1	
2	
3	Predicting the Occurrence of Genes Relevant to Contaminant Biodegradation and Their Associated
4	Phylotypes in Soil Microcosms
5	
6	
7	
8	Alison M. Cupples* and Jean-Rene Thelusmond
9	
10	
11	
12	
13	
14	Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan,
15	USA
16	*Corresponding Author:
17	Alison M. Cupples
18	A135, 1449 Engineering Research Court, Michigan State University, East Lansing, MI 48824,
19	cupplesa@egr.msu.edu
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	

35	Abstract				
36	The overall aims were to 1) ascertain which genes encoding for monooxygenases (from methanotrophs,				
37	ammonia oxidizing bacteria and toluene/phenol oxidizers) and other key enzymes are present in soil				
38	microcosms and 2) determine which phylotypes are associated with those genes. The approach involved a				
39	predictive tool called PICRUSt2 and 16S rRNA gene amplicon datasets from two previous soil				
40	microcosm studies. The following targets from the KEGG database were examined: pmo/amo, mmo,				
41	dmp/pox/tomA, tmo/tbu/tou, bssABC (and downstream genes), tod, xylM, xylA, gst, dhaA, catE, dbfA1,				
42	dbfA2 and phenol 2-monooxygenase.				
43	A large number of phylotypes were associated with pmo/amo, while mmo was linked to only five.				
44	Several phylotypes were associated with both pmo/amo and mmo. The most dominant microorganism				
45	predicted for mmoX was Mycobacterium (also predicted for pmo/amo). A large number of phylotypes				
46	were associated with all six genes from the dmp/pox/tomA KEGG group. The taxonomic associations				
47	predicted for the tmo/tbu/tou KEGG group were more limited. In both datasets, Geobacter was a key				
48	phylotype for benzylsuccinate synthase. The dioxygenase-mediated toluene degradation pathway encoded				
49	by todC1C2BA was largely absent, as were the genes (xylM, xylA) encoding for xylene monooxygenase.				
50	All other genes investigated were predicted to be present and were associated with a number of				
51	microorganisms. Overall, the analysis predicted the genes encoding for sMMO (mmo),				
52	T3MO/T3MO/ToMO (tmo/tbu/tou) and benzylsuccinate synthase (bssABC) are present for a limited				
53	number of phylotypes compared to those encoding for pMMO/AMO (pmo/amo) and phenol				
54	monooxygenase/T2MO (dmp/poxA/tomA).				
55					
56	Keywords: PICRUSt2, monooxygenases, methanotrophs, toluene oxidation.				
57					
58					
59					
60					
61					
62					
63					
64					
65					
66					
67					
68					

1. Introduction

69

70 Cometabolic oxidation involves the fortuitous oxidation of chemicals often by monooxygenases or 71 dioxygenases (Horvath 1972; Wackett 1996). These enzymes are induced by growth substrates, such as 72 methane, propane or toluene. During the oxidation process, oxygenases introduce one or two oxygen 73 atoms, leading to metabolites which can then be further mineralized (Karigar and Rao 2011). Cometabolic 74 oxidation can therefore be a detoxifying process for environmental contaminants such as trichloroethene (TCE) (Dolinova et al. 2017; Eguchi et al. 2001; Pfiffner et al. 1997; Semrini et al. 1991; Shao et al. 75 76 2019; Sutfin and Ramey 1997) or 1,4-dioxane (Mahendra et al. 2013). A number of oxygenases and 77 microorganisms have been associated with this detoxification process. Knowledge on these 78 microorganisms and their associated genes has the potential to enhance our understanding of the removal 79 of the chlorinated solvents and other organic contaminants. Towards this goal, the current work applied a 80 predictive tool called PICRUSt2 (Phylogenetic Investigation of Communities by Reconstruction of 81 Unobserved States) (Douglas et al. 2020) to determine the occurrence of such genes (from the KEGG 82 database, (Kanehisa 2002)) in soil communities. The following provides background on the biological 83 markers examined. 84 85 The cometabolism of many environmental contaminants has frequently been associated with the 86 methanotrophs. Methanotrophs use methane as a sole carbon and energy source, and are the only 87 biological sink of methane. These organisms also play a critical role in the global carbon cycle because 88 methane is an important greenhouse gas (IPCC 2007). Methanotrophs contain methane monooxygenase 89 (MMO), which catalyzes the oxidation of methane to methanol. MMO exists in two forms, a soluble cytoplasmic form (sMMO) and a particulate membrane-associated form (pMMO) (Jiang et al. 2011). 90 While pMMO has been found in all methanotrophs, except for the genera *Methylocella* (Theisen et al. 91 92 2005) and Methyloferula (Vorobev et al. 2011), sMMO is present in fewer strains (Murrell et al. 2000). 94

93

95

96 97

98

99 100 sMMO contains a hydroxylase with an $(\alpha\beta\gamma)_2$ structure, a regulatory protein and a reductase (Jiang et al. 2011). The genes encoding sMMO in Methylococcus capsulatus Bath (Csaki et al. 2003; Stainthorpe et al. 1990; Stainthorpe et al. 1989) and Methylosinus trichosporium OB3b (Cardy et al. 1991a; Cardy et al. 1991b) have been determined. They are found in a six-gene operon (mmoXYBZDC), which encodes the α , β , and γ subunits of the hydroxylase (mmoXYZ), the reductase (mmoC) and a regulatory or coupling protein (mmoB) (Jiang et al. 2011). MMOD is a regulatory element to repress expression of sMMO (Kim et al. 2019; Koo and Rosenzweig 2021; Merkx and Lippard 2002; Sazinsky et al. 2004; Semrau et al. 2013).

103 pMMO consists of three subunits encoded by the pmoCAB operon (Koo and Rosenzweig 2021), pMMO 104 shares various similarities with ammonia monooxygenase (AMO), found in ammonia-oxidizing bacteria 105 (AOB) (Holme et al. 1995). The enzymes typically contain three subunits (for pMMO: PmoA, PmoB, PmoC; for AMO: AmoA, AmoB, AmoC) (Wendeborn 2020). The substrate profile of pMMO is more 106 107 limited compared to sMMO, including only methane, short linear hydrocarbons and TCE (Jiang et al. 108 2011). The substrate range for sMMO includes alkanes, alkenes, alicyclic hydrocarbons, halogenated 109 aliphatics, monoaromatics, diaromatics and substituted methane derivatives (Jiang et al. 2011). For example, the sMMO in Methylosinus trichosporium OB3b was associated with the degradation of 110 111 numerous chlorinated aliphatics as well as 1,4-dioxane (Mahendra and Alvarez-Cohen 2006; Oldenhuis et 112 al. 1989). 113 114 AOB are capable of cometabolic TCE transformation via AMO (Alpaslan Kocamemi and Cecen 2007). Aerobic nitrification is an important nitrogen cycling process in many natural and engineered systems. 115 116 The first step involves the oxidation of ammonia to hydroxylamine by the membrane-bound protein AMO (Hooper et al. 1997). The degradation of TCE and other halogenated hydrocarbons has been extensively 117 studied in Nitrosomonas europaea (Arciero et al. 1989; Rasche et al. 1991; Vannelli et al. 1990). The 118 KEGG database (Kanehisa 2002) places the genes for pMMO and AMO together (pmo/amo) and 119 120 therefore the current analysis targeted both sets of genes simultaneously. 121 122 Other aerobic bacteria capable of cometabolic TCE oxidation include toluene oxidizers (Chang and 123 Alvarez-Cohen 1995; Fries et al. 1997; Guo et al. 2001; Sun et al. 1997). For example, Burkholderia 124 vietnamiensis G4 (formerly Pseudomonas cepacia; Burkholderia cepacia) oxidized TCE when induced 125 on toluene or phenol (Nelson et al. 1987). TCE removal was associated with toluene 2-monooxygenase (T2MO) (Folsom et al. 1990; Nelson et al. 1986; Newman and Wackett 1997; Shields et al. 1995). T2MO 126 127 is encoded by the operon tomA012345 (Shields and Francesconi 1996) which is a three-component 128 enzyme consisting of a hydroxylase (tomA1A3A4) a NADH oxidoreductase (tomA5), and a protein 129 (tomA2) involved in electron transfer between the hydroxylase and reductase (Canada et al. 2002; 130 Newman and Wackett 1995). In B. vietnamiensis G4, the toluene degradation genes are located on a large, self-transmissible plasmid (Parales et al. 2008; Shields and Francesconi 1996; Shields et al. 1995). T2MO 131 132 also catalyzes the oxidation of o-cresol, dichloroethylenes, phenol, chloroform, 1,4-dioxane, aliphatic ethers, and diethyl sulfide (Hur et al. 1997; Mahendra and Alvarez-Cohen 2006; Parales et al. 2008; Shim 133 and Wood 2000). The KEGG database (Kanehisa 2002) places the genes encoding for T2MO in a group 134 135 with those encoding for phenol monoxygenases, which have been found in *Ralstonia eutropha* strain E2 136 (poxABCDEF) (Hino et al. 1998) and Pseudomonas sp. CF600 (dmpKLMNOP) (Nordlund et al. 1990).

