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Abstract

Current analyses of metacommunity data largely focus on global attributes across the
entire metacommunity, such as mean alpha, beta, and gamma diversity, as well as the
partitioning of compositional variation into single estimates of contributions of space and
environmental effects and, more recently, possible contributions of species interactions.
However, this view neglects the fact that different species and sites in the landscape can vary
widely in how they contribute to these metacommunity-wide attributes. We argue for a new
conceptual framework with matched analytics with the goals of studying the complex and
interactive relations between process and pattern in metacommunities that is focused on the
variation among species and among sites which we call the ‘internal structure’ of the
metacommunity. To demonstrate how the internal structure could be studied, we create synthetic
data using a process-based colonization-extinction metacommunity model. We then use Joint
Species Distribution Models to estimate how the contributions of space, environment and biotic
interactions driving metacommunity assembly differ among species and sites. We find that this
approach to the internal structure of metacommunities provides useful information about the
distinct ways that different species and different sites contribute to metacommunity structure.
Although it has limitations, our work points at a more general approach to understand how other
possible complexities might affect internal structure and might thus be incorporated into a more

cohesive metacommunity theory.

Introduction
Community ecology is currently undergoing an important renaissance in both its concepts

and tools. One of the more exciting and important elements of this renaissance is in the use of the
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metacommunity concept, which recognizes the feedback between local communities and the
broader-scale regional biota or species pools (Hanski and Gilpin 1991, Leibold et al. 2004 and
reviewed in Leibold and Chase 2017). Early metacommunity studies tended to focus on specific
scenarios that involve such feedbacks (e.g., Levins and Culver 1971, Horn and MacArthur 1974,
Levin 1974, Sloan-Wilson 1992, Leibold 1998, Hubble 2001, Amarasekare and Nisbet 2001).
These were later synthesized into several (discrete) categories of metacommunities dynamics
(Leibold et al. 2004). While these categories proved useful, it is now apparent that there is a
much more complex and nuanced spectrum of possibilities regarding the mechanisms and
processes underlying the structure of metacommunities (see Leibold and Chase 2017). Ongoing
developments, including both more sophisticated theoretical (e.g., Shoemaker and Melbourne
2016, Fournier et al. 2017, Ovaskainen et al. 2019, Thompson et al. 2020) and analytical (e.g.,
Legendre and De Caceres 2013, Hui et al. 2013, Ovaskainen et al. 2017, Ohlman et al. 2018,
Jabot et al. 2020) approaches, aim for a deeper understanding of the regional-local community-
level feedbacks. Understanding these more subtle feedbacks between local communities and the
regional biota also has important implications that extend to applied ecology, as well as
environmental and health concerns (e.g., Bengtsson 2009, Schiesari et al. 2019, Miller et al.
2019, Brown and Barney 2020).

Despite the progress we observed in the study of metacommunities, two issues remain
central in contemporary metacommunity analyses. The first is that most theoretical frameworks
operate under the assumption that processes act similarly on all species and sites so that it makes
sense to infer, for example, that an entire metacommunity being dominated by neutral processes
or species sorting. A second limitation is that the most widely used analytical frameworks in

metacommunity ecology assume that community assembly is dominated by spatial and
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environmental factors, without considering the influence of biotic interactions. In reality,
however, variation among species and among sites, as well as biotic interactions, can interact in
complex ways to produce metacommunity patterns. For instance, the spatial structure of
environmental features can vary within landscapes (i.e., among sites) which, in turn, can affect
the ways species interact and are sorted into local communities (Peres-Neto et al. 2012). Thus, 1
n contrast with many previous studies (e.g., Blanchard et al. 2020, Jabot et al. 2020), we
emphasize that species can be heterogeneous in how they contribute to metacommunity level
properties and that different sites can also vary in how they contribute to these patterns (as
suggested by earlier work by e.g. Pandit et al. 2009, Legendre and De Céceres 2013).

If we acknowledge that community assembly within a metacommunity is a complex
process that involves heterogeneous contributions of species sorting, interactions, dispersal, and
stochasticity acting on a regionally-defined species pool within a given landscape (e.g. Vellend
2010, 2016, Weiher et al. 2011), the question becomes - how can we sensibly document these
processes from observational data in a way that is useful for ecological understanding? Current
analytical frameworks for analyzing metacommunity assembly, such as diversity metrics,
coexistence patterns and variation partitioning analysis (e.g. Borcard et al. 1992, Gotelli and
McCabe 2002, Leibold and Mikkelson 2002), describe global (i.e. mean) metacommunity
properties. Recent efforts have used several of these global metrics to dissect the relative
importance of different major classes of metacommunity processes (Ovaskainen et al. 2019,
Guzman et al. 2021). While these approaches provide insights into the processes that drive
species distributions and determine their levels of interaction within metacommunities, they only
characterize global (general) attributes across the entire metacommunity, which we consider to

be the external structure of metacommunities. Here, we focus on the internal structure of



metacommunities that focuses on the contributions of individual species and individual sites (or

117
patches) to the global (i.e., mean) metacommunity structure (see also Fournier et al. 2017,
118
Suzuki and Economo 2021).
119
To illustrate the advantages of studying the internal structure of metacommunities, we
120
created synthetic data from a process-based metacommunity model structured by competition-
121
extinction dynamics. Using simulations has the advantage that we know the true underlying
122
processes and therefore we have clear expectations about what we should infer from the
123
generated data.
124
We then use joint species distribution models to analyze the resulting distribution data
125
(JSDMs; see review in Warton et al. 2015). JSDMs are multivariate regression models that
126
simultaneously describe metacommunity structure as a function of species-specific
127
environmental preferences, spatial autocorrelation, and covariances among species. We have
128
adapted JSDMs to estimate both the contributions per site and per species for these three
129
components of variation. With due caution, one can relate environmental predictors to the
130
fundamental environmental niche of the species, spatial effects to dispersal, and covariation to
131
species interactions. Among the currently available statistical methods, JSDMs arguably extract
132
the greatest amount of variation from spatial community data (Warton et al. 2015, Ovaskainen et
133
al. 2017), even though they have been facing increased scrutiny about the interpretation of
134
estimates and potential bias (e.g. Poggiato et al. 2020, Miele et al. 2021, Blanchet et al. 2020, but
135
see Pichler & Hartig, in press).
136
By simulating data from a process-based model, we can address the extent to which
137
JSDMs are able to correctly separate environmental, spatial, and biotic effects. It also allows us
138

to explore how we can use their outputs to generate a more detailed and accurate picture of the
139
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internal metacommunity structure. The latter is possible because JSDM results can be
decomposed (as we show later) into species-specific and site-specific contributions of
environment, space and biotic interactions. Our results show that heterogeneity among species
attributes can cause substantial variation in their metacommunity patterns, as identified using
JSDMs. Some of this heterogeneity can be identified by JSDMs and be related to variation
among species in their attributes such as dispersal and similarities (or differences) on their spatial
associations with other species; or uniqueness among sites regarding environmental, spatial
attributes (e.g., connectivity) and species associations. We show how JSDMs can be used to
estimate the piece-wise contribution of species (what we call the ‘internal structure’ of the
metacommunity) to evaluate the metacommunity-wide overall effects of environment, space, co-
distributions and stochasticity (which we think of as the ‘external’ structure), we can thus
evaluate how variation among species affect overall metacommunity structure. We also show
that a similar dissection of variation can be made among sites and argue that this can also be
thought of as a distinct aspect of the ‘internal structure’ that describe how sites differ in their
contributions to overall patterns of metacommunity structure to reveal at least some components

of the species-level and site-level contributions to overall metacommunity variation.

