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1. Introduction

A recent paper of Bardos and Titi (1) has initiated the mathematical investigation of Onsager’s
“ideal turbulence” theory for wall-bounded flows, followed already by several works with
improvements (2; 3; 4). These papers have all pursued the line of Onsager’s original mathematical
analysis ! from around 1945 (5; 6; 7), the details of which he never published but which
were recovered and successively improved in several works of others about fifty years later
(10; 11; 12; 13). The object of all of these works was to identify suitable conditions for conservation
of kinetic energy by Euler solutions or, more physically stated, the conditions that must be
violated in order for energy dissipation to remain non-zero in the limit of infinite Reynolds
number for Navier-Stokes solutions. For wall-bounded flows such as pipe and channel flow
or developing boundary layers over a flat plate, we believe, however, that it is even more
straightfoward and illuminating to consider dissipative anomalies in the conservation of linear
momentum. It is interesting that both types of anomalies were first suggested by G. I. Taylor, for
kinetic energy dissipation in a 1917 report (14) and for momentum dissipation even earlier in a
1915 paper in the present journal on eddy motion in the atmosphere (15). We quote Taylor from
the final pages of his paper:

“...a very large amount of momentum is communicated by means of eddies
from the atmosphere to the ground. This momentum must ultimately pass from
the eddies to the ground by means of the almost infinitesimal viscosity of the
air. The actual value of the viscosity of the air does not affect the rate at which
momentum is communicated to the ground, although it is the agent by means of
which the transference is effected ...

The finite loss of momentum at the walls due to an infinitesimal viscosity
may be compared with the finite loss of energy due to infinitesimal viscosity at a
surface of discontinuity in a gas.*” (15)

The article referenced by Taylor with the asterisk “*” in this quotation is his own 1910 paper on
shock discontinuities (16). It is remarkable that Taylor in this early paper not only recognized that
there could be a finite loss of momentum due to an “infinitesimal viscosity”, but also compared
this phenomenon with discontinuous shock solutions which we now understand to be described,
in modern language, by weak solutions of inviscid fluid equations.

Walls or solid boundaries are certainly required for anomalous dissipation of momentum by
weak solutions of Euler or Navier-Stokes, because these equations in the flow interior express
nothing other than local conservation of the linear momentum, in the form

ou
a-&-V~T—O7 (1.1)

with the stress tensor pT;; representing flux in the ith coordinate direction of the conserved jth
component of momentum pu;, for mass density p and fluid velocity u. This stress tensor for
incompressible Navier-Stokes may be taken in the form

T=uu+pl —vVu (1.2)

with p = P/p the kinematic pressure and v = 7/p the kinematic viscosity. The stress tensor is the
ultimate vehicle of transmission of momentum to the wall, via its normal component

n-T=pn—vou/on (1.3)

1We do not follow the fashion of referring to Onsager’s result on energy conservation for Holder exponent h > 1/3 as the
“Onsager conjecture”, and we shall instead refer to it as the “Onsager theorem.” Onsager did not state this result in his
published 1949 paper (5) as a conjecture, but instead he claimed that “it is possible to show that” and he had, in fact, the
outlines of a rigorous proof (6; 7). The idea further suggested by Onsager (5) that energy should be dissipated for some Euler
solutions with Holder exponent h < 1/3 is, however, legitimately referred to as the “Onsager conjecture”. For a review of the
important recent progress on that latter problem by “convex integration” methods, see (8; 9).
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which produces both viscous drag due to the Newtonian wall stress and form drag due to the
pressure distribution, acting as sinks of momentum.

