed of 2 body lengths s-1 is used for all larvae, which is approximately the average cruise 209 

swimming speed observed for cultured larval tuna (Sabate et al., 2010). Larvae are visual feeders 210 

(Llopiz and Hobday, 2015) and hence simulated feeding is restricted to daylight hours. The 211 

number of feeding hours in a day is estimated using an analytical function of latitude and day of 212 

the year. Prey biomass is derived from zooplankton biomass fields estimated by NEMURO-213 

GoM. Unlike other pelagic larval fish, such as mackerel, which have highly-variable prey 214 

capture success through ontogeny (Hunter, 1972), the capture success for larval tuna in rearing 215 

experiments is high (>70%), even at first-feeding (P. Reglero, unpub.). This is likely due to their 216 
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large mouth size relative to prey (Shiroza et al., this issue) and hence the capture success is 217 

assumed to be constant (80%). An upper limit for ingestion is set using a temperature-dependent 218 

gut turnover time (3 h at 26 °C (Young and Davis, 1990), with a Q10=2.0) and a full gut size 219 

equivalent to 10% body mass. 220 

Ingestion is most sensitive to visual sensory radius because it is a squared term. Hence, many 221 

mathematical formulations of sensory radius have been determined from laboratory feeding 222 

studies (Hunter, 1972), by examining the anatomy of the eye (Hilder et al., 2019), or derived 223 

theoretically (Aksnes and Giske, 1993). To estimate sensory radius, we utilize a recently 224 

determined anatomical relationship for the visual acuity of larval tuna (Hilder et al., 2019) along 225 

with a theoretical model of visual predation derived by Aksnes and Utne (1997) to account for 226 

the impact of light and water clarity. This formulation computes sensory radius as a function of 227 

larval length, prey size, water clarity, and ambient light (see online Appendix 1). Because the 228 

IBM includes many parameters (see Table S1) we conducted a parameter sensitivity experiment 229 

using a simple individual parameter perturbation where each parameter was varied by + 10% to 230 

investigate the impact on survival to postflexion (Fig. S1) and postflexion age (Fig. S2). 231 

 232 

Prey field module 233 

For larval ABT,  prey size range changes rapidly through ontogeny. This shift is parameterized 234 

in the model based on gut content measurements from larvae collected during BLOOFINZ-GoM 235 

cruises (Shiroza et al., this issue). Specifically, we determine upper and lower bounds of prey 236 

size as a function of larval length and use this to calculate the fraction of SZ (0.02 – 0.2 mm), LZ 237 

(0.2 – 1 mm), and PZ (1 – 5 mm) biomass that is available to simulated larvae as they grow (Fig. 238 

1A). We note that density-dependent factors are not included in our model and hence larvae do 239 

not feed on one another or reduce zooplankton biomass in a given grid cell. The biomass of LZ 240 

and PZ are assumed to be evenly distributed over their respective size ranges which is supported 241 

by mesozooplankton biomass measurements in the region (Landry and Swalethorp, this issue). 242 

By contrast, SZ biomass is assumed to follow a size spectra relationship with a slope of zero (i.e. 243 

biomass within 0.002-0.02 mm is equal to biomass within 0.02-0.2 mm).  244 

 245 

Metabolic requirement module 246 
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The metabolic requirement (R, mg C d-1) is estimated from a weight-to-age relationship based on 247 

larvae collected in the GoM (Malca et al., 2017; Laiz-Carrión et al., 2015) (Fig. 1B). The 248 

derivative of this relationship gives average growth rate in mass (dW/dA). To convert to carbon, 249 

the growth rate is multiplied by a carbon to dry weight ratio (cf = 0.4; (Omori, 1969)). The 250 

ingestion required to meet the observed growth rate can then be estimated by dividing by the 251 

approximate gross growth efficiency of larvae (∈ = 0.3; (Houde, 1989)). Multiplying by the 252 

difference between the approximate absorption efficiency (α = 0.7; (Houde, 1989)) and ∈ gives 253 

an estimate of metabolic requirement. Finally, the impact of temperature on metabolic 254 

requirement is included using Q10 = 2.0, yielding (eq3) where tc is the temperature coefficient, 255 

θ(i,j,k,t) is water temperature at an instantaneous local position and time, and θavg represents the 256 

average water temperature that field-collected larvae experience prior to being collected 257 

