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Abstract

Current analyses of metacommunity data largely focus on global attributes across the 

entire metacommunity, such as mean alpha, beta, and gamma diversity, as well as the 

partitioning of compositional variation into single estimates of contributions of space and 

environmental effects and, more recently, possible contributions of species interactions.  

However, this view neglects the fact that different species and sites in the landscape can vary 

widely in how they contribute to these metacommunity-wide attributes. We argue for a new 

conceptual framework with matched analytics with the goals of studying the complex and 

interactive relations between process and pattern in metacommunities that is focused on the 

variation among species and among sites which we call the ‘internal structure’ of the 

metacommunity.  To demonstrate how the internal structure could be studied, we create synthetic

data using a process-based colonization-extinction metacommunity model. We then use Joint 

Species Distribution Models to estimate how the contributions of space, environment and biotic 

interactions driving metacommunity assembly differ among species and sites. We find that this 

approach to the internal structure of metacommunities provides useful information about the 

distinct ways that different species and different sites contribute to metacommunity structure. 

Although it has limitations, our work points at a more general approach to understand how other 

possible complexities might affect internal structure and might thus be incorporated into a more 

cohesive metacommunity theory.

Introduction

Community ecology is currently undergoing an important renaissance in both its concepts

and tools. One of the more exciting and important elements of this renaissance is in the use of the
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metacommunity concept, which recognizes the feedback between local communities and the 

broader-scale regional biota or species pools (Hanski and Gilpin 1991, Leibold et al. 2004 and 

reviewed in Leibold and Chase 2017).  Early metacommunity studies tended to focus on specific 

scenarios that involve such feedbacks (e.g., Levins and Culver 1971, Horn and MacArthur 1974, 

Levin 1974, Sloan-Wilson 1992, Leibold 1998, Hubble 2001, Amarasekare and Nisbet 2001). 

These were later synthesized into several (discrete) categories of metacommunities dynamics 

(Leibold et al. 2004). While these categories proved useful, it is now apparent that there is a 

much more complex and nuanced spectrum of possibilities regarding the mechanisms and 

processes underlying the structure of metacommunities (see Leibold and Chase 2017).  Ongoing 

developments, including both more sophisticated theoretical (e.g., Shoemaker and Melbourne 

2016, Fournier et al. 2017, Ovaskainen et al. 2019, Thompson et al. 2020) and analytical (e.g., 

Legendre and De Cáceres 2013, Hui et al. 2013, Ovaskainen et al. 2017, Ohlman et al. 2018, 

Jabot et al. 2020) approaches, aim for a deeper understanding of the regional-local community-

level feedbacks.  Understanding these more subtle feedbacks between local communities and the 

regional biota also has important implications that extend to applied ecology, as well as 

environmental and health concerns (e.g., Bengtsson 2009, Schiesari et al. 2019, Miller et al. 

2019, Brown and Barney 2020).

Despite the progress we observed in the study of metacommunities, two issues remain 

central in contemporary metacommunity analyses. The first is that most theoretical frameworks 

operate under the assumption that processes act similarly on all species and sites so that it makes 

sense to infer, for example, that an entire metacommunity being dominated by neutral processes 

or species sorting. A second limitation is that the most widely used analytical frameworks in 

metacommunity ecology assume that community assembly is dominated by spatial and 
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environmental factors, without considering the influence of biotic interactions. In reality, 

however, variation among species and among sites, as well as biotic interactions, can interact in 

complex ways to produce metacommunity patterns.  For instance, the spatial structure of 

environmental features can vary within landscapes (i.e., among sites) which, in turn, can affect 

the ways species interact and are sorted into local communities (Peres-Neto et al. 2012).  Thus, i

n contrast with many previous studies (e.g., Blanchard et al. 2020, Jabot et al. 2020), we 

emphasize that species can be heterogeneous in how they contribute to metacommunity level 

properties and that different sites can also vary in how they contribute to these patterns (as 

suggested by earlier work by e.g.  Pandit et al. 2009, Legendre and De Cáceres 2013).  

If we acknowledge that community assembly within a metacommunity is a complex 

process that involves heterogeneous contributions of species sorting, interactions, dispersal, and 

stochasticity acting on a regionally-defined species pool within a given landscape (e.g. Vellend 

2010, 2016, Weiher et al. 2011), the question becomes - how can we sensibly document these 

processes from observational data in a way that is useful for ecological understanding?  Current 

analytical frameworks for analyzing metacommunity assembly, such as diversity metrics, 

coexistence patterns and variation partitioning analysis (e.g. Borcard et al. 1992, Gotelli and 

McCabe 2002, Leibold and Mikkelson 2002), describe global (i.e. mean) metacommunity 

properties. Recent efforts have used several of these global metrics to dissect the relative 

importance of different major classes of metacommunity processes (Ovaskainen et al. 2019, 

Guzman et al. 2021).  While these approaches provide insights into the processes that drive 

species distributions and determine their levels of interaction within metacommunities, they only 

characterize global (general) attributes across the entire metacommunity, which we consider to 

be the external structure of metacommunities.  Here, we focus on the internal structure of 
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metacommunities that focuses on the contributions of individual species and individual sites (or 

patches) to the global (i.e., mean) metacommunity structure (see also Fournier et al. 2017, 

Suzuki and Economo 2021).  

To illustrate the advantages of studying the internal structure of metacommunities, we 

created synthetic data from a process-based metacommunity model structured by competition-

extinction dynamics. Using simulations has the advantage that we know the true underlying 

processes and therefore we have clear expectations about what we should infer from the 

generated data. 

We then use joint species distribution models to analyze the resulting distribution data 

(JSDMs; see review in Warton et al. 2015).  JSDMs are multivariate regression models that 

simultaneously describe metacommunity structure as a function of species-specific 

environmental preferences, spatial autocorrelation, and covariances among species. We have 

adapted JSDMs to estimate both the contributions per site and per species for these three 

components of variation. With due caution, one can relate environmental predictors to the 

fundamental environmental niche of the species, spatial effects to dispersal, and covariation to 

species interactions. Among the currently available statistical methods, JSDMs arguably extract 

the greatest amount of variation from spatial community data (Warton et al. 2015, Ovaskainen et 

al. 2017), even though they have been facing increased scrutiny about the interpretation of 

estimates and potential bias (e.g. Poggiato et al. 2020, Miele et al. 2021, Blanchet et al. 2020, but

see Pichler & Hartig, in press).  

By simulating data from a process-based model, we can address the extent to which 

JSDMs are able to correctly separate environmental, spatial, and biotic effects. It also allows us 

to explore how we can use their outputs to generate a more detailed and accurate picture of the 
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internal metacommunity structure. The latter is possible because JSDM results can be 

decomposed (as we show later) into species-specific and site-specific contributions of 

environment, space and biotic interactions. Our results show that heterogeneity among species 

attributes can cause substantial variation in their metacommunity patterns, as identified using 

JSDMs. Some of this heterogeneity can be identified by JSDMs and be related to variation 

among species in their attributes such as dispersal and similarities (or differences) on their spatial

associations with other species; or uniqueness among sites regarding environmental, spatial 

attributes (e.g., connectivity) and species associations.  We show how JSDMs can be used to 

estimate the piece-wise contribution of species (what we call the ‘internal structure’ of the 

metacommunity) to evaluate the metacommunity-wide overall effects of environment, space, co-

distributions and stochasticity (which we think of as the ‘external’ structure), we can thus 

evaluate how variation among species affect overall metacommunity structure. We also show 

that a similar dissection of variation can be made among sites and argue that this can also be 

thought of as a distinct aspect of the ‘internal structure’ that describe how sites differ in their 

contributions to overall patterns of metacommunity structure to reveal at least some components 

of the species-level and site-level contributions to overall metacommunity variation.

Methods to quantify the link between process and pattern using a simple metacommunity 

simulation and refined statistical approach

To test and exemplify our ability to infer individual species and site contributions, we 

simulated data from a process-based metacommunity model, which allowed us to create 

observations with full knowledge about the underlying mechanisms. Our process-based 

analytical model is based on a spatial implementation of spatially implicit site occupancy models
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(e.g., Levins and Culver 1971, Horn and MacArthur 1972, Levin 1974, Hastings 1980, Hanski 

1991) to describe dynamics in heterogeneous metacommunities.  We focused here on a model 

for predicting presence-absence (and not abundance; but see Supporting Information) because it 

is the most widely available type of empirical data for metacommunity analyses. For each 

species in each patch, we model occupancy using two key equations (details in the Supporting 

Information). The first of these describes the colonization of patch z by species i during a 

discrete time interval, ∆t: 

P(Xi,z,t+∆t =1|Xi,z,t =0)=Ii,z,tSi,z,tCi,z,t (1)

where Xi,z,t is a stochastic variable representing the occurrence of species i at location z at time t,

Ii,z,t is the number of immigrants of species, Si,z,t is the effect of environmental filtering on the 

probability of establishing a viable local population, and Ci,z,t is the effect of ecological 

interactions on the establishment probability. Second, we consider the alternative possibility - the

extinction of species i in patch z during the time interval ∆t:

P(Xi,z,t+∆t =0|Xi,z,t =1) =  Mi,z,tEi,z,t (2)

where Mi,z,t and Ei,z,t are the responses of the extinction probability to the local environment and 

to ecological interactions, respectively. 

At steady state the solution to this model is:

log pi,z

1−pi,z =logIi,z +log Si,z

Mi,z +logCi,z

Ei,z (3)

163

164

165

166

167

168

169
170
171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186



where pi,z  is the expected probability that site z is occupied by species i.  This formulation 

assumes that immigration (Ii,z), ‘environmental selection’ (Si,z /  Mi,z) and interactions (Ci,z / Ei,z) 

can be separated into distinct effects. 

