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Abstract
The overall aims were to 1) ascertain which genes encoding for monooxygenases (from methanotrophs,
ammonia oxidizing bacteria and toluene/phenol oxidizers) and other key enzymes are present in soil
microcosms and 2) determine which phylotypes are associated with those genes. The approach involved a
predictive tool called PICRUSt2 and 16S rRNA gene amplicon datasets from two previous soil
microcosm studies. The following targets from the KEGG database were examined: pmo/amo, mmo,
dmp/pox/tomA, tmo/tbu/tou, bssABC (and downstream genes), ftod, xyIM, xylA, gst, dhaA, catE, dbfAl,
dbfA42 and phenol 2-monooxygenase.

A large number of phylotypes were associated with pmo/amo, while mmo was linked to only five.
Several phylotypes were associated with both pmo/amo and mmo. The most dominant microorganism
predicted for mmoX was Mycobacterium (also predicted for pmo/amo). A large number of phylotypes
were associated with all six genes from the dmp/pox/tomA KEGG group. The taxonomic associations
predicted for the tmo/tbu/tou KEGG group were more limited. In both datasets, Geobacter was a key
phylotype for benzylsuccinate synthase. The dioxygenase-mediated toluene degradation pathway encoded
by todC1C2BA was largely absent, as were the genes (xy/M, xylA) encoding for xylene monooxygenase.
All other genes investigated were predicted to be present and were associated with a number of
microorganisms. Overall, the analysis predicted the genes encoding for sMMO (mmo),
T3MO/T3MO/ToMO (tmo/tbu/tou) and benzylsuccinate synthase (bssABC) are present for a limited
number of phylotypes compared to those encoding for pMMO/AMO (pmo/amo) and phenol
monooxygenase/T2MO (dmp/poxA/tomA).

Keywords: PICRUSt2, monooxygenases, methanotrophs, toluene oxidation.
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1. Introduction

Cometabolic oxidation involves the fortuitous oxidation of chemicals often by monooxygenases or
dioxygenases (Horvath 1972; Wackett 1996). These enzymes are induced by growth substrates, such as
methane, propane or toluene. During the oxidation process, oxygenases introduce one or two oxygen
atoms, leading to metabolites which can then be further mineralized (Karigar and Rao 2011). Cometabolic
oxidation can therefore be a detoxifying process for environmental contaminants such as trichloroethene
(TCE) (Dolinova et al. 2017; Eguchi et al. 2001; Pfiffner et al. 1997; Semrini et al. 1991; Shao et al.
2019; Sutfin and Ramey 1997) or 1,4-dioxane (Mahendra et al. 2013). A number of oxygenases and
microorganisms have been associated with this detoxification process. Knowledge on these
microorganisms and their associated genes has the potential to enhance our understanding of the removal
of the chlorinated solvents and other organic contaminants. Towards this goal, the current work applied a
predictive tool called PICRUSt2 (Phylogenetic Investigation of Communities by Reconstruction of
Unobserved States) (Douglas et al. 2020) to determine the occurrence of such genes (from the KEGG
database, (Kanehisa 2002)) in soil communities. The following provides background on the biological

markers examined.

The cometabolism of many environmental contaminants has frequently been associated with the
methanotrophs. Methanotrophs use methane as a sole carbon and energy source, and are the only
biological sink of methane. These organisms also play a critical role in the global carbon cycle because
methane is an important greenhouse gas (IPCC 2007). Methanotrophs contain methane monooxygenase
(MMO), which catalyzes the oxidation of methane to methanol. MMO exists in two forms, a soluble
cytoplasmic form (sMMO) and a particulate membrane-associated form (pMMO) (Jiang et al. 2011).
While pMMO has been found in all methanotrophs, except for the genera Methylocella (Theisen et al.
2005) and Methyloferula (Vorobev et al. 2011), sSMMO is present in fewer strains (Murrell et al. 2000).

sMMO contains a hydroxylase with an (afy). structure, a regulatory protein and a reductase (Jiang et al.
2011). The genes encoding SMMO in Methylococcus capsulatus Bath (Csaki et al. 2003; Stainthorpe et
al. 1990; Stainthorpe et al. 1989) and Methylosinus trichosporium OB3b (Cardy et al. 1991a; Cardy et al.
1991b) have been determined. They are found in a six-gene operon (mmoXYBZDC), which encodes the a,
B, and y subunits of the hydroxylase (mmoXYZ), the reductase (mmoC) and a regulatory or coupling
protein (mmoB) (Jiang et al. 2011). MMOD is a regulatory element to repress expression of sMMO (Kim
et al. 2019; Koo and Rosenzweig 2021; Merkx and Lippard 2002; Sazinsky et al. 2004; Semrau et al.
2013).
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pPMMO consists of three subunits encoded by the pmoCAB operon (Koo and Rosenzweig 2021). pMMO
shares various similarities with ammonia monooxygenase (AMO), found in ammonia-oxidizing bacteria
(AOB) (Holme et al. 1995). The enzymes typically contain three subunits (for pMMO: PmoA, PmoB,
PmoC; for AMO: AmoA, AmoB, AmoC) (Wendeborn 2020). The substrate profile of pMMO is more
limited compared to sMMO, including only methane, short linear hydrocarbons and TCE (Jiang et al.
2011). The substrate range for sMMO includes alkanes, alkenes, alicyclic hydrocarbons, halogenated
aliphatics, monoaromatics, diaromatics and substituted methane derivatives (Jiang et al. 2011). For
example, the SMMO in Methylosinus trichosporium OB3b was associated with the degradation of
numerous chlorinated aliphatics as well as 1,4-dioxane (Mahendra and Alvarez-Cohen 2006; Oldenhuis et