(assumed to be 26°C).  258 

R =
dW

dA
∙ cf ∙

α−ϵ

ϵ
∙ etc(θ(i,j,k,t)−θavg)      (eq3) 259 

 260 

Starvation module 261 

To determine the probability of starvation for simulated larvae, we first identify a maximum 262 

weight at age, defined as an exponential fit to the field-collected larvae in the upper quartile of 263 

the weight-age relationship (Fig. 1B). The actual-weight:maximum-weight ratio is used as a 264 

metric of larval condition. We then fit a probability distribution function to the condition values 265 

for field-collected larvae and use the associated cumulative distribution function (CDF) to 266 

determine the probability of a larvae having a given condition value or lower. Finally, we 267 

perform a reflection of the CDF (i.e. 1-CDF so that low probability results in high mortality) and 268 

scale the CDF by a maximum starvation rate parameter (0.3 d-1), which yields a sigmoidal 269 

function that provides a rate of mortality due to starvation given the condition (simulated-270 

weight:maximum-weight) of a simulated larva (Fig. 1C). Simulated larvae experience elevated 271 

starvation of 1.0 d-1 if their weight falls below 25% of the maximum-weight to account for 272 

irreversible starvation (i.e., “point-of-no-return”, (Yin and Blaxter, 1987)). The number of 273 

individuals in a particle (i.e. super individual) is stepped forward in time using the generalized 274 

form N(t+1) = N(t) – dt [m·N(t)], where N is the number of larvae, dt is the time step, and m is 275 

the mortality rate (d-1). 276 
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 277 

Predation module 278 

In NEMURO-GoM, mortality on PZ (MPZ, mg C m-3 d-1) is modeled as a function of PZ biomass 279 

with a quadratic formulation (MPZ = [PZ]2·m(θ), where m is a mortality parameter scaled by a 280 

function of temperature). This formulation is commonly used in biogeochemical models as a 281 

closure term to represent implicit loss on the highest trophic level due to an un-modeled predator 282 

that covaries in abundance with its prey. Hence, MPZ can be treated as an approximate predation 283 

rate for large mesozooplankton. We note that both PZ biomass and grazing rates in NEMURO-284 

GoM have been validated with field measurements which provides some confidence in the MPZ 285 

rates (Shropshire et al., 2020). Next, to estimate predation on ABT early life stages, we assume 286 

that predators feeding on ABT stages prior to postflexion (~1–6 mm) are broadly similar to 287 

predators feeding on PZ (defined as 1–5 mm mesozooplankton) given their overlap in size. With 288 

this assumption, predation can be estimated for eggs or larvae by scaling MPZ  by a function of 289 

size because detection distance, and hence prey capture, is limited by prey size (herein MPZ is 290 

normalized by PZ biomass to give a specific predation rate, (d-1)). The scaling function used in 291 

our predation formulation is derived in online appendix 1 and simplifies to MLT = MPZ(i,j,k,t) · 292 

(LLT/LPZ)2, where MLT (d-1) is the predation rate on larvae and LLT and LPZ are larval length (mm) 293 

and PZ length (mm), respectively (Fig. 1D). For predation on eggs LLT represents egg diameter. 294 

It is important to note that our predation formulation further assumes that (1) predator size 295 

increases with larval size such that escape and capture response increase proportionally, (2) the 296 

predator community is dominated by visual predators, and (3) the predator community 297 

composition does not change as larvae grow.  298 

 299 

RESULTS 300 

Validation of the individual based model 301 

The BLOOFINZ-IBM was first validated by investigating larval dietary composition (Fig. 2A). 302 

In both the guts of field-collected and simulated larvae, mesozooplankton (>200 μm) constitute 303 

the majority of larval diet. Model and field measurements align with previous studies showing 304 

high dietary contributions from mesozooplankton (Young and Davis, 1990; Llopiz and Hobday, 305 

2015; Tilley et al., 2016). Across larval size classes, mesozooplankton contributed 27–100% 306 

(95% CI) in field-collected larvae and 4–100% in simulated larvae. The majority of variability 307 
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occurs in first-feeding larvae (3–4 mm size class), where mesozooplankton contributed 27–100% 308 

(median = 85%) for field-collected larvae and 4–99% (median = 59%) for simulated larvae. 309 

Dietary contribution in the 4–9 mm size class varied from 76–100% (median = 100%) for field-310 

collected larvae and 66–100% (median = 85%) for simulated larvae. We note that while larvae 311 

are known to become increasingly piscivorous after post-flexion, only five instances of piscivory 312 

were identified in the guts of 75 postflexion larvae (5.1–8.5 mm) collected during the 313 

BLOOFINZ cruises (Shiroza et al., this issue) providing further confidence in model simulated 314 

prey fields prior to postflexion. 315 

Larval weights simulated by BLOOFINZ-IBM also closely match observations with a 316 

correlation of 0.94 (p<0.01) (Fig. 2B). On average, field-collected larvae reached postflexion 317 

weight at 10.33 dph (Malca et al., 2017; Laiz-Carrión et al., 2015) while simulated larvae were 318 

10.37 dph. Herein 10 dph is referenced as “early postflexion” larvae and 3 dph is referenced as 319 

“first-feeding” larvae. The age of postflexion for simulated larvae varied from 8.5–14.5 (95% CI) 320 

dph. Larvae advected on the shelf reached postflexion more quickly because of the abundant 321 

food. In contrast, larvae reached this stage much later in the highly oligotrophic regions of the 322 