Equation 3 suggests that distributions of species in a metacommunity can be studied by 

correlation-based methods such as JSDMs to separate the contributions of these effects into 

spatial effects (driven by immigration), environmental filtering (driven by abiotic selection) and 

species co-distribution unrelated to either space or environment, with an additional fraction 

quantifying residuals resulting from stochasticity in the case of a finite number of patches (see 

also Shoemaker et al. 2020).  Furthermore, the likelihood of every observation can be 

marginalized over each species (by summing the likelihoods for a given species across all 

patches) to describe the variation among species. Alternatively, the likelihood can be 

marginalized by sites (by summing the likelihoods for a patch across all species) to describe the 

variation across the metacommunity landscape. In doing so, we can quantify the importance of 

environment, species co-distribution, and space for predicting metacommunity structure as a 

whole, as well as quantify their importance for predicting the presence-absence (or, in principle, 

the abundance) of individual species or community composition at individual patches.  As JSDM

are fundamentally correlational, they can only evaluate the degree to which observations are 

consistent with our model but (as in most correlative models) cannot be used as definitive tests of

causation.

To illustrate the utility of our analytical model in a more realistic framework that also 

includes stochasticity and spatially explicit landscapes, we implemented the key processes of 

drift, environmental filtering, dispersal, and species interactions (Vellend 2010, 2016) in a 

flexible simulation version of the model above (described in more details in the Supporting 
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Information).  The simulation model allows us to vary each process separately for each species in

a heterogeneous spatially explicit landscape. It simulates the dynamics of a metacommunity 

across a set of patches and generates a spatial network that specifies the connectivity among 

patches. The state variables of the simulation are the occupancy of each species in every patch 

(i.e. presence/absence, though future implementations could also address abundance data, e.g. 

Rybicki et al. 2018, Ovaskainen et al. 2019, Thompson et al. 2020). Each patch can be colonized 

from nearby patches depending on their location in the landscape, dispersal rate of the species 

and proximity of extant populations in neighboring patches. Each species in each patch is subject

to extinctions that reflect demographic and/or environmental stochasticity.  Patches can differ in 

local environmental conditions that differentially influence baseline colonization and extinction 

probabilities.  Species interactions are modeled in two ways.  First, the presence of other species 

in a patch can modify baseline colonization probability (a reduction in the case of competition).  

Second, co-occurring species can modify baseline extinction probability (an increase in the case 

of competition). 

We next apply a JSDM to the resulting distribution of species among patches.  

Specifically, we use the HMSC R package, a modified version of the HMSC package described 

by Ovaskainen et al. (2017). The new version of HMSC has been modified to incorporate Type 

III sum of squares errors and site-by-site variation decomposition into variation partitioning 

analysis (Blanchet, 2019). With this implementation, we model species distributions as a 

function of the environment, spatial autocorrelation and species co-distributions (see Supporting 

Information for technical details). After fitting the model using HMSC, we partition variation in 

the distribution of species in the metacommunity into four statistical components (or fractions) 

using an approach akin to classic variation partitioning (Borcard et al. 1992; Peres-Neto et al. 
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2006). Details about how this variation partitioning is computed through HMSC is given in the 

Supporting Information. In particular, we simplified the 8-way resulting variation components 

into 4 more easily visualized components to quantify the effects of environment (labeled [E]), 

spatial patterning (labeled [S]), co-distribution among species (labeled [C]) and residual 

(unexplained) variation that cannot be attributed to any of the three previously mentioned 

fractions (i.e. sets of predictors). The latter is expressed as 1-R2, where R2 is the proportion of 

variation explained by the model and includes fractions [E], [S], and [C].  Aggregating 

independent and non-independent fractions as explained in the Supplementary Information 

results in a loss of more detailed information but allows us to visualize and simplify our 

interpretation of the results in ways that are useful for the present study.

 Although the analytical model described in equations 1-3 suggests that making links 

between processes and patterns using JSDMs are possible, we wished to evaluate if this was also 

likely in less idealized situations such as those used in our metacommunity model.  We thus 

simulated a number of scenarios (i.e., ‘thought experiments’) that vary the strength of 

environmental selection, dispersal and competition.  Comparing scenarios with varying niche 

breadth and competition (scenarios A-D, Fig. 2 and Fig 3), and a more complex case where 

species compete and vary in both dispersal and in their responses to the environment (scenario G,

Figure 4, scenarios E and F in the SI) highlight how HMSC provides an avenue for 

distinguishing between underlying processes based on abundances of species across 

metacommunity patches.  Using our framework, our goal here was to illustrate how links 

between pattern and process might be inferred in metacommunities under our “internal structure”

framework. In doing so, we leave a more extensive and systematic evaluation of the model’s 
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components (e.g., performance of JSDMs under multiple complex scenarios) for future work 

(but see Ovaskainen and Nerea 2020).  

  

Results of simulation experiments

In a first set of simulations, we considered a situation where species had distinct 

environmental optima along an environmental gradient and had limited dispersal (Figure 2, Table

1).  We contrasted the case where the environmental niches were narrow (steep changes in 

baseline colonization success and extinction rates with small deviations in environment) with the

case with identical optima, but with wide environmental niches (much weaker changes in 

colonization and extinction with environmental value).  As expected, we found that these 

differences in environmental niche breadth had strong effects on the relative importance of 

environmental filtering (fraction [E]) versus spatial patterning (fraction [S]). Specifically, we 

found stronger spatial effects when niche breadths were broad and stronger environmental 

filtering when niches were narrower (Figure 2, Table 1).  We also found that the R2 values were 

higher for the case with narrow niches than with wide niches.  Finally, we found non-zero 

(though relatively weak) variation components for co-distributions (fraction [C]) in both cases, 

especially when niches were broad even though our analytical model would predict the absence 

of such variation components since colonization and extinctions were not affected by species 

interactions in these simulations.  

We next simulated metacommunities with identical parameters as above, except with 

added interspecific competition effects (Figure 3, Table 1).  As in the case without species 

interactions (compare with Figure 2), narrow niches enhanced the relative strength of 

environmental filtering (fraction [E]) and reduced spatial patterning (fraction [S]) when 

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278



compared to wide niches.  In these simulations, however, the co-distribution components 

(fraction [C]) were much more substantial than without species interactions.  We also found that 

adding interspecific competition substantially increased the total amount of variation explained 

(R2) by the model (i.e. due to the joint component of co-distribution).  

We conducted a number of other simulations to explore if interspecific variation on 

environment (fraction [E]), space (fraction [S]), and co-distributions (fraction [C]) depend on 

dispersal, niche breadth, and interactions. Illustrative examples are shown in the supplemental 

information and summary statistics are shown in Table 1.  In Figure 4, we present the results 

from one of these examples that includes heterogenous dispersal to show how the internal 

structure can reveal how dispersal variation affects species distributions.  We found that one 

could distinguish species by the degree to which their distributions are related to environment 

(fraction [E]), space (fraction [S]) and co-distributions (fraction [C]) (Figure 5a) and we found 

that this could be related to their traits (i.e., species optima in our simulation framework). 

Species with higher dispersal ability and more specialized environmental niche positions had 

distributions better predicted by the environment than those that were dispersal limited and had 

distributions that presented a higher level of spatial autocorrelation (fraction [S]).  Species with 

optima closer to the middle of the environmental gradient also had a larger fraction [C] than 

those with more extreme optima.

Sites also differed in how their species composition was related to environmental 

(fraction [E]) and spatial effects (fraction [S]) as well as co-distributions (fraction [C] - Figure 

4b).  Some sites tended to be occupied by locally dominant species (in the lower left of the 

ternary plot, nearer to fraction [E]), while others were occupied by species found in nearby sites 

(lower right of the ternary plot, nearer to fraction [S]). Some sites were also occupied by 
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combinations of species that were differentially associated with each other regardless of 

environment or dispersal (upper apex of the ternary plot, nearer to fraction [C]). As can be seen 

in Figure 4b, there were also a wide range of intermediate conditions.  A major driver of this 

variation are local environmental conditions, especially in relation to how distinct the local 

environment is from the overall mean environment of the metacommunity (Figure 5b).  

We further investigated the structure of the species co-distribution (fraction [C]).  This 

covariation can be directly attributable to species interactions because we explicitly model the 

processes underlying metacommunity dynamics. However, even in our model, species co-

distribution may not directly link to pairwise interaction coefficients, but rather may emerge as a 

complex relationship between species interactions and environmental conditions (Cazelles et al. 

2015, Blanchet et al. 2020).  To illustrate this, we show the co-distribution among species as a 

heat map separately for each of the five individual simulations presented in Figure 4 and 

compared them to the actual interaction matrix that describes interspecific competition in our 

model (Figure 6; similar heat maps obtained with the other scenarios are shown in the 

Supplement Information).  Despite the fact that the same interaction matrix was used for all five 

of these simulations, the resulting co-distribution patterns are inconsistent in their details.  

However, these matrices show that there is consistency in several features of the co-distribution. 

For example, they all share the predominance of strong negative correlations along the main 

diagonal that match the interaction matrix we used.  They also share a strong ‘checkerboard’ 

pattern with alternating negative and positive co-distributions between species when these are 

ranked against their environmental optima.  Given the simple scheme of species interactions we 

used (Fig. 5 and SI), these results are consistent with the predictions that direct interactions are 

stronger than indirect ones and tend to weaken with the number of links in indirect chains even if
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the details of these effects are less predictable (Cazelles et al. 2015).  

Discussion 

While metacommunity ecology has made great progress in the past decades, the 

assumptions that species and sites were relatively homogeneous in their underlying processes 

(reviewed in Leibold and Chase 2017), and the lack of explicit consideration of biotic 

interactions, have limited the applicability of metacommunity theory to relatively simple 

interpretations that have not addressed the dynamics of more realistic species pools within 

complex landscapes.  Here, by combining a tractable process-based model with emerging 

analytical methods, we provide a general quantitative approach that accounts for multiple 

interacting assembly processes (including biotic interactions) that may operate differently among

species or in different parts of landscapes.  

