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Abstract

The Drosophila mushroom body exhibits dopamine dependent synaptic plasticity that

underlies the acquisition of associative memories. Recordings of dopamine neurons in this

system have identified signals related to external reinforcement such as reward and punish-

ment. However, other factors including locomotion, novelty, reward expectation, and internal

state have also recently been shown to modulate dopamine neurons. This heterogeneity is

at odds with typical modeling approaches in which these neurons are assumed to encode a

global, scalar error signal. How is dopamine dependent plasticity coordinated in the pres-

ence of such heterogeneity? We develop a modeling approach that infers a pattern of dopa-

mine activity sufficient to solve defined behavioral tasks, given architectural constraints

informed by knowledge of mushroom body circuitry. Model dopamine neurons exhibit

diverse tuning to task parameters while nonetheless producing coherent learned behaviors.

Notably, reward prediction error emerges as a mode of population activity distributed across

these neurons. Our results provide a mechanistic framework that accounts for the heteroge-

neity of dopamine activity during learning and behavior.

Author summary

Dopamine neurons across the animal kingdom are involved in the formation of associa-

tive memories. While numerous studies have recorded activity in these neurons related to

external and predicted rewards, the diversity of these neurons’ activity and their tuning to

non-reward-related quantities such as novelty, movement, and internal state have proved

challenging to account for in traditional modeling approaches. Using a well-characterized

model system for learning and memory, the mushroom body of Drosophila fruit flies,

Jiang and Litwin-Kumar provide an account of the diversity of signals across dopamine

neurons. They show that models optimized to solve tasks like those encountered by flies

exhibit heterogeneous activity across dopamine neurons, but nonetheless this activity is

sufficient for the system to solve the tasks. The models will be useful to generate testable

hypotheses about dopamine neuron activity across different experimental conditions.
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Introduction

Dopamine release modulates synaptic plasticity and learning across vertebrate and inverte-

brate species [1, 2]. A standard view of dopamine activity, proposed on the basis of recordings

in the mammalian midbrain dopaminergic system, holds that dopamine neuron firing repre-

sents a “reward prediction error,” the difference between received and predicted reward [3].

This view is consistent with models of classical conditioning experiments and with reinforce-

ment learning algorithms that learn to choose the most rewarding sequence of actions [4]. A

frequent assumption in these models is that the scalar reward prediction signal is globally

broadcast to and gates the modification of synaptic connections involved in learning. How-

ever, studies in both vertebrates and invertebrates suggest that dopamine neuron activity is

modulated by other variables in addition to reward prediction error, and that this modulation

is heterogeneous across populations of dopamine neurons [5].

Early studies in arthropods identified roles for dopamine in a variety of functions [6–11]. In

Drosophila, both memory [12] and other functions including locomotion, arousal, sleep, and

mating have been associated with dopamine signaling [11]. Associative olfactory learning in

Drosophila requires a central brain area known as the mushroom body [13–15], and many

studies of dopamine neurons innervating this area have focused on activity related to reward

and punishment and its roles in the formation of appetitive and aversive memories [16–22]. In

the mushroom body, Kenyon cells (KCs, green neurons in Fig 1A) conveying sensory informa-

tion, predominantly odor-related signals, send parallel fibers that contact the dendrites of

mushroom body output neurons (MBONs, black neurons in Fig 1A). The activation of specific

output neurons biases the organism toward particular actions [23, 24]. Output neuron den-

drites define discrete anatomical regions, known as “compartments,” each of which is inner-

vated by distinct classes of dopaminergic neurons (DANs, magenta neurons in Fig 1A). If the

Kenyon cells and dopamine neurons that project to a given output neuron are both active

within a particular time window, KC-to-MBON synapses are strengthened or weakened

depending on the relative timing of Kenyon cell and dopamine neuron activation [25–28]. The

resulting synaptic modifications permit flies to learn and update associations between stimuli

and reinforcement.

In addition to classical reward and punishment signals, recent studies have shown that vari-

ables including novelty [29], reward prediction [30–32], and locomotion-related signals [33]

are encoded by mushroom body dopamine neurons. In mammals, dopamine signals related to

movement, novelty and salience, and separate pathways for rewards and punishment have also

been identified in midbrain regions [5, 34–42]. These observations call for extensions of classic

models that assume dopamine neurons in associative learning centers are globally tuned to

reward prediction error [43]. How can dopamine signals gate appropriate synaptic plasticity

and learning if their responses are modulated by mixed sources of information?

To address this question, we develop a modeling approach in which networks that produce

dopamine signals suited to learning a particular set of behavioral tasks are constructed. Our

key methodological advance is to augment standard recurrent neural network models, which

employ fixed synaptic weights to solve tasks after optimization [44], with synapses that exhibit

fast dopamine-gated plasticity via an experimentally determined plasticity rule [28]. We

employ a “meta-learning” approach involving two phases [45–47]. First, we optimize the net-

work connections responsible for producing suitable learning signals in dopamine neurons.

