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Abstract

The phenology of dissolved oxygen (DO) dynamics and metabolism in north temperate lakes offers a basis
for comparing metabolic cycles over multi-year time scales. Although proximal control over lake DO can be
attributed to metabolism and physical processes, how those processes evolve over decades largely remains
unexplored. Metabolism phenology may reveal the importance of coherence among lakes and facilitate general
conclusions about the controls on lake metabolism at regional scales. We developed a Bayesian modeling frame-
work to estimate DO concentrations and metabolism in eight lakes in contrasting landscapes in Wisconsin,
USA. We identify the DO and metabolism phenologies for each lake, and use those to compare how decadal pat-
terns relate to trophic state and landscape setting. We show that lakes can be categorized by their hypolimnetic
oxygen consumption dynamics, with oligotrophic lakes having a diverse set of patterns and eutrophic lakes
having uniform trends of increased oxygen consumption over the last decade. Metabolism phenology is likewise
diverse for oligotrophic lakes, whereas eutrophic lakes in southern Wisconsin share consistent long-term pat-
terns of metabolic trends and seasonal DO consumption highlighting the importance of trophic state driving
metabolism. Eutrophic lakes had higher magnitudes and more seasonal variation in net ecosystem production
in contrast to oligotrophic lakes. Generally, long-term metabolic trends of north temperate lakes suggest a lim-
ited influence of climate on lake metabolism and that temporal coherence of long-term metabolism change is
driven primarily by the landscape setting.

[...] [TThe cycle of the [oxygen] changes in a lake illus-
trates more readily and more conspicuously than per-
haps any other facts could do what may be called the
“annual life cycle” of the individual lake, showing both
the underlying resemblances of that cycle as found in
different lakes and also some small part of the infinite
variation in its details. (Birge 1910)

Lake phenology is well described for the seasonal emer-
gence of biotic communities and their linkages to the annual
physical dynamics of dimictic temperate lakes (Sommer
et al. 2012). Phenology can be extended to lake dissolved oxy-
gen (DO) dynamics as an integrator of the metabolic processes
of primary production and respiration, which are responsive
to the annual cycles in temperate lakes. As articulated by

Edward A. Birge one century ago: Metabolism phenology provides a conceptual basis for

comparing the annual metabolic cycles of lakes and how
those cycles might evolve through time in response to both
exogenous drivers, such as land use and climate change, and
internal physical-chemical-biological interactions (Sommer
et al. 2012). Both metabolism as an ecosystem process and dis-

*Correspondence: rladwig2@wisc.edu

This is an open access article under the terms of the Creative Commons
Attribution-NonCommercial License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited

and is not used for commercial purposes.

Additional Supporting Information may be found in the online version of
this article.

Author Contribution Statement: R.L, P.C.H., and L.G. designed the
study. L.G., A.D., and R.L. pre-processed the input data. P.C.H., L.G.,
N.L., and R.L. performed the lake model simulations. P.C.H., H.A.D., and
R.L. analyzed the data. A.A. and J.S. made significant contributions to the
verification and presentation of results. All authors contributed to the
preparation of the manuscript and approved the final submitted
manuscript.

solved oxygen (DO) as an ecosystem state variable have link-
ages to phenology. Water temperature, which has a strong
annual signal, regulates gas solubility, as well as biological and
geochemical reactions that produce or consume oxygen
(Staehr et al. 2010). In many lakes, biological fluxes of oxygen
production (photosynthesis) and consumption (respiration)
dominate short-term changes in DO (Cole et al. 2000; Hanson
et al. 2003; Solomon et al. 2013). Metabolic dynamics at the
lake ecosystem scale are associated with a variety of processes
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and conditions that are seasonally dependent, such as
autochthony and allochthony (Hanson et al. 2003; Tsai et al.
2008; Carey et al. 2018), light availability (Staehr et al.
2016; Phillips 2020), water temperature (Hanson et al. 2011;
Scharfenberger et al. 2019), and phytoplankton dynamics
(Kamarainen et al. 2009; Staehr et al. 2016). With climate and
land use change, it is reasonable to hypothesize that DO and
metabolism phenology in lakes are changing (Jenny et al.
2016; Woolway et al. 2021).

Climate change is known to affect the phenology of
populations by creating stochastic mismatches between the
timing of species life cycles and their environment (Yu et al.
2017; Liu et al. 2022). However, it is often unknown how
long-term phenology and drivers observed in a single aquatic
ecosystem relate to aquatic ecosystems found throughout a
region. Searching for commonality in lake phenology has the
potential to reveal the existence of coherence among lakes
and facilitate more general conclusions about the controls on
lake metabolism at regional scales. If coherent clusters among
nearby lakes can be established, the conclusions drawn about
lake metabolism may apply beyond the specific lakes under
study (Magnuson et al. 1990). To begin, one needs long-term
observational data, a DO and metabolism model that captures
essential processes and includes distinct strata that have rele-
vance to water quality and habitability, and a metabolism
phenology modeling framework that accounts for the influ-
ence of ecosystem stochasticity and long-term change. Such a
framework then provides quantified prediction of critical eco-
system patterns in observable variables, such as the response
of DO to net ecosystem production (NEP) and the depletion
of DO concentrations, that is,

@:GPP—ERJFD:NEND, (1)

where GPP is gross primary production, ER is ecosystem respi-
ration, and D is the exchange with the atmosphere (Odum
1956; van de Bogert et al. 2007; Hoellein et al. 2013).

Existing modeling approaches offer helpful insights as a
plethora of aquatic ecosystem models (AEMs) has been devel-
oped (Mooij et al. 2010) to examine the impact of external or
internal forcings on aquatic ecosystem states and processes
(Janssen et al. 2015). AEMs usually consist of a hydrodynamic
model coupled to a water quality/ecosystem model, with vari-
able feedback loops between both models. Models can differ
substantially in their respective approaches, that is, hydrody-
namically they could apply an integral energy approach, that
is, DYRESM (Dynamic Reservoir Simulation Model, Hamilton
and Schladow 1997), GLM (General Lake Model, Hipsey et al.
2019) or MyLake (Multi-year Lake simulation Model, Saloranta
and Andersen 2007), or quantify vertical changes of turbulent
kinetic energy, that is, GOTM (General Ocean
Turbulence Model, Burchard et al. 1999), LAKE2.0
(Stepanenko et al. 2016) or Simstrat (Goudsmit et al. 2002).

Long-term lake metabolism phenology

State-of-the art vertical one-dimensional AEMs include GLM-
AED (Hipsey et al. 2019), MyLake (Saloranta and Andersen
2007), WET (Nielsen et al. 2017), Simstrat-AED (Goudsmit
et al. 2002), and PCLake (Janssen et al. 2019). The prediction
realism that can be generated from AEMs has associated costs
that challenge the application of these models across broad
space and time scales or across populations of lakes. The high
number of parameters create equifinality issues (Beven 2006),
and high data and computational requirements, as well as
requirements for end-user skill, can lead to lower flexibility
and adaptability of such models to new kinds of problems
(e.g., applying an advanced autocalibration routine as in Luo
et al. 2018). Simpler models, designed specifically for aquatic
metabolism, have been tailored toward reproducing diel DO
dynamics from high-frequency sensor networks (Coloso et al.
2008; Holtgrieve et al. 2010; Sadro et al. 2011; Staehr et al.
2012b; Giling et al. 2017; Appling et al. 2018). Rarely, do these
models incorporate hydrodynamics nor have they been
applied at longer time scales, with a few exceptions (Solomon
et al. 2013). Thus, neither AEMs nor diel metabolism models
fit the problem of long-term metabolism phenology and a
combination of these approaches is needed to address the
challenge of modeling long-term metabolism phenology.