Some of the issues we raise have already been highlighted in previous work that have 

shown that particular examples of species and site effects can occur, but here we sought to 

formulate a general analytical approach that accounts for these issues and test it against a process

-based model.  For example, Pandit et al. (2009) showed that species can be heterogeneous in 

their responses to environmental and stochastic factors depending on their degree of habitat 

specificity.  Legendre and De Cáceres (2013) have calculated how sites and species contribute to 

beta-diversity (but not to the partitioning of driving factors). Others have argued that JSDMs can 

provide important insights into the drivers of such variation in species distributions (Hui et al. 

2013, 2016, Pollock et al. 2014, Ovaskainen et al. 2017 see also Ovaskainen and Abrego 2020; 

but see Poggiato et al. 2021).  Similarly, the heterogeneity among sites has long been identified 

as driving individual species distributions (see Guisan and Thulliers 2005, Soberon and Peterson 
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2005, Elith and Leathwick 2006) as well as driving overall variation among sites in global 

metrics of community structure (e.g. diversity patterns, etc.) as characterized by the field of 

landscape ecology (Turner 2005).  Further suggestions that individual sites might vary in how 

they contribute to metacommunity dynamics include the concept of ‘keystone communities’ 

(Mouquet et al. 2012, Resetarits et al. 2017, Yang et al 2020) and metacommunity approaches to 

spatial networks (Economo and Keitt 2010, Borthagaray et al. 2015, Harvey et al. 2020).  These 

disparate approaches (species vs sites) to metacommunities are doubtlessly closely related to 

each other and can be linked by the emerging methodologies of methods such as JSDMs to 

develop a more nuanced metacommunity ecology that recognizes a plurality of mechanisms and 

processes underlying community assembly. The expectation here is that the internal structure 

framework can provide further insights on these complexities.  Although we find that JSDMs can

reveal important aspects of the internal structure of metacommunities, we find that there are 

some remaining important challenges to resolve in quantitatively making process-pattern 

linkages in metacommunities (see also Poggiato et al. 2021, Miele et al. 2021).

Although there are some important challenges to consider, our study illustrates important 

insights about the internal structure of metacommunities, including: 

1) Variation partitioning using JSDMs (here implemented using HMSC) can be a useful tool to 

describe how basic processes of community assembly at the species and sites levels (e.g. 

environmental selection, dispersal, biotic selection, and drift) might determine metacommunity 

wide variation in community composition and thus link the internal structure of the 

metacommunity where these processes act to the external structure that summarizes these effects 

at the broader spatial scale.
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2)  Quantifying co-distributions of species in metacommunities can improve predictive ability 

even when the processes that generate these distributions are complex (stochasticity, complex 

spatial landscapes, and species interactions). 

3) Species can have distributions that vary in the degree to which they are determined by 

combinations of the basic community assembly processes depending on features of their ecology

(e.g. dispersal and environmental preferences); and

4) The predominant assembly processes that determine local communities can differ among 

adjacent sites in a metacommunity (e.g. sites that are occupied by species most fit for 

environmental conditions vs sites occupied by species that do well in nearby sites due to 

dispersal even though they differ in environmental conditions).

It is important to emphasize that there remain some substantial challenges in moving 

forward with the overall approach we advocate in this paper and producing more robust versions 

of the internal structure framework for metacommunities. These include technical issues, such as

the estimation of parameters and interpretation of results in more complex models (e.g., the 

interaction between dispersal and environment such that species are limited in their dispersal 

abilities due to environmental features of the landscape matrix), as well as conceptual ones, such 

as accounting for other processes such as speciation, local adaptation, and historical 

biogeography.  Nevertheless, we see that producing robust frameworks taking into account the 

internal structure of metacommunities  will be fruitful, allowing a deeper understanding of 

ecological dynamics in more realistic, but necessarily complex, spatial landscapes.

Our analytical framework simplifies several potentially complex processes (e.g. non-

linearities and interactive effects of mechanisms) into an approximation involving colonization-

extinction dynamics.  It is possible that more realistic and complex mechanisms driving these 
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processes will weaken associations between pattern and process or create biases in the 

partitioning of the variation revealed by JSDMs.  However, the developments of JSDMs are still 

progressing, and we anticipate that future developments will solve some of these problems (see 

Wilkinson et al. 2020). 

The co-distribution component of the JSDMs (fraction [C]) is particularly concerning.  

We find that the component estimated by the JSDM often deviates from the settings of the 

process-based model, especially when species have broad environmental niches (Figure 2).  A 

possible reason could be sensitivity that leads to biases in the HCSC fitting procedure, but the 

more likely explanation is that the [C] fraction, additional to true biotic interactions, tends to 

absorb any process that is inadequately quantified by the environmental (fraction [E]) and spatial

components (fraction [S]) (see Blanchet et al. 2020).  In addition to species interactions, this 

would include, for example, unmeasured environmental factors (see Blanchet et al. 2020), 

inadequately quantified landscape attributes, or that the process-based model creates somewhat 

different environmental responses than assumed in the JSDM. Teasing apart the effects of 

species interactions from these confounding factors should thus be a major focus for future work.

Nevertheless, it is important to understand that including the co-distribution component in our 

analyses allows us to account for them, rather than lumping them with residual variation where 

they have likely given a greatly exaggerated impression of stochasticity.

Our framework links most naturally to mechanisms that focus on interspecific 

competition, in analogy with evolutionary genetics (Vellend 2010, 2016).  However, species 

interactions in metacommunities are much more variable and include consumer-resource 

interactions, mutualisms, and facilitative interactions. Although such interactions can easily be 

incorporated in simulations, the interpretation that might link process to pattern in such cases are 
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likely to become more complex (see Gravel and Massol, 2020). Likewise, future work could 

include local (co-)evolutionary dynamics (see Urban et al. 2020) and historical effects of 

biogeography and speciation (Leibold and Chase 2018, Overcast et al. 2020).  Here, we have 

also retained a simple two-level perspective on spatial scale (local discrete sites in a broader 

regional landscape).  It is increasingly apparent that metacommunity dynamics occur over 

multiple nested scales and that habitats can be continuous and/or nested, rather than discretely 

patchy (e.g. Munkenmuller et al. 2012, Rybicki et al 2018, Ovaskainen et al. 2019, Viana and 

Chase 2019, König et al. 2021). Refining our approach to address multiple spatial scales is a 

logical next step.  

Finally, it is increasingly clear that temporal dynamics of community change in 

metacommunities can provide critical insights about the mechanisms that drive metacommunity 

patterns (e.g. Jabot et al. 2020, Blanchard et al. 2020, Guzman et al. 2021).  We imagine future 

work on the internal structure of metacommunities as being very amenable to incorporating 

temporal changes (see for example, Ovaiskainen et al. 2017 for an initial step in this direction).  

Here we have focused on purely spatial approaches because there are still remarkably few studies

that might permit sufficiently structured data to permit temporal analyses and because the 

limitations and challenges of such analyses are not yet clear.

In conclusion, we have argued focusing on the internal structure of metacommunities, by 

examining site-specific and species-specific variation components, and better accounting for 

biotic interactions in community assembly can enhance our ability to infer process from pattern 

in the distributions of species and the occupancies of sites.  We also argue that continued work 

on this focus is essential if metacommunity ecology is to address the dynamics and structure of 

realistic metacommunities that have typically high biodiversity and occur in complex landscapes.
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This focus on internal structure represents a shift from traditional approaches that used 

descriptors of overall variation components at the metacommunity scale that generalizes previous

ad hoc approaches to similar internal variation in metacommunity patterns (e.g. Pandit et al. 

2009, Legendre and De Cáceres 2013).  The dynamics and structure of distributions of 

realistically diverse species in a realistically structured landscape of sites likely involves the 

interaction of community assembly processes including environmental filtering, dispersal, and 

drift, and these are unlikely to be adequately described by simple metacommunity level metrics 

(see Ovaskainen et al. 2019).  Consequently, dissecting the internal structure of 

metacommunities on the basis of species and site contributions could provide key insights into 

the processes underlying metacommunity assembly.  Such insights might be particularly useful 

in the management of landscapes and metacommunities for conservation purposes since they 

focus on particular units (species or sites) that are often the focus of concern in such cases.

Speculations

Our goal in this paper was to emphasize that looking at species and site specific differences 

(what we call the internal metacommunity structure) may reveal more nuanced information about

the underlying processes than using the global summary statistics that have been the focus of 

most of the previous work. Using JSDMs is one way in which estimates of this internal structure 

can be generated, and they have the additional advantage that they estimate species associations, 

which can be related to biotic interactions. We suspect, however, that other approaches can be 

developed that might be equally (or possibly even more) useful than JSDMs for the general 

purpose of this paper, especially if they would be able to include also dynamic mechanisms such 

as dormancy (Wisnoski et al. 2019), local evolution of ecological traits (Urban et al. 2008), and 

ecosystem-level feedbacks (Loreau et al. 2003).  The challenge to consider such processes is to 
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include them into an statistical framework that is still comparable in simplicity and general 

applicability to the JSDM framework that we used here.  It is worth noting that any method could

be adapted with different degrees of difficulties to the framework of internal structure of 

metacommunities.

Acknowledgements

This paper emerged from workshops funded with the support (to JMC) from the German Centre 

for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig funded by the German Research 

Foundation (FZT 118).  MAL would like to acknowledge the Alexander von Humboldt 

Foundation for a Research Award and NSF award 2025118 that helped fund this work. LDM 

acknowledges KU Leuven Research Fund project C/2017/002 and FWO projects G0B9818 and 

G0C3818. We also thanks F. Engel, C. Rakowski, K. Taylor, R. Pelinson, X. Zhao, L. Juen, T. 