In addition, however, a spatial cascade is required which transfers momentum via ideal
nonlinear interactions through an “inertial sublayer” in order to maintain the necessary supply
from the flow interior, in close analogy with the cascade of kinetic energy through the “inertial
subrange” in fluid turbulence away from walls (17). The aim of the present short paper is to
discuss this momentum cascade in wall-bounded turbulence using the same methods which have
been previously applied to analyze anomalous dissipation of kinetic energy in such wall-bounded
flows (1; 2; 3; 4). To be concrete, we shall consider the specific example of pressure-driven flows
through pipes and channels. In this brief summary we shall focus mainly on the essential ideas
and on the physical motivation of the mathematical approach, with full details and rigorous
analysis provided in a longer paper (18). The conclusion of the analysis is that certain specific
types of discontinuity of the velocity at the wall are required for a strict momentum anomaly, in
agreement with the early insight of Taylor (15) and with similar conclusions for kinetic energy
anomaly (1; 2; 3; 4). In fact, we shall see that even a “weak anomaly” in momentum conservation
requires a less than smooth approach of the streamwise velocity to zero as the distance to the wall
is decreased through the inertial sublayer, in analogy also to energy dissipation (19; 20). We obtain
in this manner a version of Prandtl’s relation between the Blasius drag law f(Re) ~ Re™ /4 and a
(1/7)th power-law approach of the streamwise velocity to zero ((21; 22), and see also (23), pp.599-
600), but now rigorously valid for individual flow realizations without ensemble averaging. At
asymptotically large Reynolds numbers, we can similarly show that the von Karman-Prandtl drag
law requires a logarithmically slow approach of the streamwise velocity to zero at the wall (18).

The theoretical analysis of Onsager (5; 6; 7) is best understood physically as an application
of the “principle of renormalization group invariance” (24), as we have previously explained
for turbulence away from walls (25). This same interpretation holds also for wall-bounded
turbulence, although the mode-elimination must now involve not only filtering out small-scale
eddies but also windowing out near-wall eddies. This form of coarse-graining produces the
usual turbulent “subgrid” stress but in addition an “inertial drag force” which models the
influence of the ignored near-wall eddies. This elimination scheme therefore offers hope for a new
systematic approach to large-eddy simulation of wall-bounded turbulent flows, which we shall
briefly discuss. An iterative application of such a renormalization group scheme seems natural to
investigate conjectured universality in wall-bounded turbulence, such as Townsend’s similarity
hypothesis on rough walls (26), with elimination and rescaling performed in successive steps as
in Wilsonian renormalization group (RG). We discuss briefly also these wider possibilities.

2. Formulation of the Problem

We begin with a concise summary of the empirical evidence on the Reynolds-scaling of the
friction factor in turbulent pipes and channels, obtained from both laboratory experiments and
numerical simulations. First, however, an important distinction must be made between walls
which are “smooth” or “rough” in the hydraulic sense and in the mathematical sense, since
the meanings are quite different. No physical wall can ever be specularly smooth but must
always have some slight irregularities or corrugations with height £ and the wall is considered
“hydraulically rough” if the dimenionless height (roughness Reynolds number) ky = urk/v is
at least order unity. Here u; is the “friction velocity”, which measures the flux of momentum
through the “inertial sublayer” (17). It is defined in the channel by pu? = ~vH, where v = —0p/0x
is the mean streamwise pressure-gradient and H is the channel half-width, and in the circular
pipe by 2pu? = yH with H the pipe radius. Note that a “hydraulically rough” wall can be either
smooth or rough/singular in the mathematical sense, since a wall surface would be considered
“hydraulically rough” if its height profile were given either by a smooth sinusoidal profile
h(x) = ksinz or by a non-differentiable sawtooth function h(x) = 2k|x — |«]| (where |z] is the
nearest integer to ) if k4 2 1. When we refer below to “smooth” or to “rough” walls, we shall
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always use these terms with the hydrodynamic interpretation and not in the mathematical sense
of differentiable manifold versus more singular surface.

