Sampling Multiple Edges Efficiently

Talya Eden 2 &
CSAIL, Massachusetts Institute of Technology, Cambridge, MA, USA

Saleet Mossel =
CSAIL, Massachusetts Institute of Technology, Cambridge, MA, USA

Ronitt Rubinfeld =24
CSAIL, Massachusetts Institute of Technology, Cambridge, MA, USA

—— Abstract

We present a sublinear time algorithm that allows one to sample multiple edges from a distribution
that is pointwise e-close to the uniform distribution, in an amortized-efficient fashion. We consider
the adjacency list query model, where access to a graph G is given via degree and neighbor queries.

The problem of sampling a single edge in this model has been raised by Eden and Rosenbaum
(SOSA 18). Let n and m denote the number of vertices and edges of G, respectively. Eden and
Rosenbaum provided upper and lower bounds of ©*(n//m) for sampling a single edge in general
graphs (where O*(-) suppresses poly(1/€) and poly(logn) dependencies). We ask whether the query
complexity lower bound for sampling a single edge can be circumvented when multiple samples are
required. That is, can we get an improved amortized per-sample cost if we allow a preprocessing
phase? We answer in the affirmative.

We present an algorithm that, if one knows the number of required samples ¢ in advance, has
an overall cost that is sublinear in ¢, namely, O*(\/q - (n//m)), which is strictly preferable to
O*(q - (n/+/m)) cost resulting from ¢ invocations of the algorithm by Eden and Rosenbaum.

Subsequent to a preliminary version of this work, Tétek and Thorup (arXiv, preprint) proved
that this bound is essentially optimal.

2012 ACM Subject Classification Theory of computation — Sketching and sampling
Keywords and phrases Sampling edges, graph algorithm, sublinear algorithms
Digital Object Identifier 10.4230/LIPIcs. APPROX/RANDOM.2021.51

Category RANDOM

Related Version Full Version: https://arxiv.org/abs/2008.08032

Funding Talya Eden: This work was supported by the NSF Grant CCF-1740751, the Eric and
Wendy Schmidt Fund, and Ben-Gurion University.

Ronitt Rubinfeld: This work was supported the NSF TRIPODS program (awards CCF-1740751 and
DMS 2022448), NSF award CCF-2006664 and by the Fintech@CSAIL Initiative.

1 Introduction

The ability to select edges uniformly at random in a large graph or network, namely edge
sampling, is an important primitive, interesting both from a theoretical perspective in various
models of computation (e.g., [19, 2, 3, 1, 13, 12, 7, 4, 15]), and from a practical perspective in
the study of real-world networks (e.g., [20, 22, 31, 6, 27]). We consider the task of outputting
edges from a distribution that is close to uniform; more precisely, the output distribution on
edges will be pointwise e-close to the uniform distribution, so that each edge will be returned
with probability in [1=¢, L£€]. Note that this is a stronger notion than the more standard

m ' m

© Talya Eden, Saleet Mossel, and Ronitt Rubinfeld;
37 licensed under Creative Commons License CC-BY 4.0
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques

(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanita; Article No. 51; pp. 51:1-51:15

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:talyaa01@gmail.com
https://sites.google.com/view/edentalya/home
https://orcid.org/0000-0001-8470-9508
mailto:saleet@mit.edu
mailto:ronitt@csail.mit.edu
https://people.csail.mit.edu/ronitt/
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.51
https://arxiv.org/abs/2008.08032
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

51:2

Sampling Multiple Edges Efficiently

notion of e-close to uniform in total variation distance (TVD).! We consider this task in the
sublinear setting, specifically, in the adjacency list query model, where the algorithm can
perform uniform vertex queries, as well as degree and neighbor queries.

Three recent algorithms have been presented for this problem in the adjacency list model.
The first, by Eden and Rosenbaum [13], is an O*(n//m) query complexity? algorithm that
works in general graphs.® This was later refined by Eden, Ron, and Rosenbaum [7] to an
O*(ma/n) algorithm for graphs that have arboricity? at most o (where it is assumed that «
is given as input to the algorithm). Finally, in [26], Tétek and Thorup combined techniques
from the previous two works and presented the state of the art algorithm for sampling a
single edge. This algorithm exponentially improves on the dependency in 1/e compared to
the algorithm by [13]. All of these algorithms were also shown to be essentially optimal if
one is interested in outputting a single edge sample. Naively, to sample ¢ edges in general
graphs, one can invoke the [26] algorithm ¢ times, with expected complexity O*(q - (n/v/m)).
In this paper, we prove that this query complexity can be improved to O*(,/q - (n//m)).
That is, we prove that there exists an algorithm with a better amortized query complexity.

1.1 Results

We present an algorithm that returns an edge from a distribution that is pointwise e-close
to uniform, and efficiently supports many edge sample invocations. Assuming one knows
in advance the number of required edge samples g, the overall cost of g edge samples is
O*(q - (n/v/m) + q) = O*(q - (n/+/m)), where the equality is since we can assume that
g = O(n?/m).> Subsequent to a preliminary version of this work, Tétek and Thorup [26,
Theorem 15] proved that the above result is essentially optimal.

Our algorithm is based on two procedures: a preprocessing procedure that is invoked
once, and a sampling procedure which is invoked whenever an edge sample is requested.
There is a trade-off between the preprocessing cost and per-sample cost of the sampling
procedure. Namely, for a trade-off parameter x > 1, which can be given as input to the
algorithm, the preprocessing query complexity is O*(n?/(m - x)) and the per-sample cost of
the sampling procedure is O(z/¢).

» Theorem 1.1 (Informal.). Let G be a graph over n vertices and m edges. Assume access
to G is given via the adjacency list query model. There exists an algorithm that, given an
approzimation parameter € and a trade-off parameter x, has two procedures: a preprocessing
procedure, and a sampling procedure. The sampling procedure outputs an edge from a
distribution that is pointwise e-close to uniform. The preprocessing procedure has O*(n?/(m -
x)) expected query complexity, and the expected per-sample query complezity of the sampling
procedure is O(x/€).