Our approach was to develop a physically and ecologically
simplified model in which biological processes are not explic-
itly simulated, but integrated into a fitting parameter, which
we dynamically estimated using field data in a Bayesian
approach. Furthermore, although physically simplified, we
mathematically approximated thermally stratified lakes as
two-layer systems, in which an idealized well-mixed surface
volume (i.e., the epilimnion) is separated by an area with a
sharp density gradient (i.e., the thermocline) from a well-
mixed bottom volume (i.e., the hypolimnion). The two-layer
assumption is applied because of our focus on long-term
dynamics neglecting well-known fluid dynamic processes
(e.g., internal waves, density currents, convective overturn, see
Bouffard and Wiest 2019; Imberger and Hamblin 1982).
Nonetheless, we assume that both volumes exhibit DO and
metabolism dynamics that are—to a certain extent—
independent from each other and that the metabolic fluxes
can be applied to each layer separately. Such a two-layer DO
model for lakes that accounts for dynamic shifts between
mixed conditions in the fall to spring to stratified conditions
in the summer builds a more holistic and comprehensive rep-
resentation of pelagic DO concentrations and metabolic
fluxes, and—although simplified—can be used for the quanti-
fication of long-term changes of pelagic DO and metabolism.
An important caveat is that spatial heterogeneity in DO can
be high (van de Bogert et al. 2007) due to spatial variability in
metabolism (Brothers and Vadeboncoeur 2021) and the influ-
ence of mixing and lateral flow on observed DO patterns
(MacIntyre and Melack 1995; Staehr et al. 2010).

We use this approach to quantify the metabolic dynamics
of eight dimictic north temperate lakes in Wisconsin and
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Table 1. Characteristics of lakes in this study, including depth (maximum/mean), RT, mean total nitrogen (TN) and mean total phos-
phorus (TP). DO data provide the number of DO profiles (summer: April to November/total) since monitoring began. RT is not calcu-

lated for Fish Lake since it is a closed-basin system.

Lake Area (ha) Depth (m) RT (yr) Mean TN (ug L™ ")* Mean TP (ug L™ ")* Secchi depth (m)+ DO data*
North Allequash 164.2 8/2.9 0.5% 281 14 33 568/673 since 1981
Big Muskellunge 363.4 21.3/7.5 8% 277 7 7.0 573/675 since 1981
Crystal 37.5 20.4/10.4 12.7% 139 4 7.6 598/701 since 1981
Sparkling 63.7 20/10.9  10.4% 188 5 6.2 573/677 since 1981
Trout 1565.1 35.7/14.6 4.6% 182 5 53 576/676 since 1981
South Fish 80.4 18.9/6.6 NA 749 18 NA 315/348 since 1996
Mendota 3961.2 25.3/12.8 4.3§ 954 50 1.8 363/406 since 1995
Monona 1359.8 22.5/8.2 0.7§ 816 47 3.0 341/375 since 1995

*Magnuson et al. (2020a, 2006).
"Magnuson et al. (2021a).
“Webster et al. (1996).

SLathrop and Carpenter (2014).

study their long-term metabolism phenology. We use a Bayes-
ian Markov Chain Monte Carlo approach to fit metabolism
model parameters for NEP in the epilimnion and the hypolim-
nion, and a parameter for the sediment oxygen demand. The
simplicity and data-intensive nature of the approach allows
the model to be applicable to a wide range of potential lake
ecosystems without relying on an over-parameterized mathe-
matical approach. Using the output of the model, we charac-
terize DO and metabolic phenology and address the
questions: How do major physical and metabolic DO fluxes
compare among lakes in the two different landscape settings?
Has the phenology of metabolism in these lakes changed over
several decades, and is there a temporal coherence of NEP to
the landscape setting or to climate?

Methods

Study sites

Eight lakes of the North Temperate Lakes Long-Term Eco-
logical Research program (NTL-LTER'; Magnuson et al. 2006)
were included in this study. Five of the lakes (Allequash, Big
Muskellunge, Crystal, Sparkling, and Trout) are situated in the
Northern Highland Lake District in northern Wisconsin in a
mixed pine/hardwood forest and have been monitored since
1981 (Carpenter et al. 2007). Big Muskellunge, Crystal, and
Sparkling Lakes are groundwater seepage lakes with residence
times (RTs) >8 years (Table 1), whereas Allequash and Trout
Lakes are drainage lakes (Webster et al. 1996). In southern
Wisconsin, three lakes (Fish, Mendota, and Monona), are in
predominantly agricultural and urban watersheds (Carpenter
et al. 2007; Magee and Wu 20174a) and have been monitored
by the NTL-LTER since 1995. The northern lakes are oligotro-
phic, except for mesotrophic Allequash (Table 1). The

"lter.limnology.wisc.edu

southern lakes are predominantly eutrophic, except for Fish
that shifts between mesotrophic or eutrophic, and all the
southern lakes experience prolonged anoxia every summer.
The eight lakes span a range in size, depth, RT, and trophic
status, and are representative of north temperate dimictic
lakes embedded in glacial deposits (Table 1).

Modeling framework

Our goals were to calculate decadal changes in both epi-
limnetic and hypolimnetic DO by quantifying dominant met-
abolic and physical fluxes and evaluate long-term metabolic
phenology. We have constructed a framework that empha-
sizes seasonal dynamics and that captures important seasonal
transitions, such as spring and fall mixing, the development
of summer stratification, and winter ice cover (although sim-
plified). Our framework accounts for long-term change in
ecosystem-scale metabolic fluxes and quantifies associated
uncertainties. As DO dynamics are strongly associated with
the cyclicity and seasonality of aquatic metabolism, our frame-
work addresses long-term changes in the phenology of meta-
bolic fluxes and dynamics in the eight lakes. All the lakes
stratify during the summer months and to a certain extent ful-
fill the vertical one-dimensional model assumption, meaning
that their density gradient over the vertical axis is larger than
over the horizontal axis. Thus, we simplified their long-term
dynamics using a two-layer model with the focus on modeling
vertical transport processes. For a discussion of our use of the
vertical one-dimensional model assumption for these lakes,
see Supporting Information, “Checking the vertical one-
dimensional model assumption.” Our model has the following
main assumptions: (a) a lake is either stratified with two fully
mixed volumes or mixed in one total volume, (b) while lakes
are ice-covered, we assume mixed conditions and minimal air-
water interactions, and (c) fitting a small number of
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parameters (dynamically through time) enables us to discrimi-
nate the metabolic and physical processes controlling DO
observed from field data and study how those processes
change through time.

Our modeling framework links several models (a hydrody-
namic lake model, a process-based metabolism model, and a
statistical model) to form a process-error modeling framework
(Fig. 1) that weighs the information in observational data to
account for the uncertainty in the process-based model. For
each lake, we constructed time series of epilimnion and hypo-
limnion temperatures and volumes, and thermocline depths
from outputs of a hydrodynamic lake model. These variables
were subsequently used in a process-based metabolism model
to simulate DO concentrations and the respective fluxes.
Using a Bayesian framework, we created posterior estimates
for three parameters in the metabolism model when observa-
tional data were available. Simulations for each lake were run
from 1979 to 2019. We analyzed the model outputs using
time-series decomposition to identify trend and seasonal com-
ponents and used clustering of time-series data to inspect
coherence between sites and across time. A detailed descrip-
tion of each of these steps is provided below.