The friction factor may be defined by f(Re, k/H):=~H/ % pUZ, where U is the mean
streamwise velocity averaged over the cross-sectional area of the pipe or channel, and its limit
at high Reynolds numbers Re =U(2H)/v > 1 depends very crucially on the wall roughness.
It is only for rough walls that there is a strict “dissipative anomaly”, with f(Re, k/H) tending
to a constant value f«(k/H) as Re — oo, as indicated both by experiments (27; 28; 29) and
simulations (30). By contrast, smooth-wall pipe flow may be idealized by taking k =0 and it is
observed that f(Re) — 0 as Re — oo (31; 32; 33; 34; 35; 36). Roughly, the laminar value f ~ 32/Re
is observed for Re < 102, followed by the Blasius law f ~ cRe~ % for 10° < Re <10%, and then
the von Karmén-Prandtl law (37; 38) given implicitly by \/Lf =alog(Rey/f) + b for Re > 10°,
with suitable constants a, b, c. In fact, the above summary only roughly states the most common
interpretation of the observations and there are many refinements and alternative proposals. In
particular, there is an old idea of Prandtl and others that the drag may be power-law f(Re) ~
Re™P with an exponent p(Re) that tends slowly to 0 as Re — oo; for example, see (23), Ch.XXa for
the classical literature and (39; 40) for a modern reincarnation. Despite intense ongoing discussion
of the details, the observations support unequivocally the fact that f(Re) decays much slower
than the laminar rate 1/Re as Re — oo. Following the terminology introduced for kinetic energy
dissipation (19; 20), we may refer to this sublaminar decay as a “weak dissipative anomaly”, in
contrast to the strong dissipative anomaly with a non-vanishing limit that is observed for rough
walls.

The dynamical consequences of these anomalies can be most easily understood by an
examination of the global momentum balance. We consider as the simplest situation a channel
flow in domain {2 which is periodic both in the streamwise direction z € [-L, L] and in the
spanwise direction z € [-W, W] and with the vertical coordinate y constrained to lie between
two surfaces y = H_(x,z) and y = Hy (z, z), where H4 (z, z) are smooth functions that satisfy
the conditions |H+(z, z) F H| < k to model hydraulically rough walls. The governing equation is
incompressible Navier-Stokes

Ou

E—&—V-[uu—kaI—l/Vu]:O, V- -u=0, (2.1)
where the total pressure is given by pr =p — vya with p(x,¢) periodic in z and z and with ~
an applied pressure gradient constant in space and time. The corresponding global momentum
balance is easily derived formally Zas

t
J u(t)dv — J u(0) dV :J dsj (an - ua—“) dA 4 ~|02|tx 2.2)
Q Q 0o Jon on

where the boundary 002 = 0024 U 002_ withd024+ = {(z, H+ (2, 2),2): x € [-L, L], z € [-W, W]},
n is the unit normal vector at the boundary pointing inward to the fluid, |{2| is the volume of the
domain, and X is a unit vector in the streamwise direction. Denoting the velocity components as
u = (u, v, w), the quantity appearing in the streamwise momentum balance

H ou
Tw 1= pﬁ Lm (—an;v + l/a—n> dA (2.3)

represents the instantaneous wall stress, whose long-time average in the steady-state equals vH
and thus counters the applied pressure head.

Rigorously, the only solutions of (2.1) known to exist globally in time are the Leray weak solutions (41) and the momentum
balance in the global sense (2.2) seems to have never been proved for such solutions! The difficulty is that weak solutions
must be smeared with test functions supported in the interior of the domain 2 and thus such solutions know a priori nothing
about the boundary. Regularity is lacking to apply existing trace theorems to deduce boundary values for Leray solutions.
(We thank Vlad Vicol and Theo Drivas for discussions of this point.) It is possible that the mathematical gap is not purely
technical and the global balance (2.2) does not hold for all Leray solutions. The situation could be similar to that for kinetic
energy balance, where energy dissipation anomalies might occur at finite Re if Leray singularities exist (12)
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Note that for k < H, |2| ~ A(2H) with A ~ (2W)(2L) the area of a single face of the wall and
thus Ty is an area average of two contributions, the “form drag” from pressure-asymmetry on
the roughness elements and the “viscous drag” from the Newtonian stress. The friction factor
may then be written in terms of its long-time average as f(Re,k/H) =Tw/ % pU?. For smooth
walls with k=0 the wall drag is purely viscous and the “weak anomaly” which is observed
empirically implies that the vertical derivatives of streamwise velocity, du/dy, must diverge at
the wall as Re — oo, for otherwise f(Re) = O(1/Re) if those derivatives remain smooth. This is
in addition to any divergences of velocity-gradients in the flow interior that are required by the
slowly vanishing energy dissipation there (20). In the case of rough walls, the viscous drag is
observed to vanish slowly, just as for smooth walls, so that the asymptotic drag f«(k/H) is due
entirely to the form drag on the roughness elements in the limit (30). The non-vanishing drag with
rough walls thus has the same origin as the non-vanishing drag for flow past finite solid bodies
and analogous flow phenomena are observed near the roughness elements, such as separating
boundary layers and pressure-asymmetry (30; 42; 43). As recently shown (44) (also (45)), the
associated form drag must in fact be due to a flux of spanwise vorticity across the streamwise
flow. Although the viscous drag becomes negligible in the limit, it is again observed to vanish
more slowly than 1/Re so that the wall-normal derivatives 0u/0n must diverge as Re — co.