137	As the current analysis utilized the KEGG database (Kanehisa 2002), it targeted all three sets of genes			
138	simultaneously.			
139				
140	TCE degradation by Ralstonia (formerly Pseudomonas) pickettii PKO1 has been attributed to toluene 3-			
141	monooxygenase (T3MO) (Leahy et al. 1996; Olsen et al. 1994), with sequence analysis of the T3MO-			
142	encoding region illustrating six structural genes, tbuA1UBVA2C (Byrne et al. 1995). Substrates for T3MC			
143	include toluene, benzene, ethylbenzene, o-xylene, m-xylene, and p-xylene, alkenes, TCE, 1,4-dioxane,			
144	nitrobenzene and N-nitrosodimethylamine (Haigler and Spain 1991; Leahy et al. 1996; Mahendra and			
145	Alvarez-Cohen 2006; McClay et al. 2000; Olsen et al. 1997; Parales et al. 2008; Sharp et al. 2005). A			
146	comparison of the deduced amino acid sequences revealed significant overall homology to peptides from			
147	the toluene 4-monooxygenase (T4MO) from <i>Pseudomonas mendocina</i> KR1 (Byrne et al. 1995). The			
148	genes encoding T4MO involve a cluster of five genes, tmoABCDE (Yen et al. 1991). T4MO has been			
149	associated with the oxidation of alkenes, N-nitrosodimethylamine, various polycyclic aromatic substrates,			
150	TCE, chloroform, 1,4-dioxane and substituted benzenes (Mahendra and Alvarez-Cohen 2006; McClay et			
151	al. 1996; McClay et al. 2000; Oppenheim et al. 2001; Parales et al. 2008; Pikus et al. 1997; Sharp et al.			
152	2005; Winter et al. 1989). Recently, researchers provided evidence that a toluene monooxygenase in			
153	Azoarcus sp.DD4, encoded by the tmoABCDEF gene cluster, was the key enzyme for the cometabolism			
154	of dioxane, 1,1-DCE and cDCE (Deng et al. 2020; Li et al. 2021).			
155				
156	Another toluene degrading monooxygenase (toluene/o-xylene monooxygenase, ToMO) was identified in			
157	P. stutzeri OX1 and is similar to T4MO, although the enzyme is not regiospecific and has no clear			
158	preference for the position of oxidation on the toluene ring (Parales et al. 2008). ToMO contains a three-			
159	component hydroxylase (encoded by touABE) a NADH-ferredoxin oxidoreductase (touF), a mediating			
160	protein (touD), and a Rieske-type ferredoxin (from touC) (Bertoni et al. 1998; Ryoo et al. 2001). ToMO			
161	has a broad substrate range including o-xylene, m-xylene, p-xylene, toluene, benzene, ethylbenzene,			
162	styrene, and naphthalene (Bertoni et al. 1996), TCE, chloroform, and 1,1-dichloroethylene (Chauhan et al.			
163	1998; Shim and Wood 2000) and tetrachloroethene (Ryoo et al. 2000). The gene order and the deduced			
164	amino acid sequences of ToMO are similar to those of T3MO and T4MO (Chauhan et al. 1998). The			
165	KEGG database (Kanehisa 2002) places the genes encoding for T3MO, T4MO and ToMO in one group,			
166	thus, the current analysis targeted all three sets of genes simultaneously.			
167				
168	Additional genes targeted in the current study include the dioxygenase-mediated toluene degradation			
169	pathway in Pseudomonas putida F1, encoded by todC1C2BA (Parales et al. 2008; Zylstra and Gibson			
170	1989; Zylstra et al. 1988) as well as todD and todE (for the next steps in the toluene degradation pathway)			

(Gibson et al. 1970; Klecka and Gibson 1981). The genes (*xylM*, *xplA*) encoding for another toluene degrading enzyme, xylene monooxygenase, a two-component enzyme consisting of XylM and XylA (Shaw and Harayama 1995; Suzuki et al. 1991) were also examined here. In addition to the genes discussed above, a number of other genes associated with the biodegradation of environmental contaminants were also investigated, including benzylsuccinate synthase, glutathione *S*-transferase, haloalkane dehalogenase, catechol 2,3-dioxygenase, dibenzofuran dioxygenase and phenol 2-monooxygenase.

The objective of this study was to apply a predictive tool, PICRUSt2 (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) (Douglas et al. 2020) to 1) ascertain which genes encoding for monooxygenases (from methanotrophs, ammonia oxidizing bacteria and toluene/phenol oxidizers) and other enzymes are present in soil communities and 2) determine the phylotypes associated with those genes. The analysis involved an examination of 16S rRNA amplicon gene data from two previous studies (Thelusmond et al. 2018; Thelusmond et al. 2016). An overall hypothesis was that phylotypes less typically associated with these functional genes would be identified. Also, we hypothesized that some genes would be associated with a larger number phylotypes compared to others. The data in the current study provides novel insights as to the potential occurrence of these functional genes and their associated phylotypes in soil microbial communities.

2. Methods

2.1. Soil Communities

High throughput sequencing datasets (16S rRNA gene amplicon, Illumina MiSeq) from two previous studies involving different agricultural soils (Thelusmond et al. 2018; Thelusmond et al. 2016) were examined in the current study using PICRUSt2 (Douglas et al. 2020). PICRUSt2 was developed recently to predict the functional potential of a bacterial community based on marker gene sequencing profiles. The two previous studies investigated the biodegradation of Carbamazepine (CBZ), Diclofenac and Triclocarban in soil microcosms. Details on sample collection, DNA extraction and high throughput sequencing were previously described (Thelusmond et al. 2018; Thelusmond et al. 2016). Briefly, in one study (herein called the CBZ Study), two agricultural soils (herein soils 1 and 2) were amended with different concentrations (0, 50 ng/g, 500 ng/g, 5000 ng/g) of CBZ. Soil microcosms were either kept aerobic or were purged with oxygen-free nitrogen and sealed with septa and crimps (herein called saturated). Soil characteristics in both studies were determined by A & L Great Lakes Laboratories, Inc. (Fort Wayne, IN). Soil 1 was a loamy sand at pH 7.6 and 1.5 % organic matter. Soil 2 was a sandy loam at pH 6.7 and 8% organic matter. DNA was extracted after 14 days of incubation with CBZ (Thelusmond

et al. 2016). In the other study (herein called the Multiple Chemicals Study) another set of agricultural soils were amended with CBZ, Diclofenac or Triclocarban and DNA was extracted following different incubation periods (called the samples). Additionally, soils were treated in the same manner except no chemicals were added (called the controls). The study included two sandy loam soils (herein soils A, B) and one loamy sand soil (herein soil C). Soil pH values were 6.9 for soils A and B and 6.6 for soil C. The soil organic matter values were 2.8%, 2.4% and 1.4% for soils A, B, and C, respectively (Thelusmond et al. 2018).

212213

205

206

207

208209

210211

2.2. R Packages

- Data analyses and the generation of all figures were achieved using the following R packages in R
- 215 (version 4.0.4) (R Core Team 2018) within RStudio (version 1.1.456) (RStudio Team 2020): microbiome
- (version 1.10.0) (Lahti and Shetty 2017), phyloseq (version 1.32.0) (McMurdie and Holmes 2013),
- ampvis2 (version 2.6.5) (Andersen et al. 2018), ggplot2 (version 3.3.2) (Wickham 2016), ggpubr (version
- 218 0.4.0) (Kassambara 2020), colourpicker (version 1.1.0.9000) (Attali 2021), readxl (version 1.3.1)
- 219 (Wickham and Bryan 2019), rstatix (version 0.7.0) (Kassambara 2021), forcats (version 0.5.1) (Wickham
- 220 2021a), data.table (version 1.14.0) (Dowle and Srinivasan 2021), dplyr (version 1.0.6) (Wickham et al.
- 221 2021), patchwork (version 1.1.1) (Pedersen 2020), tidyr (version 1.1.3) (Wickham 2021b), randomcoloR
- (version 1.1.0.1) (Ammar 2019), RColorBrewer (version 1.1-2) (Neuwirth 2014), circlize (version 0.4.13)
- 223 (Gu et al. 2014) and tidyverse (version 1.3.1) (Wickham et al. 2019). The R package versions and
- 224 citations are not shown in the following text to improve clarity.

225226

2.3. Most Abundant Phylotypes

- In the current work, the amplicon sequencing data in the fastq file format was re-analyzed with Mothur
- 228 (version 1.44.2) (Schloss 2009) using the MiSeq Standard Operating Procedure (Kozich et al. 2013). The
- procedure included trimming the raw sequences and quality control. The database used for alignment was
- 230 SILVA bacteria database (Release 138) for the V4 region (Pruesse et al. 2007). Chimeras, mitochondrial
- and chloroplast lineage sequences were removed. Two mothur generated files (shared file and taxonomy
- file) were combined with a metadata file using the package microbiome. Phyloseq was used to determine
- relative abundance values and ampvis2 was used to generate the heatmaps illustrating the most abundant
- phylotypes for each set of samples. For all figures, the R package patchwork combined plots, combined
- legends (when appropriate) and created letter annotations.