Process-based metabolism model

The lake water column was categorized as stratified (during
summer conditions, with a vertical density difference between
surface and bottom layer that exceeded 0.05 kg m~3, an aver-
age water temperature above 4°C, and presence of a thermo-
cline) or completely mixed (Fig. 1, upper left corner). During
stratified conditions, we approximated the vertical layering of

[DOJP « V! 4 DO VP o,

DOJ =

the water column into two completely mixed volumes: the epi-
limnion and the hypolimnion. Both layers were separated by
an idealized zone of low vertical diffusivity (the thermocline),
which acted as a barrier to transport. The thermocline is part of
a wider zone, the metalimnion. For simplicity, we partitioned
the metalimnion to either the epilimnion or the hypolimnion
depending on the depth of the thermocline. Our model
neglects the existence of an inverse stratification period during
ice-covered winter periods, and assumes completely mixed
water column conditions. We did not model under ice condi-
tions due to our focus on long-term metabolism dynamics dur-

([DO];otal I ( F?TM + F?IEP,Epi + F?IEP,hYPO _ F§ED> * At) x—L

Long-term lake metabolism phenology

ing summer stratified conditions and due to a lack of long-term
under ice DO data, although aquatic ecosystems are affected by
under-ice interactions between the abiotic and biotic environ-
ment (Jansen et al. 2021).

Our metabolism model approximated the general ordinary
differential DO equation of each layer as a discrete first-order
linear forward differencing solution using an explicit forward
Euler scheme and a daily time step:

dDO] &
T_ ;Fa; (2’)

n V:
(DO, = ([Do}t+ZaFa,t*At) T

t+1

where [DOJ is the DO concentration (mg m~3), F represents
the a™ flux over n total fluxes that either increase or decrease
DO (mg m~3 d™'), At is the time step, and V (m?) is the vol-
ume. The volume conversions are included as our DO state
variables are in concentration units and the specific volumes
of epilimnion and hypolimnion are dynamic over time. The
metabolism model was coded in Stan (Stan Development
Team 2019), using the rstan-package (Stan Development
Team 2020).

When the lake water column was under mixed conditions,
the model calculated total DO concentration as a function of
direct atmospheric exchange (FA™, mg m=3 d°'), NEP
(FNEPePl mg m—3 d7! as well as FNEPYPO mg m=3 d '), and
mineralization through sediment oxygen demand (F*P, mg
m3d):

if stratified,

Vtotal (3)

W’ OtherWise,

t+1

where [DO]i*"/P/MPO is the DO concentration in the total,
epilimnion, or hypolimnion layer, respectively, at time step t,
and Vi°@/eP/MPO is the water volume in the total, epilimnion,
or hypolimnion layer (m?), respectively, at time step t.

During stratified conditions, the change of DO concentra-
tions over time in the epilimnion is governed by a direct
exchange with the atmosphere (FA™, mg m=3 d'), NEP
(FNEPePl mg m~3 d7!), DO entrainment from or into the
hypolimnion by turbulent flow (FEN™¢ mg m=3 d™!), and a
diffusive DO flux between hypolimnion and epilimnion
(FDIFF,epi’ mg m73 d_l):
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Fig. 1. Conceptual diagram illustrating our modeling workflow as outlined in the methods. The outputs of a hydrodynamic lake model (GLM), cali-
brated to each study site, were used to run a two-layer metabolism model. The free model parameters of the metabolism model were estimated using a
Bayesian framework running multiple Markov chains. For this parameter estimation, long-term monitoring data of observed DO data were used to esti-
mate the likelihood of the simulated oxygen data. Simulated oxygen time series and metabolism fluxes were analyzed to derive general information about

long-term changes of metabolism phenology.

epi

) . . v
o ([DO]QPI (F;‘TM 4 FNEP Pl . pENTRepi iFPIFF’eP‘) * At) w— Lo, if stratified,
DOJSP) = Ve )
(DOt otherwise.

t+1 7

The same numerical metabolism scheme applies to the sediment oxygen demand (F**®, mg m=3 d™!), DO entrain-
hypolimnion, where during stratified conditions the sources ment into or from the epilimnion by turbulent flow
and sinks to DO concentrations over time in the hypolimnion ~ (FFNTRWYPC 'mg m=3 d71), and a diffusive DO flux between epi-
are NEP (FNEPYPO mg m—3 d7!), mineralization through  limnion and hypolimnion (FPFYP° mgm=3 d-1):

hypo

\%

hypo ([DO]?YPO n (F?IEP,hYPO _P F]tENTR,hYPO I F?IFF,hYPo) LA t) . ; R £ stratified,

[DO]Hl = Vi (5)
[DOJ!o%! otherwise.

t+1
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Atmospheric DO exchange, FA™ was modeled as:

K} (IDOJ;"® - [DOJ;?, )

o , if stratified,
FEM = i (6)
K ([DOJ! — O] ,
ean , otherwise,
21

where k is the gas transfer velocity after the method of Vachon
and Prairie (2013) (m d™') dependent on lake area and
observed wind speed, [DOJ** is the saturation DO concentra-
tion (mg m~3) dependent on water temperature T (either in
the epilimnion during stratified conditions, or otherwise in
the total water column) and lake altitude (Garcia and Gordon
1992), t is the respective time step, and z refers to the thick-
ness of the layer (m). In the stratified case, z equals the epilim-
nion thickness up to the thermocline depth while during
mixed conditions z equals the mean lake depth. We used
Lake Metabolizer for the atmospheric DO exchange calcula-
tions (Winslow et al. 2016). The estimation after Vachon
and Prairie (2013) relates the gas transfer velocity to wind
velocity and lake area, and sufficiently accounts for seasonal
changes in atmosphere-water gas flux interactions as wind is
expected to be the dominant driver of gas exchange in lakes
larger than 100ha (five of our eight lakes are larger than
100ha, the others are only slightly smaller). Alternative
methods consider additional variables and processes to
account for processes other than wind-induced mixing like
convective overturn (MacIntyre et al. 2010, 2021; Read et al.
2012; Heiskanen et al. 2014; Dugan et al. 2016), but as our
modeling time step of 24h neglects diurnal cycles, these
methods were out of scope for our long-term study. To rep-
resent much reduced atmospheric exchange under ice con-
ditions, we set k to 10~° m d~! when the lake was mixed, the
air temperatures were below 0°C, and water temperatures were
below 4°C. Gas transfer velocities are significantly reduced
under ice cover (Butterworth and Miller 2016; Manning et al.
2019), with measured velocities close to ~5 10°* m d!
(Lovely et al. 2015). As our focus is open-water conditions
(in line with our observational data), we arbitrarily reduced
air-water interactions during ice conditions and let the free
fitting parameter determine the uncertainty of the metabolic
fluxes.