These divergences of velocity-gradients at the wall, as well as the additional divergences in the
interior, can be described as an “ultraviolet catastrophe”. They imply that a naive interpretation
of the fluid equations (2.1) as partial differential equations is no longer possible when Re — co.
As in quantum field theory and critical phenomena, the development of a valid dynamical
description in that limit requires a regularization of these divergences (24). Regularizing by a
suitable “coarse-graining” operation, the resulting regularized dynamics in fact corresponds to
what in mathematics is called a weak formulation of the fluid equations: see (46), section 2 or
(25). In this formulation, one may pass to the limit Re — co and, under physically reasonable
assumptions consistent with observations, the limits (along suitable subsequences) exist and are
described as weak Euler solutions (47), in agreement with the ideas of Taylor and Onsager. In the
following section we explain in physical terms the regularization that has been employed in the
recent mathematical literature on wall-bounded flows (1; 2; 3; 4) and explore its consequences.

3. Onsager RG Approach and Inertial Drag Force

To regularize divergences of gradients in the interior, a spatial coarse-graining/low-pass
filtering / mollifying operator may be applied to the velocity field by convolving it with a smooth
filter kernel Gy(r) = £73G(r/¢), denoted @1, = G * u, which corresponds to ignoring eddies of
size < £ (11; 25; 48). It is convenient to assume that the filter kernel G is supported in a ball of
radius 1. It then follows that the definition of @, (x, t) makes sense for points x € {2 with distance
at least ¢ from the boundary 02. To eliminate also the divergences of the velocity-gradients at
the wall and to obtain a well-defined coarse-grained velocity, one must also smoothly “window
out” eddies at distances < h to the wall, with h > ¢. This is accomplished by taking a smooth
windowing function 7y, ¢(0) with the properties that

0 6<h
Uh,e(5)={ 1 5>ht 3.1

and 7y, ¢(J) monotone increasing on the interval [k, h + £]. See (2), footnote #4 for a mathematical
recipe to construct such a function and note that its kth-derivative can be estimated as Hn,(fl? loo =
o™h). Finally, one defines for all x € (2

Uy (%, 1) = ng p(d(x))0p(x,t) (3.2)

where d(x) is a suitable “distance function” which measures the distance of x € 2 to the
boundary. There is considerable freedom in the choice of this function. In the current mathematics
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literature (1; 2; 3; 4), the function d : 2 — RY has been defined by

d(x) = ylenan |x —yl. (3.3)
With this definition Vd(x)=n(yx):=n(x), where n(y) is the inward-pointing unit normal
vector at a point y € 912 and yx € 012 is the point at which the infimum in (3.3) is achieved for
each x € (2. See (1). However, other choices of distance function might be more useful for some
purposes, e.g. d(x) = min{|y — H|, |y + H|} could be useful in an iterative RG analysis of a rough-
wall channel flow in order to establish universal statistics in the “inertial sublayer”. A similar
type of “time windowing” was employed in the recent RG analysis of Lagrangian spontaneous
stochasticity (49), where it corresponds to ignoring non-universal initial times of the particle
position histories. The coarse-grained velocity defined by (3.2) may be described picturesquely
as the fluid velocity seen by an observer who is myopic and who also has tunnel vision, with
parameter ¢ characterizing the blurriness of their eyesight and h their loss of peripheral vision.
With this definition, it is then straightforward to derive from (2.1) the following regularized
dynamical equation:

ouy,,
ot

+ V| Tep(u,u) + g0 5 + pepl — Vﬁl,h} =fon +7e,n% (3-4)
where the turbulent (or subgrid) stress may be defined as usual by