As mentioned previously, this result is essentially optimal, due to a lower bound by Tétek
and Thorup [26].

See Section 1.1 for a detailed discussion comparing TVD-closeness to pointwise closeness.

We note that in all the mentioned algorithms the running time is asymptotically equal to the query
complexity, and therefore we limit the discussion to query complexity.

Throughout the paper O*(+) is used to suppresses poly(logn/e) dependencies.

The arboricity of a graph is the minimal number of forests required to cover its edge set.

Observe that if the number of required samples ¢ exceeds n?/m, then one an simply perform
O(n?logn/m) uniform pair queries and with high probability recover all edges in the graph. Hence, we
can assume that ¢ < n? /m, and so the term g does not asymptotically affect the complexity.

T. Eden, S. Mossel, and R. Rubinfeld

» Theorem 1.2 (Theorem 15 in [26], restated). Let ¢ be some small constant 0 < e < 1. Any
algorithm that samples q edges from a distribution that is pointwise e-close to uniform in the
adjacency list query model must perform Q(\/q - (n/y/m)) queries.

To better understand how the complexity of our upper bound compares to what was
previously known, we give some possible instantiations. First, setting x = n/y/m implies
a preprocessing phase with O*(n/y/m) queries and a cost of O(n/y/m) per sample, thus
recovering the bounds of [13]. Second, setting = 1 implies a preprocessing phase with
O(n?/m) queries and a cost of O(1/¢) per sample. This can be compared to the naive
approach of querying the degrees of all the vertices in the graph, and then sampling each
vertex with probability proportional to its degree and returning an edge incident to the
sampled vertex.® Hence, the naive approach yields an O(n) preprocessing cost and O(1) per-
sample cost while our algorithm with = 1 yields an O*(n?/m) = O*(n/dayg) preprocessing
and O(1/e) per-sample cost, where d,,g denotes the average degree of the graph.

For a concrete example, consider the case where m = O(n) and ¢ = O(y/n) edge samples
are required. Setting 2 = n'/* gives an overall cost of n3/* for sampling ¢ edges, where
previously this would have required O(n) queries (by either the naive approach, or performing
O(+/n) invocations of the O*(n//m) = O*(y/n) algorithm of [26]). In general, if the number

of queries ¢ is known in advance, then setting x = "/\/‘/gm , yields that sampling ¢ edges has an

overall cost of O*(,/q - (n/y/m)), where previously this would have required O*(q - (n/y/m))
queries resulting from ¢ invocations of the algorithm by [26]. We discuss some more concrete

applications in the following section.

From the augmented model to the general query model

Recently, it has been suggested by Aliakbarpour et al. [3] to consider query models that also
provide queries for uniform edge samples, and multiple algorithms have since been developed
for this model, e.g., [4, 15, 5, 28].

Currently, for “transferring” results in models that allow uniform edge samples back to
models that do not allow such queries in a black-box manner,”
multiplicative cost of O*(n/+/m) per query (replacing each edge sample query in an invocation
of the [13] algorithm for sampling edges), (2) pay an additive cost of O(n) (using the naive
approach described above), or (3) pay an additive cost of O*(n?/m) if pair queries® are
allowed.”

For example, the works by Assadi, Kapralov and Khanna [4], Fichtenberger, Gao and
Peng [15], and Biswas, Eden and Rubinfeld [5] give algorithms that rely on edge samples for
the tasks of approximately counting and uniformly sampling arbitrary subgraphs in sublinear
time. Specifically, these works assume the augmented query model which allows for vertex,
degree, neighbor, pair as well as uniform edge samples queries. When only vertex, degree,
neighbor and pair queries (without uniform edge samples) are provided, this is referred to as
the general query model [21]. Currently, there are no dedicated algorithms for these tasks
in the general model, that does not allow edge samples. For approximating the number
of 4-cycles, denoted #Cy, the algorithms of [4, 15] have query complexity of O*(m?/#Cy).

one must either (1) pay a

% Indeed, the naive approach returns an edge from a distribution that is exzactly uniform.

7 This is true for results for which pointwise-close to uniform edge samples are sufficient, as in the case in
all the current sublinear results that rely on edge samples (that we know of).

Pair queries return whether there is an edge between two vertices in the graph.

As one can sample all edges in the graph with high probability using O*(n?/m) uniform pair queries
(by the coupon collector’s argument), and then return from the set of sampled edges.

©

51:3

APPROX/RANDOM 2021

51:4

Sampling Multiple Edges Efficiently

For a graph with m = O(n) edges and #C, = ©(n3/?) 4-cycles, this results in an O*(\/n)
query complexity in the augmented model. Using our algorithm, we can set ¢ = O(\/n),
and approximately count the number of #C4’s in O*(n3/ 4) queries in the general query
model, where previously to our results this would have cost O(n) queries. We note that this
“black-box” transformation from the augmented model to the general query model is not
guaranteed to be optimal in terms of the resulting complexity in the general model. Indeed,
dedicated algorithms for counting and sampling stars and cliques in the general model, prove
that this is not the case [18, 9, 11, 10, 8, 28]. Nonetheless, to the best of our knowledge,
no other results are currently known for subgraphs apart from stars or cliques, and so this
approach provides the only known algorithms for arbitrary subgraph counting and sampling
in the general model.