236237

239 2.4. PICRUSt2 and R Analysis 240 PICRUSt2 (Douglas et al. 2020) was used to analyze Mothur generated files on the High Performance 241 Computing Cluster (HPCC) at Michigan State University (MSU). PICRUSt2 was applied with EPA-NG 242 (Barbera et al. 2019) and gappa (Czech et al. 2020) for phylogenetic placement of reads, castor (Louca 243 and Doebeli 2018) for hidden state prediction and MinPath (Ye and Doak 2009) for pathway inference. 244 The PICRUSt2 generated files were examined for the presence of genes and phylotypes associated with each of the following genes from the KEGG database (Kanehisa 2002): pmoA/amoA (K10944), 245 pmoB/amoB (K10945), pmoC/amoC (K10946), mmoX (K16157), mmoY (K16158), mmoZ (K16159), 246 247 mmoB (K16160), mmoC (K16161), mmoD (K16162), dmpK/poxA/tomA0 (K16249), dmpL/poxB/tomA1 (K16243), dmpM/poxC/tomA2 (K16244), dmpN/poxD/tomA3 (K16242), dmpO/poxE/tomA4 (K16245), 248 dmpP/poxF/tomA5 (K16246), tmoA/tbuA1/touA (K15760), tmoB/tbuU/touB (K15761), tmoC/tbuB/touC 249 (K15762), tmoD/tbuV/touD K15763), tmoE/tbuA2/touE (K15764), tmoF/tbuC/touF (K15765), 250 251 benzylsuccinate synthase (BSS) (bssABC) (K07540), bbsA (K07549), bbsB (K07550), bbsC (K07547), 252 bbsD (K07548), bbsE (K07543), bbsF (K07544), bbsG (K07545), bbsH (K07546), todC1 (K03268), todC2 (K16268), todB (K18089), todA (K18090), todD (K16269), todE (K16270), xylM (K15757), xylA 253 254 (K15758), gst (K00799), dhaA (K01563), catE (K07104), dbfA1 (K14599), dbfA2 (K14600) and phenol 255 2-monooxygenase (K03380). 256 257 The analysis was performed using R (version 4.0.4) (R Core Team 2018) with RStudio (version 1.1.456) 258 (RStudio Team 2020) and a number of R packages. RStudio on the HPCC at MSU was used to generate a 259 file that contained which genes and phylotypes were present using the PICRUSt2 output file 260 pred metagenome contrib.tsv (unzipped). The approach involved combining this file with 1) a file 261 containing gene numbers and descriptions and 2) a taxonomy file (from Mothur), using the R packages 262 data.table, dplyr, tidyr, ggplot2 and patchwork. Chord diagrams to illustrate the relationships between 263 phylotypes and genes were created with the chordDiagram function in the R package circlize. One or two genes (pmoA/amoA, mmoX, dmpK/poxA/tomA0, bssABC, tmoA/tbuA1/touA, gst, dhaA, catE, dbfA1, dbfA2 264 265 and phenol 2-monooxygenase) were selected for the creation of bar charts illustrating the dominant phylotypes, faceted (in ggplot2) for different treatments and soils for each study. 266 267 268 3. Results Heatmaps of the most abundant phylotypes were generated (Figure 1) to enable a comparison to those 269 270 associated with the functional genes (as discussed below). For the CBZ Study, the most abundant 271 included an unclassified phylotype within the family Methylophilaceae, Subgroup 6 (Acidobacteria), an

uncultured Bacteroidetes, and an uncultured Gemmatimonadetes (Figure 1A). The Methylophilaceae

273	phylotype appeared particularly impacted by CBZ. Methylophilaceae are methylotrophs capable of			
274	utilizing methanol or methylamine (but not methane) as a sole source of carbon and energy (Doronina et			
275	al. 2014). In the Multiple Chemicals Study, Subgroup 6 (Acidobacteria) was dominant in soils A and B			
276	(but not C) (Figure 1B). Instead, Sphingomonas and an uncultured Proteobacteria were particularly			
277	dominant across all treatments in soil C. From these abundant microorganisms, only Sphingomonas was			
278	associated with the genes investigated (see below, dibenzofuran dioxygenase).			
279				
280	The pmo/amo KEGG group was predicted for a large num ber of microorganisms in both studies (Figure			
281	2). Further, all three genes (pmoA/amoA, pmoB/amoB, pmoA/amoC) were detected for every phylotype.			
282	Focusing on pmoA/amoA alone, the most dominant phylotypes of the CBZ Study included unclassified			
283	Beijerinckiaceae (order Rhizobiales), unclassified Methylomonaceae (Methylococcales), MND1			
284	(Betaproteobacteriales), Nitrosomonas (Betaproteobacteriales) and Nitrospira (Nitrospirales) (Figure			
285	3A). In soil 2, Methylobacter (Methylococcales) was also dominant and MND1 was less important (Figure			
286	3A). In the Multiple Chemicals Study, Nitrosomonas and Nitrospira were dominant in soils A and C,			
287	respectively, with others being present at lower levels (Figure 3B).			
288				
289	The genes encoding for sMMO were present in only four phylotypes in the CBZ Study (Figure 4A) and			
290	two phylotypes in the Multiple Chemicals Study (Figure 4B). Two phylotypes (unclassified			
291	Gammaproteobacteria, unclassified Methylomonaceae) were associated with all six subunits (in red,			
292	Figure 4A). For each study, two phylotypes were associated with five subunits (all except mmoD),			
293	Mycobacterium (both studies), unclassified Corynebacteriales (CBZ Study only) and unclassified			
294	Actinobacteria (Multiple Chemicals Study). However, as stated above, MMOD is not necessary for			
295	sMMO function. Focusing only on mmoX, Mycobacterium was the most dominant microorganism linked			
296	with this gene in both studies (Figure 5).			
297				
298	Considering both sets of genes encoding for MMO (sMMO and pMMO), for the CBZ Study, all four			
299	phylotypes (unclassified Gammaproteobacteria, unclassified Methylomonaceae, unclassified			
300	Corynebacteriales and Mycobacterium) detected for mmo were also detected for pmo/amo. For the			
301	Multiple Chemicals Study, both phylotypes (unclassified Actinobacteria and Mycobacterium) associated			
302	with mmo were also associated with pmo/amo.			
303				
304	A large number of microorganisms were associated with all six genes from the dmp/pox/tomA KEGG			
305	group in both datasets (Figure 6A and B). In the CBZ Study (Figure 6A), the majority classified within			
306	the families $Burkholderiaceae$ ($Massilia$, $Burkholderiaceae_unclass$, $Polaromonas$, $Burkholderia$.			

307	Caballeronia.Paraburkholderia, Hydrogenophaga, Cupriavidus), Rhodocyclaceae (unclassified			
308	Rhodocyclaceae, Dechloromonas, Ferribacterium, Uliginosibacterium) and Nitrosomonadaceae (IS-44,			
309	mle1-7, unclassified Nitrosomonadaceae). A few phylotypes belonged to other families (in parenthesis):			
310	A21b_ge (A21b), TRA3-20_ge (TRA3-20), SC-I-84_ge (SC-I-84), Pseudomonas (Pseudomonadaceae) and			
311	Acinetobacter (Moraxellaceae). Also, many phylotypes were unclassified (uncultured, unclassified			
312	Betaproteobacteriales, unclassified Bacteria, unclassified Proteobacteria, unclassified			
313	Gammaproteobacteria). All of the above families, except the unclassified, Pseudomonadaceae			
314	(Pseudomonadales) and Moraxellaceae (Pseudomonadales), are within the order Betaproteobacteriales.			
315				
316	Many of the same phylotypes were predicted for all six genes from the dmp/pox/tomA KEGG group in the			
317	Multiple Chemicals Study (Figure 6B). The majority classified within the families Burkholderiaceae			
318	(Burkholderia.Caballeronia.Paraburkholderia, unclassified Burkholderiaceae, Hydrogenophaga,			
319	Massilia, Cupriavidus), Rhodocyclaceae (unclassified Rhodocyclaceae, Dechloromonas, Thauera) and			
320	Nitrosomonadaceae (MND1, unclassified Nitrosomonadaceae, mle1-7). A few belonged to other families			
321	(in parenthesis): A21b_ge (A21b), SC-I-84_ge (SC-I-84), TRA3-20_ge (TRA3-20), Pseudomonas			
322	(Pseudomonadaceae). Further, some were unclassified (unclassified Betaproteobacteriales, uncultured,			
323	unclassified Gammaproteobacteria). Again, all of the above families, except the unclassified and			
324	Pseudomonadaceae (Pseudomonadales), are within the order Betaproteobacteriales.			
325				
326	To determine the importance of each phylotype for each soil and set of conditions, a more detailed			
327	analysis was performed for the phylogenetic associations of dmpK/poxA/tomA0 (Figure 7). In soil 1,			
328	under both aerobic and saturated conditions, unclassified Betaproteobacteria, unclassified			
329	Burkholderiaceae, Hydrogenophaga, Massilia and Polaromonas were particularly important (Figure 7A),			
330	whereas unclassified Burkholderiaceae, unclassified Rhodocyclaceae and Massilia were the dominant			
331	phylotypes for soil 2 (Figure 7A). For the Multiple Chemicals Study,			
332	Burkholderia. Caballeronia. Paraburkholderia, TRA3-20_ge and Massilia were important for soil A,			
333	unclassified Betaproteobacteria was dominant for soil B, whereas TRA3-20_ge and uncultured was			
334	important for soil C (Figure 7B). The trends were similar between the aerobic and saturated (Figure 7A)			
335	and between the samples and controls (Figure 7B).			
336				
337	The taxonomic associations for the tmo/tbu/tou KEGG group were more limited compared to the			
338	dmp/pox/tomA KEGG group. For the CBZ Study, although 39 phylotypes were predicted for one or more			
339	of the genes, only four (Nevskia, Rhodococcus, unclassified Corynebacteriales and unclassified			
340	Nocardiaceae) were associated with all six genes (Figure 8A). Three of these classify within			