al. 1989).

AOB are capable of cometabolic TCE transformation via AMO (Alpaslan Kocamemi and Cecen 2007).
Aerobic nitrification is an important nitrogen cycling process in many natural and engineered systems.
The first step involves the oxidation of ammonia to hydroxylamine by the membrane-bound protein AMO
(Hooper et al. 1997). The degradation of TCE and other halogenated hydrocarbons has been extensively
studied in Nitrosomonas europaea (Arciero et al. 1989; Rasche et al. 1991; Vannelli et al. 1990). The
KEGG database (Kanehisa 2002) places the genes for pMMO and AMO together (pmo/amo) and

therefore the current analysis targeted both sets of genes simultaneously.

Other aerobic bacteria capable of cometabolic TCE oxidation include toluene oxidizers (Chang and
Alvarez-Cohen 1995; Fries et al. 1997; Guo et al. 2001; Sun et al. 1997). For example, Burkholderia
vietnamiensis G4 (formerly Pseudomonas cepacia; Burkholderia cepacia) oxidized TCE when induced
on toluene or phenol (Nelson et al. 1987). TCE removal was associated with toluene 2-monooxygenase
(T2MO) (Folsom et al. 1990; Nelson et al. 1986; Newman and Wackett 1997; Shields et al. 1995). T2MO
is encoded by the operon fomA012345 (Shields and Francesconi 1996) which is a three-component
enzyme consisting of a hydroxylase (fomA41A43A44) a NADH oxidoreductase (tomAJ5), and a protein
(tomA2) involved in electron transfer between the hydroxylase and reductase (Canada et al. 2002;
Newman and Wackett 1995). In B. vietnamiensis G4, the toluene degradation genes are located on a large,
self-transmissible plasmid (Parales et al. 2008; Shields and Francesconi 1996; Shields et al. 1995). T2MO
also catalyzes the oxidation of o-cresol, dichloroethylenes, phenol, chloroform, 1,4-dioxane, aliphatic
ethers, and diethyl sulfide (Hur et al. 1997; Mahendra and Alvarez-Cohen 2006; Parales et al. 2008; Shim
and Wood 2000). The KEGG database (Kanehisa 2002) places the genes encoding for T2MO in a group
with those encoding for phenol monooxygenases, which have been found in Ralstonia eutropha strain E2

(poxABCDEF) (Hino et al. 1998) and Pseudomonas sp. CF600 (dmpKLMNOP) (Nordlund et al. 1990).
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As the current analysis utilized the KEGG database (Kanehisa 2002), it targeted all three sets of genes

simultaneously.

TCE degradation by Ralstonia (formerly Pseudomonas) pickettii PKOT1 has been attributed to toluene 3-
monooxygenase (T3MO) (Leahy et al. 1996; Olsen et al. 1994), with sequence analysis of the T3MO-
encoding region illustrating six structural genes, tbud1UBVA2C (Byrne et al. 1995). Substrates for T3MO
include toluene, benzene, ethylbenzene, o-xylene, m-xylene, and p-xylene, alkenes, TCE, 1,4-dioxane,
nitrobenzene and N-nitrosodimethylamine (Haigler and Spain 1991; Leahy et al. 1996; Mahendra and
Alvarez-Cohen 2006; McClay et al. 2000; Olsen et al. 1997; Parales et al. 2008; Sharp et al. 2005). A
comparison of the deduced amino acid sequences revealed significant overall homology to peptides from
the toluene 4-monooxygenase (T4MO) from Pseudomonas mendocina KR1 (Byrne et al. 1995). The
genes encoding T4MO involve a cluster of five genes, tmoABCDE (Yen et al. 1991). TAMO has been
associated with the oxidation of alkenes, N-nitrosodimethylamine, various polycyclic aromatic substrates,
TCE, chloroform, 1,4-dioxane and substituted benzenes (Mahendra and Alvarez-Cohen 2006; McClay et
al. 1996; McClay et al. 2000; Oppenheim et al. 2001; Parales et al. 2008; Pikus et al. 1997; Sharp et al.
2005; Winter et al. 1989). Recently, researchers provided evidence that a toluene monooxygenase in
Azoarcus sp.DD4, encoded by the tmoABCDEF gene cluster, was the key enzyme for the cometabolism
of dioxane, 1,1-DCE and cDCE (Deng et al. 2020; Li et al. 2021).