Pointwise vs. TVD

A more standard measure of distance between two distributions P and @ is the total
variation distance (TVD), drv (P, Q) = £ >, . |P(x) — Q(z)|. Observe that this is a strictly
weaker measure. That is, pointwise-closeness implies closeness in TVD. Thus our algorithm
immediately produce a distribution that is TVD close to uniform. However, being close
to a distribution in TVD, does not imply pointwise-closeness.'? Furthermore, in various
settings, this weaker definition is not sufficient, as is the case in some of the applications we
mentioned previously. For instance, the uniform edge samples in the algorithms of [4, 15]
cannot be replaced in a black-box manner by edge samples that are only guaranteed to
be close to uniform in TVD. For a concrete example, consider the task of approximately
counting the number of triangles. Let G = AU B be a graph, where A is a bipartite subgraph
over (1 — €)m edges, and B is a clique over em edges. An algorithm that returns a uniformly
distributed edge in A is close in TVD to uniform over the entire edge set of G. However, it
does not allow one to correctly approximate the number of triangles in G, as the algorithm
will never return an edge from the clique, which is where all the triangles reside.

1.2 Technical Overview

Sampling (almost) uniformly distributed edges is equivalent to sampling vertices with
probability (almost) proportional to their degree %.11 Hence, from now on we focus on
the latter task.

Consider first the following naive procedure for sampling vertices with probability pro-
portional to their degree. Assume that dpax, the maximum degree in the graph is known.

Query a vertex uniformly at random and return it with probability %; otherwise, return
fail. Then each vertex is sampled with probability n.ddﬂ. Therefore, if we repeatedly invoke

the above until a vertex is returned, then each vertex is returned with probability dz%)’ as

desired. However, the expected number of attempts until a vertex is returned is O(”'d%)
(since the overall success probability of a single attempt is > dv) _ _2m), which

2 VEV n-dmax n-dmax
could be as high as O(%-) when dyax = O(n).

10F. g., a distribution that ignores e/2-fraction of the edges and is uniform on the rest is close in TVD to
uniform, but clearly it is not pointwise close.
H Since if every v is sampled with probability in (1 = €) dQ(;JL) , performing one more uniform neighbor query

from v implies that each specific edge (v, w) in the graph is sampled with probability in (1 £ €) - ﬁ

T. Eden, S. Mossel, and R. Rubinfeld

Our idea is to partition the graph vertices into light and heavy, according to some degree
threshold 7, that will play a similar role to that of dy.x in the naive procedure above. Our
algorithm has two procedures, a preprocessing procedure and a sampling procedure. The
preprocessing procedure is invoked once in the beginning of the algorithm, and the sampling
procedure is invoked every time an edge sample is requested. In the preprocessing procedure
we construct a data structure that will later be used to sample heavy vertices. In the sampling
procedure, we repeatedly try to sample a vertex, each time either a light or a heavy with
equal probability, until a vertex is returned. To sample light vertices, we invoke the above
simple procedure with 7 instead of d.x. Namely, sample a uniform random vertex v, if
d(v) < 7, return it with probability @. To sample heavy vertices, we use the data structure
constructed by the preprocessing procedure as will be detailed shortly.

In the preprocessing procedure, we sample a set S of O (% . 10;#) vertices uniformly

at random. We then construct a data structure that allows to sample edges incident'? to
S uniformly at random. It holds that with high probability for every heavy vertex v, its
number of neighbors in S, denoted dg(v), is close to its expected value, d(v) - % Also, it
holds that with high probability the sum of degrees of the vertices in S, denoted d(.5), is
close to its expected value, 2m - % Hence, to sample heavy vertices, we first sample an
edge (u,v) incident to S uniformly at random (without loss of generality u € S) and then we
check if the second endpoint v is heavy. If so, we return v, and otherwise we fail. By the
previous discussion on the properties of S, it holds that every heavy vertex is sampled with
probability approximately ‘fis(—g)) ~ V)

2m

1.3 Comparison to Previous Work

For the sake of this discussion assume that € is some small constant. Most closely related to
our work, is the algorithm of [13]. Their algorithm also works by partitioning the graph’s
vertices to light and heavy vertices according to their some degree threshold 6. Their method
of sampling light edges is identical to ours: one simply samples a vertex uniformly at random,
and keeps it with probability d(v)/6. In our algorithm, 7 is the degree threshold for light and
heavy vertices, so that 7 and 0 plays the same role. The difference between our works is in
the sampling of heavy vertices. To sample heavy vertices, the algorithm of [13] tries to reach
heavy vertices by sampling light vertices, and then querying one of their neighbors uniformly
at random. For this approach to output heavy vertices with almost equal probability to light
vertices, § must be set to Q(y/m). Our approach for sampling heavy vertices is different, and
relies on the preprocessing phase, which later allows us to reach heavy vertices with O(1)
queries. This allows us, in a sense, to decouple the dependence of the threshold 7 and the
success probability of sampling light vertices. Hence, we can allow to set the degree threshold
7 to smaller values, which results in a more efficient per-sample complexity (at a cost of a
preprocessing step).

The algorithm of [7] also outputs a uniformly distributed single edge, however in graphs
with bounded arboricity a. Here too the algorithm first defines light vertices, setting the
threshold to ©(«). Sampling heavy edge is then performed by starting at light vertices

as before, but taking longer random walks of length ¢, for ¢ chosen uniformly in [logn].

This method was later used by Tétek [26] to exponentially improve the dependence in e of
sampling a single edge in the general setting. It is an interesting open question whether
there exists an algorithm for sampling multiple edges in bounded arboricity graphs which
has better complexity than the algorithm of this work.

12We say that an edge (u,v) is incident to S if either u or v are in S.

51:5

APPROX/RANDOM 2021

51:6

Sampling Multiple Edges Efficiently

1.4 Further Related Work

We note that some of the related works were already mentioned, but we list them again for
the sake of completeness.

Sampling edges in the adjacency list model

As discussed previously, the most related work to ours is that of [13] for sampling a single
edge from an almost uniform distribution in general graphs in O*(n/\/m) expected time.
This was later refined by Eden, Rosenbaum and Ron [7] to an O*(na/m) expected time
algorithm in bounded arboricity graphs, where a bound « on the arboricity of the graph at
question is also given as input to the algorithm.!® Recently, Tétek and Thorup [26] proved
that the dependency in € in the algorithm of [13] could be improved from 1/1/€ to log(1/e).
They further proved (subsequent to our work) that given additional access to what they refer
to as hash-based neighbor queries, there exists an algorithm for sampling multiple edges
(with and without replacement) from the exactly uniform distribution in O*(y/q - (n/v/m))
time.