Michelan, A. Rudolf and D. Jenkins as well as an anonymous reviewer for comments on earlier 

versions of the manuscript.

References

Amarasekare, P., & Nisbet R. M. (2001). Spatial heterogeneity, source-sink dynamics, and the 

local coexistence of competing species. The American Naturalist, 158, 572-584.

Bengtsson J. (2009). Applied (meta)community ecology: diversity and ecosystem services at the 

intersection of local and regional processes. In: Verhoef HA and Morin PJ (Eds), Community 

Ecology: Processes, Models, and Applications. Oxford, UK: Oxford University Press.

Blanchard, G., Birnbaum, P., & Munoz, F. (2020).  Extinction–immigration dynamics lag behind

environmental filtering in shaping the composition of tropical dry forests within a changing 

landscape.  Ecography, 43, 869-881.

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484



Blanchet, F. G. 2019. HMSC: Hierarchical Modelling of Species Community, version 2.2-0. 

https://github.com/guiblanchet/HMSC

Blanchet, F.G., Cazelles, K., & Gravel, D. (2020). Co-occurrence is not evidence of ecological 

interactions.  Ecology Letters, 23, 1050–1063.

Borcard, D., Legendre, P., & Drapeau, P. (1992). Partialling out the spatial component of 

ecological variation. Ecology, 73, 1045–1055.

Borthagaray, A.I., Pinelli, V., Berazategui, M., Rodriguez-Tricot, L. & Arim, M. (2015). Chapter

4 - Effects of metacommunity networks on local community structures: From theoretical 

predictions to empirical evaluations.  In Aquatic Functional Biodiversity. A. Belgrano, G. 

Woodward & U. Jacob, Eds.: 75-111. San Diego, CA: Academic Press. 

Brown, B.L., & Barney, J.N. (2021).  Rethinking Biological Invasions as a Metacommunity 

Problem. Frontiers in Ecology and Evolution, 8, 584701.

Dormann, C.F., Bobrowski, M., Dehling, M. et al. (2018). Biotic interactions in species 

distribution modelling: ten questions to guide interpretation and avoid false conclusions. 

Global Ecology and Biogeography, 27,1004-1016.

Economo, E. & Keitt, T.H. (2010). Network isolation and local diversity in neutral 

metacommunities. Oikos, 119, 1355-1363.

Elith, J., & Leathwick, J.R. (2009). Species Distribution Models: Ecological Explanation and 

Prediction Across Space and Time. Annual Review of Ecology, Evolution, and Systematics, 

40, 677–697.

Fournier, B., Mouquet, N., Leibold, M.A., & Gravel, D. (2017). An integrative framework of 

coexistence mechanisms in competitive metacommunities. Ecography, 40, 630–641.

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

https://www.google.com/url?q=https://github.com/guiblanchet/HMSC&sa=D&source=editors&ust=1627590000276000&usg=AOvVaw3bJMy_hm47vKv_l9jDX_B2


Gotelli, N.J., & McCabe, D.J. (2002). A meta-analysis of J. M. Diamond’s assembly rules 

model. Ecology, 83, 2091-2096.

Gravel, D., & Massol, F. (2020). Toward a general theory of metacommunity ecology. In: 

McCann, K.S. & Gellner, G. (eds.). Theoretical Ecology. Oxford University Press.  In press.

Guisan, A., & Thuiller, W. (2005). Predicting species distribution: offering more than simple 

habitat models.  Ecology Letters, 8, 993-1009.

Guzman, L.M., Thompson, P.L., Viana, D.S., Vanshoenwinkel, B., Horvath, Z., Ptacnik, R., 

Jeliazkov, A., Gascon, S., Lemmens, P., Anton-Pardo, M., Langenheder, S., De Meester, L., 

& Chase, J.M. (2021). Disentangling metacommunity processes using multiple metrics in 

space and time. https://www.biorxiv.org/content/10.1101/2020.10.29.361303v1

Hanski, I. (1991).  Single-species metapopulation dynamics: concepts, models and observations.

Biological Journal of the Linnean Society of London. 42, 17-38.

Hanski, I., & M. Gilpin. (1991). Metapopulation dynamics: brief history and conceptual 

domain. Biological Journal of the Linnean Society of London. 42, 3-16.

Harvey, E., Gounand, I, Fronhofer, E.A. & Altermatt, F. (2020). Metaecosystem dynamics drive

community composition in experimental, multi-layered spatial networks.  Oikos 129:402-

412.

Hastings, A. (1980). Disturbance, coexistence, history, and competition for space. Theoretical 

Population Biology, 18, 363–373.

Horn, H.S., & MacArthur, R.H. (1972). Competition among fugitive species in a harlequin 

environment. Ecology, 53, 749–752.

Hubbel, S. P. (2001). The Unified Neutral theory of Biodiversity and Biogeography. Princeton 

University Press. Princeton, N.J.

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529



Hui, F.K.C., Warton, D.I., Forster, S.D., & Dunston, P.K. (2013). To mix or not to mix: 

comparing the predictive performance of mixture models vs. separate species distribution 

models. Ecology, 94, 1913-1919.

Hui, F.K.C. (2016). boral – Bayesian Ordination and Regression Analysis of Multivariate 

Abundance Data in r. Methods in Ecology and Evolution, 7, 744–750.

Jabot, F., Laroche, F., Massol, F., Arthaud, F., Crabot, J., Dubart, M., Blanchet, S., Munoz, F., 

David, P., & Datry, T. (2020). Assessing metacommunity processes through signatures in 

spatiotemporal turnover of community composition.  Ecology Letters, 23, 1330-1339.

König, C., Wuest, R.O., Graham, C.H., Karger, D.N., Sattler, T., Zimmerman, N.E. & Zurell, 

D. (2021). Scale dependence of joint species distribution models challenges interpretation of 

biotic interactions.  Journal of Biogeography, in press.

Legendre, P., & De Cáceres, M. (2013). Beta diversity as the variance of community data: 

dissimilarity coefficients and partitioning. Ecology Letters, 16, 951-963.

Leibold, M.A. (1998).  Similarity and coexistence in regional biotas.  Evolutionary Ecology, 12,

95-110.

Leibold, M.A., & Chase J.M. (2018). Metacommunity ecology.  Princeton University Press, 

Princeton.

Leibold, M.A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J.M., Hoopes, M.F., et al. 

(2004). The metacommunity concept: a framework for multi-scale community ecology. 

Ecology Letters, 7, 601–613.

Leibold, M.A., & Mikkelson, G.M. (2002). Coherence, species turnover, and boundary 

clumping: elements of meta-community structure. Oikos, 97, 237–250.

Levin, S.A. (1974). Dispersion and population interactions. American Naturalist, 108, 207-228.

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552



Levins, R., & Culver, D. (1971). Regional coexistence of species and competition between rare 

species. Proceedings of the National Academy of Sciences, U.S.A., 68, 1246-1248.

Loreau, M., Mouquet, N., & Holt, R.D. (2003). Meta-ecosystems: a theoretical framework for 

spatial ecosystems ecology. Ecology Letters, 6, 673-679.

Miller, E.T., & Bohannan, B. (2019). Life between patches: Incorporating microbiome biology 

alters the predictions of metacommunity models. Frontiers in Ecology and Evolution, 7, 276.

Mouquet, N., Gravel, D., Massol, F., & Calcagno V. (2012). Extending the conept of keystone 

species to communities and ecosystems.  Ecology Letters, 16, 1-8.

Münkemüller, T., de Bello, F., Meynard, C. N., Gravel, D., Lavergne, S., Mouillot, D., 

Mouquet, N., & Thuiller, W. (2012). From diversity indices to community assembly 

processes: a test with simulated data. Ecography, 35, 468–480.

Ohlman, M., Mazel, F., Chalmandrier L., Bec, S., Coissac, E., Gielly, L., Pansu, J., Schilling, 

V., Taberlet, P., Zinger, L, Chave, J., & Thuiller, W. (2018). Mapping the imprint of biotic 

interactions on b-diversity. Ecology Letters, 21, 1660-1660. 

Ovaskainen, O., & Abrego, N., (2020). Joint Species Distribution Modelling

With Applications in R. Cambridge University Press. 

Ovaskainen, O., Tikhonov, G., Norberg, A., Guillaume Blanchet, F., Duan, L., Dunson, D., et 

al. (2017). How to make more out of community data? A conceptual framework and its 

implementation as models and software. Ecology Letters, 20, 561–576.

Ovaskainen, O., Rybicki, J., & Abrego, N. (2019). What can observational data reveal about 

metacommunity processes? Ecography, 42, 177-1886.

Overcast, I., Ruffley, M., Rosindell, J., Harmon, L., Borges, P.A.V., Emerson, B.C., Etienne, 

R.S., Gillespie, R., Krehenwinke, H., Mahler, D.L., Massol, F., Parent, C.E., Patino, J., Peter,

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575



B., Week, B., Wagner, C., Hickerson, M.J., & Rominger A.  (2020).  A unified model of 

species abundance, genetic diversity, and functional diversity reveals the mechanisms 

structuring ecological communities. bioRxiv 10.1101/2020.01.30.927236.

Pandit, S.N., Kolasa, J., & Cottenie, K. (2009). Contrasts between habitat generalists and 

specialists: an empirical extension to the basic metacommunity framework. Ecology, 90, 

2253–2262.

Peres-Neto, P.R., Legendre, P., Dray, S., & Borcard, D. (2006). Variation partitioning of species

data matrices: Estimation and comparison of fractions. Ecology, 87, 2614–2625.