Next, after these connections are fixed, we examine the network’s behavior on novel tasks in

which learning occurs only via biologically plausible dopamine-gated plasticity. Due to the

well-characterized anatomy of the mushroom body and knowledge of this plasticity rule, our

approach allows us to generate predictions about the activity of multiple neuron types [28, 48].
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Comprehensive synapse-level wiring diagrams for the output circuitry of the mushroom body

have recently become available, which will allow the connectivity of models constructed with

our approach to be further constrained by data [49–53]. As the dynamics of our models,

including the dopamine-gated plasticity, are optimized end-to-end only for overall task perfor-

mance, our model predictions do not require a priori assumptions on what signals the dopa-

mine neurons encode. In particular, our methods do not assume that each dopamine neuron

carries a reward prediction error and instead allow for heterogeneous activity across the

population.

The meta-learned networks we construct are capable of solving complex behavioral tasks

and generalizing to novel stimuli using only experimentally constrained plasticity rules, as

opposed to networks that require gradient descent updates to network parameters to general-

ize to new tasks. They can form associations based on limited numbers of stimulus/reinforce-

ment pairings and are capable of continual learning, which are often challenging for artificial

neural networks [46, 54]. In the models, different dopamine neurons exhibit diverse tuning to

task-related variables, while reward prediction error emerges as a mode of activity across the

population. Our approach uncovers the mechanisms behind the observed heterogeneity of

Fig 1. Diagram of the mushroom body model. (A) Kenyon cells (KCs) respond to stimuli and project to mushroom body output

neurons (MBONs) via weights WKC!MBON. These connections are dynamic variables that are modified according to a synaptic

plasticity rule gated by dopamine neurons (DANs). Output neurons and dopamine neurons are organized into compartments

(dotted rectangles). External signals convey, e.g., reward, punishment, or context to the mushroom body output circuitry according

to weights Wext. A linear readout with weights Wreadout determines the behavioral output of the system. Connections among output

neurons, dopamine neurons, and feedback neurons (gray) are determined by weights Wrecur. Inset: expanded diagram of

connections in a single compartment. (B) The form of the dopamine neuron-gated synaptic plasticity rule operative at KC-to-

MBON synapses. ΔT is the time difference between Kenyon cell activation and dopamine neuron activation. (C) Illustration of the

change in KC-to-MBON synaptic weight ΔW following forward and backward pairings of Kenyon cell and dopamine neuron

activity.

https://doi.org/10.1371/journal.pcbi.1009205.g001
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dopamine signals in the mushroom body and suggests that the “error” signals that support

associative learning may be more distributed than is often assumed.

Results

Modeling recurrent mushroom body output circuitry

The diversity of dopamine neuron activity challenges models of mushroom body learning that

assume these neurons convey global reward or punishment signals. Part of this discrepancy is

likely due to the intricate connectivity among output neurons, dopamine neurons, and other

neurons that form synapses with them [48, 52, 53]. We therefore modeled these neurons and

their connections, which we refer to collectively as the mushroom body “output circuitry,” as a

recurrent neural network (Fig 1A). This model network consists of 20 output neurons, 20

dopamine neurons, and 60 additional recurrent feedback neurons. Recurrent connections

within the network are defined by a matrix of synaptic weights Wrecur. Connections between

all of these 100 neurons are permitted, except that we assume connections from dopamine

neurons to output neurons are modulatory and follow a compartmentalized organization

(Fig 1A, inset). Synapses from 200 Kenyon cells onto output neurons provide the network

with sensory information and are represented by WKC!MBON. Separate pathways convey sig-

nals such as reward or punishment from other brain regions, via weights Wext.

The dynamics of the ith neuron in our model of the output circuitry are given by:

t
driðtÞ
dt

¼ �riðtÞ þ
X

j

Wrecur
ij rjðtÞ þ bi þ IiðtÞ

" #

þ

; ð1Þ

where [�]+ represents positive rectification. The bias bi determines the excitability of neuron i,
while Ii(t) represents its input from non-recurrent connections. If neuron i is an output neu-

ron, then its external input is given by IiðtÞ ¼
P

kW
KC!MBON
ik ðtÞrKCk ðtÞ, representing input from

Kenyon cells. If neuron i is a feedback neuron (FBN), then IiðtÞ ¼
P

kW
ext
ik r

ext
k ðtÞ, representing

reinforcement, context, or state-dependent input from other brain regions. For dopamine neu-

rons, Ii(t) = 0, as all input to the dopamine neurons is relayed by feedback neurons, reflecting

our interpretation of the feedback neuron population as containing any pathway that conveys

information to the dopamine neurons. We do not constrain Wrecur, except that entries corre-

sponding to connections from dopamine neurons to output neurons are set to zero, based on

the assumption that these connections modulate plasticity of KC-to-MBON synapses rather

than output neuron firing directly (but see [50] and Discussion).