The augmented edge samples model

In [3], Aliakbarpour et al. suggested a query model which allows access to uniform edge
samples and degree queries. In this model they presented an algorithm for approximately
counting the number of s-stars in expected time O*(m/#H'Y*), where #H denotes the
number of s-stars in the graph. In [4], Assadi, Kaparalov and Khanna considered the
combined power of neighbor, degree, pair and uniform vertex and edge samples. In this
model, they presented an algorithm that approximates the number of occurrences of any
arbitrary subgraph H in a graph G in expected time O*(m?) /4 H), where p(H) is the
fractional edge cover'* of H, and #H is the number of occurrences of H in G. In the same
model, Fichtenberger, Gao, and Peng [15] simplified the above algorithm and proved the same
complexity for the additional task of sampling a uniformly distributed copy of H. Recently,
Biswas, Eden and Rubinfeld [5], paramerterized the complexity of counting and sampling
arbitrary subgraph by what they refer to as the decomposition cost of H, improving the
above results for a large family of subgraphs H. In [28], Tétek considers this model in the
context of approximately counting triangles in the super-linear regime.

Sampling from networks

Sampling from networks is a very basic primitive that is used in a host of works for studying
networks’ parameters (e.g., [20, 22, 31, 6, 27]). Most approaches for efficiently sampling
edges from networks are random walk based approaches, whose complexity is proportional
to the mixing time of the network, e.g., [22, 16, 25, 24]. We note that our approach cannot
be directly compared with that of the random walk based ones, as the query models are
different: The adjacency list query model assumes access to uniform vertex queries and one
can only query one neighbor at a time, while random walk based approaches usually only
assume access to arbitrary seed vertices and querying a node reveals its set of neighbors.
Furthermore, while in theory the mixing time of a graph can be of order O(n), in practice,

13 Note that since for all graphs a < /m, this results is always at least as good as the previous one.
M The fractional edge cover of a graph is minimum weight assignment of weights to the graph’s edges, so
that the sum of weights over the edges incident to each vertex is at least 1.

T. Eden, S. Mossel, and R. Rubinfeld

social networks tend to have smaller mixing times [24], making random walk based approaches
very efficient. Still, denoting the mixing time of the network by t,,;., such approaches require
one to perform Q(t,,,) queries in order to obtain each new sample, thus leaving the question
of a more efficient amortized sampling procedure open.

2 Preliminaries

Let G = (V, E) be an undirected simple graph over n vertices. We consider the adjacency
list query model, which assumes the following set of queries:

Uniform vertex queries: which return a uniformly distributed vertex in V.

Degree queries: deg(v), which return the degree of the queried vertex.

Neighbor queries nbr(v,i) which return the i** neighbor of v, if one exists and L

otherwise.

We sometimes say that we perform a “uniform neighbor query” from some vertex v. This can
be simply implemented by choosing an index ¢ € [d(v)] uniformly at random, and querying
nbr(v,).

Throughout the paper we consider each edge from both endpoints. That is, each edge
{u,v} is considered as two oriented edges (u,v) and (v, u). Abusing notation, let E denote
the set of all oriented edges, so that m = |E| =), d(v) and dag = m/n. Unless stated
explicitly otherwise, when we say an “edge”, we refer to oriented edges.

For a vertex v € V we denote by I'(v) the set of v’s neighbors. For a set S C V we denote
by E(S) the subset of edges (u,v) such that u € S, and by m(S) the sum of degrees of all
vertices in S, i.e. m(S) = |E(S)| = >_,cgd(v). For every vertex v € V and set S C V, we
denote by dg(v) the degree of v in S, dg(v) = |T'(v) N S].

We consider the following definition of e-pointwise close distributions:

» Definition 1 (Definition 1.1 in [13]). Let Q be a fized probability distribution on a finite
set 2. We say that a probability distribution P is pointwise e-close to Q if for all x € Q,

|P(z) — Qx)] <eQ(z), or equivalently P(X)e€ (1+¢)Q(X).

If Q = U, the uniform distribution on 2, then we say that P is pointwise e-close to uniform.

3 Multiple Edge Sampling

As discussed in the introduction, our algorithm consists of a preprocessing procedure that
creates a data structure that enables one to sample heavy vertices, and a sampling procedure
that samples an almost uniformly distributed edge. Also recall that our procedures are
parameterized by a value x which allows for a trade-off between the preprocessing complexity
and the per-sample complexity. Namely, allowing per-sample complexity of O(x/¢), our
preprocessing procedure will run in time O*(n/(davg - «)). If one knows the number of queries,
q, then setting x = n/Vm yields the optimal trade-off between the preprocessing and the

Va
sampling.

3.1 Preprocessing

In this section we present our preprocessing procedure that will later allow us to sample heavy
vertices. The procedure and its analysis are similar to the procedure Sample-degrees-typical
of Eden, Ron, and Seshadhri [11].

51:7

APPROX/RANDOM 2021

51:8

Sampling Multiple Edges Efficiently

The input parameters to the procedure are n, the number of vertices in the graph, x, the
trade-off parameter, J, a failure probability parameter, and e, the approximation parameter.
The output is a data structure that, with probability at least 1 — §, allows one to sample
heavy vertices with probability (roughly) proportional to their degree.

We note that we set T = min{x, \/n/dayg} since for values z = Q(y/n/dayg) it is better to

simply use the O*(y/n/davg) per-sample algorithm of [13]. We shall make use of the following
theorems.