Methods to quantify the link between process and pattern using a simple metacommunity
simulation and refined statistical approach

To test and exemplify our ability to infer individual species and site contributions, we
simulated data from a process-based metacommunity model, which allowed us to create
observations with full knowledge about the underlying mechanisms. Our process-based

analytical model is based on a spatial implementation of spatially implicit site occupancy models
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(e.g., Levins and Culver 1971, Horn and MacArthur 1972, Levin 1974, Hastings 1980, Hanski
1991) to describe dynamics in heterogeneous metacommunities. We focused here on a model
for predicting presence-absence (and not abundance; but see Supporting Information) because it
is the most widely available type of empirical data for metacommunity analyses. For each
species in each patch, we model occupancy using two key equations (details in the Supporting
Information). The first of these describes the colonization of patch z by species i during a

discrete time interval, At:

P(Xi 2t +2t =1| Xi 2.t =0) =i 1,¢Si 2,tCi 1t (1)

where X;,+ 15 a stochastic variable representing the occurrence of species j at location z at time t,
i 2.+ 1s the number of immigrants of species, §;,; is the effect of environmental filtering on the
probability of establishing a viable local population, and C;,; is the effect of ecological
interactions on the establishment probability. Second, we consider the alternative possibility - the

extinction of species i in patch z during the time interval At:
P(Xizt+at =0|Xizt =1) = Mz tEizt (2)

where M;,; and E; ,; are the responses of the extinction probability to the local environment and
to ecological interactions, respectively.

At steady state the solution to this model is:

pi,z . Si,z i,z
IOgl__pi,z =loglz -Hogm , +Iogﬁ 3)



where piZ is the expected probability that site z is occupied by species i. This formulation

187

assumes that immigration (I*#), ‘environmental selection’ (§2/ Mi?) and interactions (CZ / Ei-?)
188

can be separated into distinct effects.
189

Equation 3 suggests that distributions of species in a metacommunity can be studied by

190

correlation-based methods such as JSDMs to separate the contributions of these effects into
191

spatial effects (driven by immigration), environmental filtering (driven by abiotic selection) and
192

species co-distribution unrelated to either space or environment, with an additional fraction
193

quantifying residuals resulting from stochasticity in the case of a finite number of patches (see
194

also Shoemaker et al. 2020). Furthermore, the likelihood of every observation can be
195

marginalized over each species (by summing the likelihoods for a given species across all
196

patches) to describe the variation among species. Alternatively, the likelihood can be
197

marginalized by sites (by summing the likelihoods for a patch across all species) to describe the
198

variation across the metacommunity landscape. In doing so, we can quantify the importance of
199

environment, species co-distribution, and space for predicting metacommunity structure as a
200

whole, as well as quantify their importance for predicting the presence-absence (or, in principle,
201

the abundance) of individual species or community composition at individual patches. As JSDM
202

are fundamentally correlational, they can only evaluate the degree to which observations are
203

consistent with our model but (as in most correlative models) cannot be used as definitive tests of
204

causation.
205

To illustrate the utility of our analytical model in a more realistic framework that also

206

includes stochasticity and spatially explicit landscapes, we implemented the key processes of
207

drift, environmental filtering, dispersal, and species interactions (Vellend 2010, 2016) in a
208

flexible simulation version of the model above (described in more details in the Supporting
209
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Information). The simulation model allows us to vary each process separately for each species in
a heterogeneous spatially explicit landscape. It simulates the dynamics of a metacommunity
across a set of patches and generates a spatial network that specifies the connectivity among
patches. The state variables of the simulation are the occupancy of each species in every patch
(i.e. presence/absence, though future implementations could also address abundance data, e.g.
Rybicki et al. 2018, Ovaskainen et al. 2019, Thompson et al. 2020). Each patch can be colonized
from nearby patches depending on their location in the landscape, dispersal rate of the species
and proximity of extant populations in neighboring patches. Each species in each patch is subject
to extinctions that reflect demographic and/or environmental stochasticity. Patches can differ in
local environmental conditions that differentially influence baseline colonization and extinction
probabilities. Species interactions are modeled in two ways. First, the presence of other species
in a patch can modify baseline colonization probability (a reduction in the case of competition).
Second, co-occurring species can modify baseline extinction probability (an increase in the case
of competition).

We next apply a JSDM to the resulting distribution of species among patches.
Specifically, we use the HMSC R package, a modified version of the HMSC package described
by Ovaskainen et al. (2017). The new version of HMSC has been modified to incorporate Type
IIT sum of squares errors and site-by-site variation decomposition into variation partitioning
analysis (Blanchet, 2019). With this implementation, we model species distributions as a
function of the environment, spatial autocorrelation and species co-distributions (see Supporting
Information for technical details). After fitting the model using HMSC, we partition variation in
the distribution of species in the metacommunity into four statistical components (or fractions)

using an approach akin to classic variation partitioning (Borcard et al. 1992; Peres-Neto et al.
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2006). Details about how this variation partitioning is computed through HMSC is given in the
Supporting Information. In particular, we simplified the 8-way resulting variation components
into 4 more easily visualized components to quantify the effects of environment (labeled [E]),
spatial patterning (labeled [S]), co-distribution among species (labeled [C]) and residual
(unexplained) variation that cannot be attributed to any of the three previously mentioned
fractions (i.e. sets of predictors). The latter is expressed as 1-R?, where R? is the proportion of
variation explained by the model and includes fractions [E], [S], and [C]. Aggregating
independent and non-independent fractions as explained in the Supplementary Information
results in a loss of more detailed information but allows us to visualize and simplify our

interpretation of the results in ways that are useful for the present study.

Although the analytical model described in equations 1-3 suggests that making links
between processes and patterns using JSDMs are possible, we wished to evaluate if this was also
likely in less idealized situations such as those used in our metacommunity model. We thus
simulated a number of scenarios (i.e., ‘thought experiments’) that vary the strength of
environmental selection, dispersal and competition. Comparing scenarios with varying niche
breadth and competition (scenarios A-D, Fig. 2 and Fig 3), and a more complex case where
species compete and vary in both dispersal and in their responses to the environment (scenario G,
Figure 4, scenarios E and F in the SI) highlight how HMSC provides an avenue for
distinguishing between underlying processes based on abundances of species across
metacommunity patches. Using our framework, our goal here was to illustrate how links
between pattern and process might be inferred in metacommunities under our “internal structure”

framework. In doing so, we leave a more extensive and systematic evaluation of the model’s



components (e.g., performance of JSDMs under multiple complex scenarios) for future work

256

(but see Ovaskainen and Nerea 2020).
257
258

Results of simulation experiments
259

In a first set of simulations, we considered a situation where species had distinct

260

environmental optima along an environmental gradient and had limited dispersal (Figure 2, Table
261

1). We contrasted the case where the environmental niches were narrow (steep changes in
262

baseline colonization success and extinction rates with small deviations in environment) with the
263

case with identical optima, but with wide environmental niches (much weaker changes in
264

colonization and extinction with environmental value). As expected, we found that these
265

differences in environmental niche breadth had strong effects on the relative importance of
266

environmental filtering (fraction [E]) versus spatial patterning (fraction [S]). Specifically, we
267

found stronger spatial effects when niche breadths were broad and stronger environmental
268

filtering when niches were narrower (Figure 2, Table 1). We also found that the R? values were
269

higher for the case with narrow niches than with wide niches. Finally, we found non-zero
270

(though relatively weak) variation components for co-distributions (fraction [C]) in both cases,
271

especially when niches were broad even though our analytical model would predict the absence
272

of such variation components since colonization and extinctions were not affected by species
273

interactions in these simulations.
274

We next simulated metacommunities with identical parameters as above, except with

275

added interspecific competition effects (Figure 3, Table 1). As in the case without species
276

interactions (compare with Figure 2), narrow niches enhanced the relative strength of
277

environmental filtering (fraction [E]) and reduced spatial patterning (fraction [S]) when
278
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compared to wide niches. In these simulations, however, the co-distribution components
(fraction [C]) were much more substantial than without species interactions. We also found that
adding interspecific competition substantially increased the total amount of variation explained
(R?) by the model (i.e. due to the joint component of co-distribution).