The NEP flux, FNF, is the difference between GPP and ER,
and depends on a free parameter, X, as well as a temperature
coefficient. Therefore, NEP can either be a source or a
sink term:

(7)

NEP,epi _ o7 _ . "
FNEPepi _ Xp P T =20 if stratified,
A =
, otherwise,

XIt\IEP,epi % 9T§‘3';'*1—20

and
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(8)

NEP,h hypo _ . .
Nephypo _ )Xo VPO 9T —20, if stratified,
h -
otherwise,

NEP,hypo total _
X VPO, gTiT 20,

where the term depends on a parameter X™* (mg m—3 d™!)
which is the idealized NEP rate per unit time at a water tem-
perature of 20°C, and 6, which is an Arrhenius multiplier set
to 1.08 (included to make the fluxes dependent on water tem-
perature), T'*%/P/MYPO js the water temperature (°C) in the
total water column, epilimnion or hypolimnion layer, respec-
tively, at time step t. For the eutrophic southern lakes, we set
F?IEP’hypo to only negative values as we assume that these lakes
have no primary production below the thermocline, due to
their high light extinction (Table 1, as the average Secchi
depth is less than the mean depth as well as the eutrophic
lakes having average euphotic zone depths above their mean
as well as thermocline depths). We are referring to FN'™" as a
flux throughout the manuscript, although it is mechanistically
a source/sink term for DO. We are applying this simplification
to consider all sources and sinks that affect DO in the metabo-
lism model as fluxes, regardless if a transport process is
involved or not.

The sediment flux, , is a sink in the metabolism model
to represent sediment oxygen demand in the hypolimnion.
The sediment flux followed a zero-order reaction scheme with
a dynamic areal flux rate (representing the sediment oxygen
demand) and a first-order reaction that depends on DO as well
as the diffusive rate through a sediment boundary layer
(Miller et al. 2012; Steinsberger et al. 2020). Similar to
Steinsberger et al. (2020), this combined sediment flux
includes the sum of a flux of reduced compounds from the
sediment and the sediment oxygen uptake. In combination
with the hypolimnetic NEP flux, F)"""™"°, which represents
the water column mineralization if negative, both terms,
F3¥P 4 pREPIYPO constitute the areal hypolimnetic mineraliza-
tion. For simplification, F*” is also used for quantifying
[DO]"% during mixed conditions:

FSED

D h Atherm hypo ) o
XOED 4 A iy ophvpe ) W DL 9T P20 if stratified,
t F t-1 Vhypo
FOED _ 21
t
total .
07120 otherwise,

)

D Asurf

SED diff total 1

(Xt +=5 [DO};’?>*V§M{H*
t—

where X3P is the idealized areal flux rate per time unit (mg
m—2 dfl) at a water temperature of 20°C, Dy is the molecular
oxygen diffusion coefficient (m?s~1), § is the thickness of the
diffusive boundary layer (m), and A is the respective area (m?),
either surface or thermocline area (Miiller et al. 2012). We esti-
mated the molecular diffusion coefficient of oxygen, Dg;, as a
function of water temperature using the formula of Han and
Bartels (1996):
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loglo(Ddiff) =-4.410+

773.8 506.4
T 127315 \T}°4+273.15) '
(10)

where Dg is in cm? s™!, and T?X‘fo isin °C.

The thickness of the diffusive boundary layer was assumed
to be constant across all lakes with a value of 0.001 m, which
is in the range of diffusive boundary layer thicknesses, 0.0002
to >0.001 m, according to Jergensen and Revsbech (1985).

Entrainment fluxes, FENTRePI gnd FENTRBYPO - were included
in the model to represent turbulent fluxes that either shallow
or deepen the thermocline depth and therefore cause turbu-
lent transport of DO into either the epilimnion or hypolim-
nion directly. These entrainment fluxes were only active
during stratified two-layer conditions:

Vepi _ Vepi
L Tt DO, if VP > VP
. _ Vepl +
FENTRepi _ (teg1 —te) * Vi (11)
t - epi epi
v —viP . _
e DOR, iV <V
t+1 — Lt t
and
hypo hypo
\% -V ;
L DOJY, i VPO > y e
FENTRhypo _ (ter1 —te) * Vy
t - hypo _ y/hypo
Vt+1 B Vt

hypo . hypo hypo
(tr41 — ) * V?ypo UG I
(12)

where both fluxes transport equal mass from or into the other
respective layer.

Turbulent diffusive exchanges, FP'™ (mg m—3 d'), were
included in the model during stratified conditions to represent
a turbulent diffusive exchange between the epilimnion and
hypolimnion when entrainment fluxes are not occurring
(hence, no fluctuations of the thermocline depth):

DIFFepi  Ki-1 h -
Ft epl :Atlierm <[DOL‘371130 - [DOE}EII) (13)
t—1
and
FDIFF,hypo _ K¢ 4 DO epi DO hypo 14
t ~ gtherm <[ }t—l —| ]tfl ) (14)
t—1

The vertical turbulent diffusion coefficient, K (m2d™'),
between the epilimnion and hypolimnion was estimated
using the approach by Hondzo and Stefan (1993) as

K=o (N?) %, (15)

Long-term lake metabolism phenology

where a is a fitted parameter incorporating the lake surface
area, and N is the buoyancy frequency (s—'). We applied the
empirical relationship from Hondzo and Stefan (1993) to cal-
culate ax=0.00706 (Asurf)o'%. The squared buoyancy fre-
quency was quantified as

2_89
N =07 (16)

where g is gravitational acceleration (m s72), and p is water
density (kg m~3). We simplified this assumption by comparing
the density differences between the epilimnion and the hypo-
limnion. Furthermore, we set all values of N><7.010°s72 to
N?=7.010"° s72 (Hondzo and Stefan 1993). The approach
relates the vertical turbulent diffusion coefficient to the lake
area and buoyancy frequency, and was developed by Hondzo
and Stefan (1993) for lakes in Minnesota, USA. As the diffusive
transport of oxygen over the metalimnion is small compared
to long-term DO dynamics driven by NEP or ecosystem respi-
ration, we used this simplified estimation of vertical diffusion
compared to most hydrodynamic models that either estimate
eddy diffusivity by relating turbulent kinetic energy produc-
tion to energy dissipation (e.g., Prandtl-Kolmogorov relation-
ship as in Goudsmit et al. 2002) or by relating turbulent
kinetic energy dissipation to the buoyancy frequency (e.g., as
in the Weinstock approach used in Hipsey et al. 2019).

Driver and field data

DO and temperature were recorded at the deepest location
in each lake, from the surface to within 1 m of the bottom
using a YSI Model 58 (pre-2011) or a YSI Pro-ODO (since
2011) (Magnuson et al. 2006, 2020a). Profiles were taken
biweekly during the open water season, and 1-2 times when
lakes were ice-covered. Our process-based metabolism model
required evenly spaced monitoring data (e.g., daily data) of
the vertical water temperature profile to calculate the follow-
ing: thermocline depth, volume-averaged water temperatures
of the epilimnion, hypolimnion and total volume, and the
respective volumes of layers. Daily water temperature and
wind speed were needed to calculate the atmospheric
exchange of oxygen. We used simulated daily water tempera-
tures generated by the General Lake Model (GLM v.2.2, Hipsey
et al. 2019). GLM outputs for the lakes were obtained from
Read et al. (2021), each calibrated from observed water tem-
perature data (Read et al. 2019). For more information, see
Supporting Information “GLM calibration”. All GLM simula-
tions neglected inflows and outflows. The thermocline depth
was calculated as the depth of the center of buoyancy using
the rLakeAnalyzer R package (Read et al. 2011). The respective
average water temperatures, volumes of each layer, and the
area at the thermocline were quantified using lake-specific
hypsography (Magnuson et al. 2013, 2021b).