Tg,p(u,u) = (Uu); , — Uy 14 (3.5)

and, in addition, a new inertial drag force appears associated to the eliminated near-wall eddies:

£ = Ve - Te = p(d(x)) n(x) - [(ﬁ)e B uvm} (36)

and which represents momentum-exchange with those unresolved eddies. Note that this force is
dominated by inertial dynamics only for Re >> 1 at fixed ¢, h, when the final viscous contribution
becomes negligible, but that latter term must be retained if /, h are permitted to be Re-dependent,
as we allow below. Mathematically, the regularized equation (3.4) when considered for all possible
choices of h > £ is equivalent to the standard weak formulation of the incompressible Navier-
Stokes equation (see (41), Ch. V.1.2).

One important potential application of the regularized equations (3.4) is to provide the basis
for a large-eddy simulation (LES) of wall-bounded flows. The proper modelling of walls and solid
boundaries is currently considered one of the most pressing problems in making LES a practical
engineering tool (50). In this context, both the subgrid stress 7, ;, and the inertial drag force fy ,
must be modelled. If length-scale £ is chosen in the inertial sub-range and distance h is chosen in
the inertial sublayer, then one can expect that these quantities have universal statistical properties
independent of the small-scale dissipation and of the detailed properties of the wall. In addition,
however, another quantity must be modelled which appears in the coarse-grained mass balance:

V-t =064 (3.7)
which we call the inertial mass source
Go,n =1 0 (d(x))n(x) - 0. (3.8)

This quantity measures the mass-exchange with the unresolved near-wall eddies and it is non-
vanishing only for h < d(x) < h + £. The windowing operation has thus introduced effective
“compressibility”, which causes some slight complications for mathematical analysis and for
numerical solution. In particular, the Poisson equation for coarse-grained pressure becomes

7Aﬁg7h = at&&h +VV: [ﬁgﬁﬁ&h, + ?g,h — Vﬁg,h] —-V- fh,g (3.9)

which involves derivatives of all three modelled quantities but which can yield the resolved
pressure by applying standard Poisson solvers.
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The regularized equation (3.4) involves two arbitrary lengths ¢ and h and, as well, three
arbitrary functions G, n, and d. The “principle of renormalization group invariance” is that
no objective physics can depend upon these arbitrary quantities introduced for the purpose of
regularization (24; 25). The present example is a case of a several-parameter renormalization
group involving changes of the entire regularization scheme, which was encountered already in
quantum field theory (51; 52; 53) and which has been applied since to PDE’s, including boundary-
value problems (54; 55). A key idea in RG methods is that the arbitrariness in the regularization
parameters may be exploited by choosing them in some optimal way to deduce non-trivial
consequences. We shall describe one application of that principle in the following section.

4. Continuity at the Wall and Bounds on the Friction Factor

The core of Onsager’s original argument for a 1/3 Hoélder singularity of ideal Euler solutions
was a rigorous upper bound on energy flux in terms of velocity increments (5; 6; 7), which was
developed and improved in subsequent works (10; 11; 12; 13). An analogous result was obtained
also for Navier-Stokes solutions at finite Re in (20), where a power-law bound on viscous energy
dissipation of the form e/(ul,s/L) < CRe~(3h=1D/(1+h) was obtained from the assumption of
Holder-type regularity with exponent i uniform in the Reynolds number Re. It follows from this
bound that even a “weak dissipative anomaly” requires quasi-singularities, or loss of uniform
regularity of the Navier-Stokes solutions. The estimate in (20) was obtained by an RG-type
argument, considering the balance equation for unresolved kinetic energy ky = (1/2)tr(7,) and
then optimizing the bound with respect to the arbitrary regularization scale . This optimization
required a balance of the energy flux and the resolved viscous dissipation, which selected an
optimal length scale £« ~ LRe™ /(1) that coincides with the Kolmogorov length for h =1/3.