Another toluene degrading monooxygenase (toluene/o-xylene monooxygenase, ToMQO) was identified in
P. stutzeri OX1 and is similar to T4AMO, although the enzyme is not regiospecific and has no clear
preference for the position of oxidation on the toluene ring (Parales et al. 2008). ToMO contains a three-
component hydroxylase (encoded by foudBE) a NADH-ferredoxin oxidoreductase (foufF’), a mediating
protein (fouD), and a Rieske-type ferredoxin (from touC) (Bertoni et al. 1998; Ryoo et al. 2001). ToMO
has a broad substrate range including o-xylene, m-xylene, p-xylene, toluene, benzene, ethylbenzene,
styrene, and naphthalene (Bertoni et al. 1996), TCE, chloroform, and 1,1-dichloroethylene (Chauhan et al.
1998; Shim and Wood 2000) and tetrachloroethene (Ryoo et al. 2000). The gene order and the deduced
amino acid sequences of ToMO are similar to those of T3MO and T4MO (Chauhan et al. 1998). The
KEGG database (Kanehisa 2002) places the genes encoding for T3MO, T4MO and ToMO in one group,

thus, the current analysis targeted all three sets of genes simultaneously.

Additional genes targeted in the current study include the dioxygenase-mediated toluene degradation
pathway in Pseudomonas putida F1, encoded by todC1C2BA (Parales et al. 2008; Zylstra and Gibson
1989; Zylstra et al. 1988) as well as fodD and todE (for the next steps in the toluene degradation pathway)
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(Gibson et al. 1970; Klecka and Gibson 1981). The genes (xy/M, xpl4) encoding for another toluene
degrading enzyme, xylene monooxygenase, a two-component enzyme consisting of XyIM and XylA
(Shaw and Harayama 1995; Suzuki et al. 1991) were also examined here. In addition to the genes
discussed above, a number of other genes associated with the biodegradation of environmental
contaminants were also investigated, including benzylsuccinate synthase, glutathione S-transferase,
haloalkane dehalogenase, catechol 2,3-dioxygenase, dibenzofuran dioxygenase and phenol 2-

monooxygenase.

The objective of this study was to apply a predictive tool, PICRUSt2 (Phylogenetic Investigation of
Communities by Reconstruction of Unobserved States) (Douglas et al. 2020) to 1) ascertain which genes
encoding for monooxygenases (from methanotrophs, ammonia oxidizing bacteria and toluene/phenol
oxidizers) and other enzymes are present in soil communities and 2) determine the phylotypes associated
with those genes. The analysis involved an examination of 16S rRNA amplicon gene data from two
previous studies (Thelusmond et al. 2018; Thelusmond et al. 2016). An overall hypothesis was that
phylotypes less typically associated with these functional genes would be identified. Also, we
hypothesized that some genes would be associated with a larger number phylotypes compared to others.
The data in the current study provides novel insights as to the potential occurrence of these functional

genes and their associated phylotypes in soil microbial communities.

2. Methods

2.1. Soil Communities

High throughput sequencing datasets (16S rRNA gene amplicon, [llumina MiSeq) from two previous
studies involving different agricultural soils (Thelusmond et al. 2018; Thelusmond et al. 2016) were
examined in the current study using PICRUSt2 (Douglas et al. 2020). PICRUSt2 was developed recently
to predict the functional potential of a bacterial community based on marker gene sequencing profiles.
The two previous studies investigated the biodegradation of Carbamazepine (CBZ), Diclofenac and
Triclocarban in soil microcosms. Details on sample collection, DNA extraction and high throughput
sequencing were previously described (Thelusmond et al. 2018; Thelusmond et al. 2016). Briefly, in one
study (herein called the CBZ Study), two agricultural soils (herein soils 1 and 2) were amended with
different concentrations (0, 50 ng/g, 500 ng/g, 5000 ng/g) of CBZ. Soil microcosms were either kept
aerobic or were purged with oxygen-free nitrogen and sealed with septa and crimps (herein called
saturated). Soil characteristics in both studies were determined by A & L Great Lakes Laboratories, Inc.
(Fort Wayne, IN). Soil 1 was a loamy sand at pH 7.6 and 1.5 % organic matter. Soil 2 was a sandy loam
at pH 6.7 and 8% organic matter. DNA was extracted after 14 days of incubation with CBZ (Thelusmond
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et al. 2016). In the other study (herein called the Multiple Chemicals Study) another set of agricultural
soils were amended with CBZ, Diclofenac or Triclocarban and DNA was extracted following different
incubation periods (called the samples). Additionally, soils were treated in the same manner except no
chemicals were added (called the controls). The study included two sandy loam soils (herein soils A, B)
and one loamy sand soil (herein soil C). Soil pH values were 6.9 for soils A and B and 6.6 for soil C. The
soil organic matter values were 2.8%, 2.4% and 1.4% for soils A, B, and C, respectively (Thelusmond et

al. 2018).