GoM. Prior to postflexion, field-collected larvae weigh 0.24 + 0.13 mg DW while simulated 323 

larvae weigh 0.27 + 0.13 mg DW. Although our model is expected to become more inaccurate as 324 

individuals move towards an increasingly piscivorous diet, we find nearly identical agreement 325 

between weights of simulated and field-collected postflexion larvae. On average, field-collected 326 

postflexion larvae weigh 1.03 + 0.59 mg DW while simulated larvae evaluated at the same age 327 

weigh 1.04 + 0.60 mg DW.  328 

 329 

Temporal variability in larval survival 330 

During the first week after spawning, the model predicts two significant mortality events (Fig. 331 

3A). The first event involves hatching success. Eggs hatch in 18–48 hours (mean = 26 hours), 332 

with >28% of eggs never hatching and hence survival declines rapidly within the first two days 333 

post-spawning. Mortality slows briefly once individuals become yolk-sac larvae, with only 334 

marginally higher predation relative to eggs. Exogenous feeding begins on average at 2.12 dph 335 

and within 24 hours the model predicts a second mortality event associated with a distinct critical 336 

period lasting ~3 days (3–6 dph). During this time, survival decreases by an order of magnitude. 337 

Across all 20-years of the simulation, survival to postflexion averaged 0.24 + 0.05% and varied 338 
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from 0.12–0.32% (Fig. 3B). This result suggests that recruitment in the western ABT stock could 339 

vary by a factor of 2.7 due to interannual variability in early life stage mortality alone. In terms 340 

of model sensitivity, we find that survival to postflexion was most sensitivity to the parameters: 341 

HatchProb_p1-3 (hatching probability coefficients), ϵ (gross growth efficiency), GutTurn (gut 342 

turnover time), and GutFull (gut fullness) (Fig. S1). Similarly, the age when larvae reached 343 

postflexion was also most sensitive to these parameters as well as FieldSampleTmpAvg (average 344 

water temperature of collected larvae) and Age2Length_p1 (slope of the growth in length curve) 345 

(Fig. S2). 346 

 347 

Sources of larval mortality  348 

Our analysis reveals that starvation is the largest cumulative source of mortality prior to 349 

postflexion (Fig. 4A), accounting for 49% of all larvae followed by hatching success (29%) and 350 

predation (20%). An additional 2% of total mortality was associated with advection out of the 351 

GoM. Across years, mortality contributions were consistent and varied by <1%. Contributions 352 

are robust even when losses are evaluated over the entire three-week drift because of high 353 

mortality rates during the first week of life. Prior to postflexion, total mortality varied from 0.06–354 

0.93 d-1 (mean = 0.53 d-1) which is slightly lower than 0.66 d-1 estimated by Davis et al. (1991). 355 

Starvation varied from 0-0.82 d-1 (mean = 0.35 d-1) while predation varied from 0.05–0.34 d-1 356 

(mean = 0.16 d-1). Maximum mortality occurs at 4 dph, corresponding to the maximum rate of 357 

starvation (Fig. 4A). This result indicates that simulated larvae begin to starve <48 hours after 358 

the onset of exogenous feeding, which agrees closely with results from laboratory feeding 359 

experiments of larval tuna (Tanaka et al., 2008). 360 

To better understand why first-feeding larvae frequently starve, we investigated how prey 361 

availability evolves as larvae develop in the model. In NEMURO-GoM, SZ biomass is typically 362 

greater than LZ biomass by a factor of 3–4 in the open-ocean GoM. Hence, as larvae age and 363 

feed less on microzooplankon (SZ), they also experience a decrease in prey concentration as a 364 

result of a shift in prey size range. Prey biomass for first-feeding larvae averages 0.60 + 0.85 mg 365 

C m-3 while early postflexion larvae experience prey fields with 25% lower zooplankton biomass 366 

(Fig. S3F). In addition, first-feeding larvae have lower total metabolic requirements, which 367 

averages 0.007 mg DW d-1 and increases by a factor of 7.5 for early postflexion larvae (Fig. 368 

S3A). Despite these advantages, first-feeding larvae commonly starve as estimated by our model. 369 
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This is a result of low clearance rates due to small sensory radii and slow swimming speeds, 370 

which aligns with previous findings from early larval fish feeding experiments (Hunter, 1972). 371 

From first-feeding to early postflexion, clearance rates of larvae increase by more than an order 372 

of magnitude (18 L d-1–480 L d-1, Fig. S3E) leading to substantially lower starvation rates for 373 

larvae that survive the critical period. However, predation becomes an increasingly important 374 

source of mortality as larvae grow because their increased size allows predators to detect them 375 

more easily. At 7.75 dph predation becomes the largest source of mortality as estimated by our 376 

model (Fig. 4A).  377 

 378 

Spatial variability in starvation and predation  379 

In the BLOOFINZ-IBM simulation, only a small fraction of particles are advected to the inner 380 

shelf over the course of their three-week drift. To better understand the tradeoff between 381 

predation and starvation on the shelf, we conducted an experiment in which the BLOOFINZ-382 