We wish to obtain a similar bound on the friction factor f(Re) in turbulent channel flow by
an analogous argument based on the momentum balance equation of the unresolved eddies,
associated with their velocity field

uz,h =u-—u . (4.1)
The corresponding momentum balance is easily obtained by subtracting (2.1) and (3.4)

aulé,h / / ~
5% TV (uu)p, ¢ + (prI—vVu), o | = —fp e+ (1 —npe)r% (4.2)

Here we have defined in general Akh =A— gl,h and we note that, on the boundary 042,
Ale, n, = A. Specializing to the smooth wall case for simplicity, we then obtain the global balance
of streamwise momentum of the unresolved eddies by integrating over the spacetime domain:

1) 1 JT 1 J ou 1JT 1 J -
Tw = | At | vemdA=—— |t fitgdv
p " T)o 1092]Jan on Ty 102 o, pon ™"

171 , , .
T {W JQ(UW(T) _"h”f(o))dv} MIPT Jﬂw(l — 1he)dV 4.3)

Here we have defined 25, ={(z,y,2) € 2: y>H —hory <h — H} which is the set of points
within distance h of 3f2 and we have noted that the inertial drag force f}, 4 is nonzero only in the
layer £2;,4 ¢\ {2, of thickness £.

The dominant balance in (4.3) is between the two terms in the first line, when h, ¢ < H. In fact,

the final term from the applied pressure gradient is of order O(~y(h + ¢)) and the other term in

= o
the second line from the time-derivative is O % % with 0 =1/3 when /£ is chosen in the

inertial range at wall distance h and even smaller at those h, £ where the velocity field is smooth.
The main term in (4.3) from the inertial drag force has two contributions that follow from

fin=nen) [@e - u%‘] (4.4)
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The magnitude of these two contributions depends upon the scaling properties of two flow
quantities (u)p, ¢, 7, (wv)p ¢, defined by the following averaging operation

T
7| ad
0

1
(A)pe1 =

N av 4.5)
|2h20\ 21—l J(Q;L+2[\Q}L—Z)

which represents a space L' (£2),42¢\(2),_)-norm of the time-average over interval (0, T'). Note
that the slab (§2;,4,\2;,) which supports the inertial drag force has been thickened by ¢, because
the quantities that appear in (4.4) are smeared over that length-scale. Here (u), ¢ 7, (u)n ¢ 1
appear like typical quantities in the statistical theory of wall-bounded turbulence, a mean
streamwise velocity and a Reynolds stress. However, it should be kept in mind that in our
argument the limit 7" — oo is not required but only sufficiently large 7" is needed, so that they
are properties of an individual solution, not an ensemble.

To illustrate the scaling hypotheses that we employ, we consider first the intermediate
Reynolds numbers 10% < Re < 10° where the Blasius drag law is observed. We assume that with
n,m € (0,1/3)

(W n,e,r < AU (%) m, (4.6)
m—+n
(w)p 0 < BU? (%) (4.7)

These inequalities express the possible rate of approach of the streamwise velocity u and the
velocity product uv to their value 0 at the boundary, so that m, n may be interpreted as Holder-
type exponents of the boundary continuity. Since (A)p ¢ 7 < | AllL1 (2, 0\ 24)x(0,7))> We could
substitute the latter L'-norm in the above hypotheses, but we expect that bounds with the
averaging operation are sharper. As a matter of fact, the relations (4.6), (4.7) are expected to hold
at least for large T" as near equalities with m ~n ~1/7, which we shall verify with numerical
channel-flow data below. The power-law profile for the mean velocity (u(y)) ~ U (y/H )1/ 7 has
been known since the study of Nikuradse (31) to hold for pipe flow over nearly the entire radius,
in the Reynolds range 103 SReS 10° (with a possible slow decrease of m with Re) and, in fact,
we require the bounds (4.6),(4.7) only for averages in the slab (2}, 9;\ {2;,_; and not over the entire
height of the channel.