The objective of the network is to generate a desired pattern of activity in a readout that rep-

resents the behavioral bias produced by the mushroom body. The readout decodes this desired

output through a matrix of weights Wreadout. In our first set of experiments, this readout will

represent the one-dimensional valence (appetitive vs. aversive) of a stimulus decoded from the

output neurons (meaning that Wreadout is a 1 × NMBON matrix; later, we will consider more

sophisticated readouts):

vðtÞ ¼ WreadoutrMBONðtÞ: ð2Þ

To achieve the task goal, trials are randomly generated and the following objective function,

which depends on the parameters of the network θ and represents the loss corresponding to

an individual trial consisting of T discretized timesteps {t1, t2, . . . tT}, is minimized through
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stochastic gradient descent:

Ly ¼
1

T

XT

n¼1

ðvðtnÞ � v�ðtnÞÞ
2

þ
l

T

XT

n¼1

XNDAN

i¼1

½rDANi ðtnÞ � 0:1�
2

þ
: ð3Þ

The first term represents the difference between the decoded valence and a target valence v�

that is determined by the task being learned. The second term is a regularization term that

penalizes dopamine neuron activity that exceeds a baseline level of 0.1 (in normalized units of

firing rate and with λ = 0.1). This term was included to promote solutions that do not exhibit

high levels of non-task-related dopamine activity, but we verified with simulations that the reg-

ularization does not significantly affect overall network performance. Example loss curves over

the course of network optimization are shown in S1 Fig.

Implementation of dopamine-gated plasticity

Recurrent network modeling approaches typically optimize all parameters θ of the network in

order to produce a desired behavior. This approach assumes that, after optimization, connec-

tions are fixed to constant values during the execution of the behavior. However, connections

between Kenyon cells and output neurons are known to exhibit powerful and rapid dopa-

mine-gated synaptic plasticity. This plasticity is dependent on the relative timing of Kenyon

cell and dopamine neuron activation (notably, it does not appear to depend on the postsynap-

tic output neuron firing rate [26]) and can drive substantial changes in evoked output neuron

activity even after brief KC-DAN pairings [28]. We therefore augmented our networks with a

model of this plasticity by assuming that each element of WKC!MBON is a dynamic quantity

that tracks the variables wij (with a time constant of τW = 5 s; see below). These variables,

which determine the strength of the connection from the jth Kenyon cell to the ith output neu-

ron, obey the following update rule:

dwijðtÞ
dt

¼ �rDANi ðtÞrKCj ðtÞ � �rKCj ðtÞrDANi ðtÞ; ð4Þ

where rKCj and rDANi are the firing rates of the jth Kenyon cell and the dopamine neuron that

innervates the ith compartment, and �rKCj and �rDANi are synaptic eligibility traces constructed by

low-pass filtering rKCj and rDANi . The time constants of the low-pass filters used to generate the

eligibility traces determine the time window within which pairings of Kenyon cell and dopa-

mine neuron activity elicit appreciable changes of w. Each weight element of WKC!MBON is

initially set to its maximum value of 0.05 and subsequently updated according to

tW
dWKC!MBON

ij ðtÞ

dt ¼ �WKC!MBON
ij ðtÞ þ wijðtÞ. The timescale of τW = 5 s accounts for the timescale

of the induction of LTD or LTP.

Odors are encoded by sparse activation of random subsets of Kenyon cells, which is accom-

plished in the model by setting 10% of the elements of rKC to 1 and the rest to 0. When Kenyon

cell and dopamine neuron firing rates are modeled as pulses separated by a time lag ΔT, the

dependence of the change in wij on ΔT takes the form of a biphasic timing-dependent function

(Fig 1B and 1C), consistent with a recent experimental characterization [28]. The seconds-

long timescale of this curve is compatible with the use of continuous firing rates rather than

discrete spike timing to model KC-to-MBON plasticity, as we have done in Eq 4.

Importantly, the weight update rule in Eq 4 is a smooth function of network firing rates,

allowing networks with this update rule to be constructed using gradient descent. Specifically,

we minimize the loss function Eq 3 under the assumption that the network follows the dynam-

ics defined by Eqs 1 and 4. The parameters to be optimized are θ = {Wrecur, Wext, Wreadout, b}
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(the connections describing the mushroom body output circuitry and the biases), while

WKC!MBON is treated as a dynamic quantity. We refer to the gradient descent modification of

θ as the “optimization” phase of constructing our networks. This optimization represents the

evolutionary and developmental processes that produce a network capable of efficiently learn-

ing new associations [55]. After this optimization is complete, the output circuitry is fixed, but

KC-to-MBON weights are subject to synaptic plasticity according to Eq 4. Our approach there-

fore separates synaptic weight changes that are the outcome of evolution and development

from those due to experience-dependent KC-to-MBON plasticity, which would be conflated if

all parameters were optimized with gradient descent (Fig 2). We show that, after optimization,

only the latter form of biologically plausible weight update is sufficient to solve the tasks we

consider and generalize to related but new tasks.