IBM was run with random spawning throughout the domain (Fig. S4B). That is, eggs were not 383 

initialized in proportion to the Domingues et al. (2016) habitat index as was done in the original 384 

simulation (Fig. S4A). To calculate average mortality rates across the GoM, all particles in the 385 

random spawning simulation were first organized within 0.12° x 0.12° spatial bins. Because of 386 

the large difference in number of individuals across ages, particles within a bin were then 387 

organized by age and their averaged weight and mortalities computed. Finally, average 388 

mortalities from egg to postflexion were calculated by averaging over all binned ages weighing 389 

<0.54 mg DW (i.e. observed postflexion weight).  390 

Strong spatial variability in starvation and predation is predicted by the model with 391 

elevated rates of starvation in the open-ocean GoM and elevated rates of predation on the shelf 392 

(Fig. 4B,C). In the open-ocean GoM (>1000 m isobath), starvation varied from 0.18–1.38 d-1 393 

(95% CI, mean = 0.40 d-1) while predation varied from 0.08–0.37 d-1 (mean = 0.16 d-1). Within 394 

this region, starvation is greatest in the Loop Current and the north-western open-ocean GoM 395 

driven by low zooplankton biomass and increased temperature (Fig. 4A). By contrast, the shelf 396 

(<50 m isobath) supports high zooplankton biomass resulting in lower starvation rates but also 397 

supports greater abundances of predators. In this region, starvation varied from 0.07–0.26 d-1 398 

(mean = 0.11 d-1) while predation varied from 0.21–1.34 d-1 (mean = 0.60 d-1).  399 

 400 
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Spatial variability in larval survival 401 

To investigate spatial variability in survival to postflexion, all particles from the random 402 

spawning simulation were again categorized within spatial and age bins as described in the above 403 

section (Fig. 5C). Next, the average weight and number of living individuals per particle (i.e. 0-404 

1000) were computed for each age. Survival to postflexion was then determined from the 405 

average number of living individuals at the binned age when larvae reached postflexion weight 406 

(i,e, first binned age with an average weight > 0.54 mg DW). Calculating survival based on 407 

average weight-at-age criteria allows one to take into account super individuals that don’t reach 408 

postflexion weight. In addition, we repeated this analysis by organizing particles based on their 409 

spawning location (Fig. 5A). The first approach provides insight on how average conditions in 410 

the GoM impact survival while the latter provides insight on suitability of spawning locations. 411 

Both approaches reveal that the outer shelf and shelf break regions of the GoM are optimal for 412 

larval survival, minimizing the risks of starvation and predation. Based on particle spawning 413 

location, survival to postflexion varied from 0.005–5.78% (95% CI, mean = 0.24%) in the open-414 

ocean GoM, <0.001–1.04% (mean = 0.20%) on the shelf, and 0.015–4.64% (mean = 0.59%) on 415 

the shelf break (<1000 m and >50 m isobaths). 416 

To better understand the impact of predation on survival, which is the major source of 417 

mortality for older larvae, larval survival was investigated out to 7 days after postflexion (Fig. 418 

5B,D). While the model cannot simulate prey fields of piscivorous larvae, starvation is thought 419 

to be uncommon for late postflexion larvae, as witnessed by elevated growth rates after the 420 

initiation of piscivory (Tanaka et al., 2014). Indeed, the model estimates that starvation is 421 

substantially reduced after larvae reach postflexion. This offers some confidence that the model 422 

may provide reasonable simulations until the point where larvae develop stronger swimming 423 

behavior after metamorphosis at ~25 dph (Fukuda et al., 2014). For late postflexion larvae, 424 

survival decreases by more than two orders of magnitude on the shelf and varies from <0.001–425 

0.01% (mean = 0.001%). Survival decreases more slowly offshore and varies from <0.001–426 

0.48% (mean = 0.006%) in the open-ocean GoM, and <0.001–0.23% (mean = 0.01%) on the 427 

shelf break. This suggests that while conditions on the shelf are ideal for survival of younger 428 

larvae, survival is ultimately limited by higher rates of predation on older individuals (see 429 

Discussion). 430 

 431 
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Habitat suitability 432 

Starvation and predation were also evaluated in an Eulerian framework to further characterize 433 

larval mortality in the GoM. Since we do not assume that past conditions influence an 434 

individual’s susceptibility to predation (i.e. the physiological condition of an individual does not 435 

impact escape response), mortality due to predation for a given age can be calculated at each grid 436 

point in the domain using the predation formulation (Fig. 6E-J). In contrast, starvation is a 437 

function of previous environmental forcing and hence cannot be evaluated in an Eulerian 438 

framework. Instead, to quantify susceptibility to starvation, we developed a food limitation index 439 

(FLI). The FLI is defined as the ratio of metabolic requirement to total assimilated ingestion (FLI 440 