341	Actinobacteria (Corynebacteriales) and Nevskia classifies within the Gammaproteobacteria			
342	(Salinisphaerales). For the Multiple Chemicals Study, 32 phylotypes contained one or more of the genes			
343	and only three (Rhodococcus, Labrys and Burkholderia. Caballeronia. Paraburkholderia) were predicted			
344	to contain all six (Figure 8B). Rhodococcus, Labrys and Burkholderia. Caballeronia. Paraburkholderia			
345	classify within Actinobacteria, Alphaproteobacteria and Gammaproteobacteria, respectively.			
346				
347	A large number of phylotypes were associated with one or more of the following genes in both studies,			
348	bssABC, bbsA, bbsB, bbsC, bbsD, bbsE, bbsF, bbsG or bbsH (Figure 9). In the CBZ Study, only			
349	Geobacter, unclassified Geobacteraceae and unclassified Desulfuromonadales were associated with all			
350	and unclassified Syntrophaceae, Syntrophus and Smithella were associated with benzylsuccinate synthase			
351	(Figure 9A). In the Multiple Chemical Study, only Geobacter was associated with benzylsuccinate			
352	synthase or with all genes (Figure 9B).			
353				
354	Focusing on tmoA only, from the phylotypes associated with all six genes, Rhodococcus and Nevskia			
355	were dominant in the CBZ Study (Figure 10A). However, Nevskia was present at low levels in soil 2			
356	under saturated conditions. Further, unclassified Corynebacteriales and unclassified Nocardiaceae were			
357	present only at low levels for the majority of the treatments. In the Multiple Chemicals Study,			
358	Rhodococcus was important only in soils A (control and samples) and B (samples only) and Labrys was			
359	important only in soil A (control and samples) (Figure 10B).			
360	Burkholderia. Caballeronia. Paraburkholderia was only important in soil C samples (Figure 10B). A			
361	similar analysis for benzylsuccinate synthase (BSS) demonstrated the importance of Geobacter in all			
362	datasets (Figure 10C and 10D). Unclassified Syntrophaceae, Syntrophus and Smithella were only strongly			
363	associated with benzylsuccinate synthase in soil 2 under aerobic conditions (Figure 10C).			
364				
365	The supplementary section illustrates the phylotypes associated with glutathione S-transferase (Figure			
366	S1), haloalkane dehalogenase (Figure S2), catechol 2,3-dioxygenase (Figure S3),			
367	dibenzofuran dioxygenase (Figure S4) and phenol 2-monooxygenase (Figure S5). Unclassified			
368	Sphingomonadaceae and unclassified Myxococcales were the dominant phylotypes associated with both			
369	glutathione S-transferase and haloalkane dehalogenase (Figures S1 and S2). Microvirga, unclassified			
370	Xanthobacteraceae and unclassified Solirubrobacteraceae were important for catechol 2,3-dioxygenase			
371	(Figure S3). Unclassified Sphingomonadaceae and Sphingomonas were key phylotypes for			
372	dibenzofuran dioxygenase (Figure S4). Finally, unclassified Micrococcaceae, unclassified			
373	Microbacteriaceae, unclassified Xanthobacteraceae and Nitrobacter were dominant phylotypes for			
374	phenol 2-monooxygenase (Figure S5).			

375				
376	The dioxygenase-mediated toluene degradation pathway in Pseudomonas putida F1, encoded by the			
377	todC1C2BA genes (Parales et al. 2008; Zylstra and Gibson 1989; Zylstra et al. 1988), was absent in all			
378	samples, except for a small number of predictions for todB which was associated with Sphingobium in the			
379	CBZ Study samples. The genes (todD, todE) that encode for the next steps in the toluene degradation			
380	pathway (Gibson et al. 1970; Klecka and Gibson 1981) were also absent in all samples (except for one			
381	prediction for todE associated with Mycobacterium). The genes (xylM, xylA) encoding for another toluene			
382	degrading enzyme, xylene monooxygenase, a two-component enzyme consisting of XylM and XylA			
383	(Shaw and Harayama 1995; Suzuki et al. 1991), were also absent in both datasets in the current study.			
384				
385	4. Discussion			
386	The current analysis generated novel data for the genes and phylotypes potentially linked to contaminant			
387	biodegradation in the soil communities. As noted by the developers of PICRUSt2, there are two criticisms			
388	of this approach; the data are biased toward existing reference genomes and amplicon-based predictions			
389	cannot provide resolution to distinguish strain-specific functionality (Douglas et al. 2020). Nevertheless,			
390	the approach provides a platform for other studies to examine the functional abilities of microbial			
391	communities without the expense of shotgun sequencing. The results generated are valuable for			
392	hypotheses development towards future research.			
393				
394	Aerobic methanotrophs have been found within the Gammaproteobacteria, Alphaproteobacteria and			
395	Verrucomicrobia (Knief 2015; Koo and Rosenzweig 2021). Here, no phylotypes classifying with the			
396	Verrucomicrobia were detected for either sMMO or pMMO. In the current study, both sMMO and			
397	pMMO were present in all datasets. The genes encoding sMMO were associated with fewer phylotypes			
398	compared to pMMO. These results are consistent with the literature illustrating the presence of sMMO in			
399	fewer methanotrophs compared to pMMO (Murrell et al. 2000).			
400				
401	Mycobacterium was the dominant phylotype associated with the genes encoding for sMMO. This finding			
402	is supported by previous research that identified a sMMO-like enzyme in two Mycobacterium strains			
403	(NBB3 and NBB4) (Martin et al. 2014). Also, an NCBI BLAST search by the authors (1000 max. target			
404	sequences) with the MULTISPECIES: methane monooxygenase component A alpha chain (Sequence ID:			
405	WP_003609337.1) resulted in numerous alignments to sequences from the genus Mycobacterium. In the			
406	CBZ Study, unclassified Methylomonaceae (Methylococcales, Gammaproteobacteria) was also			
407	associated with the genes encoding for sMMO. Consistent with this, a DNA-based stable isotope probing			
408	study reported predominantly active methanotrophs belonged to Methylomonaceae (Kauppera et al.			

409 2021). Other researchers found methane oxidizers within the order *Methylococcales* were composed of 410 bacteria belonging to the family Methylomonaceae (Broman et al. 2020). Another report found 411 Methylomonaceae had the highest average relative abundance of bacterial cDNA transcripts during drought in two restored fens (Unger et al. 2021). The other two phylotypes associated with mmo 412 413 (unclassified Corynebacteriales and unclassified Actinobacteria) represent the order and phylum of the 414 genus Mycobacterium. Other genera associated with sMMO, such as Methylosinus and Methylococcus, 415 were not predicted to be important in the soils of the current study. 416 417 The pmo/amo KEGG group was associated with an unclassified member of the Beijerinckiaceae, a family known to contain methanotrophs (Knief 2015). In the CBZ Study, in soil 2, Methylobacter 418 419 (Methylococcales) was a key phylotype for the pmo/amo KEGG group. Others reported that three 420 methanotroph genomes from the genus *Methylobacter* represented the most abundant methanotrophs 421 across the wetland (Smith et al. 2018). The authors concluded that Methylobacter may represent 422 important mediators of methane fluxes in freshwater saturated sediments and soils worldwide (Smith et 423 al. 2018). Interestingly, in the current work this phylotype was only predicted to be important for the 424 pmo/amo KEGG group in one of five soils. 425 426 A notable finding was that there were several phylotypes associated with both mmo and pmo/amo 427 datasets. For the CBZ Study, the four phylotypes (unclassified Gammaproteobacteria, unclassified 428 Methylomonaceae, unclassified Corynebacteriales and Mycobacterium) associated with mmo were also 429 detected for pmo/amo. For the Multiple Chemicals Study, the two phylotypes (unclassified Actinobacteria 430 and Mycobacterium) associated with mmo were also associated with pmo/amo. These results again 431 emphasize the potential importance of Mycobacterium and unclassified Methylomonaceae for methane 432 oxidation and contaminant biodegradation. 433 434 Here, the ammonia oxidizing phylotypes associated with the *pmo/amo* KEGG group included MND1, 435 Nitrosomonas and Nitrosospira. AOB are found within the Betaproteobacteria (genera Nitrosomonas, Nitrosospira) and Gammaproteobacteria (genus Nitrosococcus), with terrestrial AOB generally being 436 437 restricted to the *Betaproteobacteria* (Norton 2011). *Nitrosomonas* and *Nitrosospira* were key phylotypes 438 for pmoA/amoA in soil A and C, respectively in the Multiple Chemicals Study. MND1 was abundant in soil 1 of the CBZ Study under aerobic conditions for pmoA/amoA. MNDI belongs to the family 439 440 Nitrosomonadaceae and it was previously reported that all cultivated representatives of the 441 Nitrosomonadaceae are lithoautotrophic ammonia oxidizers (Prosser et al. 2014).