We conducted a number of other simulations to explore if interspecific variation on
environment (fraction [E]), space (fraction [S]), and co-distributions (fraction [C]) depend on
dispersal, niche breadth, and interactions. Illustrative examples are shown in the supplemental
information and summary statistics are shown in Table 1. In Figure 4, we present the results
from one of these examples that includes heterogenous dispersal to show how the internal
structure can reveal how dispersal variation affects species distributions. We found that one
could distinguish species by the degree to which their distributions are related to environment
(fraction [E]), space (fraction [S]) and co-distributions (fraction [C]) (Figure 5a) and we found
that this could be related to their traits (i.e., species optima in our simulation framework).
Species with higher dispersal ability and more specialized environmental niche positions had
distributions better predicted by the environment than those that were dispersal limited and had
distributions that presented a higher level of spatial autocorrelation (fraction [S]). Species with
optima closer to the middle of the environmental gradient also had a larger fraction [C] than
those with more extreme optima.

Sites also differed in how their species composition was related to environmental
(fraction [E]) and spatial effects (fraction [S]) as well as co-distributions (fraction [C] - Figure
4b). Some sites tended to be occupied by locally dominant species (in the lower left of the
ternary plot, nearer to fraction [E]), while others were occupied by species found in nearby sites

(lower right of the ternary plot, nearer to fraction [S]). Some sites were also occupied by
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combinations of species that were differentially associated with each other regardless of
environment or dispersal (upper apex of the ternary plot, nearer to fraction [C]). As can be seen
in Figure 4b, there were also a wide range of intermediate conditions. A major driver of this
variation are local environmental conditions, especially in relation to how distinct the local
environment is from the overall mean environment of the metacommunity (Figure 5b).

We further investigated the structure of the species co-distribution (fraction [C]). This
covariation can be directly attributable to species interactions because we explicitly model the
processes underlying metacommunity dynamics. However, even in our model, species co-
distribution may not directly link to pairwise interaction coefficients, but rather may emerge as a
complex relationship between species interactions and environmental conditions (Cazelles et al.
2015, Blanchet et al. 2020). To illustrate this, we show the co-distribution among species as a
heat map separately for each of the five individual simulations presented in Figure 4 and
compared them to the actual interaction matrix that describes interspecific competition in our
model (Figure 6; similar heat maps obtained with the other scenarios are shown in the
Supplement Information). Despite the fact that the same interaction matrix was used for all five
of these simulations, the resulting co-distribution patterns are inconsistent in their details.
However, these matrices show that there is consistency in several features of the co-distribution.
For example, they all share the predominance of strong negative correlations along the main
diagonal that match the interaction matrix we used. They also share a strong ‘checkerboard’
pattern with alternating negative and positive co-distributions between species when these are
ranked against their environmental optima. Given the simple scheme of species interactions we
used (Fig. 5 and SI), these results are consistent with the predictions that direct interactions are

stronger than indirect ones and tend to weaken with the number of links in indirect chains even if
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the details of these effects are less predictable (Cazelles et al. 2015).

Discussion

While metacommunity ecology has made great progress in the past decades, the
assumptions that species and sites were relatively homogeneous in their underlying processes
(reviewed in Leibold and Chase 2017), and the lack of explicit consideration of biotic
interactions, have limited the applicability of metacommunity theory to relatively simple
interpretations that have not addressed the dynamics of more realistic species pools within
complex landscapes. Here, by combining a tractable process-based model with emerging
analytical methods, we provide a general quantitative approach that accounts for multiple
interacting assembly processes (including biotic interactions) that may operate differently among
species or in different parts of landscapes.

Some of the issues we raise have already been highlighted in previous work that have
shown that particular examples of species and site effects can occur, but here we sought to
formulate a general analytical approach that accounts for these issues and test it against a process
-based model. For example, Pandit et al. (2009) showed that species can be heterogeneous in
their responses to environmental and stochastic factors depending on their degree of habitat
specificity. Legendre and De Céceres (2013) have calculated how sites and species contribute to
beta-diversity (but not to the partitioning of driving factors). Others have argued that JSDMs can
provide important insights into the drivers of such variation in species distributions (Hui et al.
2013, 2016, Pollock et al. 2014, Ovaskainen et al. 2017 see also Ovaskainen and Abrego 2020;
but see Poggiato et al. 2021). Similarly, the heterogeneity among sites has long been identified

as driving individual species distributions (see Guisan and Thulliers 2005, Soberon and Peterson
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2005, Elith and Leathwick 2006) as well as driving overall variation among sites in global
metrics of community structure (e.g. diversity patterns, etc.) as characterized by the field of
landscape ecology (Turner 2005). Further suggestions that individual sites might vary in how
they contribute to metacommunity dynamics include the concept of ‘keystone communities’
(Mougquet et al. 2012, Resetarits et al. 2017, Yang et al 2020) and metacommunity approaches to
spatial networks (Economo and Keitt 2010, Borthagaray et al. 2015, Harvey et al. 2020). These
disparate approaches (species vs sites) to metacommunities are doubtlessly closely related to
each other and can be linked by the emerging methodologies of methods such as JSDMs to
develop a more nuanced metacommunity ecology that recognizes a plurality of mechanisms and
processes underlying community assembly. The expectation here is that the internal structure
framework can provide further insights on these complexities. Although we find that JSDMs can
reveal important aspects of the internal structure of metacommunities, we find that there are
some remaining important challenges to resolve in quantitatively making process-pattern
linkages in metacommunities (see also Poggiato et al. 2021, Miele et al. 2021).

Although there are some important challenges to consider, our study illustrates important
insights about the internal structure of metacommunities, including:
1) Variation partitioning using JSDMs (here implemented using HMSC) can be a useful tool to
describe how basic processes of community assembly at the species and sites levels (e.g.
environmental selection, dispersal, biotic selection, and drift) might determine metacommunity
wide variation in community composition and thus link the internal structure of the
metacommunity where these processes act to the external structure that summarizes these effects

at the broader spatial scale.
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2) Quantifying co-distributions of species in metacommunities can improve predictive ability
even when the processes that generate these distributions are complex (stochasticity, complex
spatial landscapes, and species interactions).

3) Species can have distributions that vary in the degree to which they are determined by
combinations of the basic community assembly processes depending on features of their ecology
(e.g. dispersal and environmental preferences); and

4) The predominant assembly processes that determine local communities can differ among
adjacent sites in a metacommunity (e.g. sites that are occupied by species most fit for
environmental conditions vs sites occupied by species that do well in nearby sites due to
dispersal even though they differ in environmental conditions).

It is important to emphasize that there remain some substantial challenges in moving
forward with the overall approach we advocate in this paper and producing more robust versions
of the internal structure framework for metacommunities. These include technical issues, such as
the estimation of parameters and interpretation of results in more complex models (e.g., the
interaction between dispersal and environment such that species are limited in their dispersal
abilities due to environmental features of the landscape matrix), as well as conceptual ones, such
as accounting for other processes such as speciation, local adaptation, and historical
biogeography. Nevertheless, we see that producing robust frameworks taking into account the
internal structure of metacommunities will be fruitful, allowing a deeper understanding of
ecological dynamics in more realistic, but necessarily complex, spatial landscapes.

Our analytical framework simplifies several potentially complex processes (e.g. non-
linearities and interactive effects of mechanisms) into an approximation involving colonization-

extinction dynamics. It is possible that more realistic and complex mechanisms driving these
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processes will weaken associations between pattern and process or create biases in the
partitioning of the variation revealed by JSDMs. However, the developments of JSDMs are still
progressing, and we anticipate that future developments will solve some of these problems (see
Wilkinson et al. 2020).