= R / (Itot ·α)), where values >1.0 indicate food limitation. These maps provide snapshots of 441 

whether a larva at a given age could satisfy its metabolic requirements at any time and location 442 

in the GoM (Fig. 6A-D).  443 

Daily FLI and predation maps were computed each day over the 20-year simulation during 444 

the spawning period. Consistent with the high rates of starvation estimated by the model, we find 445 

that average prey biomass in the open-ocean GoM is insufficient to meet metabolic requirements 446 

for first-feeding larvae (Fig. 6A,C). Food limitation is so severe that metabolic requirement 447 

commonly exceeds assimilated ingestion by an order of magnitude. In terms of daily spatial 448 

extent, food limitation for first-feeding larvae varies from 82–98% (95% CI, mean = 95%) of the 449 

open-ocean GoM. Food limitation decreases in severity and extent for early postflexion larvae 450 

(Fig. 6B,D) varying from 26–88% (mean = 72%) and is typically confined to the Loop Current 451 

and GoM interior where Loop Current eddies are common (Fig. 6B). The spatial extent of food 452 

limitation increased from April to June for both first-feeding and early-postflexion larvae driven 453 

by decreased prey biomass. We note that increased temperature later in the spawning period had 454 

an approximately neutral impact on food limitation because larvae grew (in length) faster, which 455 

increased their clearance rates, but also had greater metabolic requirements. On average, food 456 

limitation for first-feeding larvae covered 92% of the open-ocean GoM in April, 95% in May, 457 

and 97% in June.  For early postflexion larvae, food limitation has greater variability across the 458 

spawning period covering 55% of the region in April, 74% in May, and 83% in June.  459 

Predation maps show the expected inverse relationship, with elevated predation on the shelf 460 

relative to open-ocean regions (Fig. 6 E-J). In the open-ocean GoM, predation is quite consistent 461 

across the spawning period averaging 0.06 d-1 for first-feeding larvae and 0.20 d-1 for early 462 
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postflexion larvae. This consistency is driven by decreased zooplankton biomass (decreasing 463 

predation) and increased temperature (increasing predation) across the spawning period which 464 

act as competing factors that largely cancel. By contrast, predation on the shelf increases across 465 

the spawning period driven by higher zooplankton biomass and temperature. For early 466 

postflexion larvae on the shelf, predation is on average 1.10 d-1 in April, 1.30 d-1 in May, and 467 

1.48 d-1 in June.  468 

 469 

DISCUSSION  470 

ABT are highly selective spawners with adults traveling long distances from feeding grounds in 471 

the North Atlantic to spawning grounds in the GoM (Block et al., 2001). Once in the GoM, 472 

adults spawn offshore over a short period of 6-8 weeks (Muhling et al., 2010). This highly 473 

selective behavior suggests that there is some unique characteristic of the open ocean GoM that 474 

favors offspring survival. Previous studies have statistically identified larval habitat within the 475 

GoM (Lindo-Atichati et al., 2012; Wilson et al., 2005). However, the underlying mechanisms 476 

that make the open-ocean GoM more favorable for larval survival than shelf regions, and to a 477 

larger extent, more favorable than surrounding seas has yet to be identified. Understanding the 478 

spatial variability in larval survival within the GoM is the primary objective of this study and can 479 

provide insight into the factors that create optimal spawning locations. Identifying these factors 480 

and monitoring their year-to-year variability could provide valuable information to help better 481 

predict ABT recruitment fluctuations. 482 

 483 

Model-data misfits  484 

The BLOOFINZ-IBM successfully resolves key dynamics pertaining to larval ecology of ABT, 485 

including realistic larval diet and weight as a function of age, stage duration, required time for 486 

the onset of starvation, and a distinct critical period that aligns with theory (Hjort, 1914). 487 

However, some model-data discrepancies exist. The model slightly overestimates the 488 

contribution of microzooplankton to larval diet across all size classes. This discrepancy may 489 

result from poor preservation of soft-bodied microzooplankton (e.g., aloricate ciliates) in fish gut 490 

contents, leading to an underestimate in the field data. Alternately, this model-data mismatch 491 

may arise from an overestimation of SZ biomass by NEMURO-GoM or errors in the IBM 492 

ingestion formulation. Simulated larvae have strict size-thresholds for prey availability that 493 
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change with age, but are otherwise not selective. However, optimal foraging theory suggests that 494 

when multiple prey types are available, larvae should preferentially feed on larger, more calorie-495 

rich prey items (Crowder, 1985; Barnes et al., 2010).  Indeed, Shiroza et al. (this issue) found 496 

that larvae were more selective for appendicularians and podonid cladocerans when these taxa 497 

were more abundant. Further realism could be added to our ingestion formulation by 498 

incorporating optimal foraging decisions (Visser and Fiksen 2013).  499 

Model estimates of larval weight were found to agree closely with observations, even after 500 

early postflexion, when larvae are known to become increasingly piscivorous. However, during 501 

the first few days of exogenous feeding (i.e. 3–6 dph), the model notably underestimates larval 502 

weights. On average, simulated larvae were 31% lighter relative to field-collected larvae (data: 503 