443 The current analysis predicted the importance of phylotypes primarily in the families *Burkholderiaceae*, 444 Rhodocyclaceae and Nitrosomonadaceae for the six genes from the dmp/pox/tomA KEGG group. 445 Consistent with these results, an NCBI BLAST performed on the complete sequence of Burkholderia cepacia G4 toluene ortho-monooxygenase operon (accession number AF349675.1) generated matches 446 447 primarily within the family Burkholderiaceae. Further both, Burkholderia vietnamiensis G4 (containing tomA012345) (Parales et al. 2008; Shields and Francesconi 1996; Shields et al. 1995) and Ralstonia 448 eutropha strain E2 (containing poxABCDEF) (Hino et al. 1998) classify within the Burkholderiaceae. The 449 450 prediction of *Pseudomonas* for these genes in both studies is consistent with previous reports of 451 dmpKLMNOP in Pseudomonas sp. CF600 (Nordlund et al. 1990). The current research introduces the possibility that phylotypes within Burkholderiaceae, Pseudomonadaceae, Rhodocyclaceae and 452 Nitrosomonadaceae and a small number of other families may be associated with these genes in 453 454 agricultural soils. 455 456 Here, Rhodococcus, Nevskia and Labrys were primarily associated with the six genes from the 457 tmo/tbu/tou KEGG group. Consistent with these results, open reading frames in Rhodococcus sp. strain 458 AD45 illustrated high sequence similarity with the tmoABCDEF gene cluster encoding the toluene 4-459 monooxygenase of *Pseudomonas mendocina* KR1 (van Hylckama Vlieg et al. 2000). Further, an NCBI 460 BLAST search with TmoA from *Thaurea* sp. 17 (ENO79309) resulted in a 75% identity match to an 461 aromatic/alkene/methane monooxygenase hydroxylase/oxygenase subunit alpha (WP 029920984.1) in 462 Nevskia soli, as well as matches to several Burkholderia and Paraburkholderia sequences. 463 The BSS-based toluene pathway, first identified in the genera *Thauera* and *Azoarcus*, was previously 464 465 reported to be a common mechanism for anaerobic toluene degradation by phylogenetically diverse 466 organisms (Chakraborty and Coates 2004; Parales et al. 2008; Spormann and Widdel 2000; Widdel and 467 Rabus 2001). The first step is the addition of toluene to the double bond of fumarate to form 468 benzylsuccinate by benzylsuccinate synthase (BssABC) (Leuthner et al. 1998). The next steps are 469 catalyzed by BbsEF, BbsG, BbsH, BbsCD and BbsAB to convert benzylsuccinate to benzoyl-CoA 470 (Leuthner and Heider 2000). In the CBZ study, six phylotypes (Geobacter, unclassified Geobacteraceae, unclassified Desulfuromonadales, unclassified Syntrophaceae, Syntrophus, Smithella) were predicted to 471 be associated with benzylsuccinate synthase. Consistent with these results, toluene degradation has been 472 473 reported for Geobacter toluenoxydans (Kunapuli et al. 2010), G. metallireducens GS-15 and G. grbiciae 474 TACP-2 (Coates et al. 2001; Lovley et al. 1993). Further, using time-resolved RNA stable isotope 475 probing and RT-qPCR, researchers reported that organisms within the family Syntrophaceae appeared to 476 play an important role in toluene metabolism (Fowler et al. 2014). The family Syntrophaceae contains

4//	four genera Syntrophus, Smithella, Desuljobacca, and Desuljomonile (Kuever 2014). In the Multiple
478	Chemicals Study, only Geobacter was associated with benzylsuccinate synthase.
479	
480	5. Conclusions
481	PICRUSt2 was utilized to investigate the occurrence of genes associated with contaminant biodegradation
482	from methanotrophs, ammonia oxidizing bacteria and toluene/phenol oxidizers. From these, genes
483	encoding for sMMO (mmo), T34MO/T3MO/ToMO (tmo/tbu/tou) and benzylsuccinate synthase (bssABC)
484	were detected for a limited number of phylotypes. In contrast, the genes encoding for pMMO/AMO
485	(pmo/amo) and phenol monooxygenase/T2MO (dmp/poxA/tomA) were detected for a larger number of
486	phylotypes, suggesting their occurrence may be more widespread in soil communities. Unclassified
487	Methylomonaceae was linked to both pmo/amo as well as mmo, indicating this family may have a key
488	role in methane oxidation in soil communities. Mycobacterium and Geobacter were particularly dominant
489	for sMMO and benzylsuccinate synthase respectively, however, additional data are needed to confirm
490	these findings. This work offers a platform to study the potential functional capabilities of microbial
491	communities. Future research could focus on how these trends differ between environmental samples
492	(such as contaminated soil, sediment or groundwater) or site conditions (such as pH, redox potential).
493	
494	
495	Acknowledgements
496	
497	Funding: This work was supported by the USDA (Agriculture and Food Research Initiative, Number
498	2014-67019-24024) and NSF (Award Number 2129228).
499	Availability of data: Illumina sequencing datasets for the CBZ Study were deposited in the NCBI
500	Sequence Read Archive under Bioproject: PRJNA311080 and Biosample: SAMN04461763 (Thelusmond
501	et al. 2016). Illumina sequencing datasets for the Multiple Chemical Study were deposited in the NCBI
502	Sequence Read Archive under BioProject: PRJNA429625 and BioSample: SAMN08348582
503	(Thelusmond et al. 2018).
504	Declaration of competing interest
505	The authors declare that they have no known competing financial interests or personal relationships that
506	could have appeared to influence the work reported in this paper.
507	
508	
509	
510	

-	c		
ĸ	ete	ren	COS

511

519

520

521

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

- Alpaslan Kocamemi B, Cecen F (2007) Kinetic analysis of the inhibitory effect of trichloroethylene (TCE) on nitrification in cometabolic degradation. Biodegrad 18(1):71-81 doi:10.1007/s10532-005-9037-3
- Ammar R (2019) randomcoloR: Generate Attractive Random Colors. doi: https://CRAN.R-project.org/package=randomcoloR
- Andersen KS, Kirkegaard RH, Karst SM, Albertsen M (2018) ampvis2: an R package to analyse and visualise 16S rRNA amplicon data. bioRxiv doi: https://doi.org/10.1101/299537
 - Arciero D, Vannelli T, Logan M, Hooper AB (1989) Degradation of trichloroethylene by the ammonia-oxidizing bacterium *Nitrosomonas europaea*. Biochem Biophys Res Commun 159(2):640-3 doi:10.1016/0006-291x(89)90042-9
- Attali D (2021) Colourpicker: A colour picker tool for shiny and for selecting colours in plots doi:https://github.com/daattali/colourpicker
 - Barbera P, Kozlov AM, Czech L, Morel B, Darriba D, Flouri T, Stamatakis A (2019) EPA-ng: Massively Parallel Evolutionary Placement of Genetic Sequences. Syst Biol 68(2):365-369 doi:10.1093/sysbio/syy054
 - Bertoni G, Bolognese F, Galli E, Barbieri P (1996) Cloning of the genes for and characterization of the early stages of toluene and o-xylene catabolism in *Pseudomonas stutzeri* OX1. Appl Environ Micro 62(10):3704-11 doi:10.1128/aem.62.10.3704-3711.1996
 - Bertoni G, Martino M, Galli E, Barbieri P (1998) Analysis of the gene cluster encoding toluene/o-xylene monooxygenase from *Pseudomonas stutzeri* OX1. Appl Environ Micro 64(10):3626-32 doi:10.1128/AEM.64.10.3626-3632.1998
 - Broman E, Sun X, Stranne C, Salgado MG, Bonaglia S, Geibel M, Jakobsson M, Norkko A, Humborg C, Nascimento FJA (2020) Low abundance of methanotrophs in sediments of shallow Boreal coastal zones with high water methane concentrations. Front Microbiol 11:1536 doi:10.3389/fmicb.2020.01536
 - Byrne AM, Kukor JJ, Olsen RH (1995) Sequence analysis of the gene cluster encoding toluene-3-monooxygenase from *Pseudomonas pickettii* PKO 1. Gene 154:65-70
 - Canada KA, Iwashita S, Shim H, Wood TK (2002) Directed evolution of toluene ortho-monooxygenase for enhanced 1-naphthol synthesis and chlorinated ethene degradation. Journal of Bacteriology 184(2):344-9
 - Cardy DL, Laidler V, Salmond GP, Murrell JC (1991a) The methane monooxygenase gene cluster of *Methylosinus trichosporium*: cloning and sequencing of the mmoC gene. Arch Microbiol 156(6):477-83 doi:10.1007/BF00245395
 - Cardy DL, Laidler V, Salmond GP, Murrell JC (1991b) Molecular analysis of the methane monooxygenase (MMO) gene cluster of *Methylosinus trichosporium* OB3b. Mol Microbiol 5(2):335-42 doi:10.1111/j.1365-2958.1991.tb02114.x
 - Chakraborty R, Coates JD (2004) Anaerobic degradation of monoaromatic hydrocarbons. Appl Microbiol Biotechnol 64(4):437-46 doi:10.1007/s00253-003-1526-x
 - Chang HL, Alvarez-Cohen L (1995) Transformation capacities of chlorinated organics by mixed cultures enriched on methane, propane, toluene, or phenol. Biotechnol Bioeng 45(5):440-9 doi:10.1002/bit.260450509
- 553 Chauhan S, Barbieri P, Wood TK (1998) Oxidation of trichloroethylene, 1,1-dichloroethylene, and 554 chloroform by toluene/o-xylene monooxygenase from *Pseudomonas stutzeri* OX1. Appl Environ 555 Microbiol 64(8):3023-4 doi:10.1128/AEM.64.8.3023-3024.1998
- Coates JD, Bhupathiraju VK, Achenbach LA, McLnerney MJ, Lovley DR (2001) Geobacter
 hydrogenophilus, Geobacter chapellei and Geobacter grbiciae, three new, strictly anaerobic,