Peres-Neto, P.R., Leibold, M.A., & Dray, S. (2012). Assessing the effects of spatial contingency

and environmental filtering on metacommunity phylogenetics. Ecology, 93, S14–S30.

Pichler, M., & Hartig, F. (in press). A new joint species distribution model for faster and more 

accurate inference of species associations from big community data. Methods in Ecology and

Evolution.

Poggiato, G., Munkemuller, T., Bruystova, D., Arbel, J., Clark, J.S., & Thuiller, W. (2021). On 

the interpretation of Joint Modelling in community ecology.  Trends in Ecology and 

Evolution, 36, 391-401.

Pollock, L.J., Tingley, R., Morris, W.K., Golding, N., O’Hara, R.B., Parris, K.M., et al. (2014). 

Understanding co-occurrence by modelling species simultaneously with a Joint Species 

Distribution Model (JSDM). Methods in Ecology and Evolution, 5, 397–406.

Resetarits, E.J., Cathey, S.E., & Leibold M.A. (2017).  Testing the keystone community 

concept: effects of landscape, patch removal, and environment on metacommunity structure.

Ecology, 99, 57-67.

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597



Rybicki, J., Abrego, N., & Ovaskainen, O., (2019). Habitat fragmentation and species diversity 

in competitive communities. Ecology Letters, 23, 506-517.

Schiesari, L., Matias, M.G., Prado, P.I., Leibold M.A., Albert, C.H., Howeth, J.G., Leroux S.H.,

Pardini, R., Siqueira, T., Brancalion, P.H.S., Cabeza, M., Coutinho, R.M. Diniz-Filho, 

J.A.D.F., Fournier, B. Lahr, D.J.G., Lewinsohn, T.M., Martins, A., Morsello, C., Peres-Neto, 

P.R., Pillar, V.D., & Vazques, D.P. (2019). Perspectives in Ecology and Conservation, 17, 

172-181.

Shoemaker, L.G., & Melbourne  B.A. (2016). Linking metacommunity paradigms to spatial 

coexistence mechanisms. Ecology, 97, 2436–2446.

Shoemaker, L.G., Sullivan, L.L., Donohue, I., Cabral, J.S., Williams, R.J. Mayfield M.M., 

Chase, J.M., Hcu, C. Harpole, W.S., Huth, A., HilleRisLambers, J., James, A.R.M., Kraft, 

N.J.B., May, F., Muthukrishnan, R., Satterlee, S., Taubert, F., Wang, X., Wiegand, T., 

Yang,Q., & Abbott, K.S. (2020). Integrating the underlying structure of stochasticity into 

community ecology. Ecology, 101, e02922.

Sloan-Wilson, D. (1992). Complex Interactions in Metacommunities, with Implications for 

Biodiversity and Higher Levels of Selection. Ecology, 73. 1984-2000.

Soberon, J., & Peterson, A.T. (2005). Interpretation of models of fundamental ecological niches 

and species distributional areas. Biodiversity Informatics, 2, 1-10.

Suzuki, Y., & Economo, E.P. (2021). From species sorting to mass effects: spatial network 

structure mediates the shift between metacommunity archetypes.  Ecography, 44, 1-12.

Thompson, P.L., Guzman, L.M., De Meester, L., Horvath, Ptacnik, R., Vanschoenwinkle, B., 

Viana, D.S., & Chase, J.M. (2020). A process-based framework for metacommunity ecology.

Ecology Letters, 9, 1314-1329.  

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620



Turner MG. (2005). Landscape ecology: what is the state of the science?  Annual Reviews of 

Ecology, Evolution and Systematics, 36, 319–44.

Urban, M.C., Strauss, S.Y., Pelletier, F., Palkovacs, E.P., Leibold M.A., Hendry A.P., De 

Meester, L., Carlson, S.M., Angert, A.L., & Giery, S.T. (2020). Evolutionary origins for 

ecological patterns.  Proceedings of the National Academy of Sciences, U.S.A., in press.

Vellend, M. (2010). Conceptual synthesis in community ecology. The Quarterly Review of 

Biology, 85, 183–206.

Vellend, M. (2016). The theory of ecological communities.  Princeton University Press.

Viana, D.S., & Chase, J.M. (2019). Spatial scale modulates the inference of metacommunity 

assembly processes.  Ecology, 100, e02576. 

Warton, D. I., Blanchet, F.G., O’Hara, R.B., Ovaskainen, O., Taskinen, S., Walker, S.C. and 

Hui, F.K.C. (2015). So Many Variables: Joint Modeling in Community Ecology. Trends in 

Ecology & Evolution 30, 766–779.

Weiher, E., Freund, D, Bunton, T.,Stefanski, A., Lee, T., & Bentivenga, S. (2011).  Advances, 

challenges and a developing synthesis of ecological community assembly theory. 

Philosophical Transactions of the Royal Society: B Biological Sciences, 366, 2403-2413.

Wilkinson, D.P.,  Golding, N., Guillera‐Arroita, G., Tingley, R., & McCarthy, M.A. (2020).  

Defining and evaluating predictions of joint species distribution models. Methods in Ecology 

and Evolution, 12, 494-404.

Wisnoski, N.I., Leibold M.A. & Lennon J.T. (2019). Dormancy in metacommunities.  American 

Naturalist, 194, 135-151.

Yang, X, Tan, J., Sun, K.H., & Jiang, L. Experimental demonstration of the importance of 

keystone communities for maintaining metacommunity biodiversity and ecosystem 

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643



functioning. Oecologia, 193, 437-447.
644

645

646
647
648



 

 Table 1: Summary of metacommunity level variation components for the seven different 

scenarios modeled in this study.  

Fractions
Scenario Corresponding

Figure
E (SD) S (SD) C (SD) Residuals

1-R2 (SD)
A 2, upper 

panels
0.75 (0.11) 0.026 

(0.019)
0.044 
(0.062)

0.18 (0.11)

B 2, lower 
panels

0.019 
(0.015)

0.15 (0.037) 0.019 
(0.036)

0.81 (0.04)

C 3, upper 
panels

0.42 (0.31) 0.21 (0.2) 0.14 (0.16) 0.23 (0.12)

D 3, lower 
panels

0.018 
(0.026)

0.35 (0.3) 0.28 (0.33) 0.35 (0.33)

E Supplement 0.63 (0.21) 0.067 
(0.069)

0.13 (0.15) 0.18 (0.089)

F Supplement 0.74 (0.097) 0.035 
(0.025)

0.047 
(0.057)

0.18 (0.097)

G 4 0.5 (0.17) 0.08 (0.072) 0.2 (0.16) 0.22 (0.12)
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Figure 1: A summary of the metacommunity problem. Species distributions, denoted by the 
species-by-sites L matrix, are the outcome of drift, selection, dispersal, and speciation. These 
basic processes can be influenced by species interactions, food web structure, biogeography, 
phylogeny and micro-evolution. Metacommunity theory mainly focuses on drift, selection and 
dispersal.  We view previous approaches based on the four archetypes of Leibold et al. (2004) as 
being much more indirect and idealized.  Instead, we call for a more direct evaluation of how the 
basic processes affect the L matrix, and how to dissect the consequences to the distributions of 
different species and the occupancy of different sites, for example by using a JSDM to identify 
main effects and interspecific variability in the importance of unstructured, biotic, 
environmental, and spatial effects on L.  This approach allows us to recognize and address the 
effects of heterogeneities among species and among patches on the overall structure of the 
metacommunity.

653654

655

656

657

658

659

660

661

662

663

664

665

666



Figure 2: Ternary plots describing the three components of metacommunity internal structure for
two different simulation scenarios with no species interactions (independent metapopulations): 
The upper panels correspond to narrow environmental niches whereas lower panels correspond 
to wide environmental niches. Each dot represents a species (left panels) or a site (right panels). 
The size of the symbol is proportional to the R2 of the model (note the different scales used for 
species and sites) and the location indicates the proportion of explained variation attributed to 
environmental factors (E - lower left), spatial effects (S - lower right) and remaining co-
distributions (C - upper apex) (see SI for details).  In the species panels (left side) different 
symbols indicate different replicate simulations; generally, these indicate that the distribution of 
species responses are variable within replicates but that the overall variation among replicates are
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repeatable.   In the site panels (right side), the shading indicates how central (lighter) or extreme 
(darker) the local environmental conditions are on the gradient; these also show substantial 
variation but indicate that more extreme environmental conditions increase the effects of local 
environment on occupancy patterns than more central conditions.

Figure 3: Ternary plots describing the three components of metacommunity internal structure for

different simulation scenarios with competition among the species.  Notation is the same as in 
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Figure 2.  The upper panels correspond to narrow environmental niches whereas the lower panels

correspond to wide environmental niches.  Left-hand panels show variation components for 

different species whereas panels on the right-hand side of the figure correspond to variation 

components for different sites.

Figure 4: Ternary plots for species (left panel) and sites (right panel) for simulations with species
that differ in environmental position along the gradient and dispersal ability.  The size of the 
symbol indicates the R2 of the model for each species or site).  In the left panel (species) the 
color indicates the preferred local environmental conditions for species (yellow for species that 
prefer centrally located environmental conditions, purple or magenta for species with more 
extreme environmental optima).  The symbol indicates the dispersal rate of the species (circles 
are more dispersal limited, squares are least dispersal limited and triangles are intermediate).  In 
the right-hand panel the color indicates the degree of deviation from centrality along the 
environmental gradient (as in Figure 2).
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Figure 5:  Effects of species traits (i.e. species optima; left panel) and site attributes (right panel) 
on the environmental fraction of variation in species distributions and site occupancy.  A) Higher
dispersal ability and lower niche centrality (i.e. greater deviation from mean niche value) 
enhance the degree to which different species (individual symbols) have distributions that 
correlate with environmental variation. B) Sites that differ more from the mean environmental 
value (environmental deviation) are more likely to be occupied by species with niche traits that 
are locally favored.