0.13 + 0.05 mg DW vs model 0.09 + 0.01 mg DW). This discrepancy may occur because 504 

endogenous and exogenous feeding does not overlap in our model. In reality, larvae may feed 505 

exogenously while still utilizing their yolk sac. Furthermore, processes such as micro-scale 506 

turbulence or prey motility that can increase encounter rates under some circumstances are not 507 

included in our model (MacKenzie et al., 1994; Fiksen and MacKenzie, 2002). Such process 508 

may be particularly important for weakly-swimming first-feeding larvae and could be included in 509 

future versions of BLOOFINZ-IBM. 510 

 511 

Mortality sources through ontogeny   512 

Our results indicate that predation and starvation are important sources of mortality 513 

throughout the early life stages of ABT, though their magnitude and relative importance varies 514 

spatially and with larval age. Starvation was found to be the largest cumulative source of 515 

mortality accounting for nearly half of individuals spawned. This result was found to be 516 

insensitive to maximum starvation rate and point-of-no-return starvation rate parameter values. 517 

Varying these parameters by +50% resulted in cumulative starvation loss varying from 47-51%.  518 

Our model predicts that most first-feeding larvae quickly reach the point-of-no-return and that 519 

starvation is significantly reduced for those that survive the 3-6 dph critical period. As a result, 520 

total loss due to starvation is largely insensitive to maximum starvation rate. Similarly, because 521 

all larvae die after reaching the point-of-no-return, the elevated starvation rate prescribed during 522 

this period only dictates how quickly larvae die, and hence had little impact on survival to 523 

postflexion. By contrast, the threshold for determining the point-of-no-return (i.e. condition 524 
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value) does have an appreciable impact on total loss due to starvation. Future field and laboratory 525 

studies aimed at quantifying this threshold are needed in order to reduce uncertainty in starvation 526 

estimates.  527 

Although starvation contributed the greatest integrated loss, our model predicts that 528 

predation increases consistently over the pelagic larval duration becoming the largest source of 529 

mortality around one week post hatch. Increasing predatory risk could potentially be extrapolated 530 

out until larvae reach metamorphosis at ~22 mm (Fukuda et al., 2014). In laboratory 531 

experiments, late postflexion larvae and juvenile Pacific bluefin display schooling behavior as 532 

early as 25 dph (Fukuda et al., 2014; Sabate et al., 2010). This indicates that predation likely 533 

remains a significant source of mortality for late postflexion larvae as suggested by our model. 534 

Estimating predation during this stage provides many challenges stemming from simulating prey 535 

fields and behavior. While starvation is likely negligible for older larvae, simulating realistic 536 

ingestion is needed for determining stage duration and hence integrated predation loss. Indeed, 537 

faster growing cohorts have been hypothesized to experience reduced predation (Meekan et al., 538 

2006). Thus, estimating predation for older larvae will likely require prey fields and ingestion 539 

formulations that account for density-dependent factors, such as piscivory. Although 540 

challenging, accomplishing this task would be particularly relevant for fisheries management 541 

when considering the potential impacts of a warming ocean. Based on our model, increased 542 

temperature will produce a tradeoff between shorter stage duration (decreased predation, 543 

particularly influencing older larvae), and increased metabolic requirements (increased 544 

starvation, particularly influencing younger larvae). Identifying the net effect of this tradeoff will 545 

be key to understanding how larval survival is impacted by future climate. 546 

 547 

Spatial variability in larval mortality and survival 548 

The GoM is characterized by strong biogeochemical gradients from shelf to open-ocean. 549 

Our model indicates that these cross-shelf gradients produce tradeoffs between risks of predation 550 

and starvation that are important for determining survival of ABT early life stages. The greatest 551 

rates of starvation estimated by the model occur in the Loop Current and north-western open-552 

ocean GoM. Elevated starvation rates in these regions are driven by warm temperatures 553 

(increased metabolic requirement) combined with low prey biomass. This result aligns with 554 

previous ichthyoplankton surveys that found low occurrences of larvae in the Loop Current 555 
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(Muhling et al., 2010). High starvation rates in the western open-ocean GoM can also be 556 

attributed to the Loop Current. Large mesoscale eddies detach aperiodically from the Loop 557 

Current every 9.5 months on average and propagate westward, transporting warm oligotrophic 558 

water into the western GoM (Sturges and Leben, 2000). Their anti-cyclonic circulation reduces 559 

nutrient input to the surface ocean, resulting in bottom-up limitation (Shropshire et al., 2020), 560 

and explains the high rates of starvation estimated by the model in this region.  561 

On the shelf, simulated larvae were able to largely avoid starvation. Prey was so abundant 562 

in this region that larvae quickly became satiated and hence spawning further inshore did not 563 

provide an additional growth advantage (Fig. S5). Larvae were most successful if they were 564 

spawned near the shelf break where they experienced high prey concentrations during the 3-6 565 

dph critical period while predation risk was still low. Individuals spawned in this region were 566 

then more likely to be advected further offshore, minimizing predation as they grew and 567 

increasing their chance of survival. Such conditions commonly occurred during the model 568 

simulation in places like the Yucatan Peninsula. Here, the Loop Current entrains plankton-rich 569 

water offshore and could explain why high abundances of larvae have been found in this region 570 

previously (Richards et al., 1989). In the northern GoM, larval occurrence maps derived from 571 

historical net collections also broadly agree with the region of maximum survival predicted by 572 

the model (Muhling et al., 2017). We note that when survival was evaluated for late postflexion 573 

larvae, the region of maximum survival again occurred near the shelf break, although shifted 574 

further offshore. This result suggests that elevated rates of predation on older larvae is the main 575 

factor limiting survival and may help to explain why spawning in the GoM occurs offshore. 576 