Using (4.3),(4.4),(4.6),(4.7), it is relatively straightforward to obtain an estimate on the friction
factor averaged over times 0 < ¢ < T', of the form

m m—+n
T ._ (m1 5o v (h (R
=y /2pU _AUK T +B T 4.8)
with appropriate constants A’, B’ that depend upon A, B in (4.6),(4.7) and functions G, 7, d. For
full details, see (18). Care must be taken to optimize these constants to obtain the tightest bound,

since the scaling assumptions are valid over only a finite range of Re. Further optimizing with
respect to the length scales h and ¢ yields optimal values £« o h+« and

hy = cx HRe /(4 4.9)
for some constant c«, yielding our final upper bound
1) < ¢ Re=(mHm)/(4n) (4.10)

1f f(7) ~ CRe™P over the range 103 < Re < 10° and if the constant C” is not much greater than C,

then we can rigorously infer from (4.10) that Tj:;;

which gives n < 1/7 for p=1/4. If, in fact, m = n and p = 2n/(1 + n), then since f o (ur/U)?, it

< p. In particular, if m =n, thenn <p/(2 — p),

10000000 v 008 "H "SUBL] “lud Bio-BuiysigndAiaroosiesor-els)



= £ o 40023
¢ 86902
‘ﬂf — ¢y
£ Y.
‘({4 - _y+
100 0 2
10 10
Y+
c)
—e—DNS 1.6 —e—DNS
0.52 - - -A(hH) 0.1364 s - - -B(h/H) 0.2310
> 0.5
= <14
=.0.48 =
= s13
T 0.46 G
1.2
0.44
2 4 6 8 2 4 6 8
Re x10% Re x10%

Figure 1. Channel-flow DNS data of Moser et al. (56), Del Alamo et al. (57), Hoyas et al. (58) and the JHTDB
database (59).(a) Mean streamwise velocity profile, in wall units; (b) Friction factor f(Re) vs. Re; (c) Mean streamwise
velocity and (d) mean Reynolds stress at hi =12 vs. Re. The red dashed lines in (b)-(d) are power-law fits.

follows that Re, := “cH — CRe/ (1) and thus (4.9) is equivalent to
he = v/ur (4.11)

for some constant c}. This should not be surprising, since our mathematical optimization
corresponds to balancing the contributions from the Reynolds stress and the viscous stress in
the inertial drag force (4.4) and this is the standard definition of the “buffer layer”, which occurs
conventionally around h ~ 12v /ur (17).

To illustrate that our hypothesized bounds (4.6),(4.7) are realistic, even as near equalities, we
show data taken from a compilation of several numerical channel flow simulations (56; 57; 58; 59),
to cover a range of Reynolds numbers Re =2HU /v = 13755 — 86902 (Rer = 395 — 2000). See
Figure 1. These mean data all correspond to the limit 7" — oo in our analysis. We see in panel
(a) that the 1/7 power-law is a good fit to the mean streamwise velocity profile over most
of the channel width, except in the viscous sublayer where uy ~ y. Best fits reveal, in fact,
that the power m is slowly decreasing with Re. Panel (b) shows that the drag law is Blasius-
like, but with an exponent somewhat smaller than 1/4. The plots in panels (c),(d) show that
our hypotheses (4.6),(4.7) are reasonable if one takes h =12v/u,, with both mean streamwise
velocity and Reynolds stress exhibiting near power laws. From the best-fit exponents we find
that (m +n)/(1 + n)=0.211 which may be compared with p=0.2347. The agreement is very
reasonable given that the simulations considered use different codes and numerical resolutions
and have somewhat different aspect ratios. It would obviously be better to have data from several
runs of a single numerical scheme over a span of Reynolds numbers.