Figure 6: Comparisons of the interaction matrix (Simulation) with the co-distribution of species 
in five replicate runs (Iteration 1-5) of the scenario with interspecific variation in dispersal and 
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competition among species.  In each panel, species are ranked by the position of their 
environmental optima along the environmental gradient. The co-distributions are shown as heat 
maps with the strength of the covariation proportional to the intensity of color and the color 
indicating negative (green) or positive (gray) covariation among pairs of species.  These can be 
compared to the pattern of direct species interactions (left panel called Simulations).  The Xs 
denote no significant association although the color indicates the trend.
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Description of Model 

Patch locations and environmental variables
In our model, the metacommunity consists of N patches distributed over a spatially 

heterogeneous landscape, with multiple environmental variables (although, the current 
simulations only have one environmental variable D across 1000 patches) that could either be 

randomly distributed or spatially autocorrelated. Each patch has a set of coordinates in a two-
dimensional space, and all possible coordinates are feasible such that this is a continuous space 
model that is not restricted to a lattice or some other kind of regular spatial arrangement of 
spatial units. A patch may be empty or be occupied by a single or by several species. We define 
Xi,z,t as a stochastic variable representing the occurrence of species i at location z and time t. 

Occurrence, Xi,z,t, takes a value of 1 when species i is present and a value of 0 when it is absent. 

Similarly, we define Yz,t =X1,z,t,X2,z,t,…,XR,z,t as a vector containing the presence-absence of each 

species from the regional pool R.

The model only tracks patch occupancy (not population densities). Spatial dynamics occurs 
because of colonization events, in both empty patches and patches that are occupied by other 
species, and because of extinction events. The emerging species co-distributions are a result of 
a dynamic balance between these events. Ecological interactions can impact either or both the 
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colonization and the extinction probabilities. For instance, the presence of a competitor pre-
empting a patch can reduce the colonization probability by another competitor. Alternatively, 
the presence of a competitor in a patch could increase the extinction probability of another 
species. Similarly, the environment could influence both the colonization and the extinction 
probabilities.

Patch Colonization
We consider a discrete-time Markovian process to represent the dynamics of presence- 
absence of all species and we incorporate the effect of dispersal, environmental filtering and 
ecological interactions in such a way that we could cover all possible scenarios wherein species 
differ in any combination of these mechanisms and processes. We can include interspecific 
competition along with other types of spatial dynamics such as predator-prey interactions 
(Gravel et al. 2011), priority effects (Shurin  et al. 2004), or mutualistic interactions 
(e.g. Gilarranz et al. 2015).  In this paper, we focused on competition only though.  Following a 
colonization event from time t to t +Δ corresponds to:  

P(Xi,z,t+Δt =1│Xi,z,t =0)=Ii,z,tSi,z,tCi,z,t

where Ii,z,t is the number of immigrants of species i reaching patch z at time t, Si,z,t is the effect 

of environmental filtering on the probability of establishing a viable local population and Ci,z,t is 

the effect of ecological interactions on the establishment probability. We note that because we 
represent a stochastic process, the product of these three functions has to be bounded 
between 0 and 1. We consequently define these quantities:

The effect of immigration is given by:
 

Ii,z,t =∑k(z,ω)Xi,ω,t

∑k(z,ω)

which is a weighted average of the occurrence probability of species i in the neighborhood 

of z. The function k(z,ω) is a dispersal kernel that depends on the location of patch z and the 

neighborhood ω. For convenience, we considered an exponential function of the Euclidean 

distance between localities. We added to the kernel a low distance and neighborhood-
independent constant m to account from immigration from outside the simulated 

metacommunity. This assumption is required to prevent total extinction by drift under 
pure neutral dynamics.
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The effect of the environment is given by a product of the establishment performance over 
all environmental variables En:  

Si,z,t =∏ f(En,zμi,nσi,n)

In our simulations, for convenience, we considered that the function f has a quadratic form for 

all species and all environmental variables, though the model is flexible and general enough to 
consider other (non-linear) responses that could  also differ among species.

Ecological interactions on establishment probability
To incorporate all possible ecological interactions, we started by representing the interaction 
network by a community matrix A of R species. The elements αij of A quantify the effect of 

species j on the dynamics of species i. When αij is negative, the colonization probability of 

species i decreases and/or its extinction probability increases when j is found locally. Inversely, 

when αij is positive, the colonization probability increases and/or the extinction probability 

decreases. To account for the cumulative effects of local interactions on transition probabilities,
we made colonization and extinction probabilities community dependent. As explained above, 
at a time t, the Yz,t vector gives the local assemblages. We calculated the sum of interactions at 

any time and for each species as ν =Az,tYz,t. Our approach can be interpreted as a spatial 

analogue to the generalized Lotka–Volterra model because it takes into account the impact of 
the whole network of interactions on each species dynamics and can deal with any type of 
interaction. We now define the function:

Ci,z,t =g(νi,z,t)

representing the total effect of ecological interactions on the colonization probability. For 
convenience, we will use a sigmoid function, with g ranging between cmin at high negative 

interactions and cmax at high positive interactions, where cmax should be interpreted as the 

maximal colonization probability when the environmental conditions are optimal and there are 
no dispersal limitations.

Patch Extinction
The definition of the extinction probability follows exactly the same rules as for colonization, 
except that extinction is independent of the neighborhood composition. We follow the same 
logic to define the effect of ecological interactions and of variation in the environment. 
Consequently, we get the Markovian process:  
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P(Xi,z,t+∆t =0|Xi,z,t =1) =  Mi,z,tEi,z,t

where Mi,z,t and Ei,z,t are the responses of the extinction probability to the local environment

and to ecological interactions, respectively. The difference with the colonization functions 
defined in the previous section is that the extinction probability must be larger when 
interactions are negative and smaller when they are positive. In addition, the extinction 
rate should be minimal (instead of maximal) at environmental optimum.

Interpretation
To interpret the model, note that, at steady state, for each species, we obtain the expected 
occurrence probability (P^) at each site as:  

P^iz

1−P^iz =Iiz ⋅ Siz ⋅ Ciz

Miz ⋅ Eiz

 After a log transformation, this yields:

log( P^iz

1−P^iz)=log(Iiz)+log(Siz

Miz)+log(C
iz

Eiz)

This last equation can be interpreted as a macroscopic description of the expected species 
distributions pattern (Thuiller et al. 2013). In this formulation, log(I) describes the 

tendency of a patch to resemble other nearby patches due to the spatial contagion by 

dispersal, log(S
M) describes the tendency of sites to be occupied by species with similar 

fitness responses to environmental gradients, and log(CE) describes the remaining influence 

of other species on co-occurrence due to interactions among species. The values for these 
indices will depend on what choices are made for the components of eq. 1 (see Supporting 
Information for details on how we implemented this simulations model).

This modeling framework can represent the classical archetypes but also permits more 
intricate (and likely far more realistic) metacommunity scenarios and predictions. For 
example, we could use the model to examine how species traits (and environmental 
context) link to metacommunity dynamics. Moreover, continuous mixtures of different 
metacommunity extremes (archetypes) can be represented by appropriate parameter 
choices for dispersal, competitive abilities, and environmental preferences. For instance, 
species sorting would require a relatively large colonization to extinction ratio along with 
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species-specific environmental requirements and regional similarity (sensu Mouquet and 
Loreau, 2002). Alternatively, coexistence within competition-colonization trade-offs 
requires species to have similar responses to the environment and appropriate 
heterogeneities in the I, C and E functions, but no environmental preferences.

The implemented mechanisms in the simulation model can be partially mapped onto 
variation partitioning components. For instance, at equilibrium, we could expect dispersal 
limitation (the log(I) term in equation 3) to create positive spatial autocorrelation at the 

dispersal scale (the [S/E] fraction in variation partitioning, i.e., spatial variation 

independent of environmental selection). Environmental selection (the log(S
M) term in the 

last equation) should lead to a correlation between composition and environment (the 
[E/S] fraction in variation partitioning). The last term in equation 3, however, describing 

the effect of interactions on distribution (the log(CE)), is novel and has no equivalent in the 

context of classical variation partitioning.  

There are some interesting properties to point out regarding our proposed variation 
partitioning scheme.  First, by considering the combined effects of environmental selection,
dispersal and interactions, the final residuals (unexplained sources of variation) in the 
model leading to this new partition variation scheme is (in principle) solely related to non-
spatialized independent species variation.  Second, in our variation partitioning, the 
interaction component is due to species co-variation (i.e., a joint component among species 
distributions).  In empirical community data, however, this interpretation can only be made
if all the environmental variation (predictors) underlying environmental selection in 
empirical community data has been incorporated (as pointed out in the main manuscript).  
If not, then the spatial and species interaction components could be measuring variation 
related to unmeasured environmental variables that are either spatialized (i.e. 
characterized by the spatial component in variation partitioning) or shared among species 
(i.e. joint component).  