To calculate the daily atmospheric oxygen exchanges, we
used daily-aggregated air temperature (to determine ice
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conditions) and wind speeds from the second phase of the
North American Land Data Assimilation System (Xia et al.
2012) with 1/8™-degree spaced grid cells centered at the spe-
cific lakes. Observed long-term DO concentrations for the esti-
mation of the model parameters were obtained from NTL-
LTER (Magnuson et al. 2020a). Layer-specific DO concentra-
tions for the epilimnion and hypolimnion were calculated
using volume-weighted averaging and the respective approxi-
mated thermocline depths. Fits of simulated DO to observed
DO concentrations were quantified using the mean average
error (MAE), the root-mean squared error (RMSE), the Nash-
Sutcliffe coefficient of efficiency (NSE), and the regression
coefficient (R?).

Long-term lake metabolism phenology

Parameter estimation through inverse Bayesian modeling
We estimated three free model parameters XNEPeP
XNEPhyPo “and XSEP using the general-purpose Bayesian model-
ing framework, Stan (Stan Development Team 2019), and the
rstan (Stan Development Team 2020) interface to connect R
to the Stan scripting language. The free flux parameters repre-
sent background ecosystem-scale processes and incorporate
multiple ecological and biogeochemical processes. Applying a
Bayesian framework for estimating the free metabolism
parameters allowed the quantification of uncertainty, which is
high due to multiple factors affecting in-lake ecosystem pro-
cesses and the resulting uncertainties over the decadal scale.
The X parameters were estimated whenever a mixing state
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Fig. 2. Model results of Lake Mendota from 2003 to 2006. (A) Daily empirical flux parameters, which were estimated whenever a system shift from
mixed to stratified, or vice versa, and when observed DO data were available. (B) Daily metabolism fluxes for NEP (in the epilimnion and hypolimnion)
and sediment oxygen demand that were calculated using the estimated empirical flux parameters. (€) Simulated daily oxygen concentrations that were
derived from the simulated metabolism fluxes in an explicit way. The gray bands of uncertainty represent the 97.5% and 2.5% quantiles.
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Fig. 3. Comparison between observed and simulated DO data for the eight lakes. Model fit is stated as MAE, RMSE, NSE, and regression coefficient RY).
Red dots represent DO concentrations in the epilimnion (which includes stratified and nonstratified data) and blue dots represent concentrations in the
hypolimnion. Dashed lines represent 1 : 1 lines to highlight the fit of observed to simulated data.

shift occurred (mixed to stratified conditions or vice versa)
and whenever observed DO data were available, which
resulted in most parameter estimations during the ice-free sea-
son. As we estimated free parameters for two fluxes acting
simultaneously in the hypolimnion, we compared our esti-
mates with alternative approaches to validate the modeling
approach (see Supporting Information “Comparison of esti-
mated hypolimnetic metabolic fluxes with alternative
approaches”). For more information about the inverse Bayes-
ian modeling framework, see Supporting Information “Bayes-
ian modeling.”

Time-series analysis
We decomposed the time series of all fluxes,

NEP,h SED NEP (NEP _ NEPepi , ;NEPh SEDY
FRE0Pe PR and Fg (Fo =F P+ FYP0 L 252 into

their seasonal, trend, and residual components. The seasonal

NEP,epi
F 28

components were smoothed using a 7-d moving average fil-
ter to visualize seasonal patterns and differences between
lakes. To let the seasonal components represent sources and
sinks of DO, we added the long-term average to each sea-
sonal component, which we estimated as the mean of the
original time series minus the seasonal component of each
flux, respectively. The range around each seasonal signal
was calculated by decomposing the respective time series of
the 97.5% and 2.5% quantiles. We further analyzed the
temporal dynamics of the trend component time series of
the total NEP flux including the 97.5% and 2.5% quantiles.
To investigate differences between the lakes, we calculated
the correlation coefficients between the total NEP trend time
series and clustered the correlation coefficients using hierar-
chical clustering and the Ward method (Johnson and
Wichern 2007).
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Fig. 4. Simulated, cumulative daily fluxes of atmospheric exchange (Atm), NEP in epilimnion (NEP,epi) and hypolimnion (NEP,hypo), sediment oxygen
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demand (Sed), and the total NEP flux,

of the ecosystem as the sum of NEP and sediment oxygen demand fluxes of the eight NTL-LTER lakes over

the time period when observed data were available for all study sites (starting in 1996 for the southern lakes). (A) Cumulative fluxes for the northern
lakes. (B) Cumulative fluxes for the southern lakes. (C) Comparison of the cumulative total NEP fluxes for all study sites.

To quantify long-term changes in hypolimnetic DO deple-
tion, we calculated the ratio between the simulated DO con-
centrations in the hypolimnion and the theoretical DO
saturation concentration at the hypolimnion water tempera-
ture for each summer season (one per year) at each lake site.
To provide an even temporal grid, the days of the year of each
summer stratified period were given as a percentage of dura-
tion between 0 and 100 (hence, the start of summer stratifica-
tion was 0 and the end of summer stratification was 100). This
ensured that all seasonal time series were comparable for the
purpose of clustering. Time series of ratios were smoothed
using a 10-day moving average filter. Pooling all time series,
we applied hierarchical clustering to identify the most com-
mon patterns using the Ward method. Three clusters were
found to be the optimum number of clusters, as determined
by the Elbow method, and the Average Silhouette method
(Johnson and Wichern 2007).

Results

Model performance
As an example, the metabolism model’s performance for
Lake Mendota for 2003-2006 illustrates the agreement of

10

simulated to observed DO data, and the ability of the model
to capture annual summer depletion (Fig. 2, time series of sim-
ulated to observed DO for all lakes are in Supporting Informa-
tion Figs. S4-S11). For Lake Mendota, the X“F"®P! and
XNEPhyPO  harameters had seasonal patterns (Fig. 2A). The
hypolimnetic NEP parameter, X"EPWP° along with the con-
stant high sediment oxygen demand parameter, X>t°, contrib-
uted to summer DO consumption in the hypolimnion. NEP
in the epilimnion increased during summer stratification (Fig.
2B). These fluxes determine the simulated DO concentrations
(Fig. 2C) that show reoccurring seasonal patterns: (1) during
summer stratification there are stable DO concentrations in
the epilimnion (which can become variable due to primary
production by phytoplankton), and a strong DO consumption
signal in the hypolimnion; (2) replenishment of DO during
the non-stratified period. The uncertainties around the param-
eters, fluxes and concentrations are higher during the mixed
period as fewer data were available for the model parameter
estimations.

Empirical X flux parameters were estimated when a lake
mixing state shift occurred. These estimates, evident, for
example, as an early negative summer peak of Fsgp in 2003
(Fig. 2B), have an increased uncertainty as no field data were
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1995/1996 for the southern lakes) was decomposed into the seasonal component to which the respective long-term average was added. solid lines rep-
resent filtered seasonal flux signals using a moving average filter with a window of 7 d for northern lakes, whereas dashed lines represent southern lakes.