The co-distribution component of the JSDMs (fraction [C]) is particularly concerning.
We find that the component estimated by the JSDM often deviates from the settings of the
process-based model, especially when species have broad environmental niches (Figure 2). A
possible reason could be sensitivity that leads to biases in the HCSC fitting procedure, but the
more likely explanation is that the [C] fraction, additional to true biotic interactions, tends to
absorb any process that is inadequately quantified by the environmental (fraction [E]) and spatial
components (fraction [S]) (see Blanchet et al. 2020). In addition to species interactions, this
would include, for example, unmeasured environmental factors (see Blanchet et al. 2020),
inadequately quantified landscape attributes, or that the process-based model creates somewhat
different environmental responses than assumed in the JSDM. Teasing apart the effects of
species interactions from these confounding factors should thus be a major focus for future work.
Nevertheless, it is important to understand that including the co-distribution component in our
analyses allows us to account for them, rather than lumping them with residual variation where
they have likely given a greatly exaggerated impression of stochasticity.

Our framework links most naturally to mechanisms that focus on interspecific
competition, in analogy with evolutionary genetics (Vellend 2010, 2016). However, species
interactions in metacommunities are much more variable and include consumer-resource
interactions, mutualisms, and facilitative interactions. Although such interactions can easily be

incorporated in simulations, the interpretation that might link process to pattern in such cases are
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likely to become more complex (see Gravel and Massol, 2020). Likewise, future work could
include local (co-)evolutionary dynamics (see Urban et al. 2020) and historical effects of
biogeography and speciation (Leibold and Chase 2018, Overcast et al. 2020). Here, we have
also retained a simple two-level perspective on spatial scale (local discrete sites in a broader
regional landscape). It is increasingly apparent that metacommunity dynamics occur over
multiple nested scales and that habitats can be continuous and/or nested, rather than discretely
patchy (e.g. Munkenmuller et al. 2012, Rybicki et al 2018, Ovaskainen et al. 2019, Viana and
Chase 2019, Konig et al. 2021). Refining our approach to address multiple spatial scales is a
logical next step.

Finally, it is increasingly clear that temporal dynamics of community change in
metacommunities can provide critical insights about the mechanisms that drive metacommunity
patterns (e.g. Jabot et al. 2020, Blanchard et al. 2020, Guzman et al. 2021). We imagine future
work on the internal structure of metacommunities as being very amenable to incorporating
temporal changes (see for example, Ovaiskainen et al. 2017 for an initial step in this direction).
Here we have focused on purely spatial approaches because there are still remarkably few studies
that might permit sufficiently structured data to permit temporal analyses and because the
limitations and challenges of such analyses are not yet clear.

In conclusion, we have argued focusing on the internal structure of metacommunities, by
examining site-specific and species-specific variation components, and better accounting for
biotic interactions in community assembly can enhance our ability to infer process from pattern
in the distributions of species and the occupancies of sites. We also argue that continued work
on this focus is essential if metacommunity ecology is to address the dynamics and structure of

realistic metacommunities that have typically high biodiversity and occur in complex landscapes.
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This focus on internal structure represents a shift from traditional approaches that used
descriptors of overall variation components at the metacommunity scale that generalizes previous
ad hoc approaches to similar internal variation in metacommunity patterns (e.g. Pandit et al.
2009, Legendre and De Caceres 2013). The dynamics and structure of distributions of
realistically diverse species in a realistically structured landscape of sites likely involves the
interaction of community assembly processes including environmental filtering, dispersal, and
drift, and these are unlikely to be adequately described by simple metacommunity level metrics
(see Ovaskainen et al. 2019). Consequently, dissecting the internal structure of
metacommunities on the basis of species and site contributions could provide key insights into
the processes underlying metacommunity assembly. Such insights might be particularly useful
in the management of landscapes and metacommunities for conservation purposes since they
focus on particular units (species or sites) that are often the focus of concern in such cases.
Speculations

Our goal in this paper was to emphasize that looking at species and site specific differences
(what we call the internal metacommunity structure) may reveal more nuanced information about
the underlying processes than using the global summary statistics that have been the focus of
most of the previous work. Using JSDMs is one way in which estimates of this internal structure
can be generated, and they have the additional advantage that they estimate species associations,
which can be related to biotic interactions. We suspect, however, that other approaches can be
developed that might be equally (or possibly even more) useful than JSDMs for the general
purpose of this paper, especially if they would be able to include also dynamic mechanisms such
as dormancy (Wisnoski et al. 2019), local evolution of ecological traits (Urban et al. 2008), and

ecosystem-level feedbacks (Loreau et al. 2003). The challenge to consider such processes is to
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include them into an statistical framework that is still comparable in simplicity and general
applicability to the JSDM framework that we used here. It is worth noting that any method could
be adapted with different degrees of difficulties to the framework of internal structure of
metacommunities.
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Table 1: Summary of metacommunity level variation components for the seven different

scenarios modeled in this study.

Fractions
Scenario Corresponding E (SD) S (SD) C (SD) Residuals
Figure 1-R? (SD)
A 2, upper 0.75(0.11) | 0.026 0.044 0.18 (0.11)
panels (0.019) (0.062)
B 2, lower 0.019 0.15(0.037) | 0.019 0.81 (0.04)
panels (0.015) (0.036)
C 3, upper 0.42 (0.31) |0.21(0.2) 0.14 (0.16) | 0.23(0.12)
panels
D 3, lower 0.018 0.35(0.3) 0.28 (0.33) | 0.35(0.33)
panels (0.026)
E Supplement | 0.63 (0.21) | 0.067 0.13(0.15) | 0.18(0.089)
(0.069)
F Supplement | 0.74 (0.097) | 0.035 0.047 0.18 (0.097)
(0.025) (0.057)
G 4 0.5 (0.17) 0.08 (0.072) | 0.2 (0.16) 0.22 (0.12)
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Figure 1: A summary of the metacommunity problem. Species distributions, denoted by the
species-by-sites L matrix, are the outcome of drift, selection, dispersal, and speciation. These
basic processes can be influenced by species interactions, food web structure, biogeography,
phylogeny and micro-evolution. Metacommunity theory mainly focuses on drift, selection and
dispersal. We view previous approaches based on the four archetypes of Leibold et al. (2004) as
being much more indirect and idealized. Instead, we call for a more direct evaluation of how the
basic processes affect the L matrix, and how to dissect the consequences to the distributions of
different species and the occupancy of different sites, for example by using a JSDM to identify
main effects and interspecific variability in the importance of unstructured, biotic,
environmental, and spatial effects on L. This approach allows us to recognize and address the
effects of heterogeneities among species and among patches on the overall structure of the

metacommunity.
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Figure 2: Ternary plots describing the three components of metacommunity internal structure for
two different simulation scenarios with no species interactions (independent metapopulations):
The upper panels correspond to narrow environmental niches whereas lower panels correspond
to wide environmental niches. Each dot represents a species (left panels) or a site (right panels).
The size of the symbol is proportional to the R? of the model (note the different scales used for
species and sites) and the location indicates the proportion of explained variation attributed to
environmental factors (E - lower left), spatial effects (S - lower right) and remaining co-
distributions (C - upper apex) (see SI for details). In the species panels (left side) different
symbols indicate different replicate simulations; generally, these indicate that the distribution of

species responses are variable within replicates but that the overall variation among replicates are
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repeatable. In the site panels (right side), the shading indicates how central (lighter) or extreme
(darker) the local environmental conditions are on the gradient; these also show substantial
variation but indicate that more extreme environmental conditions increase the effects of local

environment on occupancy patterns than more central conditions.
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Figure 3: Ternary plots describing the three components of metacommunity internal structure for