558 dissimilatory Fe(III)-reducers. Int J Syst Evol Microbiol 51(Pt 2):581-588 doi:10.1099/00207713-559 51-2-581

- Csaki R, Bodrossy L, Klem J, Murrell JC, Kovacs KL (2003) Genes involved in the copper-dependent regulation of soluble methane monooxygenase of *Methylococcus capsulatus* (Bath): cloning, sequencing and mutational analysis. Micro 149(Pt 7):1785-1795 doi:10.1099/mic.0.26061-0
 - Czech L, Barbera P, Stamatakis A (2020) Genesis and Gappa: processing, analyzing and visualizing phylogenetic (placement) data. Bioinformatics 36(10):3263-3265 doi:10.1093/bioinformatics/btaa070
 - Deng D, Pham DN, ,, Li F, Li M (2020) Discovery of an inducible toluene monooxygenase that co-oxidizes 1, 4-dioxane and 1, 1-dichloroethylene in propanotrophic *Azoarcus* sp. DD4. Appl Environ Microbiol 86 e01163-20
 - Dolinova I, Strojsova M, Cernik M, Nemecek J, Machackova J, Sevcu A (2017) Microbial degradation of chloroethenes: a review. Environ Sci Pollut Res Int 24(15):13262-13283 doi:10.1007/s11356-017-8867-y
 - Doronina N, Kaparullina E, Trotsenko Y (2014) The Family *Methylophilaceae*. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The Prokaryotes: *Alphaproteobacteria* and *Betaproteobacteria*. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 869-880
 - Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, Huttenhower C, Langille MGI (2020) PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 38(6):685-688 doi:10.1038/s41587-020-0548-6
 - Dowle M, Srinivasan A (2021) data.table: Extension of `data.frame`. R package version 1.14.0. doi:https://CRAN.R-project.org/package=data.table
 - Eguchi M, Kitagawa M, Suzuki Y, Nakamuara M, Kawai T, Okamura K, Sasaki S, Miyake Y (2001) A field evaluation of in situ biodegradation of trichloroethylene through methane injection. Water Res.: 2145-2152
 - Folsom BR, Chapman PJ, Pritchard PH (1990) Phenol and trichloroethylene degradation by *Pseudomonas cepacia* G4: kinetics and interactions between substrates. Appl Environ Micro 56(5):1279-85 doi:10.1128/aem.56.5.1279-1285.1990
 - Fowler SJ, Gutierrez-Zamora ML, Manefield M, Gieg LM (2014) Identification of toluene degraders in a methanogenic enrichment culture. FEMS Microbiol Ecol 89(3):625-36 doi:10.1111/1574-6941.12364
 - Fries MR, Forney LJ, Tiedje JM (1997) Phenol-and toluene degrading microbial populations from an aquifer in which successful trichloroethene cometabolism occurred. Appl Environ Microbiol 63:1523–1530
 - Gibson DT, Hensley M, Yoshioka H, Mabry TJ (1970) Formation of (+)-cis-2,3-dihydroxy-1-methylcyclohexa-4,6-diene from toluene by Pseudomonas putida. Biochem 9:1626–1630
 - Gu Z, Gu L, Eils R, Schlesner M, Brors B (2014) circlize Implements and enhances circular visualization in R. Bioinformatics 30(19):2811-2 doi:10.1093/bioinformatics/btu393
 - Guo GL, Tseng DH, Huang SL (2001) Co-metabolic degradation of trichloroethylene by *Pseudomonas putida* in a fibrous bed bioreactor. Biotechnol Lett 23:1653–1657
- Haigler BE, Spain JC (1991) Biotransformation of nitrobenzene by bacteria containing toluene degradative pathways. Appl Environ Micro 57(11):3156-62 doi:10.1128/aem.57.11.3156-3162.1991
- Hino S, Watanabe K, Takahashi N (1998) Phenol hydroxylase cloned from *Ralstonia eutropha* strain E2 exhibits novel kinetic properties. Micro 144 (Pt 7):1765-1772 doi:10.1099/00221287-144-7-1765

- Holme AJ, Costello A, Lidstrom ME, Murrell JC (1995) Evidence that particulate methane
 monooxygenase and ammonia monooxygenase may be evolutionarily related FEMS Micro Lett
 132:203-208
- Hooper AB, Vannelli T, Bergmann DJ, Arciero DM (1997) Enzymology of the oxidation of ammonia to nitrite by bacteria. Ant Van Lee 71(1-2):59-67 doi:10.1023/a:1000133919203
 - Horvath RS (1972) Microbial co-metabolism and the degradation of organic compounds in nature. Bac Reviews 36(2):146
 - Hur H, Newman LM, Wackett LP, Sadowsky MJ (1997) Toluene 2-monooxygenase-dependent growth of Burkholderia cepacia G4/PR1 on diethyl ether. Appl Environ Micro 63(4):1606-9 doi:10.1128/aem.63.4.1606-1609.1997
- 614 IPCC (2007) Fourth Assessment Report: Climate Change Publisher.

609

610

611 612

613

615 616

617

618 619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644 645

646

- Jiang H, Chen Y, Murrell JC, Jiang P, Zhang C, Xing X-H, Smith TJ (2011) Methanotrophs: multifunctional Bacteria with promising applications environmental bioengineering. In: Moo-Young M (ed) Comprehensive Biotechnology. vol Volume 6: Environmental Biotechnology and Safety. Elsevier B.V.
- Kanehisa M (2002) The KEGG database. In Silico Simulation of Biological Processes 247:91-103
- Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzy Res 2011
- Kassambara A (2020) ggpubr: 'ggplot2' Based Publication Ready Plots. R package version 0.4.0. doi:https://CRAN.R-project.org/package=ggpubr
- Kassambara A (2021) rstatix: Pipe-Friendly Framework for Basic Statistical Tests R package version 0.7.0. doi: https://CRAN.R-project.org/package=rstatix
- Kauppera T, Mendesb LW, Harniszc M, Kraused SMB, Horn MA, Adrian Ho A (2021) Recovery of Methanotrophic Activity Is Not Reflected in the Methane-Driven Interaction Network after Peat Mining. Appl Env Micro 87
- Kim H, An S, Park YR, Jang H, Yoo H, Park SH, Lee SJ, Cho US (2019) MMOD-induced structural changes of hydroxylase in soluble methane monooxygenase. Sci Adv 5(10):eaax0059 doi:10.1126/sciadv.aax0059
- Klecka GM, Gibson DT (1981) Inhibition of catechol 2,3-dioxygenase from *Pseudomonas putida* by 3-chlorocatechol. Appl Environ Microbiol 41:1159-1165
- Knief C (2015) Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on *pmoA* as molecular marker. Front Micro 6:1346
- Koo CW, Rosenzweig AC (2021) Biochemistry of aerobic biological methane oxidation. Chem Soc Rev 50(5):3424-3436 doi:10.1039/d0cs01291b
- Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Micro 79(17):5112-20 doi:10.1128/AEM.01043-13
- Kuever J (2014). In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The Prokaryotes. pp 281-288
- Kunapuli U, Jahn MK, Lueders T, Geyer R, Heipieper HJ, Meckenstock RU (2010) *Desulfitobacterium* aromaticivorans sp. nov. and *Geobacter toluenoxydans* sp. nov., iron-reducing bacteria capable of anaerobic degradation of monoaromatic hydrocarbons. Int J Syst Evol Microbiol 60(Pt 3):686-695 doi:10.1099/ijs.0.003525-0
- Lahti L, Shetty S (2017) Tools for microbiome analysis in R. doi:URL: http://microbiome.github.io
- 648 Leahy JG, Byrne AM, Olsen RH (1996) Comparison of factors influencing trichloroethylene degradation 649 by toluene-oxidizing bacteria. Appl Environ Micro 62(3):825-33 doi:10.1128/aem.62.3.825-650 833.1996