2.2. R Packages

Data analyses and the generation of all figures were achieved using the following R packages in R
(version 4.0.4) (R Core Team 2018) within RStudio (version 1.1.456) (RStudio Team 2020): microbiome
(version 1.10.0) (Lahti and Shetty 2017), phyloseq (version 1.32.0) (McMurdie and Holmes 2013),
ampvis2 (version 2.6.5) (Andersen et al. 2018), ggplot2 (version 3.3.2) (Wickham 2016), ggpubr (version
0.4.0) (Kassambara 2020), colourpicker (version 1.1.0.9000) (Attali 2021), readxl (version 1.3.1)
(Wickham and Bryan 2019), rstatix (version 0.7.0) (Kassambara 2021), forcats (version 0.5.1) (Wickham
2021a), data.table (version 1.14.0) (Dowle and Srinivasan 2021), dplyr (version 1.0.6) (Wickham et al.
2021), patchwork (version 1.1.1) (Pedersen 2020), tidyr (version 1.1.3) (Wickham 2021b), randomcoloR
(version 1.1.0.1) (Ammar 2019), RColorBrewer (version 1.1-2) (Neuwirth 2014), circlize (version 0.4.13)
(Gu et al. 2014) and tidyverse (version 1.3.1) (Wickham et al. 2019). The R package versions and

citations are not shown in the following text to improve clarity.

2.3. Most Abundant Phylotypes

In the current work, the amplicon sequencing data in the fastq file format was re-analyzed with Mothur
(version 1.44.2) (Schloss 2009) using the MiSeq Standard Operating Procedure (Kozich et al. 2013). The
procedure included trimming the raw sequences and quality control. The database used for alignment was
SILVA bacteria database (Release 138) for the V4 region (Pruesse et al. 2007). Chimeras, mitochondrial
and chloroplast lineage sequences were removed. Two mothur generated files (shared file and taxonomy
file) were combined with a metadata file using the package microbiome. Phyloseq was used to determine
relative abundance values and ampvis2 was used to generate the heatmaps illustrating the most abundant
phylotypes for each set of samples. For all figures, the R package patchwork combined plots, combined

legends (when appropriate) and created letter annotations.
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2.4. PICRUSt2 and R Analysis

PICRUSt2 (Douglas et al. 2020) was used to analyze Mothur generated files on the High Performance
Computing Cluster (HPCC) at Michigan State University (MSU). PICRUSt2 was applied with EPA-NG
(Barbera et al. 2019) and gappa (Czech et al. 2020) for phylogenetic placement of reads, castor (Louca
and Doebeli 2018) for hidden state prediction and MinPath (Ye and Doak 2009) for pathway inference.
The PICRUSt2 generated files were examined for the presence of genes and phylotypes associated with
each of the following genes from the KEGG database (Kanehisa 2002): pmoA/amoA (K10944),
pmoB/amoB (K10945), pmoC/amoC (K10946), mmoX (K16157), mmoY (K16158), mmoZ (K16159),
mmoB (K16160), mmoC (K16161), mmoD (K16162), dmpK/poxA/tomA0 (K16249), dmpL/poxB/tomAl
(K16243), dmpM/poxC/tomA2 (K16244), dmpN/poxD/tomA3 (K16242), dmpO/poxE/tomA4 (K16245),
dmpP/poxF/tomAS (K16246), tmoA/tbuAdl/toud (K15760), tmoB/tbuU/touB (K15761), tmoC/tbuB/touC
(K15762), tmoD/tbuV/touD K15763), tmoE/tbud2/toul (K15764), tmoF/tbuC/touF (K15765),
benzylsuccinate synthase (BSS) (bssABC) (K07540), bbsA (K07549), bbsB (K07550), bbsC (K07547),
bbsD (K07548), bbsE (K07543), bbsF (K07544), bbsG (K07545), bbsH (K07546), todC1 (K03268),
todC2 (K16268), todB (K18089), todA (K18090), todD (K16269), todE (K16270 ), xyIM (K15757), xylA
(K15758), gst (K00799), dhaAd (K01563), catE (K07104), dbfA1 (K14599), dbf42 (K14600) and phenol
2-monooxygenase (K03380).

The analysis was performed using R (version 4.0.4) (R Core Team 2018) with RStudio (version 1.1.456)
(RStudio Team 2020) and a number of R packages. RStudio on the HPCC at MSU was used to generate a
file that contained which genes and phylotypes were present using the PICRUSt2 output file

pred metagenome contrib.tsv (unzipped). The approach involved combining this file with 1) a file
containing gene numbers and descriptions and 2) a taxonomy file (from Mothur), using the R packages
data.table, dplyr, tidyr, ggplot2 and patchwork. Chord diagrams to illustrate the relationships between
phylotypes and genes were created with the chordDiagram function in the R package circlize. One or two
genes (pmoA/amoA, mmoX, dmpK/poxA/tomAQ, bssABC, tmoA/tbudl/toud, gst, dhad, catE, dbfAl, dbfA2
and phenol 2-monooxygenase) were selected for the creation of bar charts illustrating the dominant

phylotypes, faceted (in ggplot2) for different treatments and soils for each study.