Identifying why ABT spawn in the GoM as opposed to other nearby seas will require 577 

future comparative modeling efforts and is beyond the scope of this study. However, our model 578 

reveals that cross shelf transport is an important factor for increasing offspring survival and may 579 

be a determining characteristic for ABT spawning grounds. In the GoM, the Loop Current, 580 

Mississippi River, and regional wind forcing create pathways for exporting large amounts of 581 

shelf water offshore (Ohlmann et al., 2001; Morey et al., 2013; Otis et al., 2019). During its 582 

protracted phase, the Loop Current can extend far enough north to directly entrain coastal water 583 

offshore (Wiseman and Dinnel, 1988; Schiller et al., 2011). More commonly, large mesoscale 584 

eddies generated by the Loop Current entrain shelf water themselves or through the counter 585 

vortices they produce. These eddies exist throughout the year and are thought to be the main 586 
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mechanism driving cross-shelf transport in the region (Ohlmann et al., 2001; Morey, Martin, et 587 

al., 2003; Brokaw et al., 2019). By contrast, the contribution of cross-shelf transport driven by 588 

the Mississippi River and local wind forcing is highly seasonal. During fall and winter, easterly 589 

winds favor transport of riverine water along the coast inhibiting cross-shelf (Walker et al., 2005; 590 

Morey, Schroeder, et al., 2003). However, during spring and summer, southerly winds favor 591 

Ekman transport to the east of the Mississippi Delta over deeper waters (Ohlmann et al., 2001; 592 

Morey, Schroeder, et al., 2003). In addition, cold fronts during the winter and spring create wind 593 

reversals, which can rapidly transport coastal water offshore. The timing of these cross-shelf 594 

events may provide additional advantages for offspring survival in the GoM. Future studies 595 

should investigate the magnitude of cross-shelf transport in regional oceans adjacent to the GoM 596 

and other spawning grounds to identify the importance of this regional characteristic. 597 

 598 

Application to stock assessments and future work 599 

Ocean models are well-suited for evaluating larval mortality for species like ABT 600 

because: 1) early life stages develop in pelagic waters influenced by large-scale ocean circulation 601 

(e.g., Loop Current) that can be well resolved by hydrodynamic models, 2) their pelagic larval 602 

duration is short, and 3) their low-trophic-level food is strongly influenced by bottom-up forcing 603 

resolved by biogeochemical models. The present modeling framework could be updated 604 

routinely to give real-time and future predictions of larval survival. These estimates could 605 

potentially be used to inform future expected recruitment within stock assessment models that 606 

form the basis of catch limits for managing ABT fisheries. 607 

Further realism could be added to BLOOFINZ-IBM framework for increasing the 608 

model’s utility in management applications. In particular, particles could be initialized based on 609 

annual ichthyoplankton survey data to provide more realistic particle release locations. Realism 610 

could be added by incorporating the impact of maternal effects such as initializing egg weights 611 

based on the condition of spawning females. Because ABT are selective feeders, even within 612 

mesozooplankton size class (Shiroza et al., this issue), added realism may also be achieved by 613 

combining NEMURO-GoM with a zooplankton food web model (Stukel et al., this issue) to 614 

improve ingestion estimates. We note that initial comparisons of ABT recruitment times series 615 

and yearly larval survival predicted by the model do not agree well. This could indicate that the 616 

aforementioned additions are necessary to increase the model’s predictive ability. Alternatively, 617 
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this mismatch could indicate that processes during juvenile stages are also important for accurate 618 

recruitment forecasting.  619 

One of the main advantages of the modeling framework developed here is that it lends 620 

insights into the potential factors that may cause significant changes in recruitment success of 621 

ABT over time. The ABT population has experienced regime-shift-type behavior in the past; 622 

observed recruitment declined dramatically after 1975 and it has been suggested that this is due 623 

to environmental forcing (Brown et al., 2002). Uncertainty in the cause of recruitment declines 624 

greatly complicates management of the species because assumptions regarding stock 625 

productivity have major influence on reference points, and there is debate over whether the 626 

historically-observed elevated recruitment levels should be expected in the future or if more 627 

recent lower recruitment levels represent a new norm (Porch and Lauretta, 2016). Understanding 628 

mechanisms for variations in recruitment within the early life stages is critical to understanding 629 

whether there is evidence for environmentally-driven shifts in recruitment, or whether these 630 

shifts are the result of other population dynamics such as changes in spatial distribution and 631 

overexploitation (Fromentin et al., 2014). Modeling work has also suggested that ABT will be 632 

highly impacted by climate change as a result of their narrow temperature preferences for 633 

spawning (Muhling et al., 2011).  The present study highlights critical bottlenecks where larvae 634 

experience high mortality, which include temperature-dependent processes, and hence can 635 

provide further insight into the potential impacts of climate change on the species. 636 