(A) Seasonal component of total NEP flux (Fray

(D) Seasonal component of sediment oxygen demand flux.

available to verify the model’s likelihood fit. Therefore, multi-
ple simulated years have two apparent early peaks of
hypolimnetic oxygen consumption—the first one when the
flux parameters were estimated due to a lake mixing state shift
with a high uncertainty around the flux values (Fig. 2B), and a
second when the flux parameters were estimated from obser-
vational data. Modeled high DO consumption fluxes early in
the stratified summer season are therefore model artifacts due
to our choice of model parameter estimation.

Our metabolism model performed well on all lakes (Fig. 3).
The southern lakes (Fig. 3, Fish, Mendota, and Monona) had a
high proportion of measurements either at concentrations
near 0 or ~ 7-10 g DO m~3, which highlighted the par-
titioning of the stratified layers of the southern eutrophic
lakes. Seasonal anoxia or hypoxia in the hypolimnion resulted
in concentrations around 0 g DO m~3, and primary produc-
tion as well as atmospheric exchange in the epilimnion are
responsible for the high proportion of concentrations close to
saturation. The metabolism model slightly overpredicted
hypolimnetic DO in the southern, eutrophic Monona, hence
the simulated hypolimnetic DO consumption is less than
measured DO consumption. The model had lowest
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). (B) Seasonal component of NEP flux in epilimnion. (C) Seasonal component of NEP flux in hypolimnion.

performance in replicating hypolimnetic DO in the shallow
northern lake Allequash (Fig. 3).

Metabolism phenology

All northern lakes acted as long-term DO sinks (Fig. 4C).
Generally, the long-term variability of the cumulative fluxes
was higher for southern eutrophic lakes (Fig. 4B) than for the
northern oligotrophic lakes (Fig. 4A). All northern lakes had
cumulatively positive NEP fluxes in the hypolimnion (Fig.
4A). The magnitude of the sediment oxygen demand in the
northern lakes was similar to the southern lakes, highlighting
their similar net DO consumption during summer stratifica-
tion. The southern lakes had high cumulative NEP fluxes in
the epilimnion compared to the lakes in the north (Fig. 4B).
The absolute cumulative fluxes of Big Muskellunge were the
lowest across all lakes (Fig. 4C). Only Mendota had a constant
long-term positive total NEP flux. Uncertainties for fluxes are
shown in Supporting Information Figs. S12 and S13.

The seasonal signal of the total water column NEP flux
(FREF — pNEPept | pNEPhypo | pSED & poy is always a negative
term) highlights different magnitudes and timings between
the northern and southern lakes (Fig. S5A). For clarity,
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Supporting Information Figs. S14 and S15 plot the northern
and southern lakes separately. The seasonal signal was isolated
from the simulated time series by removing the trend and
sub-seasonal variation. Furthermore, the long-term average
was added to the seasonal component to illustrate if a lake
acted as DO source or sink over a typical season. A positive
total NEP flux, FREF s an indicator for in-lake oversaturation
of DO, whereas a negative Fy.' indicates DO undersaturation.

During the first 3 months of a calendar year, which is the
typical ice-covered period, all lakes except Mendota have neg-
ative total NEP fluxes (Fig. SA). In early April, the total NEP
fluxes of the northern lakes, except Allequash, increase and
remain mostly positive until the end of August. The southern
lakes, Mendota and Monona, have a minimum of the total
NEP flux during spring mixing around May, while none of the
northern lakes did. During summer stratification (June to
August), the northern lakes had an earlier total NEP maximum
than the southern lakes, although the later maxima of
Mendota, Monona and Fish were more pronounced. All lakes
were emitting DO to the atmosphere, except Allequash which
had seasonal total fluxes below zero during summer. During
fall mixing (October to November), all lakes had a negative
total NEP flux, with the northern lakes having an earlier nega-
tive total NEP flux than the southern lakes. Fall DO

Long-term lake metabolism phenology

consumption is the main negative total metabolism flux event
for the northern lakes (Fig. 5A) other than Allequash, whereas
the southern lakes experience two flux minima, one prior to
stratification and one during fall mixing. All southern lakes
had positive epilimnetic NEP fluxes throughout the year
(Fig. 6B). In contrast, the northern lakes, except Allequash,
mostly experience positive epilimnetic NEP fluxes during the
summer months, with Sparkling and Trout being the excep-
tions, as both lakes had positive epilimnetic NEP fluxes during
winter and spring. Crystal’s epilimnetic NEP flux only
becomes positive from May to September. The northern lakes
have positive hypolimnetic NEP fluxes throughout the year
(Fig. 5C), with the exception of Sparkling and Trout during fall
turnover. Hypolimnetic NEP fluxes in the eutrophic (south-
ern) lakes were set negative throughout the season with
reduced hypolimnetic NEP fluxes during the stratified summer
period. Sediment fluxes are similar for all southern lakes and
decline over the course of summer stratification (as the con-
sumption is coupled to the abundance of DO via a first-order
kinetics approach) (Fig. 5D). Northern lakes had a higher vari-
ance regarding their sediment fluxes of DO, for example,
Trout, Sparkling, and Crystal behave more uniformly, whereas
Big Muskellunge reaches a peak of DO consumption earlier in
the summer season.
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ME, Mendota; MO, Monona; Fl, Fish). (A) Scaled trends of the long-term total NEP fluxes for the northern (top) and southern (bottom) lakes. Dotted
lines represent maximum and minimum scaled trend signals of the long-term total NEP fluxes, respectively (97.5% and 2.5% quantiles). (B) Correlation
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(€) Dendrogram of the clusters that were identified using hierarchical clustering.
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Long-term metabolic changes

The trend components of the total NEP flux time series fall
into two distinct groupings, representing either the northern
or southern regions (Fig. 6). The northern trends exhibit an
elevated signal in their total NEP flux trend signal from 2000
until 2010 compared to other periods, as well as slightly over-
all reduced values since 2010 (Fig. 6A). Allequash is an excep-
tion and had low or negative correlated patterns to the trend
dynamics of most northern lakes. The total NEP trend dynam-
ics of the southern lakes behave more uniformly with a visible
long-term decline over the period 2001-2018 indicating
increased consumption of DO over time. The correlation
matrix shows that the southern lakes have similar long-term
trends (Fig. 6B). The northern lakes, except Allequash, also
had similar correlation patterns, with Sparkling and Trout hav-
ing the strongest correlation to each other among all northern
lakes (Fig. 6B,C). Northern lakes had positive correlations of
their long-term total NEP trends to the soulakes, except for
Allequash.

Regional hypolimnetic oxygen phenology

Clustered ratios of hypolimnetic DO to saturation concen-
tration had three distinct patterns of DO consumption during
summer stratification (Fig. 7A):

Concave pattern: Low DO consumption through the first
50% of the summer, with DO concentrations slightly above
saturation; DO consumption increases at the end of summer
stratification and reaching near hypoxic conditions. This clus-
ter was mainly observed in Crystal (Fig. 7B) and once in Spar-
kling and Trout, respectively.
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Linear pattern: Linear DO depletion after stratification onset,
stronger at the end of summer reaching low DO conditions.

Convex pattern: Exponential DO decrease after stratification
onset; DO is fully consumed by about 50% of the summer
period.

The northern lakes mostly had linear DO consumption pat-
terns during summer stratification (Fig. 7B), characterized by a
slow but steady depletion of DO over the course of summer.
Allequash and Big Muskellunge had individual years with sea-
sonal convex patterns. Crystal shifted from the concave pat-
tern (1980s to early 2000s) recently to the linear consumption
pattern. The southern lakes are all characterized by convex
hypolimnetic DO consumption patterns throughout the
observed period.