3. Results

Heatmaps of the most abundant phylotypes were generated (Figure 1) to enable a comparison to those
associated with the functional genes (as discussed below). For the CBZ Study, the most abundant
included an unclassified phylotype within the family Methylophilaceae, Subgroup 6 (Acidobacteria), an

uncultured Bacteroidetes, and an uncultured Gemmatimonadetes (Figure 1A). The Methylophilaceae
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phylotype appeared particularly impacted by CBZ. Methylophilaceae are methylotrophs capable of
utilizing methanol or methylamine (but not methane) as a sole source of carbon and energy (Doronina et
al. 2014). In the Multiple Chemicals Study, Subgroup 6 (Acidobacteria) was dominant in soils A and B
(but not C) (Figure 1B). Instead, Sphingomonas and an uncultured Proteobacteria were particularly
dominant across all treatments in soil C. From these abundant microorganisms, only Sphingomonas was

associated with the genes investigated (see below, dibenzofuran dioxygenase).

The pmo/amo KEGG group was predicted for a large num ber of microorganisms in both studies (Figure
2). Further, all three genes (pmoA/amoA, pmoB/amoB, pmoA/amoC) were detected for every phylotype.
Focusing on pmoA/amoA alone, the most dominant phylotypes of the CBZ Study included unclassified
Beijerinckiaceae (order Rhizobiales), unclassified Methylomonaceae (Methylococcales), MND1
(Betaproteobacteriales), Nitrosomonas (Betaproteobacteriales) and Nitrospira (Nitrospirales) (Figure
3A). In soil 2, Methylobacter (Methylococcales) was also dominant and MND1 was less important (Figure
3A). In the Multiple Chemicals Study, Nitrosomonas and Nitrospira were dominant in soils A and C,

respectively, with others being present at lower levels (Figure 3B).

The genes encoding for sMMO were present in only four phylotypes in the CBZ Study (Figure 4A) and
two phylotypes in the Multiple Chemicals Study (Figure 4B). Two phylotypes (unclassified
Gammaproteobacteria, unclassified Methylomonaceae) were associated with all six subunits (in red,
Figure 4A). For each study, two phylotypes were associated with five subunits (all except mmoD),
Mycobacterium (both studies), unclassified Corynebacteriales (CBZ Study only) and unclassified
Actinobacteria (Multiple Chemicals Study). However, as stated above, MMOD is not necessary for
sMMO function. Focusing only on mmoX, Mycobacterium was the most dominant microorganism linked

with this gene in both studies (Figure 5).

Considering both sets of genes encoding for MMO (sMMO and pMMO), for the CBZ Study, all four
phylotypes (unclassified Gammaproteobacteria, unclassified Methylomonaceae, unclassified
Corynebacteriales and Mycobacterium) detected for mmo were also detected for pmo/amo. For the
Multiple Chemicals Study, both phylotypes (unclassified Actinobacteria and Mycobacterium) associated

with mmo were also associated with pmo/amo.

A large number of microorganisms were associated with all six genes from the dmp/pox/tomA KEGG
group in both datasets (Figure 6A and B). In the CBZ Study (Figure 6A), the majority classified within

the families Burkholderiaceae (Massilia, Burkholderiaceae unclass, Polaromonas, Burkholderia.
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Caballeronia.Paraburkholderia, Hydrogenophaga, Cupriavidus), Rhodocyclaceae (unclassified
Rhodocyclaceae, Dechloromonas, Ferribacterium, Uliginosibacterium) and Nitrosomonadaceae (1S-44,
mlel-7, unclassified Nitrosomonadaceae). A few phylotypes belonged to other families (in parenthesis):
A21b ge (A21b), TRA3-20 ge (TRA3-20), SC-1-84_ge (SC-1-84), Pseudomonas (Pseudomonadaceae) and
Acinetobacter (Moraxellaceae). Also, many phylotypes were unclassified (uncultured, unclassified
Betaproteobacteriales, unclassified Bacteria, unclassified Proteobacteria, unclassified
Gammaproteobacteria). All of the above families, except the unclassified, Pseudomonadaceae

(Pseudomonadales) and Moraxellaceae (Pseudomonadales), are within the order Betaproteobacteriales.