 637 

CONCLUSIONS 638 

Multiple hypotheses have been formulated to explain why ABT spawn in the open-ocean GoM 639 

given their energy expensive migration from feeding grounds. In addition, other regions in the 640 

Atlantic and Caribbean Seas contain similar conditions to the GoM (e.g. warm oligotrophic 641 

water), yet show no evidence of large-scale spawning. Our results indicate that the GoM may 642 

provide an ideal spawning ground because of the region’s large shelf and strong mesoscale 643 

activity. Together these regional characteristics increase the chance of shelf water entrainment 644 

into highly oligotrophic regions that may be crucial for ensuring both low starvation during the 645 

critical period and low predation later in development. However, future IBM studies that 646 

compare larval mortality in nearby regional oceans are needed to conclusively identify the 647 

importance of cross-shelf transport for spawning grounds. Within the GoM, it has been 648 
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hypothesized that, despite the potential abundant prey on the shelf, ABT spawn in offshore 649 

regions to minimize predation on their larvae. Our results unequivocally support this hypothesis 650 

indicating that although starvation is the largest source of mortality, higher predation rates on 651 

older larvae ultimately limits survival.  652 
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 852 

FIGURE LEGNEDS  853 

Fig. 1 – (A) Relationship between larval length (mm) and prey length (mm) from gut content 854 

analysis of 255 individuals collected in the GoM (Shiroza et al., this issue). Upper and lower 855 

bounds of prey size are shown in red. Blue dotted line defines the break between zooplankton 856 

(SZ, 0.02-0.2 mm) and large zooplankton (LZ, 0.2-1 mm) NEMURO-GoM state variables. (B) 857 

Relationship between larval weight (mg DW) and age (days post hatch) for individuals collected 858 

in the GoM. (C) Starvation as a function of an individual’s condition where >1.0 indicates ideal 859 

condition. Condition below 0.25 is used as a threshold for the “point-of-no-return” where larvae 860 

experience irreversible starvation (increased to 1.0 d-1 (not shown)). (D) Predation on egg and 861 

larvae as a function of simulated large mesozooplankton (e.g. PZ, 1-5 mm) biomass and example 862 

curves of individual length at 1, 2, 4, and 8 mm. 863 

 864 

Fig. 2 – Comparisons of mesozooplankton dietary contribution (% of total diet) as a function of 865 

larval length (mm) between field-collected (black) and simulated larvae (red). Whiskers extend 866 

to the 95% confidence interval. Outliers are denoted by (+) for observations and outliers for 867 

model are not shown. (B) Comparison of larval weight (mg DW) as a function of age (days post 868 

hatch) between field-collected larvae (black dots) and simulated larvae. Red line denotes model 869 

average with the 95% CI represented by shaded area. Dashed blue line denotes the average age 870 

simulated larvae reach postflexion. 871 

 872 

Fig. 3 – (A) Survival as a function of time (days post spawn) with red shaded area denoting yolk-873 

sac larvae and blue shaded area denoting the period when individuals begin exogenous feeding. 874 

(B) Survival of larval tuna estimated for each year as a function of age (days post hatch) for each 875 

year (1993-2012) and black is mean of all years. 876 

 877 
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Fig. 4 – (A) Mortality rate (d-1) a function of age (days post hatch) with total (red), starvation 878 

(black), and predation (blue) plotted separately. (B) Spatial variability of average starvation (d-1) 879 

prior to postflexion. (C) Spatial variability of predation (d-1) prior to postflexion. Averages in 880 

starvation and predation maps are computed by organizing particles within 0.12° x 0.12° spatial 881 

bins. Black lines denote the shelf break region defined between the 50 m and 1000 m isobath.  882 

 883 

Fig. 5 – Spatial variability in larval survival to early postflexion (A,C) and late postflexion 884 

(B,D). Survival is computed by organizing particles based on their spawning location within 885 

0.12° x 0.12° bins (A,B) and based on their time varying location (C,D). 886 

 887 

Fig. 6 – Mean and instantaneous food limitation index maps (A-D) and predation maps (E-J) for 888 

the month of May. Average food limitation index map for (A) first-feeding larvae (i.e. 3 dph) 889 

and (B) early postflexion (i.e. 10 dph). Instantaneous food limitation index map on May 15th 890 

1996 for (C) first-feeding larvae and (D) early postflexion. Average predation for (E) first-891 

feeding larvae, (F) early postflexion larvae, and (G) late postflexion larvae (i.e. 17 dph). 892 

Instantaneous predation map on May 15th 1996 for (H) first-feeding larvae, (I) early postflexion 893 

larvae, and (J) late postflexion larvae. 894 
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