different simulation scenarios with competition among the species. Notation is the same as in
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Figure 2. The upper panels correspond to narrow environmental niches whereas the lower panels
correspond to wide environmental niches. Left-hand panels show variation components for
different species whereas panels on the right-hand side of the figure correspond to variation

components for different sites.
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Figure 4: Ternary plots for species (left panel) and sites (right panel) for simulations with species
that differ in environmental position along the gradient and dispersal ability. The size of the
symbol indicates the R? of the model for each species or site). In the left panel (species) the
color indicates the preferred local environmental conditions for species (yellow for species that
prefer centrally located environmental conditions, purple or magenta for species with more
extreme environmental optima). The symbol indicates the dispersal rate of the species (circles
are more dispersal limited, squares are least dispersal limited and triangles are intermediate). In
the right-hand panel the color indicates the degree of deviation from centrality along the

environmental gradient (as in Figure 2).
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Figure 5: Effects of species traits (i.e. species optima; left panel) and site attributes (right panel)
on the environmental fraction of variation in species distributions and site occupancy. A) Higher
dispersal ability and lower niche centrality (i.e. greater deviation from mean niche value)
enhance the degree to which different species (individual symbols) have distributions that
correlate with environmental variation. B) Sites that differ more from the mean environmental
value (environmental deviation) are more likely to be occupied by species with niche traits that

are locally favored.
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Figure 6: Comparisons of the interaction matrix (Simulation) with the co-distribution of species

in five replicate runs (Iteration 1-5) of the scenario with interspecific variation in dispersal and
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competition among species. In each panel, species are ranked by the position of their
environmental optima along the environmental gradient. The co-distributions are shown as heat
maps with the strength of the covariation proportional to the intensity of color and the color
indicating negative (green) or positive (gray) covariation among pairs of species. These can be
compared to the pattern of direct species interactions (left panel called Simulations). The Xs

denote no significant association although the color indicates the trend.
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Description of Model

Patch locations and environmental variables

In our model, the metacommunity consists of N patches distributed over a spatially

heterogeneous landscape, with multiple environmental variables (although, the current
simulations only have one environmental variable D across 1000 patches) that could either be

randomly distributed or spatially autocorrelated. Each patch has a set of coordinates in a two-
dimensional space, and all possible coordinates are feasible such that this is a continuous space
model thatis not restricted to a lattice or some other kind of regular spatial arrangement of
spatial units. A patch may be empty or be occupied by a single or by several species. We define
Xi ,.+as a stochastic variable representing the occurrence of species jatlocation zandtime t.

Occurrence, X; .+ takes a value of 1 when species jis presentand a value of 0 when itis absent.
Similarly, we define Y, =X1,t,X22t,...,Xr 2t @S @ vector containing the presence-absence of each

species from the regional pool R.

The model only tracks patch occupancy (not population densities). Spatial dynamics occurs

because of colonization events, in both empty patches and patches that are occupied by other
species, and because of extinction events. The emerging species co-distributions are a result of
a dynamic balance between these events. Ecological interactions can impact either or both the



753 colonization and the extinction probabilities. For instance, the presence of a competitor pre-
754  empting a patch can reduce the colonization probability by another competitor. Alternatively,
755 the presence of a competitorin a patch could increase the extinction probability of another
756  species. Similarly, the environment could influence both the colonization and the extinction
757  probabilities.

758 Patch Colonization

759  We consider a discrete-time Markovian process to represent the dynamics of presence-

760 absence of all species and we incorporate the effect of dispersal, environmental filtering and
761 ecologicalinteractionsin such a way that we could cover all possible scenarios wherein species
762 differinany combination of these mechanisms and processes. We can include interspecific
763 competition along with other types of spatial dynamics such as predator-prey interactions
764 (Graveletal.2011), priority effects (Shurin etal.2004), or mutualistic interactions

765 (e.g.Gilarranzetal. 2015). Inthis paper, we focused on competition only though. Following a
766 colonization eventfrom time tto t +A corresponds to:

767 P(Xi 2.t 4at =1|Xi 2.t =0) =i 1,tSi 2,Ci 1.t

768  where [;,is the number of immigrants of species jreaching patch zattime t, S;,;is the effect
769  of environmental filtering on the probability of establishing a viable local populationand G, tis

770 the effect of ecological interactions on the establishment probability. We note that because we
771 representastochastic process, the product of these three functions has to be bounded
772 between 0 and 1. We consequently define these quantities:

773  The effect of immigration is given by:

774
k(z,w)Xi w,¢
775 | =2k wXiwt
I,Z,t Zk(z,w)
776

777  which is a weighted average of the occurrence probability of species j in the neighborhood
778  of z. The function k(z,w) is a dispersal kernel that depends on the location of patch z and the
779 neighborhood w. For convenience, we considered an exponential function of the Euclidean

780 distance between localities. We added to the kernel a low distance and neighborhood-
781 independent constant m to account from immigration from outside the simulated

782 metacommunity. This assumption is required to prevent total extinction by drift under
783  pure neutral dynamics.
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The effect of the environment is given by a product of the establishment performance over
all environmental variables E,,:

Si,z,t =|-| f(En,zIJi,nUi,n)

In our simulations, for convenience, we considered that the function fhas a quadratic form for

all species and all environmental variables, though the modelis flexible and general enough to
consider other (non-linear) responses that could also differamong species.

Ecological interactions on establishment probability

To incorporate all possible ecological interactions, we started by representing the interaction
network by a community matrix A of R species. The elements g;; of A quantify the effect of

species jon the dynamics of species . When g;;is negative, the colonization probability of
species j decreases and/or its extinction probability increases when jisfound locally. Inversely,
when g;; is positive, the colonization probability increases and/or the extinction probability

decreases. To account for the cumulative effects of local interactions on transition probabilities,
we made colonization and extinction probabilities community dependent. As explained above,
atatime t, the Y, vector gives the local assemblages. We calculated the sum of interactions at

any time and for each speciesas v =AY, Ourapproach can be interpreted as a spatial

analogue to the generalized Lotka-Volterra model because it takes into account the impact of
the whole network of interactions on each species dynamics and can deal with any type of
interaction. We now define the function:

Cizt =g(vi,z,t)
representing the total effect of ecological interactions on the colonization probability. For
convenience, we will use a sigmoid function, with g ranging between ¢y, at high negative
interactions and ¢4 at high positive interactions, where ¢4 Should be interpreted as the

maximal colonization probability when the environmental conditions are optimal and there are
no dispersal limitations.

Patch Extinction

The definition of the extinction probability follows exactly the same rules as for colonization,
except that extinction is independent of the neighborhood composition. We follow the same
logic to define the effect of ecological interactions and of variation in the environment.
Consequently, we get the Markovian process:
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P(Xizt+at =0| Xizt =1) = MiztEizt
where M;,; and E; ,; are the responses of the extinction probability to the local environment

and to ecological interactions, respectively. The difference with the colonization functions
defined in the previous section is that the extinction probability must be larger when
interactions are negative and smaller when they are positive. In addition, the extinction
rate should be minimal (instead of maximal) at environmental optimum.

Interpretation

To interpret the model, note that, at steady state, for each species, we obtain the expected
occurrence probability (P*)ateach site as:

P/\iZ ’iz . Siz . Ciz
1 —pAriz - Miz . Eiz

After a log transformation, this yields:

PAiz ) Siz Ciz
log(l—_PA,.Z) =log(I”) Hog(m,.z) Hog(ﬁ)

This last equation can be interpreted as a macroscopic description of the expected species
distributions pattern (Thuiller et al. 2013). In this formulation, Jog(/) describes the

tendency of a patch to resemble other nearby patches due to the spatial contagion by

dispersal, Iog(KS/’ ) describes the tendency of sites to be occupied by species with similar

fitness responses to environmental gradients, and Iog(%) describes the remaining influence

of other species on co-occurrence due to interactions among species. The values for these
indices will depend on what choices are made for the components of eq. 1 (see Supporting
Information for details on how we implemented this simulations model).