Discussion

Long-term metabolism estimates afford the opportunity to
characterize seasonal patterns and evaluate them within the
conceptual framework of phenology. Metabolism phenology
is related to characteristics, such as trophic status, plankton
community succession, lake mixing, and seasonal temperature
patterns, as well as landscape and climatic setting. Long-term
change in metabolism phenology is complicated, and some of
the metabolic changes in our study lakes appear to be owed to
impaired water quality. Although long-term change may not
be attributable to a single cause, and the potential drivers of
change differ among lakes, there are clues in the long-term pat-
terns of correlates representing land use and climate. Metabo-
lism phenology appears to be diverse for the lakes in northern
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Fig. 7. Clustered idealized patterns of DO consumption in the hypolimnion over the course of a summer stratification period. (A) Smoothed ratios of
hypolimnion to saturation DO concentrations over the summer stratification period. Each line represents one specific cluster. (B) Classification of each
lake’s seasonal hypolimnetic DO consumption according to the five established clusters (gray color represents years without field data).
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Wisconsin, as control over DO is expressed by the balances of
physical, chemical, and biological processes among the lakes.
Lakes in southern Wisconsin share a more consistent metabo-
lism phenology that is related to seasonal phytoplankton suc-
cession and persistent year-to-year hypolimnetic anoxia. These
regional differences set the stage for interpretation of lake
metabolism phenology as an emergent property that integrates
ecological function in lakes and that provides insights into the
potential effects of nutrient inputs from the landscape and
changing climate on lake metabolism.

Metabolism phenology

The metabolism patterns of the eutrophic lakes in the
south, Mendota and Monona, were associated with
established patterns of phytoplankton and zooplankton sea-
sonal succession during the open water season. Although an
empirical analysis of plankton community succession is
beyond the scope of this study, metabolism patterns in the
eutrophic lakes map onto the conceptual model of the Phyto-
plankton Ecology Group (PEG; Sommer et al. 1986). We use
Mendota as an example, following the analysis of phytoplank-
ton succession by Carey et al. (2016) (Fig. 5; Supporting Infor-
mation Fig. S15). Late winter and early spring blooms of
Chlorophyta and Bacilliariophyta, along with low water clarity,
indicate primary production in excess of respiration (similar to
high total NEP fluxes during summer, see Fig. 5A). With
warming temperatures and ample food, Daphnia biomass
peaks in May, and graze phytoplankton to low abundance,
increasing water clarity and raising respiration in excess of pri-
mary production, that is, slightly negative total NEP in April/
May (Fig. SA). This clear-water phase typically lasts until mid
to late June (Matsuzaki et al. 2021), when periodic
cyanobacterial blooms foreshadow a switch to the algal domi-
nated phase, which persists through early autumn, when total
NEP is positive in the eutrophic lakes. Fall mixing increases
nutrients in the water column, which help maintain high
phytoplankton abundance through the remainder of the open
water season. The PEG model generally predicts two or more
phytoplankton peaks—diatoms in spring and fall, and Cyano-
bacteria in summer—and lakes Mendota and Monona had this
trimodal pattern of high epilimnetic NEP (Fig. 5B). Factors
other than phytoplankton succession appear important, as
well, and these are discussed in the comparison of sediment
and water column metabolism.

Sediment metabolism provides additional insights into the
metabolism phenology of southern lakes. Persistent summer
algal blooms (Lathrop 2007) explain the consistent epi-
limnetic NEP patterns as well as hypolimnetic NEP and sedi-
ment oxygen demand. Export of epilimnetic phytoplankton
biomass to the hypolimnion and sediments increases organic
matter accumulation (McCullough et al. 2018), provides
excess substrate that fuels microbial respiration (Hoffman
et al. 2013), and leads to recurrent anoxia (Sobek et al. 2009).
Although Fish Lake has a mesotrophic TP concentration
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(Table 1), its sediment oxygen demand (Fig. 5D) and
hypolimnetic oxygen depletion (Fig. 7B) indicate eutrophy.
Due to Fish’s location in a watershed which is dominated by
agricultural land use, and that the lake is a closed basin, sedi-
ment oxygen demand may be fueled by high allochthonous
organic matters loads.

Oligotrophic lakes have a more diverse set of seasonal
metabolism patterns (Fig. 5; Supporting Information Fig. S14).
Lake metabolism does not map directly onto the PEG model
of phytoplankton and zooplankton community succession.
While chlorophyll a concentrations generally peak in the
spring in most oligotrophic lakes in this study (data not
shown, but available at Magnuson et al. 2020b), total NEP
tends to be stable through spring and then peaks during sum-
mer (Fig. 5A). The cumulative DO fluxes (Fig. 4A), the seasonal
metabolism patterns (Fig. 5A), and the hypolimnetic DO con-
sumption patterns (Fig. 7B) all show slight differences among
the lakes, despite similarities in nutrient concentrations (Table
1). Hydrology may explain some of the differences, as the two
lakes with substantial surface water inputs and the shortest
hydrologic RTs, Allequash, and Trout, are the northern lakes
with the lowest total NEP fluxes. Allequash’s low hydrologic
RT suggests its organic carbon budget may be dominated by
allochthonous sources (Hotchkiss et al. 2018), which would,
in turn, lower NEP. In addition, Allequash has the lowest over-
all seasonal dynamics of NEP in the epilimnion and hypolim-
nion, which fits other work showing low inter-annual
variability in metabolism in drainage lakes (Oleksy et al.
2021). In addition to other factors (e.g., high organic carbon
loads, irregular shape, drainage lake), potential polymixis in
Allequash during its weakly stratified summer period may lead
to a model bias regarding seasonal DO dynamics. Occasional
mixing events would violate the assumptions of our two-layer
metabolism model for the summer period as our model
assumes the water column to be stratified. The inference for
oligotrophic lakes is that metabolism phenology may be more
influenced by the physical-chemical-biological interactions
that define each lake’s ecology. Lake metabolism phenology
may be one more example of how lake diversity is suppressed
by eutrophication (Hautier et al. 2009; Qin et al. 2013; Glibert
2017) as the metabolism phenology of southern, eutrophic
lakes behaves more uniformly.

Within-lake spatial heterogeneity may account for some
differences observed in metabolism phenology, especially in
the northern lakes. Our model does not explicitly account for
littoral-benthic metabolic processes and likely biases the
planktonic-offshore DO measurements (Brothers and
Vadeboncoeur 2021). Any contributions of littoral planktonic,
periphyton and submerged macrophyte activity to pelagic DO
dynamics, via lateral flow processes, are subsumed in our gen-
eral metabolism analysis and evaluation. Depending on the
degree of mixing, littoral signals may largely be missed
(Lauster et al. 2006; Van de Bogert et al. 2007; Cavalcanti et al.
2016). This bias to pelagic metabolism could oversimplify in-
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lake metabolism phenology. Future work that either filters diel
DO measurements to compensate for vertical motions (Castro
et al. 2021), or that incorporates littoral measurements and
lateral DO transport would provide new and potentially valu-
able insights to lake metabolism phenology.