Leuthner B, Heider J (2000) Anaerobic toluene catabolism of *Thauera aromatica*: the bbs operon codes for enzymes of beta oxidation of the intermediate benzylsuccinate. Journal of Bacteriology 182(2):272-7 doi:10.1128/JB.182.2.272-277.2000

- Leuthner B, Leutwein C, Schulz H, Horth P, Haehnel W, Schiltz E, Schagger H, Heider J (1998) Biochemical and genetic characterization of benzylsuccinate synthase from *Thauera aromatica*: a new glycyl radical enzyme catalysing the first step in anaerobic toluene metabolism. Mol Microbiol 28(3):615-28 doi:10.1046/j.1365-2958.1998.00826.x
- Li F, Deng D, Zeng L, Abrams S, Li M (2021) Sequential anaerobic and aerobic bioaugmentation for commingled groundwater contamination of trichloroethene and 1,4-dioxane. Sci Total Environ 774:145118 doi:10.1016/j.scitotenv.2021.145118
- Louca S, Doebeli M (2018) Efficient comparative phylogenetics on large trees. Bioinformatics 34(6):1053-1055 doi:10.1093/bioinformatics/btx701
- Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips EJ, Gorby YA, Goodwin S (1993) *Geobacter metallireducens* gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159(4):336-44 doi:10.1007/BF00290916
- Mahendra S, Alvarez-Cohen L (2006) Kinetics of 1,4-dioxane biodegradation by monooxygenase-expressing bacteria. Environmental Science & Technology 40(17):5435-42 doi:10.1021/es060714v
- Mahendra S, Grostern A, Alvarez-Cohen L (2013) The impact of chlorinated solvent co-contaminants on the biodegradation kinetics of 1, 4-dioxane. Chemosphere 91(1):88-92
- Martin KE, Ozsvar J, Coleman NV (2014) SmoXYB1C1Z of *Mycobacterium* sp. strain NBB4: a soluble methane monooxygenase (sMMO)-like enzyme, active on C2 to C4 alkanes and alkenes. Appl Environ Micro 80(18):5801-6 doi:10.1128/AEM.01338-14
- McClay K, Fox BG, Steffan RJ (1996) Chloroform mineralization by toluene-oxidizing bacteria. Appl Environ Micro 62(8):2716-22 doi:10.1128/aem.62.8.2716-2722.1996
- McClay K, Fox BG, Steffan RJ (2000) Toluene monooxygenase-catalyzed epoxidation of alkenes. Appl Environ Micro 66(5):1877-82 doi:10.1128/AEM.66.5.1877-1882.2000
- McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. Plos One 8(4):e61217 doi:10.1371/journal.pone.0061217
- Merkx M, Lippard SJ (2002) Why OrfY? Characterization of MMOD, a long overlooked component of the soluble methane monooxygenase from *Methylococcus capsulatus* (Bath). Journal of Biological Chemistry 277(8):5858-65 doi:10.1074/jbc.M107712200
- Murrell JC, McDonald IR, Gilbert B (2000) Regulation of expression of methane monooxygenases by copper ions. Trends Microbiol 8(5):221-5 doi:10.1016/s0966-842x(00)01739-x
- Nelson MJ, Montgomery SO, Mahaffey WR, Pritchard PH (1987) Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway. Appl Environ Micro 53(5):949-54 doi:10.1128/aem.53.5.949-954.1987
- Nelson MJ, Montgomery SO, O'Neill E J, Pritchard PH (1986) Aerobic metabolism of trichloroethylene by a bacterial isolate. Appl Environ Micro 52(2):383-4 doi:10.1128/aem.52.2.383-384.1986
- Neuwirth E (2014) RColorBrewer: ColorBrewer Palettes. doi: https://CRAN.R-project.org/package=RColorBrewer
 - Newman LM, Wackett LP (1995) Purification and characterization of toluene 2-monooxygenase from *Burkholderia cepacia* G4. Biochemistry 34(43):14066-76 doi:10.1021/bi00043a012
 - Newman LM, Wackett LP (1997) Trichloroethylene oxidation by purified toluene 2-monooxygenase: products, kinetics, and turnover-dependent inactivation. J Bacter 179:90-97

- Nordlund I, Powlowski J, Shingler V (1990) Complete nucleotide sequence and polypeptide analysis of multicomponent phenol hydroxylase from *Pseudomonas* sp. strain CF600. Journal of Bacteriology 172(12):6826-33 doi:10.1128/jb.172.12.6826-6833.1990
 - Norton JM (2011) Diversity and environmental distribution of ammonia-oxidizing bacteria. In: Ward BB, Arp DJ, Klotz MG (eds) Nitrification. Amer Soc Micro, pp 39-55
 - Oldenhuis R, Vink RL, Janssen DB, Witholt B (1989) Degradation of chlorinated aliphatic hydrocarbons by *Methylosinus trichosporium* OB3b expressing soluble methane monooxygenase. Appl Environ Micro 55(11):2819-26 doi:10.1128/aem.55.11.2819-2826.1989
 - Olsen RH, Kukor JJ, Byrne AM, Johnson GR (1997) Evidence for the evolution of a single component phenol/cresol hydroxylase from a multicomponent toluene monooxygenas. J Ind Microbiol Biotechnol 19:360-368
 - Olsen RH, Kukor JJ, Kaphammer B (1994) A novel toluene-3-monooxygenase pathway cloned from *Pseudomonas pickettii* PKO1. Journal of Bacteriology 176(12):3749-56 doi:10.1128/jb.176.12.3749-3756.1994
 - Oppenheim SF, Studts JM, Fox BG, Dordick JS (2001) Aromatic hydroxylation catalyzed by toluene 4-monooxygenase in organic solvent/aqueous buffer mixtures. Appl Biochem Biotechnol 90(3):187-97 doi:10.1385/abab:90:3:187
 - Parales RE, Parales JV, Pelletier DA, Ditty JL (2008) Diversity of microbial toluene degradation pathways. 64:1-73, 2 p following 264 doi:10.1016/S0065-2164(08)00401-2
 - Pedersen TL (2020) patchwork: The Composer of Plots. doi: https://cran.r-project.org/package=patchwork

- Pfiffner SM, Palumbo AV, Phelps TJ, Hazen TC (1997) Effects of nutrient dosing on subsurface methanotrophic populations and trichloroethylene degradation. J Ind Microbiol Biotechnol 18(2-3):204-12 doi:10.1038/sj.jim.2900350
- Pikus JD, Studts JM, McClay K, Steffan RJ, Fox BG (1997) Changes in the regiospecificity of aromatic hydroxylation produced by active site engineering in the diiron enzyme toluene 4-monooxygenase. Biochemistry 36(31):9283-9 doi:10.1021/bi971049t
- Prosser JI, Head IM, Stein LY (2014) The Family *Nitrosomonadaceae*. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The Prokaryotes *Alphaproteobacteria* and *Betaproteobacteria*. Springer-Verlag, Berlin, pp 901–918
- Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glockner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucl Acid Res 35(21):7188-96 doi:10.1093/nar/gkm864
- R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
- Rasche ME, Hyman MR, Arp DJ (1991) Factors limiting aliphatic chlorocarbon degradation by Nitrosomonas europaea: cometabolic inactivation of ammonia monooxygenase and substrate specificity. Appl Environ Micro 57(10):2986-94 doi:10.1128/aem.57.10.2986-2994.1991
- RStudio Team (2020) RStudio: Integrated Development for R. RStudio, PBC. Boston, MA
- Ryoo D, Shim H, Arenghi FL, Barbieri P, Wood TK (2001) Tetrachloroethylene, trichloroethylene, and chlorinated phenols induce toluene-o-xylene monooxygenase activity in *Pseudomonas stutzeri* OX1. Appl Microbiol Biotechnol 56(3-4):545-9 doi:10.1007/s002530100675
- Ryoo D, Shim H, Canada K, Barberi P, Wood TK (2000) Aerobic degradation of tetrachloroethylene by toluene-o-monooxygenase of *Pseudomonas stutzeri* OX1. Nat Biotechnol 18:775–778.
- Sazinsky MH, Merkx M, Cadieux E, Tang S, Lippard SJ (2004) Preparation and X-ray structures of metalfree, dicobalt and dimanganese forms of soluble methane monooxygenase hydroxylase from *Methylococcus capsulatus* (Bath). Biochemistry 43(51):16263-76 doi:10.1021/bi048140z
- 744 Schloss PD (2009) A high-throughput DNA sequence aligner for microbial ecology studies. Plos One 4(12)