This modeling framework can represent the classical archetypes but also permits more
intricate (and likely far more realistic) metacommunity scenarios and predictions. For
example, we could use the model to examine how species traits (and environmental
context) link to metacommunity dynamics. Moreover, continuous mixtures of different
metacommunity extremes (archetypes) can be represented by appropriate parameter
choices for dispersal, competitive abilities, and environmental preferences. For instance,
species sorting would require a relatively large colonization to extinction ratio along with
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species-specific environmental requirements and regional similarity (sensu Mouquet and
Loreau, 2002). Alternatively, coexistence within competition-colonization trade-offs
requires species to have similar responses to the environment and appropriate
heterogeneities in the |, C and E functions, but no environmental preferences.

The implemented mechanisms in the simulation model can be partially mapped onto
variation partitioning components. For instance, at equilibrium, we could expect dispersal
limitation (the Jog(/) term in equation 3) to create positive spatial autocorrelation at the

dispersal scale (the [S/E] fraction in variation partitioning, i.e., spatial variation

independent of environmental selection). Environmental selection (the Iog(KS/’ ) term in the

last equation) should lead to a correlation between composition and environment (the
[E/S] fraction in variation partitioning). The last term in equation 3, however, describing

the effect of interactions on distribution (the Iog(%)), is novel and has no equivalent in the

context of classical variation partitioning.

There are some interesting properties to point out regarding our proposed variation
partitioning scheme. First, by considering the combined effects of environmental selection,
dispersal and interactions, the final residuals (unexplained sources of variation) in the
model leading to this new partition variation scheme is (in principle) solely related to non-
spatialized independent species variation. Second, in our variation partitioning, the
interaction component is due to species co-variation (i.e., a joint component among species
distributions). In empirical community data, however, this interpretation can only be made
if all the environmental variation (predictors) underlying environmental selection in
empirical community data has been incorporated (as pointed out in the main manuscript).
If not, then the spatial and species interaction components could be measuring variation
related to unmeasured environmental variables that are either spatialized (i.e.
characterized by the spatial component in variation partitioning) or shared among species
(i.e. joint component).

Description of the Statistical Framework

Hierarchical Community Models

In their simplest form, Hierarchical Community Models (HCMs) resemble standard species
distribution models that regress species presences/absences against environmental predictors
(i.e., logitlink). However, to reduce model complexity, HCMs assume that all speciesina
metacommunity will react to environmental heterogeneity following a similar response



874  function (e.g., linear vs quadratic or Gaussian). The same assumption is made in common

875 variation partitioning (see Peres-Neto et al. 2006). To model the spatial component (i.e., due to
876 spatialized dispersal), either spatial variables such as Moran’s eigenvectors maps (MEM, Dray et
877 al.2006) or spatially auto-correlated latent variables (Ovaskainen etal.2016b) canbe

878 incorporated to the model. To account for biotic interactions, non-spatially auto-correlated
879 latentvariables are used. If we use a linear specification approach (here, this can also include
880 quadratic terms that capture Gaussian responses to environment as imposed in our model), we
881 canwrite:

882 Lzl =XzkBki 4¢Zi
883

884 with

885 BY~N(u,X)
886

887 Where |7 is the presence (or absence) of species j (out of m species) at patch z (out of n
ggg patches), X% is the value of the environmental variable k (out of p variables) at site z, Bis a
ggg matrix of regression parameters, y is a vector of length p that describes the mean

ggo environmental response of all species, ¥ is a p Xp covariance matrix that describes how

891 species vary (diagonal) and co-vary (off-diagonal) around the mean environmental
gg2 response (Ovaskainen and Soininen 2011), and €7 is a residual value. Estimating species

g93 parameters hierarchically around a community mean reduces the degrees of freedom and
894 makes the model easier to fit with limited data. Note that both y and s can be further

gos informed or constrained by species traits or phylogeny if desired (Ovaskainen et al. 2017).
896 Toaccount for biotic interactions, we consider latent variables HZ (where | refers to a latent

gg7 Vvariable measured at site z) and their associated parameters Al (Ovaskainen et al. 2016a).
gog This yields:

899 in =szBki +HZ’ /\Ii +€zi

900

901 Note that it is not necessary to always include all of these components in one model; they
902 can be considered in any combination deemed relevant for a particular question. In this
903 Ppaper, we used Moran’s Eigenvector Maps (MEMs; Dray et al. 2006), a powerful and

904 commonly used method to model spatial autocorrelation in statistical models involving
905 species distributions.
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Calculating Variation Partitioning for the HCM

As in any generalized linear mixed effect model, we can now partition the explained
variation into different components, notably environmental heterogeneity, space, co-
distribution (biotic interactions), and unexplained variation (Figure S1). To estimate the
contributions of each of these four fractions for each species, we calculated semi-partial
coefficients of determination (i.e., based on Type III sum-of-squares as specified in Peres-
Neto et al. 2006) using the implementation suggested by Tjur (2009) as being more
appropriate for presence-absence data (i.e., logit link) than the traditional variation
partitioning based on an identity link. To adjust for the number of variables used to
quantify each fraction of the variation partitioning analysis, we applied the adjustment to
the coefficient of determination proposed by Gelman and Pardoe (2006) in the variation
partitioning analysis, which is designed for hierarchical models. As shown in Figure S1, the
different fractions were combined so that a unique value was associated to environment
(fractions [a], [d]/2, [f] and [g]/2), co-distribution (fraction [c]), space (fractions [b], [d]/2,
[e] and [g]/2) and the unexplained portion of the variation (fraction [h]). Latent variables
are quite powerful to isolate structure in the data. As such, in the calculation of the
variation partitioning, latent variables will capture almost all (if not all) variation
associated to the environment and space, giving an artificial inflation of the overlapping
partitions between co-distribution and environment and co-distribution and space. For this
reason, all partitions overlapping with co-distribution (fractions [e], [f] and [g]) were
assigned to either environment (fractions [f] and [g]) or space (factions [e] and [g]). In this
calculation, a unique measure of explained variation (akin to adjusted R2) is associated to
co-distribution (fraction [c]) but this is not the case for environment and space. To
associate a unique value to environment and space, and represent the results as we did in
Figure 2 and 3 (main manuscript), we divided the fractions overlapping environment and
space between these two components. As such, the sum of fractions [a], [f], half of fraction
[d] and half of fraction [¢] were used to measure the effect of the environment while
fractions was considered [b], [e], half of fraction [d] and half of fraction [g] were used to
measure the effect of space. This scheme in which half of common variation is assigned to
two or more common components is commonly used in hierarchical partitioning (Chevan &
Sutherland 1991).
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Supplementary Figure 1 - variation partitioning scheme used to estimate the importance
of each matrix of predictors.

Calculation of the coefficient of determination

1) Classic coefficient of determination

The coefficient of determination, RZ?, that was partitioned in the variation partitioning analysis

(Appendix XX) is calculated for any given species jas:

where yj; is the data (presence-absence) associated with species j(out of p species) atsite j(out
of nsites), y*jis the model (predicted value) associated to species jatsite jand y;isthe average

of the data (i.e., sum of presences divided by n) forspecies jacross all sites.

2) Community-level coefficient of determination

Although having an for each species jcan be highly informative and is part of our framework on

the internal structure of metacommunities, it can be also useful to estimate the contribution of
single communities R2to the entire metacommunity. This is obtained by averaging all :

where the CRZis the community-level R2.

3) Site contribution to the coefficient of determination
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In the paper, we use the contribution of each site to to present how each site contributes
differently to the environment, space and co-distribution for the community. The calculation of
the site jcontribution to the, is calculated as:

The first part of the equation where the 1 of the classic isdivided by nisincluded to make sure

thatif we sum all across all sites for species j, the resulting value equalsto.