Description of the Statistical Framework

Hierarchical Community Models

In their simplest form, Hierarchical Community Models (HCMs) resemble standard species 
distribution models that regress species presences/absences against environmental predictors 
(i.e., logit link). However, to reduce model complexity, HCMs assume that all species in a 
metacommunity will react to environmental heterogeneity following a similar response 
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function (e.g., linear vs quadratic or Gaussian). The same assumption is made in common 
variation partitioning (see Peres-Neto et al. 2006).  To model the spatial component (i.e., due to
spatialized dispersal), either spatial variables such as Moran’s eigenvectors maps (MEM, Dray et
al. 2006) or spatially auto-correlated latent variables (Ovaskainen  et al. 2016b) can be 
incorporated to the model. To account for biotic interactions, non-spatially auto-correlated 
latent variables are used. If we use a linear specification approach (here, this can also include 
quadratic terms that capture Gaussian responses to environment as imposed in our model), we 
can write:

Lzi =XzkBki +ϵzi

with

Bki~N(μ,Σ)

where Lzi is the presence (or absence) of species i (out of m species) at patch z (out of n 

patches), Xzk is the value of the environmental variable k (out of p variables) at site z, B is a 

matrix of regression parameters, μ is a vector of length p that describes the mean 

environmental response of all species, Σ is a p ×p covariance matrix that describes how 

species vary (diagonal) and co-vary (off-diagonal) around the mean environmental 
response (Ovaskainen and Soininen 2011), and ϵzi is a residual value. Estimating species 

parameters hierarchically around a community mean reduces the degrees of freedom and 
makes the model easier to fit with limited data. Note that both μ and Σ can be further 

informed or constrained by species traits or phylogeny if desired (Ovaskainen et al. 2017). 
To account for biotic interactions, we consider latent variables Hzl (where l refers to a latent

variable measured at site z) and their associated parameters Λli (Ovaskainen et al. 2016a). 

This yields:

Lzi =XzkBki +HzlΛli +ϵzi

Note that it is not necessary to always include all of these components in one model; they 
can be considered in any combination deemed relevant for a particular question. In this 
paper, we used Moran’s Eigenvector Maps (MEMs; Dray et al. 2006), a powerful and 
commonly used method to model spatial autocorrelation in statistical models involving 
species distributions. 
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Calculating Variation Partitioning for the HCM 
As in any generalized linear mixed effect model, we can now partition the explained 
variation into different components, notably environmental heterogeneity, space, co-
distribution (biotic interactions), and unexplained variation (Figure S1). To estimate the 
contributions of each of these four fractions for each species, we calculated semi-partial 
coefficients of determination (i.e., based on Type III sum-of-squares as specified in Peres-
Neto et al. 2006) using the implementation suggested by Tjur (2009) as being more 
appropriate for presence-absence data (i.e., logit link) than the traditional variation 
partitioning based on an identity link. To adjust for the number of variables used to 
quantify each fraction of the variation partitioning analysis, we applied the adjustment to 
the coefficient of determination proposed by Gelman and Pardoe (2006) in the variation 
partitioning analysis, which is designed for hierarchical models. As shown in Figure S1, the 
different fractions were combined so that a unique value was associated to environment 
(fractions [a], [d]/2, [f] and [g]/2), co-distribution (fraction [c]), space (fractions [b], [d]/2, 
[e] and [g]/2) and the unexplained portion of the variation (fraction [h]). Latent variables 
are quite powerful to isolate structure in the data. As such, in the calculation of the 
variation partitioning, latent variables will capture almost all (if not all) variation 
associated to the environment and space, giving an artificial inflation of the overlapping 
partitions between co-distribution and environment and co-distribution and space. For this
reason, all partitions overlapping with co-distribution (fractions [e], [f] and [g]) were 
assigned to either environment (fractions [f] and [g]) or space (factions [e] and [g]). In this 
calculation, a unique measure of explained variation (akin to adjusted R2) is associated to 
co-distribution (fraction [c]) but this is not the case for environment and space. To 
associate a unique value to environment and space, and represent the results as we did in 
Figure 2 and 3 (main manuscript), we divided the fractions overlapping environment and 
space between these two components. As such, the sum of fractions [a], [f], half of fraction 
[d] and half of fraction [g] were used to measure the effect of the environment while 
fractions was considered [b], [e], half of fraction [d] and half of fraction [g] were used to 
measure the effect of space. This scheme in which half of common variation is assigned to 
two or more common components is commonly used in hierarchical partitioning (Chevan &
Sutherland 1991).  
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. 

Supplementary Figure 1 – variation partitioning scheme used to estimate the importance 
of each matrix of predictors.

Calculation of the coefficient of determination

1) Classic coefficient of determination

The coefficient of determination, R2, that was partitioned in the variation partitioning analysis 

(Appendix XX) is calculated for any given species j as:

where yij is the data (presence-absence) associated with species j (out of p species) at site i (out 

of n sites), y^ij is the model (predicted value) associated to species j at site i and yj is the average

of the data (i.e., sum of presences divided by n) for species j across all sites.

2) Community-level coefficient of determination

Although having an  for each species j can be highly informative and is part of our framework on

the internal structure of metacommunities, it can be also useful to estimate the contribution of 
single communities R2 to the entire metacommunity. This is obtained by averaging all :

 where the CR2 is the community-level R2.

3) Site contribution to the coefficient of determination
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In the paper, we use the contribution of each site to  to present how each site contributes 
differently to the environment, space and co-distribution for the community. The calculation of 
the site i contribution to the , is calculated as:  

The first part of the equation where the 1 of the classic  is divided by n is included to make sure 

that if we sum all  across all sites for species j, the resulting value equals to .

More importantly, what can be noticed is that by calculating , the contribution of sites to 
each species , we obtain a matrix that has the same dimension as the site by species matrix 
(an n ×p matrix). Using this matrix, if we sum across all sites, we obtain the . However, if we

average across the species for site i we obtain the site’s contribution to the community-

level CR2 or .

The amount of variation expressed by the , the CR2 , the  or the  can all be partitioned in its 

environmental, spatial and co-distribution component following the procedure presented 
in the section “Calculating Variation Partitioning for the HCM” above. 

Parameterization and Simulation Scenarios
We simulated metacommunity dynamics with a landscape of 1000 patches over 200 time steps 
and an initial occupancy of 0.8. Previous studies show that steady state dynamics are obtained 
substantially earlier than 200 time  steps with this initialization and we use this to interpret our 
results. Patches were placed randomly in a two-dimensional plane with coordinates drawn from
a uniform distribution with a minimum of 0 and a maximum of 1. The environment varied 
spatially, with values drawn from a random distribution between 0 and 1. In the specific 
simulations we studied in the paper, colonization was the only component of the species that 
were affected by the environment (i.e. Ei,z,t =1). Specifically, colonization reacted to the 

environment following a quadratic curve.

For all scenarios considered, we simulated 12 species. Niche optimums for the species were
evenly distributed between 0.1 and 0.9 while niche breadth was set to 0.8 for simulations 
with narrow niches (scenarios A, B, E, F, G), and to 2 for simulations where niche was 
assumed to be broad (scenarios C and D). For dispersal, we considered an exponential 
dispersal kernel, with a distance-independent immigration probability of 0.001 and an α 

parameter of 0.05. For scenario G, where we have variable dispersal kernels (Figure 3), α 

was 0.01 for 1/3 of species, 0.05 for 1/3 of species, and 0.1 for the other 1/3 of species. We 
used a sigmoid function to relate the total number of interactions with colonization and 
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extinction coefficients following the implementation by Cazelles et al. (2016). Colonization 
probability in the absence of interactions was set at 0.4, which tends to zero as negative 
interactions tend to infinity, while it asymptotes at a 1 with infinite positive interactions. 
All other aspects of the colonization-interaction curve were the same for all scenarios. 
Similarly, extinction in the absence of interactions was set at 0.025, and tended to 1 with 
infinite negative interactions, while its asymptote tended to 0 with infinite positive 
interactions. In both cases, the parameter setting the shape of the sigmoid function was set 
to 0 for the scenarios without competition (scenarios A, B, and F), and 1.5 in the presence 
of competition (scenarios C, D, E, G) . If there were interactions, then a focal species only 
interacted with the two species that had the closest niches. For all scenarios, five sets of 
metacommunities were simulated and analyzed to obtain the results found in Figures 2, 3, 
and 4 in the main text, and supplementary figures.

All scenarios have been implemented in R and the project’s repository can be found here: 
github.com/javirudolph/testingHMSC

Supplementary Figure 2. Species interactions for all scenarios.

Supplementary Figure 3. In which we have half of the species with interactions and the 
other without.
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Supplementary Figure 4. In which we change dispersal only, α was 0.01 for 1/3 of species, 

0.05 for 1/3 of species, and 0.1 for the other 1/3 of species.

Example of metacommunity simulation functions and 
analyses

The following example of code shows the overall processes involved in the metacommunity 
simulation for our model. This example shows the scenario for 20 patches and one 
environmental variable. The model gives the option for a random or spatially aggregated 
structure for the patches. In the aggregated case, we determined four clusters, denoted by 
Nclusters in the code below. The value of the environmental variable for each patch is shown 
with the color hue. In this case, the environmental variable is randomly distributed.

set.seed(227)
# Random XY coordinates
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# Each coordinate is drawn from a random uniform distribution
get_XY = function(N) cbind(runif(N),runif(N))

# Aggregation of XY coordinates
get_XY_agg = function(N, Nclusters, sd_xy) {
  
  Xclust = runif(Nclusters)
  Yclust = runif(Nclusters)
  
  X = rnorm(N, rep(Xclust,N/Nclusters), sd_xy)
  Y = rnorm(N, rep(Yclust,N/Nclusters), sd_xy)
  
  cbind(X,Y)
}

# Random uniform environmental values
get_E = function(D, N) matrix(runif(D*N), nr = N, nc = D)

Here, we set N, the number of patches to 20, and D, the number of environmental variables to 
one.

N <- 20
D <- 1

rXY <- get_XY(N)
agXY <- get_XY_agg(N, 4, 0.02)
E <- get_E(D = D, N = N)

The following figure shows a side by side comparisson between random and aggregated 
patches obtained from our functions.

Initial Occupancy
The toy model allows for setting the initial occupancy in the metacommunity. For example, to 
create the initial conditions, t =0, of presence absence, species occupancy is drawn from a 

random uniform distribution, and values smaller than 0.8 are considered as species presence. 