» Theorem 3.1 (Theorem 1.1 of [17], restated.). There exists an algorithm that, given query
access to a graph G over n vertices and m edges, an approximation parameter € € (0, %), and
a failure parameter 6 € (0,1), returns a value ™ such that with probability at least 1 — ¢,
m € [(1 — €)m,m]. The expected query complexity and running time of the algorithm are

og’n
O<# ’ 15%-5)

» Theorem 3.2 (Section 4.2 and Lemma 17 in [14], restated.). For a set S of size at least

7= 34 it holds that with probability at least 5/6, m(S)/s > & - (1 —€) - dayg.

» Theorem 3.3 (A data structure for a discrete distribution (e.g., [29, 30, 23]).). There exists
an algorithm that receives as input a discrete probability distribution P over { elements, and

constructs a data structure that allows one to sample from P in linear time O(£).

Preprocessing (n, ¢, 0, x)

1. Invoke the algorithm of [17]* to get an estimate Eavg of the average degree days.

2. Let T = min {x, \/n/davg}

3. Let t = [logs(2)], and let 7 = %
4. For i =1 to t do:

a. Let S; be a multiset of s =

random.

b. Query the degrees of all the vertices in .S; and compute m(S;) = >, g, d(v).
5. Let S be the first set S; such that @ S [i ~Eavg, 12 -Eavg]

a. If no such set exists, then return fail.

b. Else, set up a data structure’® D(S) that supports sampling each vertex v € S

with probability :L((?) .

— m(S
6. Let”y—ﬁ

7. Return (7,7,%, D(S5)).

35 log(6nt /5 . .
L. % vertices chosen uniformly at

% See Theorem 3.1
b See Theorem 3.3

The following definitions will be useful in order to prove the lemma regarding the
performance of the Preprocessing procedure.

» Definition 2. We say that a sampled set S CV is e-good if the following two conditions
hold:

For every heavy vertex v € V=, ds(v) € (1 £¢€)[S]-
M) € [g, 12 davg) -

S

d(v)]

» Definition 3. We say that dayg is an e-good estimate of dayg if davg € [(1 — €)davg, davg)-

T. Eden, S. Mossel, and R. Rubinfeld 51:9

» Lemma 4. Assume query access to a graph G over n vertices, € € (0, %), 6 €(0,1), and
x > 1. The procedure Preprocessing(n, €, d, z), with probability at least 1 — §, returns a
tuple (7, 7,%, D(S)) such that the following holds.
D(S) is a data structure that supports sampling a uniform edge in E(S), for an e-good
set S, as defined in Definition 2.

- davg
€

m(S)
davg'|S|;

T € [1,/n/dag], T = where dayg is an e-good estimate of dayg, as
defined in Definition 3.

The expected query complexity and running time of the procedure are

n n | log®(nlog(1/6)/6)
0] (max{davg_my\/;} 2 >

Proof. We start with proving that with probability at least 1 — J the set S chosen in Step 5
is a good set. Namely, that (1) ms) ¢ [% < dayg, 12 .Eavg}, and that (2) for all heavy vertices

5]
vE Vay, dg(v) € (1£e)s - 20

n

By Theorem 1.1 of [17] (see Theorem 3.1), with probability at least 1 — &, dayg is an
e-good estimate of dayg, that is

, and 7y =

(1 - 6)davg S Eavg S davg- (1)

We henceforth condition on this event, and continue to prove the latter property. Fix an
iteration 4 € [t]. Observe that E {@} = davg. By Markov’s inequality,'® equation (1), and
the assumption that € € (0, 1),

davg 1

Pr {m(&) > 12.dav4 < e < <
s 12 dag ~ 12(1—¢)

Recall that s = 2 - 35 logégnt/é), T = E'iavg, and T < y/n/dag and that we condition on

davg > (1 — €)dayg. Thus, 7 < @, and s > 3—64\/% Therefore, by Lemma 17 in [14] (see
Theorem 3.2), for every i, it holds that

(2)

By equations (1), (2), and the assumption that € € (0, 3),

m(S;) 1 - m(S;) 1
— . < < —. — <
Pr [. < 1 davg] Pr [. 5 (1 —€)davg

By the union bound, for every specific ¢,

Hence, the probability that for all the selected multisets {Si}ie[t], either @ < i -Eavg or
mS) 5 12. davg is bounded by 2 = 2 (recall ¢t = [logs(2)]). Therefore, with probability at

s 3
least 1 — %‘S, it holds that @ € [i -Eavg, 12 Eavg], and the procedure does not return fail
in Step bHa.

15 Markov’s inequality: if X is a non-negative random variable and a > 0, P(X >a) < BX)

— a

APPROX/RANDOM 2021

51:10

Sampling Multiple Edges Efficiently

Next, we prove that there exists a high-degree vertex v € V.. such that dg(v) ¢
(I+e)s- @ with probability at most §. Fix an iteration i € [t], and let S; = {u1,...,u,}
be the sampled set. For any fixed high-degree vertex v € V<. and for some vertex u € V, let

» 1 w is a neighbor of v
X" (u) = -

0 otherwise

Observe that E,cv [x"(u)] = d®) "and that ds;(v) = > e X (u;). Thus, E[dg, (v)] =

n

s @. Since the x"(u) variables are independent {0, 1} random variables, by the multiplicative

Chernoff bound, 6
. 2.5,
5.8 d(v)] < 2exp (_e s d(v)) < 1 3)
n

s-d(v) KB
n 3n = 3nt’

Pr s () -

where the last inequality is by the assumption that e € (0, %), the setting of s = - w,
and since we fixed a heavy vertex v so that d(v) > 7. By taking a union bound over all
high-degree vertices, it holds that there exists v € Vs, such that dg, (v) ¢ (1 + €) =4 with

n

probability at most %.
Hence, with probability at least 1 — 4, D(S) is a data structure of a good set S. Moreover,

by steps 2, 6, and 3 in the procedure Preprocessing(n, ¢, d,) it holds that T € [1, \/n/davg} ,