More importantly, what can be noticed is that by calculating , the contribution of sites to
each species, we obtain a matrix that has the same dimension as the site by species matrix
(an n Xp matrix). Using this matrix, if we sum across all sites, we obtain the . However, if we

average across the species for site j we obtain the site’s contribution to the community-

level CR2or.

The amount of variation expressed by the, the CR2, the or the can all be partitioned in its

environmental, spatial and co-distribution component following the procedure presented
in the section “Calculating Variation Partitioning for the HCM” above.

Parameterization and Simulation Scenarios

We simulated metacommunity dynamics with a landscape of 1000 patches over 200 time steps
and aninitial occupancy of 0.8. Previous studies show that steady state dynamics are obtained
substantially earlier than 200 time steps with this initialization and we use this to interpret our
results. Patches were placed randomly in a two-dimensional plane with coordinates drawn from
a uniform distribution with a minimum of 0 and a maximum of 1. The environment varied
spatially, with values drawn from a random distribution between 0 and 1. In the specific
simulations we studied in the paper, colonization was the only component of the species that
were affected by the environment (i.e. E;,;=1). Specifically, colonization reacted to the

environment following a quadratic curve.

For all scenarios considered, we simulated 12 species. Niche optimums for the species were
evenly distributed between 0.1 and 0.9 while niche breadth was set to 0.8 for simulations
with narrow niches (scenarios A, B, E, F, G), and to 2 for simulations where niche was
assumed to be broad (scenarios C and D). For dispersal, we considered an exponential
dispersal kernel, with a distance-independent immigration probability of 0.001 and an a

parameter of 0.05. For scenario G, where we have variable dispersal kernels (Figure 3), a

was 0.01 for 1/3 of species, 0.05 for 1/3 of species, and 0.1 for the other 1/3 of species. We
used a sigmoid function to relate the total number of interactions with colonization and
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extinction coefficients following the implementation by Cazelles et al. (2016). Colonization
probability in the absence of interactions was set at 0.4, which tends to zero as negative
interactions tend to infinity, while it asymptotes at a 1 with infinite positive interactions.
All other aspects of the colonization-interaction curve were the same for all scenarios.
Similarly, extinction in the absence of interactions was set at 0.025, and tended to 1 with
infinite negative interactions, while its asymptote tended to O with infinite positive
interactions. In both cases, the parameter setting the shape of the sigmoid function was set
to O for the scenarios without competition (scenarios A, B, and F), and 1.5 in the presence
of competition (scenarios C, D, E, G) . If there were interactions, then a focal species only
interacted with the two species that had the closest niches. For all scenarios, five sets of
metacommunities were simulated and analyzed to obtain the results found in Figures 2, 3,
and 4 in the main text, and supplementary figures.

All scenarios have been implemented in R and the project’s repository can be found here:
github.com/javirudolph/testingHMSC

Supplementary Figure 2. Species interactions for all scenarios.

Replicete 1 Replate 2 Replcate 3 Repiicate 4 Replicate 5

x
i
=

x- XX

Supplementary Figure 3. In which we have half of the species with interactions and the
other without.
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1010 Supplementary Figure 4. In which we change dispersal only, @ was 0.01 for 1/3 of species,

1011 0.05for 1/3 of species, and 0.1 for the other 1/3 of species.
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1013 Example of metacommunity simulation functions and
1014 analyses

1015 Thefollowing example of code shows the overall processes involved in the metacommunity
1016 simulation for our model. This example shows the scenario for 20 patches and one

1017 environmental variable. The model gives the option for a random or spatially aggregated
1018  structureforthe patches. Inthe aggregated case, we determined four clusters, denoted by
1019 Nclusters in the code below. The value of the environmental variable for each patch is shown
1020 with the color hue. In this case, the environmental variable is randomly distributed.

1021  set.seed(227)
1022 # Random XY coordinates
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# Each coordinate is drawn from a random uniform distribution
get XY = function(N) cbind(runif(N),runif(N))

# Aggregation of XY coordinates
get_XY_agg = function(N, Nclusters, sd_xy) {

Xclust = runif(Nclusters)
Yclust = runif(Nclusters)

X =rnorm(N, rep(Xclust,N/Nclusters), sd_xy)
Y = rnorm(N, rep(Yclust,N/Nclusters), sd_xy)

cbind(X,Y)
}

# Random uniform environmental values
get_E = function(D, N) matrix(runif(D*N), nr = N, nc = D)

Here, we set N, the number of patches to 20, and D, the number of environmental variables to
one.

N <- 20
D<-1

rXyY <- get_ XY(N)
agXyY <- get_XY_agg(N, 4, 0.02)
E <-get E(D=D, N =N)

The following figure shows a side by side comparisson between random and aggregated
patches obtained from our functions.

Random patch locations Aggregated patch locations
1.00 7
» o
- . L
* ]
0.75 * & .' E
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S * S 075
0501, e 3
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*
0251 & . 0.25
L > - 4
L 0o - ™
0.25 0.50 075 03 04 05 06 07 08
X coord X coord

Initial Occupancy

The toy model allows for setting the initial occupancy in the metacommunity. For example, to
create the initial conditions, t =0, of presence absence, species occupancy is drawn from a

random uniform distribution, and values smaller than (.8are considered as species presence.
Patches orlocations z are represented by rows in the matrix, whereas each species is a column.

Each cell inthe matrixis X;,tandeachrowis Y,;for t =0. The following figure shows three
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different iterations of this process, where areas in black represent occupancy = 1, and white
denotes an absence.

#Get your initial conditions:

R<-8

YO = matrix(0, nrow = N, ncol = R)

rand = matrix(runif(N*R), nr = N, nc = R)
YO[rand <0.8] =1

ggplot(melt(Y0), aes(x = Varl, y = Var2, fill = value)) +
geom_tile() +
scale_fill_gradient(low = "white", high = "black")+
labs(x = "Plot number", y = "Species”, subtitle = "Iteration 1") +
theme_bw() -> A

# Second iteration for the same initial conditions
YO = matrix(0, nrow = N, ncol = R)

rand = matrix(runif(N*R), nr = N, nc = R)
YOfrand <0.8] =1

ggplot(melt(Y0), aes(x = Varl, y = Var2, fill = value)) +
geom_tile() +
scale_fill_gradient(low = "white", high = "black")+
labs(x = "Plot number", y =", subtitle = "Iteration 2") +
theme_bw() -> B

# Third iteration

YO = matrix(0, nrow = N, ncol = R)

rand = matrix(runif(N*R), nr =N, nc = R)
YO[rand < 0.8] = 1

ggplot(melt(Y0), aes(x = Varl, y = Var2, fill = value)) +
geom_tile() +
scale_fill_gradient(low = "white", high = "black")+
labs(x = "Plot number", y =", subtitle = "lteration 3") +
theme_bw() -> C

# Set the three iterations to be displayed side by side
ggarrange(A, B, C, ncol = 3, common.legend = TRUE, legend = "none")

lteration 1 lteration 2 lteration 3

Species

0 5 10 15 20 o 5 10 15 20 0 5 10 15 20
Plot number Flot number Plot number
When we consider the immigration component, we need to also consider the connectivity

matrix. In the code below, / fcalculates the probabilty of immigration for each species,
based on the occupancy matrix and the dispersal kernel, K. The argument « is the
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connectivity matrix. The argument xv corresponds to the patch coordinates, whereas ajpha
is the dispersal parameter associated to the exponential distribution used for dispersal. It
can be computed with the following function:

# Compute the propagule pressure
I_f =function(Y, K, m) | = (1-m)*(K%*%Y)/(K%*%matrix(1,nr=N,nc=R)) + m

The arguments for this function are: VY, K, m. We calculated Y, species presence or absence, in

the previous section with the case for initial conditions. Argument missetinthe parameters as
avalue m =0.001 and the connectivity matrix Kis calculated below.