Patches or locations z are represented by rows in the matrix, whereas each species is a column. 

Each cell in the matrix is Xi,z,t and each row is Yz,t for t =0. The following figure shows three 
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different iterations of this process, where areas in black represent occupancy = 1, and white 
denotes an absence.

#Get your initial conditions:
R <- 8
Y0 = matrix(0, nrow = N, ncol = R)
rand = matrix(runif(N*R), nr = N, nc = R)
Y0[rand < 0.8] = 1

ggplot(melt(Y0), aes(x = Var1, y = Var2, fill = value)) +
  geom_tile() +
  scale_fill_gradient(low = "white", high = "black")+
  labs(x = "Plot number", y = "Species", subtitle = "Iteration 1") +
  theme_bw() -> A

# Second iteration for the same initial conditions
Y0 = matrix(0, nrow = N, ncol = R)
rand = matrix(runif(N*R), nr = N, nc = R)
Y0[rand < 0.8] = 1

ggplot(melt(Y0), aes(x = Var1, y = Var2, fill = value)) +
  geom_tile() +
  scale_fill_gradient(low = "white", high = "black")+
  labs(x = "Plot number", y = "" , subtitle = "Iteration 2") +
  theme_bw() -> B

# Third iteration
Y0 = matrix(0, nrow = N, ncol = R)
rand = matrix(runif(N*R), nr = N, nc = R)
Y0[rand < 0.8] = 1

ggplot(melt(Y0), aes(x = Var1, y = Var2, fill = value)) +
  geom_tile() +
  scale_fill_gradient(low = "white", high = "black")+
  labs(x = "Plot number", y = "", subtitle = "Iteration 3") +
  theme_bw() -> C

# Set the three iterations to be displayed side by side
ggarrange(A, B, C, ncol = 3, common.legend = TRUE, legend = "none")

When we consider the immigration component, we need to also consider the connectivity 
matrix. In the code below, I_f calculates the probabilty of immigration for each species, 
based on the occupancy matrix and the dispersal kernel, K. The argument K is the 
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connectivity matrix. The argument XY corresponds to the patch coordinates, whereas alpha 
is the dispersal parameter associated to the exponential distribution used for dispersal. It 
can be computed with the following function:

# Compute the propagule pressure
I_f = function(Y, K, m) I = (1-m)*(K%*%Y)/(K%*%matrix(1,nr=N,nc=R)) + m

The arguments for this function are: Y, K, m. We calculated Y, species presence or absence, in 

the previous section with the case for initial conditions. Argument m is set in the parameters as 
a value m = 0.001 and the connectivity matrix K is calculated below.

# Compute the connectivity matrix
get_K = function(XY, alpha) {
    N = nrow(XY)
    distMat = as.matrix(dist(XY, method = "euclidean", upper = T, diag = T))
    ConMat = exp(-1/alpha*distMat)
    diag(ConMat) = 0
    return(ConMat)
}

As an example, using the aggregated XY coordinates for 20 patches and our initial occupancy 
matrix with 8 species ,we can see the connectivity between patches, and can calculate the 
contribution of immigration from each species to each patch.

# We can use the aggregated XY coordinates for this example:
XY <- agXY

# Connectivity matrix
alpha <- 0.005
K <- get_K(XY, alpha)
plot_K <- cbind(rownames(K), stack(as.data.frame(K)))
names(plot_K) <- c("X", "Fill", "Y")
plot_K %>% 
  as_data_frame() %>% 
  mutate(X = factor(X, levels = c(1:20)),
         Y = factor(Y, levels = c(1:20))) -> plot_K
ggplot(plot_K, aes(x = X, y = Y, fill = Fill)) +
  geom_raster() +
  scale_fill_gradient(low = "black", high = "white") +
  #scale_fill_viridis_c() + 
  labs(title = "Connectivity among patches") +
  theme(legend.title = element_blank(),
        axis.text.x = element_text(angle = 90)) -> A
# Immigration
m <- 0.001
Y <- Y0
I <- I_f(Y, K, m)
rastPlot(I, title = "I - Immigration to each plot", x = "Patches", y = "Species") +
  theme(legend.title = element_blank()) -> plot_I
ggarrange(A, plot_I, ncol = 2)
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The effect of the environment on each species, depending on each species niche optima, is 
computed in the following code section. The argument E corresponds to the vector of 
values for the environmental variable in each patch. The other two arguments in this 
function are the niche optima (u_s) for each species and niche breadth(s_c).

# Compute the local performance of propagules
S_f_quadratic <- function(E, u_c, s_c) {
  R <- ncol(u_c)
  N <- nrow(E)
  D <- ncol(E)
  S <- matrix(1, nr = N, nc = R)
  for(i in 1:D){
    optima <- matrix(u_c[i,],nrow = N,ncol = R,byrow = TRUE)
    breadth <- matrix(s_c[i,],nrow = N,ncol = R,byrow = TRUE)
    S <- S * ((-1 / (breadth/2)^2) * (E[,i] - optima)^2 + 1)
    S <- ifelse(S < 0, 0 , S)
    
  }
  return(S)
}

# Understood as niche optima for each species, for each environmental variable
  u_c = matrix(nr = D, nc = R)
  u_c[1,] = seq(0.1,0.9, length=R)
# Understood as niche breadth
  s_c = matrix(0.2, nr = D, nc = R)

# Local performance, colonization
S <- S_f_quadratic(E, u_c, s_c)
plot_S <- rastPlot(S, title = "S - Local performance colonization", x = "Patches", y = "Species") +
  guides(fill = guide_colorbar(title = ""))
plot_S
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When incorporating species interactions into the toy model, we use the following 
interaction matrix A, where the colored black sections show species with potential of 

interacting:

  # # Interaction matrix
  A = matrix(0,nr=R,nc=R)
  d = as.matrix(dist(c(1:R),upper=TRUE,diag=T))
  A[d<=1] = -1
  diag(A) = 0
  
  plot_A <- rastPlot(A, title = "A - Interaction matrix", x = "species", y = "species") +
    scale_fill_gradient(low = "black", high = "grey") +
  theme(legend.position = "none")

# Compute the sum of ecological interactions for every location and every species
sum_interactions = function (A, Y) t(A%*%t(Y))
# this is considered to be "v"
v <- sum_interactions(A, Y)

plot_v <- rastPlot(v, title = "v - Sum of interactions", x = "patches", y = "species") +
  guides(fill = guide_colorbar(title = "")) +
  scale_fill_gradient()

ggarrange(plot_A, plot_v, ncol = 2)
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We compute the effect of ecological interactions on colonization probability with the 
function below.The arguments for this function are v as the resulting matrix from the sum 
of interactions, d_c as the sensitivity to interactions, c_0 and c_max as the colonization 
parameters:

C_f = function(v, d_c, c_0, c_max) c_max*(1 +(1/c_0 - 1)*exp(-v*d_c))^-1

  # # Colonization function
  c_0 = rep(0.4, R) # Colonization at 0 interactions
  c_max = rep(1, R) # Colonization at max interactions

  # # Sensitivity to interactions
  d_c = 0.2

C <- C_f(v, d_c, c_0, c_max)
plot_C <- rastPlot(C, title = "C - Interactions on colonization", x = "Patches", y = "Species") +
  guides(fill = guide_colorbar(title = "")) +
  scale_fill_gradient()
plot_C
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With all the components calculated, we can now compute the colonization probability 
P(Xi,z,t+Δt =1│Xi,z,t =0)=Ii,z,tSi,z,tCi,z,t

The following function calculates the effect of the environment on the extinction, with E 
being the environmental variable, and u_e and u_s being species level effect and the 
assymptote.

M_f = function(E, u_e, s_e) {
    R = ncol(u_e)
    N = nrow(E)
    D = ncol(E)
    M = matrix(1, nr = N, nc = R)
    for(i in 1:D){
      M = M*(1-exp(-(E[,i]-matrix(u_e[i,],nr=N,nc=R,byrow=TRUE))^2 / matrix(s_e[i,],nr=N,nc=R,byrow=TRUE)^2))
      }
    return(M)   
}

# Set the function arguments
  # # Effect of the environment on extinction
  u_e = matrix(nr = D, nc = R)
  u_e[1,] = c(rep(0.5, R-1), 0.05) # One species having a lower level of extinction from environmental effect
  s_e = matrix(Inf, nr = D, nc = R)
  
  #u_e
  #head(s_e)

The following shows the effect of ecological interactions on extinction, using the same v matrix 
calculated above.
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E_f = function(v, d_e, e_0, e_min) {

    e_min_mat = matrix(e_min, nr = N, nc = R, byrow=TRUE)

    e_min_mat+(1/(1-e_min_mat)+(1/(e_0-e_min_mat)-1/(1-e_min_mat))*exp(d_e*v))^-1

}

#With the arguments computed as:

# # Extinction function
  #e_0 = c(rep(0.025, R-1), 0.5) # Extinction at 0 interactions, with one species having a higher value.
e_0 = rep(0.025, R)  
e_min = rep(0, R) # Exinction at max interactions

  # # Sensitivity to interactions

  d_e = 0

We can now compute the probability of extinction P(Xi,z,t+Δt =1│Xi,z,t =0)=Mi,z,tEi,z,t

The figure shows these as identical graphs, since we have made all species have the same 
probability of extinction and the environment not having an effect on extinction.

 The way
parameters are set, the extinction component is the same for all species in every patch.

Testing and changes
# Perform the test
delta <- matrix(0, nr = N, nc = R)
rand <- matrix(runif(N*R), nr = N, nc = R)
delta[Y == 0 & rand < P_col] <- 1

# Perform the test
rand = matrix(runif(N*R), nr = N, nc = R)
delta[Y == 1 & rand < P_ext] = - 1
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