Because our results are closely related to those of Prandtl (21; 22; 23), we must briefly compare
both our methods and our conclusions. In what is now standard practice (33), Prandtl very simply
obtained the drag law by averaging the mean streamwise velocity profile in the form

(u(y)) = Aury',  y+ =ury/v (4.12)
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from y4 = 0 to y+ = Hy = Rer, to obtain the relation U /ur = ARe}" /(m + 1). As a consequence,
(u(y)) = (m + 1)U (y/H)™ (4.13)

which is a version of our first scaling hypothesis (4.6). Furthermore, Re:=U(2H)/v=
2ARe™ ! /(m + 1) and this yields the drag law

o (YT z_ —2m/(14+m) o f(m+1
f._Z(U) — CRe . C=8 (4.14)

2/(m+1)
)
No explicit use is made of momentum balance in Prandtl’s argument. However, the mean
momentum balance in its standard form (17)

— (V') 4+ vo(u) /0y = u2 (1 — %) =u? y<H (4.15)

implies that in the buffer layer with y« = 12v/u,
— (V') = (1/2)u <« U? Re;?™ o U2 (y« /H)*™ (4.16)

which is a version of our second scaling hypothesis (4.7) with n =m.

The difference between our result (4.10) and the traditional one of Prandtl (4.14) is that our
result is valid (as an inequality) for individual flow realizations, without taking a limit 7" — co.
In addition, our scaling hypotheses (4.6),(4.7) need hold only as inequalities and only over the
thin slab (2, 42,\(2;,_¢ near the wall, whereas Prandtl required strict power-law profiles over
nearly the entire extent of the pipe or channel. It is interesting, incidentally, that recent precision
measurements on pipe flow (60) show that the Blasius -1/4 law holds with quite high accuracy up
to Re =7 x 10* and then, in agreement with earlier studies (61), some sort of structural transition
occurs at this Reynolds number. It is worth checking whether the 1/7th power-law profile holds
also in pipe-flow to high precision for the intermediate range of Reynolds numbers. An alternative
explanation exists for the Blasius law in terms of the “spectral link” which connects it with the
scaling of the Kolmogorov dissipation velocity (62; 63; 64) but it is not yet clear how to derive such
a result from our analysis. At asymptotically high Reynolds numbers, the von Karman-Prandtl
logarithmic drag law appears to be well-satisfied (32; 33; 34; 35; 36). Our arguments again apply
and now imply that a logarithmically slow approach of streamwise velocity to 0 at the wall is
required (18).

5. Conclusions

In this paper we have outlined the application of Onsager’s RG-type arguments to turbulent pipe
and channel flow, focusing mainly on the case of hydraullically smooth walls. As a first concrete
result we have derived a deterministic version of Prandtl’s relation between power-law scaling of
wall friction and power-law profiles of mean streamwise velocity, but now interpreted in terms
of continuity properties of velocity fields at the wall.

The results concerning power-laws in this short survey apply physically only to an
intermediate range 10% < Re <10°, but it is worth speculating briefly about the limit Re — cc.
Based upon the von Karman-Prandtl theory (37; 38) one can expect that the limiting Euler solution
for the case of a smooth wall is simple plug flow, with a uniform velocity profile and zero
wall friction. This is also the recent conclusion of Cantwell (65) who argues that the asymptotic
velocity must be “plug flow with a vanishingly thin viscous wall layer”, in agreement with the
discontinuity at the wall suggested by Taylor (15). To obtain a less trivial limiting Euler solution
with a strict dissipative anomaly (non-vanishing drag) one must consider pipe and channel flow
with hydraullically rough walls or, alternatively, flow past a finite solid body. These two classes
of flows are very similar, with limiting dissipative anomaly due to form drag from asymmetric
pressure distributions and associated spanwise vorticity flux across the streamwise flow (44).

The coarse-graining employed here, with two length-scales h and ¢, can be the basis also for
an iterative RG treatment. Just as the subgrid stress 7 scaled with energy flux rate € and integral
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length L is expected to have universal statistical properties in the turbulent inertial range, so
too the inertial drag force fj, 4 scaled with friction velocity u, and distance y to the wall can be
expected to exhibit universal statistics in the inertial sublayer of wall-bounded turbulence. These
are both prime problems for investigation by Wilson-type RG methods.
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