Many of the same phylotypes were predicted for all six genes from the dmp/pox/tomA KEGG group in the
Multiple Chemicals Study (Figure 6B). The majority classified within the families Burkholderiaceae
(Burkholderia. Caballeronia. Paraburkholderia, unclassified Burkholderiaceae, Hydrogenophaga,
Massilia, Cupriavidus), Rhodocyclaceae (unclassified Rhodocyclaceae, Dechloromonas, Thauera) and
Nitrosomonadaceae (MND 1, unclassified Nitrosomonadaceae, mlel-7). A few belonged to other families
(in parenthesis): A21b_ge (A21b), SC-1-84_ge (SC-1-84), TRA3-20_ge (TRA3-20), Pseudomonas
(Pseudomonadaceae). Further, some were unclassified (unclassified Betaproteobacteriales, uncultured,
unclassified Gammaproteobacteria). Again, all of the above families, except the unclassified and

Pseudomonadaceae (Pseudomonadales), are within the order Betaproteobacteriales.

To determine the importance of each phylotype for each soil and set of conditions, a more detailed
analysis was performed for the phylogenetic associations of dmpK/poxA/tomAQ (Figure 7). In soil 1,
under both aerobic and saturated conditions, unclassified Betaproteobacteria, unclassified
Burkholderiaceae, Hydrogenophaga, Massilia and Polaromonas were particularly important (Figure 7A),
whereas unclassified Burkholderiaceae, unclassified Rhodocyclaceae and Massilia were the dominant
phylotypes for soil 2 (Figure 7A). For the Multiple Chemicals Study,

Burkholderia.Caballeronia. Paraburkholderia, TRA3-20_ge and Massilia were important for soil A,
unclassified Betaproteobacteria was dominant for soil B, whereas TRA3-20 ge and uncultured was
important for soil C (Figure 7B). The trends were similar between the aerobic and saturated (Figure 7A)

and between the samples and controls (Figure 7B).

The taxonomic associations for the tmo/tbu/tou KEGG group were more limited compared to the
dmp/pox/tomA KEGG group. For the CBZ Study, although 39 phylotypes were predicted for one or more
of the genes, only four (Nevskia, Rhodococcus, unclassified Corynebacteriales and unclassified

Nocardiaceae) were associated with all six genes (Figure 8 A). Three of these classify within
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Actinobacteria (Corynebacteriales) and Nevskia classifies within the Gammaproteobacteria
(Salinisphaerales). For the Multiple Chemicals Study, 32 phylotypes contained one or more of the genes
and only three (Rhodococcus, Labrys and Burkholderia. Caballeronia. Paraburkholderia) were predicted
to contain all six (Figure 8B). Rhodococcus, Labrys and Burkholderia. Caballeronia. Paraburkholderia

classify within Actinobacteria, Alphaproteobacteria and Gammaproteobacteria, respectively.

A large number of phylotypes were associated with one or more of the following genes in both studies,
bssABC, bbsA, bbsB, bbsC, bbsD, bbsE, bbsF, bbsG or bbsH (Figure 9). In the CBZ Study, only
Geobacter, unclassified Geobacteraceae and unclassified Desulfuromonadales were associated with all
and unclassified Syntrophaceae, Syntrophus and Smithella were associated with benzylsuccinate synthase
(Figure 9A). In the Multiple Chemical Study, only Geobacter was associated with benzylsuccinate
synthase or with all genes (Figure 9B).

Focusing on tmoA only, from the phylotypes associated with all six genes, Rhodococcus and Nevskia
were dominant in the CBZ Study (Figure 10A). However, Nevskia was present at low levels in soil 2
under saturated conditions. Further, unclassified Corynebacteriales and unclassified Nocardiaceae were
present only at low levels for the majority of the treatments. In the Multiple Chemicals Study,
Rhodococcus was important only in soils A (control and samples) and B (samples only) and Labrys was
important only in soil A (control and samples) (Figure 10B).

Burkholderia. Caballeronia. Paraburkholderia was only important in soil C samples (Figure 10B). A
similar analysis for benzylsuccinate synthase (BSS) demonstrated the importance of Geobacter in all
datasets (Figure 10C and 10D). Unclassified Syntrophaceae, Syntrophus and Smithella were only strongly

associated with benzylsuccinate synthase in soil 2 under aerobic conditions (Figure 10C).

The supplementary section illustrates the phylotypes associated with glutathione S-transferase (Figure
S1), haloalkane dehalogenase (Figure S2), catechol 2,3-dioxygenase (Figure S3),

dibenzofuran dioxygenase (Figure S4) and phenol 2-monooxygenase (Figure S5). Unclassified
Sphingomonadaceae and unclassified Myxococcales were the dominant phylotypes associated with both
glutathione S-transferase and haloalkane dehalogenase (Figures S1 and S2). Microvirga, unclassified
Xanthobacteraceae and unclassified Solirubrobacteraceae were important for catechol 2,3-dioxygenase
(Figure S3). Unclassified Sphingomonadaceae and Sphingomonas were key phylotypes for
dibenzofuran dioxygenase (Figure S4). Finally, unclassified Micrococcaceae, unclassified
Microbacteriaceae, unclassified Xanthobacteraceae and Nitrobacter were dominant phylotypes for

phenol 2-monooxygenase (Figure S5).
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The dioxygenase-mediated toluene degradation pathway in Pseudomonas putida F1, encoded by the
todCI1C2BA genes (Parales et al. 2008; Zylstra and Gibson 1989; Zylstra et al. 1988), was absent in all
samples, except for a small number of predictions for fodB which was associated with Sphingobium in the
CBZ Study samples. The genes (fodD, todE) that encode for the next steps in the toluene degradation
pathway (Gibson et al. 1970; Klecka and Gibson 1981) were also absent in all samples (except for one
prediction for todE associated with Mycobacterium). The genes (xyIM, xylA) encoding for another toluene
degrading enzyme, xylene monooxygenase, a two-component enzyme consisting of XyIM and XylA