5= Em(iil’ and 7 = E'i"’vg respectively. By equation (1), dayg is an e-good estimate for dayg.
avg®

We now turn to analyze the complexitéy. By [17] (see Theorem 3.1), the query complexity

and running time of step 1 is O (# . 10“52#) . The expected query complexity and running

time of the for loop are O(t - s) = O(52= - logz("log(l/é)/&), where the equality holds by

davg T €
the setting of s,t and since the expected value of dayg is davg. Step 5 takes O(t) time.
By [29, 30, 23] (see Theorem 3.3), the running time of step 5b is O(s). All other steps takes
O(1) time. Hence, the expected query complexity and running time are dominated by the for

loop. By the setting of T = min{z, \/n/dayg} we have O(s-t) = O (7 n_ log’(n 1og(1/5)/5)) =

davg T €

x?
avg "L davg €

0 (max { 7 L } . logz(nlog(l/5)/5)> which proves the claim. <

3.2 Sampling an edge

In this section we present our sampling procedures. The following definition and claim will
be useful in our analysis.

» Definition 5. Let 7 be a degree threshold. Let V< = {v € V | d(v) < 7}, and let
Var =V \ V. We refer to V<. and Vs, as the sets of light vertices and heavy vertices,
respectively. Let E<; = {(u,v) |u € V<;} and Es. = {(u,v) |u € V5. }.

» Definition 6. If the procedure Preprocessing(n,e,d,x) returns a tuple (7, 7,%, D(S))

such that the following items of Lemma 4 hold, then we say that this invocation is successful.
D(S) is a data structure that supports sampling a uniform edge in E(S), for an e-good
set S, as defined in Definition 2.

T € [1,4/n/dag], T = %, and 7 = E:Tg(fél , where dayg s an €-good estimate of dayg, as
defined in Definition 3.

16 Multiplicative Chernoff bound: if X1, ..., X, are independent random variables taking values in {0, 1},
2
then for any 0 <6 <1, Pr [Z'LE[n] Xi—p| > 5#} < 2¢= 3 where u=E [Z XZ} .

i€[n]

T. Eden, S. Mossel, and R. Rubinfeld

> Claim 7. Let v = % and 7 = 225, If S is an e-good set, as in Definition 2, and
e

- ERNET
davg 1s an e-good estimate of d,vg, as in Definition 3, then it holds that 7 € [1/4, 12] and that
v el =77l

Proof. By the assumption that S is an e-good sit, it holds that % € [i + davg, 12 + dayg)-
Therefore, 7 € [i, 12]. By the assumption that dag is an e-good estimate of d,yg, namely
davg € [(1 — €)davg, davg), it holds that v € [(1 — €)7,7]. <

3.2.1 The sampling procedures

We now present the two procedures for sampling light edges and heavy edges.

Sample-Uniform-Edge (7, 7,Z, D(S), €)

1. While True do:

. Sample uniformly at random a bit b + {0, 1}.

. If b = 0 invoke Sample-Light (7, 7).

. Otherwise, invoke Sample-Heavy(r, D(S), T, €).
. If an edge (v,u) was returned, then return (v, u).

o n T 9

Sample-Light (7, 7)

1. Sample a vertex v € V uniformly at random and query for its degree.
2. If d(v) > 7 return fail.

3. Query a uniform neighbor of v. Let u be the returned vertex.

4. Return (v,u) with probability d(:) . %, otherwise return fail.

Sample-Heavy (r, D(S5),Z,¢)

d(v)

Sample from the data structure D(S) a vertex v € S with probability (g -

Sample uniform neighbor of v. Let u be the returned vertex.
If d(u) < 7 return fail.

Sample uniform neighbor of u. Let w be the returned vertex.
Return (u,w) with probability /4%, otherwise return fail.

apNE

Our procedure for sampling an edge Sample-Uniform-Edge gets as input a tuple
(7, 7,%, D(S)) which is the output of the procedure Preprocessing. Our guarantees on
the resulting distribution of edge samples rely on the preprocessing being successful (see
Definition 6), which happens with probability at least 1 — 4.

» Lemma 8. Assume that Preprocessing has been invoked successfully, as defined in
Definition 6. The procedure Sample-Light (7, 7) returns an edge in E<; such that each
edge is returned with probability ﬁﬂ(s) The query complezity and running time of the

procedure are O(1).

Proof. Let (v,u) be a fixed edge in E<,.

Pr[(v,u) returned] = Pr[(v is sampled in Step 1) and (v sampled in Step 3)
and ((v,u) returned in Step 4)]
1 d(v)

1
T nod) T4y

51:11

APPROX/RANDOM 2021

51:12

Sampling Multiple Edges Efficiently

Note that by Claim 7, 1/4% < 1 and therefore, Step 4 is valid and the above holds. Hence,
d = _ _m(S)
AT = gy

z- davg

by the setting of 7 =

1 eS|

Pr{(v, u) is returned] = - = LT .

The procedure performs at most one degree query and one uniform neighbor query. All
other operations take constant time. Therefore, the query complexity and running time of
the procedure are constant. |

» Lemma 9. Assume that Preprocessing has been invoked successfully, as defined in
Definition 6. The procedure Sample-Heavy (7, D(S),T, €) returns an edge in Es, such that
each edge is returned with probability ﬁ%ﬁ(‘?) The query complexity and running time of
the procedure are O(1).