Temporal coherence and long-term changes of lake
metabolism

Landscape setting shapes regional differences in long-term
changes in metabolism fluxes. The relatively moderate tempo-
ral coherence across all lakes (north and south) suggests a lim-
ited influence of climate on lake metabolism and suggests that
temporal coherence of long-term metabolism change is driven
primarily by local factors (Fig. 6). Magnuson et al. (1990)
stated that coherence of lake variables among the NTL-LTER
lakes does not appear to be related to area, depth, or hydro-
logic RT, as might be expected, but rather to trophic state,
which is an outcome principally of historical land use prac-
tices for these lakes (Carpenter et al. 2007). Temporal coher-
ence of in-lake processes to local catchment variables found in
previous work (Feuchtmayr et al. 2012; Lodi et al. 2018; Wal-
ter et al. 2020) is consistent with our findings of high within-
region correlation of the trend of total NEP fluxes (Fig. 6B).
Although lakes in their respective regions behaved more uni-
formly, the trend components of total NEP fluxes were posi-
tively correlated across all investigated lakes (except
Allequash). This indicates a possible climate component to
temporal coherence (Benson et al. 2000; Palmer et al. 2014;
Magee and Wu 2017b). Although climate may be secondary
in its influence of coherence, future studies that focus on
different time scales of change or on interactions of climate
and land use may reveal new patterns of influence by cli-
mate on long-term lake metabolism. Future work that inves-
tigates the entanglement of long-term atmospheric nutrient
deposition rates with in-lake metabolism change is intrigu-
ing, as increasing nitrogen and/or phosphorus deposition
rates could explain potential metabolism changes (Jassby
et al. 1994; Anderson and Downing 2006; Bergstrom and
Jansson 2006).

Hypolimnetic metabolism has important ecological impli-
cations. Southern lakes have had the same pattern of
hypolimnetic DO consumption for the past 20 years (Fig. 7B).
There is little inter-annual variation, probably because high
accumulation rates of organic matter in sediments elevate
ecosystem respiration well beyond primary production
(McCullough et al. 2018), and respiration is likely not sub-
strate limited (Hoffman et al. 2013). Inter-annual variation in
the relative magnitude of hypolimnetic DO consumption
(e.g., Mendota) is better explained by physical factors, such as
the strength of thermal stratification (Ladwig et al. 2021). In
the north, hypolimnetic DO consumption gave rise to three
distinct seasonal patterns (Fig. 7A). The concave pattern indi-
cates positive NEP in the hypolimnion for the first 1-2
months of stratification (e.g., Crystal), and likely indicates
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substantial primary production below the thermocline. Alle-
quash and Big Muskellunge occasionally switched in their
hypolimnetic DO patterns from linear to convex (Fig. 7B),
whereas Crystal shifted from concave to linear patterns. In
2012-2013, Crystal underwent a whole lake mixing experi-
ment, in which hypolimnetic water temperatures were artifi-
cially warmed and oxygenated (Lawson et al. 2015), though
the reported changes preceded this experiment. Changes in
water clarity (Rose et al. 2016) may explain some of the
changes in Crystal, where water clarity has declined since the
1980s, which results in warming surface waters but colder bot-
tom waters. In contrast, clarity in Sparkling has not been
changing since the 1980s resulting in concurrent warming of
surface and bottom waters. Such site-specific water clarity
trends can affect mixing and eventually DO dynamics (Jane
et al. 2021).

Metabolism modeling framework

All numerical models strike a balance between process
over-simplification and over-parameterization. The pro-
nounced vertical thermal gradient in our study lakes allowed
focus on vertical exchange of DO between atmosphere, epi-
limnion and hypolimnion and to neglect lateral fluxes. Our
metabolism model, with a simplified two-layer structure, per-
formed well in replicating both long-term and seasonal
dynamics of the observed DO, in part because the Bayesian
framework incorporated the observational data. Though we
used daily output from a hydrodynamic lake model to calcu-
late daily DO values, the resolution of our results is coarser
than in most metabolism studies that use high-frequency DO
measurements (Staehr et al. 2012a). It would be reasonable to
assume our model would capture fewer extreme metabolism-
related events, such as short-term phytoplankton blooms (Batt
et al. 2017; Carpenter et al. 2020). We envision that our
metabolism model may be adapted for other dimictic lake sys-
tems that have a long-term record of water temperature and
DO measurements.

Our model results for hypolimnetic DO fluxes form a basis
of comparison to other approaches (see Supporting Informa-
tion “Comparison of estimated hypolimnetic metabolic fluxes
with alternative approaches”). Although fundamental differ-
ences in methodology confound direct quantitative compari-
son, we provide a qualitative comparison. Furthermore, we
recognize that the uncertainty in our estimates depends on
the equations of the process-based model and observed DO
data, and that uncertainty can be high for correlated parame-
ters. This dilemma, known as equifinality, is a general chal-
lenge for the optimization of mathematical models (Beven
2006). Our approach to restrict hypolimnetic NEP parameter
values to a negative range for eutrophic lakes contributed to
the reasonably good agreement between DO consumption
estimates by the deductive model of Livingstone and Imboden
(1996) and our modeled metabolism fluxes (Supporting Infor-
mation Fig. S3; see Supporting Information “Comparison of
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estimated hypolimnetic metabolic fluxes with alternative
approaches”) of the southern lakes. For northern lakes, our
modeled estimates for hypolimnetic NEP were similar to the
primary productivity estimates from '*C data when including
primary productivity in the metalimnion.

Conclusions

Observations of DO in lakes remain as relevant today for
providing insights to ecological function as they had been
more than a century ago (Birge 1910). Through sequential
modeling, we use observational data and a hydrodynamic
model to create dynamical lake states for two thermal
layers, and from those states we model metabolism in ther-
mal strata to quantify DO fluxes within the lake. From these
flux patterns, we decompose seasonal metabolism phenol-
ogy and use time-series analysis to explore its long-term
change. This sequence of abstractions provides for mathe-
matically reproducible connections between field observa-
tions and long-term ecosystem function, from which
inferences of long-term change can be explored. The metab-
olism results in this study agreed with field data and addi-
tional known ecosystem patterns, such as seasonal
phytoplankton succession. Time-series analysis highlighted
landscape-related differences between the forested lakes in
the north and the agricultural/urban lakes in the south,
which are likely related to trophic states as well as flow
regimes. All lakes had a stronger long-term temporal coher-
ence of total net ecosystem productivity related to their
landscape setting than to climate. For the southern eutro-
phic lakes, long-term DO consumption is increasing, and
water management should adapt accordingly for future
water quality deterioration. Our study highlights long-term
metabolism changes but stops short of evaluating or identi-
fying causal drivers behind long-term metabolism patterns.
Future work should focus on establishing causal relation-
ships between long-term data, climate variables, water qual-
ity, hydrologic fluxes, and catchment characteristics,
relative to metabolism fluxes to improve understanding of
metabolism phenology across different lake types. A better
understanding of causation can advance understanding of
ecosystem function, and will accelerate the application of
lake metabolism to water management strategies (Jankowski
et al. 2021).

Data availability statement

Script, model configurations, and outputs to process
the data are archived and available at the Environmental
Data Initiative portal (Ladwig et al. 2022, https://doi.org/
10.6073/pasta/af991c26bace5af8d4b3bb66d7b18af7) as well as
on Zenodo (https://doi.org/10.5281/zenodo.6363561). All
NTL-LTER data are cited in the references and are available
via the Environmental Data Initiative (https://environmental
datainitiative.org).
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