(Shaw and Harayama 1995; Suzuki et al. 1991), were also absent in both datasets in the current study.

4. Discussion

The current analysis generated novel data for the genes and phylotypes potentially linked to contaminant
biodegradation in the soil communities. As noted by the developers of PICRUSt2, there are two criticisms
of this approach; the data are biased toward existing reference genomes and amplicon-based predictions
cannot provide resolution to distinguish strain-specific functionality (Douglas et al. 2020). Nevertheless,
the approach provides a platform for other studies to examine the functional abilities of microbial
communities without the expense of shotgun sequencing. The results generated are valuable for

hypotheses development towards future research.

Aerobic methanotrophs have been found within the Gammaproteobacteria, Alphaproteobacteria and
Verrucomicrobia (Knief 2015; Koo and Rosenzweig 2021). Here, no phylotypes classifying with the
Verrucomicrobia were detected for either sMMO or pMMO. In the current study, both sMMO and
pMMO were present in all datasets. The genes encoding sMMO were associated with fewer phylotypes
compared to pMMO. These results are consistent with the literature illustrating the presence of sSMMO in

fewer methanotrophs compared to pMMO (Murrell et al. 2000).

Mycobacterium was the dominant phylotype associated with the genes encoding for sMMO. This finding
is supported by previous research that identified a sSMMO-like enzyme in two Mycobacterium strains
(NBB3 and NBB4) (Martin et al. 2014). Also, an NCBI BLAST search by the authors (1000 max. target
sequences) with the MULTISPECIES: methane monooxygenase component A alpha chain (Sequence ID:
WP _003609337.1) resulted in numerous alignments to sequences from the genus Mycobacterium. In the
CBZ Study, unclassified Methylomonaceae (Methylococcales, Gammaproteobacteria) was also
associated with the genes encoding for sMMO. Consistent with this, a DNA-based stable isotope probing

study reported predominantly active methanotrophs belonged to Methylomonaceae (Kauppera et al.
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2021). Other researchers found methane oxidizers within the order Methylococcales were composed of
bacteria belonging to the family Methylomonaceae (Broman et al. 2020). Another report found
Methylomonaceae had the highest average relative abundance of bacterial cDNA transcripts during
drought in two restored fens (Unger et al. 2021). The other two phylotypes associated with mmo
(unclassified Corynebacteriales and unclassified Actinobacteria) represent the order and phylum of the
genus Mycobacterium. Other genera associated with SMMO, such as Methylosinus and Methylococcus,

were not predicted to be important in the soils of the current study.

The pmo/amo KEGG group was associated with an unclassified member of the Beijerinckiaceae, a family
known to contain methanotrophs (Knief 2015). In the CBZ Study, in soil 2, Methylobacter
(Methylococcales) was a key phylotype for the pmo/amo KEGG group. Others reported that three
methanotroph genomes from the genus Methylobacter represented the most abundant methanotrophs
across the wetland (Smith et al. 2018). The authors concluded that Methylobacter may represent
important mediators of methane fluxes in freshwater saturated sediments and soils worldwide (Smith et
al. 2018). Interestingly, in the current work this phylotype was only predicted to be important for the
pmo/amo KEGG group in one of five soils.

A notable finding was that there were several phylotypes associated with both mmo and pmo/amo
datasets. For the CBZ Study, the four phylotypes (unclassified Gammaproteobacteria, unclassified
Methylomonaceae, unclassified Corynebacteriales and Mycobacterium) associated with mmo were also
detected for pmo/amo. For the Multiple Chemicals Study, the two phylotypes (unclassified Actinobacteria
and Mycobacterium) associated with mmo were also associated with pmo/amo. These results again
emphasize the potential importance of Mycobacterium and unclassified Methylomonaceae for methane

oxidation and contaminant biodegradation.