Proof. Let (u,w) be an edge in F~,. We first compute the probability that w is sampled in

Step 2. Recall, the data structure D(S) supports sampling a vertex v in S with probability
d(v)

m(S)’
v € S which is a neighbor of u is sampled in step 1, and w is the selected neighbor of v in

Step 2. Namely,

o . B d(v) I 1 ds(u)
Pr{u is sampled in Step 2] = Z m(9) . aw) Z — = .
veSNI(u) veSNI(u)

The probability that u is sampled in Step 2 is equal to the probability that a vertex

By the assumption that Preprocessing has been invoked successfully, so that S is e-good,
and because u € V5,

ds(u) € (1te)-|5]- @

Hence, the probability that (u,w) is returned by the procedure is
Pr[(u,w) is returned] = Pr[(u sampled in Step 2) and (w sampled in Step 5)
and ((u,w) returned in Step 5)]
Cds(u) 1 e (xS e (14e)S]

T m(S) dw) 4z © m(S)-d(w) -4z dn-z-m(S)

The procedure performs one degree query and two neighbor queries, and the rest of
the operations take constant time. Hence the query complexity and running time are
constant. <

We are now ready to prove the formal version of Theorem 1.1.

» Theorem 3.4. There exists an algorithm that gets as input query access to a graph G,
n, the number of vertices in the graph, € € (0, %), an approximation parameter, 6 € (0,1),
a failure parameter, and x > 1, a trade-off parameter. The algorithm has a preprocessing
procedure and a sampling procedure.

The preprocessing procedure has expected query complexity
2
o <max daz.z» d?vg} . WW), and it succeeds with probability at least

1 — 4. If the preprocessing procedure succeeds, then each time the sampling procedure is
invoked it returns an edge such that the distribution on returned edges is 2e-point-wise
close to uniform, as defined in Definition 1. Each invocation of the sampling procedure has
expected O(T/€) query and time complexity.

T. Eden, S. Mossel, and R. Rubinfeld

Proof. By 9, the procedure Preprocessing procedure succeeds with probability at least
1 — . Furthermore, it has expected running time and query complexity as stated.
Condition on the event that the invocation of Preprocessing was successful. Let P
denote the distribution over the returned edges by the procedure Sample-Uniform-Edge.
By Lemma 2.3 in [13], in order to prove that P is pointwise 2e-close to uniform, it suffices to
prove that for every two edges e, e’ in the graph, }I;((j)) € (1 £ 2¢). By Lemma 8, every light
edge e is returned with probability ﬁf@‘(s) By Lemma 9, every heavy edge €’ is returned

with probability 4(11?72;@) Therefore, for every two edges e, e’ in the graph, 1};((5) € (1 £ 2¢).

Next, we prove a lower bound on the success probability of a single invocation of the
while loop in Step 1 in Sample-Uniform-Edge.

1
Pr[an edge is returned] = 3 Pr[Sample-Light returns an edge]

1
+ B Pr[Sample-Heavy returns an edge]

€-|S] (1 —€)e-|S]

1 1
>7ET'7 7'E7— '77
_2‘ <l 4n~§~m(S)+2 B>l dn -7 - m(S)

S I (I—¢€)-¢€S[-m (1—-e¢e S €

2 dn-z-m(S) 8yx T 1922’
where the second inequality is due to Claim 7, i.e. v < 12. Hence, the expected number of
invocations until an edge is returned is O(Z/e). <
—— References

1 Nesreen K Ahmed, Nick Duffield, Theodore L. Willke, and Ryan A Rossi. On sampling from
massive graph streams. Proceedings of the VLDB Endowment, 10(11), 2017.

2 Nesreen K Ahmed, Jennifer Neville, and Ramana Kompella. Network sampling: From static to
streaming graphs. ACM Transactions on Knowledge Discovery from Data (TKDD), 8(2):1-56,
2013.

3 Maryam Aliakbarpour, Amartya Shankha Biswas, Themis Gouleakis, John Peebles, Ronitt
Rubinfeld, and Anak Yodpinyanee. Sublinear-time algorithms for counting star subgraphs via
edge sampling. Algorithmica, 80(2):668-697, 2018.

4 Sepehr Assadi, Michael Kapralov, and Sanjeev Khanna. A simple sublinear-time algorithm
for counting arbitrary subgraphs via edge sampling. In Innovations in Theoretical Computer
Science Conference ITCS, volume 124 of LIPIcs, pages 6:1-6:20. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2019.

5 Amartya Shankha Biswas, Talya Eden, and Ronitt Rubinfeld. Towards a decomposition-optimal
algorithm for counting and sampling arbitrary motifs in sublinear time. In Approzimation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RAN-
DOM 2021, to appear, 2021.

6 Colin Cooper, Tomasz Radzik, and Yiannis Siantos. Estimating network parameters using
random walks. Social Network Analysis and Mining, 4(1):168, 2014.

7 Talya Eden, Dana Ron, and Will Rosenbaum. The arboricity captures the complexity of
sampling edges. In 46th International Colloquium on Automata, Languages, and Programming,

ICALP 2019, July 9-12, 2019, Patras, Greece., pages 52:1-52:14, 2019. doi:10.4230/LIPIcs.

ICALP.2019.52.

8 Talya Eden, Dana Ron, and Will Rosenbaum. Almost optimal bounds for sublinear-time
sampling of k-cliques: Sampling cliques is harder than counting, 2020. arXiv:2012.04090.

9 Talya Eden, Dana Ron, and C Seshadhri. Sublinear time estimation of degree distribution
moments: The arboricity connection. STAM Journal on Discrete Mathematics, 33(4):2267-2285,
2019.

51:13

APPROX/RANDOM 2021

https://doi.org/10.4230/LIPIcs.ICALP.2019.52
https://doi.org/10.4230/LIPIcs.ICALP.2019.52
http://arxiv.org/abs/2012.04090

51:14

Sampling Multiple Edges Efficiently

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Talya Eden, Dana Ron, and C Seshadhri. Faster sublinear approximation of the number
of k-cliques in low-arboricity graphs. In Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1467-1478. STAM, 2020.

Talya Eden, Dana Ron, and C Seshadhri. On approximating the number of k-cliques in
sublinear time. SIAM Journal on Computing, 49(4):747-771, 2020.