# Compute the connectivity matrix
get_K = function(XY, alpha) {
N = nrow(XY)
distMat = as.matrix(dist(XY, method = "euclidean", upper = T, diag = T))
ConMat = exp(-1/alpha*distMat)
diag(ConMat) = 0
return(ConMat)
}

As an example, using the aggregated XY coordinates for 20 patches and our initial occupancy
matrix with 8 species ,we can see the connectivity between patches, and can calculate the
contribution of immigration from each species to each patch.

# We can use the aggregated XY coordinates for this example:
XY <-agXY

# Connectivity matrix
alpha <- 0.005
K <- get_K(XY, alpha)
plot_K <- cbind(rownames(K), stack(as.data.frame(K)))
names(plot_K) <- c("X", "Fill", "Y")
plot_K %>%
as_data_frame() %>%
mutate(X = factor(X, levels = ¢(1:20)),
Y = factor(Y, levels = ¢(1:20))) -> plot_K
ggplot(plot_K, aes(x = X, y =Y, fill = Fill)) +
geom_raster() +
scale_fill_gradient(low = "black", high = "white") +
#scale_fill_viridis_c() +
labs(title = "Connectivity among patches”) +
theme(legend.title = element_blank(),
axis.text.x = element_text(angle = 90)) -> A
# Immigration
m <- 0.001
Y <- Y0
I <-I_f(Y, K, m)
rastPlot(l, title = "I - Immigration to each plot", x = "Patches”, y = "Species") +
theme(legend.title = element_blank()) -> plot_|
ggarrange(A, plot_I, ncol = 2)
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1135 The effect of the environment on each species, depending on each species niche optima, is
1136 computed in the following code section. The argument E corresponds to the vector of
1137  Values for the environmental variable in each patch. The other two arguments in this
1138 function are the niche optima (u_s) for each species and niche breadth(s c).

1139  # Compute the local performance of propagules
1140 S _f _quadratic <- function(E, u_c, s _c) {

1141 R <- ncol(u_c)

1142 N <- nrow(E)

1143 D <- ncol(E)

1144 S <- matrix(1, nr =N, nc =R)

1145 for(i in 1:D){

1146 optima <- matrix(u_c[i,],nrow = N,ncol = R,byrow = TRUE)
1147 breadth <- matrix(s_c[i,],nrow = N,ncol = R,byrow = TRUE)
1148 S <- S *((-1/ (breadth/2)"2) * (E[,i] - optima)"2 + 1)

1149 S <-ifelse(S<0,0,S)

1150

1151 }

1152 return(S)

1153 }

1154 # Understood as niche optima for each species, for each environmental variable
1155 u_c = matrix(nr =D, nc =R)

1156 u_c[1,] = seq(0.1,0.9, length=R)

1157 # Understood as niche breadth

1158 s_c = matrix(0.2, nr =D, nc = R)

1159 # Local performance, colonization

1160 S <- S f quadratic(E, u_c, s_c)

1161 plot_S <- rastPlot(S, title = "S - Local performance colonization", x = "Patches", y = "Species") +
1162 guides(fill = guide_colorbar(title = "))

1163 plot_S
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1164

1165 When incorporating species interactions into the toy model, we use the following
1166 interaction matrix A, where the colored black sections show species with potential of

1167 interacting:

1168 # # Interaction matrix

1169 A = matrix(0,nr=R,nc=R)

1170 d = as.matrix(dist(c(1:R),upper=TRUE,diag=T))
1171 Ald<=1] = -1

1172 diag(A) =0

1173
1174 plot_A <- rastPlot(A, title = "A - Interaction matrix", x = "species”, y = "species") +
1175 scale_fill_gradient(low = "black", high = "grey") +

1176 theme(legend.position = "none")

1177  # Compute the sum of ecological interactions for every location and every species
1178  sum_interactions = function (A, Y) t(A%*%t(Y))

1179  #this is considered to be "v"

1180 v <- sum_interactions(A, Y)

1181  plot_v <- rastPlot(v, title = "v - Sum of interactions", x = "patches", y = "species”) +
1182 guides(fill = guide_colorbarttitle = ")) +
1183 scale_fill_gradient()

1184  ggarrange(plot A, plot_v, ncol = 2)
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We compute the effect of ecological interactions on colonization probability with the
function below.The arguments for this function are v as the resulting matrix from the sum
of interactions, d c as the sensitivity to interactions, c 0 and ¢ max as the colonization
parameters:

C_f = function(v, d_c, c_0, c_max) c_max*(1 +(1/c_0 - 1)*exp(-v*d_c))"-1

# # Colonization function
c_0=rep(0.4, R) # Colonization at O interactions
¢_max =rep(1, R) # Colonization at max interactions

# # Sensitivity to interactions
dc=02

C<-C f(v,d c, c 0, c_max)

plot_C <- rastPlot(C, title = "C - Interactions on colonization", x = "Patches", y = "Species") +
guides(fill = guide_colorbar(title = ")) +
scale_fill_gradient()

plot_C
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With all the components calculated, we can now compute the colonization probability
P(Xiz,t +at =1|Xi 2.t =0) =i 1,Si7,Ci .t

Probability of colonization for each species on each patch

value

F

Species

0 g 10 15 20
Patches

The following function calculates the effect of the environment on the extinction, with £
being the environmental variable, and v e and u_s being species level effect and the
assymptote.

M_f = function(E, u_e, s_e) {
R =ncol(u_e)
N = nrow(E)
D = ncol(E)
M = matrix(1, nr = N, nc = R)
for(i in 1:D){
M = M*(1-exp(-(E[,i]-matrix(u_e[i,],nr=N,nc=R,byrow=TRUE))"2 / matrix(s_e[i,],nr=N,nc=R,byrow=TRUE)"2))

}
return(M)
}

# Set the function arguments
# # Effect of the environment on extinction
u_e = matrix(nr=D, nc =R)
u_ef[1,] = c(rep(0.5, R-1), 0.05) # One species having a lower level of extinction from environmental effect
s_e =matrix(Inf, nr =D, nc =R)

#u e
#head(s_e)

The following shows the effect of ecological interactions on extinction, using the same v matrix
calculated above.
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E_f=function(v, d_e, e_0, e_min) {
e_min_mat = matrix(e_min, nr = N, nc = R, byrow=TRUE)

e_min_mat+(1/(1-e_min_mat)+(1/(e_0-e_min_mat)-1/(1-e_min_mat))*exp(d_e*v))"-1

#With the arguments computed as:

# # Extinction function

#e_0 = c(rep(0.025, R-1), 0.5) # Extinction at O interactions, with one species having a higher value.
e _0=rep(0.025, R)
e_min = rep(0, R) # Exinction at max interactions

# # Sensitivity to interactions

de=0
We can now compute the probability of extinction P(X;, ¢+at =1 Xiz¢ =0) =M 1,¢Ei 1t
The figure shows these as identical graphs, since we have made all species have the same
probability of extinction and the environment not having an effect on extinction.

Environment on extinction Interactions on extinction
value value
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0 5 10 15 20 0 5 10 15 20
Patches Patches

Probability of extinction
value

S

w

0.025

Speci

0 5 10 15 20
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The way
parameters are set, the extinction component is the same for all species in every patch.

Testing and changes

# Perform the test

delta <- matrix(0, nr =N, nc = R)

rand <- matrix(runif(N*R), nr =N, nc = R)
delta[Y == 0 & rand < P_col] <- 1

# Perform the test
rand = matrix(runif(N*R), nr = N, nc = R)
delta[lY ==1 & rand <P_ext]=-1
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