Here, the ammonia oxidizing phylotypes associated with the pmo/amo KEGG group included MND1,
Nitrosomonas and Nitrosospira. AOB are found within the Betaproteobacteria (genera Nitrosomonas,
Nitrosospira) and Gammaproteobacteria (genus Nitrosococcus), with terrestrial AOB generally being
restricted to the Befaproteobacteria (Norton 2011). Nitrosomonas and Nitrosospira were key phylotypes
for pmoA/amoA in soil A and C, respectively in the Multiple Chemicals Study. MNDI was abundant in
soil 1 of the CBZ Study under aerobic conditions for pmoA/amoA. MNDI belongs to the family
Nitrosomonadaceae and it was previously reported that all cultivated representatives of the

Nitrosomonadaceae are lithoautotrophic ammonia oxidizers (Prosser et al. 2014).
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The current analysis predicted the importance of phylotypes primarily in the families Burkholderiaceae,
Rhodocyclaceae and Nitrosomonadaceae for the six genes from the dmp/pox/tomA KEGG group.
Consistent with these results, an NCBI BLAST performed on the complete sequence of Burkholderia
cepacia G4 toluene ortho-monooxygenase operon (accession number AF349675.1) generated matches
primarily within the family Burkholderiaceae. Further both, Burkholderia vietnamiensis G4 (containing
tomA012345) (Parales et al. 2008; Shields and Francesconi 1996; Shields et al. 1995) and Ralstonia
eutropha strain E2 (containing poxABCDEF) (Hino et al. 1998) classify within the Burkholderiaceae. The
prediction of Pseudomonas for these genes in both studies is consistent with previous reports of
dmpKLMNOP in Pseudomonas sp. CF600 (Nordlund et al. 1990). The current research introduces the
possibility that phylotypes within Burkholderiaceae, Pseudomonadaceae, Rhodocyclaceae and
Nitrosomonadaceae and a small number of other families may be associated with these genes in

agricultural soils.

Here, Rhodococcus, Nevskia and Labrys were primarily associated with the six genes from the
tmo/tbu/tou KEGG group. Consistent with these results, open reading frames in Rhodococcus sp. strain
ADAS5 illustrated high sequence similarity with the imoABCDEF gene cluster encoding the toluene 4-
monooxygenase of Pseudomonas mendocina KR1 (van Hylckama Vlieg et al. 2000). Further, an NCBI
BLAST search with TmoA from Thaurea sp. 17 (ENO79309) resulted in a 75% identity match to an
aromatic/alkene/methane monooxygenase hydroxylase/oxygenase subunit alpha (WP_029920984.1) in

Nevskia soli, as well as matches to several Burkholderia and Paraburkholderia sequences.

The BSS-based toluene pathway, first identified in the genera Thauera and Azoarcus, was previously
reported to be a common mechanism for anaerobic toluene degradation by phylogenetically diverse
organisms (Chakraborty and Coates 2004; Parales et al. 2008; Spormann and Widdel 2000; Widdel and
Rabus 2001). The first step is the addition of toluene to the double bond of fumarate to form
benzylsuccinate by benzylsuccinate synthase (BssABC) (Leuthner et al. 1998). The next steps are
catalyzed by BbsEF, BbsG, BbsH, BbsCD and BbsAB to convert benzylsuccinate to benzoyl-CoA
(Leuthner and Heider 2000). In the CBZ study, six phylotypes (Geobacter, unclassified Geobacteraceae,
unclassified Desulfuromonadales, unclassified Syntrophaceae, Syntrophus, Smithella) were predicted to
be associated with benzylsuccinate synthase. Consistent with these results, toluene degradation has been
reported for Geobacter toluenoxydans (Kunapuli et al. 2010), G. metallireducens GS-15 and G. grbiciae
TACP-2 (Coates et al. 2001; Lovley et al. 1993). Further, using time-resolved RNA stable isotope
probing and RT-qPCR, researchers reported that organisms within the family Syntrophaceae appeared to

play an important role in toluene metabolism (Fowler et al. 2014). The family Syntrophaceae contains
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four genera Syntrophus, Smithella, Desulfobacca, and Desulfomonile (Kuever 2014). In the Multiple

Chemicals Study, only Geobacter was associated with benzylsuccinate synthase.

5. Conclusions

PICRUSt2 was utilized to investigate the occurrence of genes associated with contaminant biodegradation
from methanotrophs, ammonia oxidizing bacteria and toluene/phenol oxidizers. From these, genes
encoding for sMMO (mmo), T34MO/T3MO/ToMO (tmo/tbu/tou) and benzylsuccinate synthase (bssABC)
were detected for a limited number of phylotypes. In contrast, the genes encoding for pMMO/AMO
(pmo/amo) and phenol monooxygenase/T2MO (dmp/poxA/tomA) were detected for a larger number of
phylotypes, suggesting their occurrence may be more widespread in soil communities. Unclassified
Methylomonaceae was linked to both pmo/amo as well as mmo, indicating this family may have a key
role in methane oxidation in soil communities. Mycobacterium and Geobacter were particularly dominant
for sMMO and benzylsuccinate synthase respectively, however, additional data are needed to confirm
these findings. This work offers a platform to study the potential functional capabilities of microbial
communities. Future research could focus on how these trends differ between environmental samples

(such as contaminated soil, sediment or groundwater) or site conditions (such as pH, redox potential).
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