Semrau JD, Jagadevan S, DiSpirito AA, Khalifa A, Scanlan J, Bergman BH, Freemeier BC, Baral BS, Bandow
 NL, Vorobev A, Haft DH, Vuilleumier S, Murrell JC (2013) Methanobactin and MmoD work in
 concert to act as the 'copper-switch' in methanotrophs. 15(11):3077-86 doi:10.1111/1462 2920.12150

- Semrini L, Hopkins GD, Roberts PV, Grbicgalic D, McCarty PL (1991) A field evaluation of in situ biodegradation of chlorinated ethens 3. studies of competitive inhibition. Groundwater 29:239-250
- Shao Y, Hatzinger PB, Streger SH, Rezes RT, Chu KH (2019) Evaluation of methanotrophic bacterial communities capable of biodegrading trichloroethene (TCE) in acidic aquifers. Biodegradation 30(2-3):173-190 doi:10.1007/s10532-019-09875-w
- Sharp JO, Wood TK, Alvarez-Cohen L (2005) Aerobic biodegradation of N-nitrosodimethylamine (NDMA) by axenic bacterial strains. Biotechnol Bioeng 89(5):608-18 doi:10.1002/bit.20405
- Shaw JP, Harayama S (1995) Characterization in vitro of the hydroxylase component of xylene monooxygenase, the first enzyme of the TOL-plasmid-encoded pathway for the mineralization of toluene and xylenes. J Ferment Bioeng 79:195-199
- Shields MS, Francesconi SC (1996) Microbial degradation of trichloroethylene, dichloroethylenes, and aromatic pollutants.,
- Shields MS, Reagin MJ, Gerger RR, Campbell R, Somerville C (1995) TOM, a new aromatic degradative plasmid from *Burkholderia (Pseudomonas) cepacia* G4. Appl Environ Micro 61(4):1352-6 doi:10.1128/aem.61.4.1352-1356.1995
- Shim H, Wood TK (2000) Aerobic degradation of mixtures of chlorinated aliphatics by cloned toluene-o-xylene monooxygenase and toluene o-monooxygenase in resting cells. Biotechnol Bioeng 70(6):693-8 doi:10.1002/1097-0290(20001220)70:6<693::aid-bit12>3.0.co;2-w
- Smith GJ, Angle JC, Solden LM, Borton MA, Morin TH, Daly RA, Johnston MD, Stefanik KC, Wolfe R, Gil B, Wrighton KC (2018) Members of the genus *Methylobacter* are inferred to account for the majority of aerobic methane oxidation in oxic soils from a freshwater wetland. mBio 9(6) doi:10.1128/mBio.00815-18
- Spormann AM, Widdel F (2000) Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria. Biodegradation 11(2-3):85-105 doi:10.1023/a:1011122631799
- Stainthorpe AC, Lees V, Salmond GP, Dalton H, Murrell JC (1990) The methane monooxygenase gene cluster of *Methylococcus capsulatus* (Bath). Gene 91(1):27-34 doi:10.1016/0378-1119(90)90158-n
- Stainthorpe AC, Murrell JC, Salmond GP, Dalton H, Lees V (1989) Molecular analysis of methane monooxygenase from *Methylococcus capsulatus* (Bath). Arch Microbiol 152(2):154-9 doi:10.1007/BF00456094
- Sun AK, Hong J, Wood TK (1997) Trichloroethylene mineralization in a fixed-film bioreactor using a pure culture expressing constitutively toluene ortho-monooxygenase. Biotechnol Bioeng 55: 674–685
- Sutfin JA, Ramey D (1997) In situ biological treatment of TCE-impacted soil and groundwater:

 Demonstration results. Env Progress 16:287-296
- Suzuki M, Hayakawa T, Shaw JP, Rekik M, Harayama S (1991) Primary structure of xylene monooxygenase: similarities to and differences from the alkane hydroxylation system. Journal of Bacteriology 173(5):1690-5 doi:10.1128/jb.173.5.1690-1695.1991
- Theisen AR, Ali MH, Radajewski S, Dumont MG, Dunfield PF, McDonald IR, Dedysh SN, Miguez CB, Murrell JC (2005) Regulation of methane oxidation in the facultative methanotroph *Methylocella silvestris* BL2. Mol Microbiol 58(3):682-92 doi:10.1111/j.1365-2958.2005.04861.x
- Thelusmond JR, Kawka E, Strathmann TJ, Cupples AM (2018) Diclofenac, carbamazepine and triclocarban
 biodegradation in agricultural soils and the microorganisms and metabolic pathways affected.
 640-641:1393-1410 doi:10.1016/j.scitotenv.2018.05.403

793 Thelusmond JR, Strathmann TJ, Cupples AM (2016) The identification of carbamazepine biodegrading 794 phylotypes and phylotypes sensitive to carbamazepine exposure in two soil microbial 795 communities. 571:1241-52 doi:10.1016/j.scitotenv.2016.07.154

- Unger V, Liebner S, Koebsch F, Yang S, Horn F, Sachs T, Kallmeyer J, Knorr K-H, Rehderf G, Gottschalk P, Jurasinski G (2021) Congruent changes in microbial community dynamics and ecosystem methane fluxes following natural drought in two restored fens. Soil Bio Biochem 160
- van Hylckama Vlieg JE, Leemhuis H, Spelberg JH, Janssen DB (2000) Characterization of the gene cluster involved in isoprene metabolism in *Rhodococcus* sp. strain AD45. Journal of Bacteriology 182(7):1956-63 doi:10.1128/JB.182.7.1956-1963.2000
- Vannelli T, Logan M, Arciero DM, Hooper AB (1990) Degradation of halogenated aliphatic compounds by the ammonia- oxidizing bacterium *Nitrosomonas europaea*. Appl Environ Micro 56(4):1169-71 doi:10.1128/aem.56.4.1169-1171.1990
- Vorobev AV, Baani M, Doronina NV, Brady AL, Liesack W, Dunfield PF, Dedysh SN (2011) *Methyloferula stellata* gen. nov., sp. nov., an acidophilic, obligately methan otrophic bacterium that possesses only a soluble methane monooxygenase. Int J Syst Evol Microbiol 61(10):2456–2463
- Wackett LP (1996) Co-metabolism: is the emperor wearing any clothes? Curr Opin Biotechnol 7(3):321-325
- Wendeborn S (2020) The chemistry, biology, and modulation of ammonium nitrification in soil. Angew Chem Int Ed Engl 59(6):2182-2202 doi:10.1002/anie.201903014
- Wickham H (2016) ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York
- Wickham H (2021a) Forcats: tools for working with categorical variables (factors). doi: https://cran.r-project.org/package=forcats
- Wickham H (2021b) tidyr: Tidy Messy Data. doi: https://CRAN.R-project.org/package=tidyr
 - Wickham H, Averick M, Bryan J, Chang W, McGowan LDA, François R, Grolemund G, Hayes A, Henry L, Hester J, Kuhn M, Pedersen TL, Miller E, Bache SM, Müller K, Ooms J, Robinson D, Seidel DP, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H (2019) Welcome to the Tidyverse. 4(43), 1686, doi: https://doi.org/10.21105/joss.01686
- Wickham H, Bryan J (2019) readxl: read excel files. R package version 1.3.1 ed. doi: https://cran.r-project.org/package=readxl
- Wickham H, François R, Henry L, Müller K (2021) dplyr: A Grammar of Data Manipulation. R package version 1.0.6. doi: https://CRAN.R-project.org/package=dplyr
- Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12(3):259-76 doi:10.1016/s0958-1669(00)00209-3
- Winter RB, Yen K-M, Ensley BD (1989) Efficient degradation of trichloroethylene by a recombinant *Escherichia coli*. Bio/Technology 7:282–285
- Ye Y, Doak TG (2009) A parsimony approach to biological pathway reconstruction/inference for genomes and metagenomes. PLoS Comput Biol 5(8):e1000465 doi:10.1371/journal.pcbi.1000465
- Yen KM, Karl MR, Blatt LM, Simon MJ, Winter RB, Fausset PR, Lu HS, Harcourt AA, Chen KK (1991)
 Cloning and characterization of a *Pseudomonas mendocina* KR1 gene cluster encoding toluene4-monooxygenase. Journal of Bacteriology 173(17):5315-27 doi:10.1128/jb.173.17.53155327.1991
- Zylstra GJ, Gibson DT (1989) Toluene degradation by *Pseudomonas putida* F1: Nucleotide sequence of the todC1C2BADE genes and their expression in *E. coli*. J Biol Chem 264:14940–14946
- Zylstra GJ, McCombie WR, Gibson DT, Finette BA (1988) Toluene degradation by *Pseudomonas putida* F1: genetic organization of the tod operon. Appl Environ Microbiol 54(6):1498-503
 doi:10.1128/aem.54.6.1498-1503.1988