Talya Eden and Will Rosenbaum. Lower bounds for approximating graph parameters via
communication complexity. In Eric Blais, Klaus Jansen, José D. P. Rolim, and David Steurer,
editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2018, August 20-22, 2018 - Princeton, NJ, USA, volume
116 of LIPIcs, pages 11:1-11:18. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2018.
doi:10.4230/LIPIcs.APPROX-RANDOM.2018.11.

Talya Eden and Will Rosenbaum. On sampling edges almost uniformly. In Raimund Seidel,
editor, 1st Symposium on Simplicity in Algorithms, SOSA 2018, January 7-10, 2018, New
Orleans, LA, USA, volume 61 of OASICS, pages 7:1-7:9. Schloss Dagstuhl - Leibniz-Zentrum
fir Informatik, 2018. doi:10.4230/0ASIcs.S0SA.2018.7.

Uriel Feige. On sums of independent random variables with unbounded variance and estimating
the average degree in a graph. SIAM Journal on Computing, 35(4):964-984, 2006.

Hendrik Fichtenberger, Mingze Gao, and Pan Peng. Sampling arbitrary subgraphs exactly
uniformly in sublinear time. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors,
47th International Colloquium on Automata, Languages, and Programming, ICALP 2020,
July 8-11, 2020, Saarbricken, Germany (Virtual Conference), volume 168 of LIPIcs, pages
45:1-45:13. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2020. doi:10.4230/LIPIcs.
ICALP.2020.45.

Minas Gjoka, Maciej Kurant, Carter T. Butts, and Athina Markopoulou. Walking in facebook:
A case study of unbiased sampling of osns. In INFOCOM 2010. 29th IEEE International
Conference on Computer Communications, Joint Conference of the IEEE Computer and
Communications Societies, 15-19 March 2010, San Diego, CA, USA, pages 2498-2506. IEEE,
2010. doi:10.1109/INFCOM.2010.5462078.

Oded Goldreich and Dana Ron. Approximating average parameters of graphs. Random
Structures & Algorithms, 32(4):473-493, 2008. doi:10.1002/rsa.20203.

Mira Gonen, Dana Ron, and Yuval Shavitt. Counting stars and other small subgraphs in
sublinear-time. SIAM Journal on Discrete Mathematics, 25(3):1365-1411, 2011.

Hossein Jowhari, Mert Saglam, and Gébor Tardos. Tight bounds for Ip samplers, finding
duplicates in streams, and related problems. In Proceedings of the thirtieth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pages 49-58, 2011.

Nadav Kashtan, Shalev Itzkovitz, Ron Milo, and Uri Alon. Efficient sampling algorithm for
estimating subgraph concentrations and detecting network motifs. Bioinformatics, 20(11):1746—
1758, 2004.

Tali Kaufman, Michael Krivelevich, and Dana Ron. Tight bounds for testing bipartiteness
in general graphs. SIAM Journal on Computing, 33(6):1441-1483, 2004. doi:10.1137/
S0097539703436424.

Jure Leskovec and Christos Faloutsos. Sampling from large graphs. In Proceedings of the 12th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’06,
pages 631-636, New York, NY, USA, 2006. ACM. doi:10.1145/1150402.1150479.

George Marsaglia, Wai Wan Tsang, Jingbo Wang, et al. Fast generation of discrete random
variables. Journal of Statistical Software, 11(3):1-11, 2004.

Abedelaziz Mohaisen, Aaram Yun, and Yongdae Kim. Measuring the mixing time of social
graphs. In Proceedings of the 10th ACM SIGCOMM conference on Internet measurement,
pages 383-389, 2010.

Bruno Ribeiro and Don Towsley. Estimating and sampling graphs with multidimensional
random walks. In Proceedings of the 10th ACM SIGCOMM conference on Internet measurement,
pages 390-403, 2010.

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.11
https://doi.org/10.4230/OASIcs.SOSA.2018.7
https://doi.org/10.4230/LIPIcs.ICALP.2020.45
https://doi.org/10.4230/LIPIcs.ICALP.2020.45
https://doi.org/10.1109/INFCOM.2010.5462078
https://doi.org/10.1002/rsa.20203
https://doi.org/10.1137/S0097539703436424
https://doi.org/10.1137/S0097539703436424
https://doi.org/10.1145/1150402.1150479

T. Eden, S. Mossel, and R. Rubinfeld

26

27

28

29

30

31

Jakub Tétek and Mikkel Thorup. Sampling and counting edges via vertex accesses. arXiv
preprint arXiv:2107.03821, 2021.
Duru Tiirkoglu and Ata Turk. Edge-based wedge sampling to estimate triangle counts in very

large graphs. In 2017 IEEE International Conference on Data Mining (ICDM), pages 455-464.

IEEE, 2017.

Jakub Tétek. Approximate triangle counting via sampling and fast matrix multiplication.
CoRR, abs/2104.08501, 2021. arXiv:2104.08501.

Alastair J. Walker. New fast method for generating discrete random numbers with arbitrary
frequency distributions. FElectronics Letters, 10(8):127-128, 1974.

Alastair J. Walker. An efficient method for generating discrete random variables with general
distributions. ACM Transactions on Mathematical Software, 3(3):253-256, 1977.

Tianyi Wang, Yang Chen, Zengbin Zhang, Tianyin Xu, Long Jin, Pan Hui, Beixing Deng, and
Xing Li. Understanding graph sampling algorithms for social network analysis. In 2011 31st
international conference on distributed computing systems workshops, pages 123-128. IEEE,
2011.

51:15

APPROX/RANDOM 2021

http://arxiv.org/abs/2104.08501

	1 Introduction
	1.1 Results
	1.2 Technical Overview
	1.3 Comparison to Previous Work
	1.4 Further Related Work

	2 Preliminaries
	3 Multiple Edge Sampling
	3.1 Preprocessing
	3.2 Sampling an edge
	3.2.1 The sampling procedures