To begin, we assume that KC-to-MBON weights are set to their baseline values at the begin-

ning of each trial in which new associations are formed. Later, we will consider the case of con-

tinual learning of many associations.

Models of associative conditioning

We begin by considering models of classical conditioning, which involve the formation of

associations between a conditioned stimulus (CS) and unconditioned stimulus (US) such as

reward or punishment. A one-dimensional readout of the output neuron population is taken

to represent the stimulus valence (Eq 2), which measures whether the organism prefers

(valence > 0) or avoids (valence < 0) the CS. In the model, CS are encoded by the activation of

a random ensembles of Kenyon cells. Rewards and punishments are encoded by external

inputs to the network that provide input through Wext (see Methods).

To construct the model, we optimized the mushroom body output circuitry to produce an

estimate of the target valence in the readout during presentation of CS+ that have been paired

with US (first-order conditioning; Fig 3A and 3B, top). During presentations of novel CS-US

pairings after optimization, this valence is reported for CS+ but not unconditioned stimulus

(CS-) presentations. The activities of subsets of model output neurons are suppressed follow-

ing conditioning, indicating that the network learns to modify its responses for CS+ but not

CS- responses (Fig 3A and 3B, bottom). This form of classical conditioning requires an appro-

priate mapping from US pathways to dopamine neurons, but recurrent mushroom body out-

put circuitry is not required; networks without recurrence also produce the target valence

(Fig 3E; top). We therefore considered a more complex set of tasks. Networks were optimized

to perform first-order conditioning, to extinguish associations upon repeated presentation of a

CS+ without US, and also to perform second-order conditioning.

During extinction, the omission of a US following a previously conditioned CS+ reduces

the strength of the learned association (Fig 3C). In second-order conditioning, a CS (CS1) is

first paired with a reward or punishment (Fig 3D, left), and then a second CS (CS2) is paired

with CS1 (Fig 3D, center). Because CS2 now predicts CS1 which in turn predicts reward or

punishment, the learned valence of CS1 is transferred to CS2 (Fig 3D, right). In both extinction

and second-order conditioning, a previously learned association must be used to instruct

either the modification of an existing association (in the case of extinction) or the formation of

a new association (in the case of second-order conditioning). We hypothesized that recurrent

output circuitry would be required in these cases. Indeed, non-recurrent mushroom body net-

works are unable to solve these tasks, while recurrent networks are (Fig 3E, center, bottom).

Non-recurrent networks optimized for multiple tasks also exhibited errors on first-order con-

ditioning (0.0 and 0.42 error rate for recurrent and non-recurrent networks respectively,

p < 10−8, Mann-Whitney U-test), indicating a general failure to optimize. Recurrent networks

PLOS COMPUTATIONAL BIOLOGY Models of heterogeneous dopamine signaling in an insect learning and memory center
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generalized to related tasks that they were not optimized for, such as reversal learning (S2 Fig),

further supporting the conclusion that they implement generalizable learning strategies.

We also examined whether the addition of direct connections from Kenyon cells to dopa-

mine neurons influenced our results (S3 Fig). Such connections are present across mushroom

Fig 2. Schematic of meta-learning procedure. (A) Two phases of meta-learning and testing. Left: During the optimization phase, connections that

form the mushroom body output circuitry are updated with gradient descent (orange). Kenyon cell to output neuron weights evolve “online” (within

each trial) according to dopamine-dependent synaptic plasticity. Right: After optimization is complete, the network is tested on a new set of trials. In

this phase, connections that form the output circuitry are fixed. (B) Illustration of trials involving CS/US associations presented during training (left)

and testing (right). Each trial involves new CS/US identities and timing.

https://doi.org/10.1371/journal.pcbi.1009205.g002
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body compartments, but their functional properties are unclear [49, 56]. Our qualitative results

were unchanged when these connections were added, whether we assumed they were fixed or

subject to synaptic plasticity. Thus, indirect connections from Kenyon cells to dopamine neu-

rons through recurrent mushroom body circuitry are sufficient for the tasks we consider.

Comparison to networks without plasticity

Standard recurrent neural networks can maintain stimulus information over time through

persistent neural activity, without modification of synaptic weights. This raises the question of

whether the dopamine-gated plasticity we implemented is necessary to recall CS-US associa-

tions, or if recurrent mushroom body output circuitry alone is sufficient. We therefore com-

pared the networks described above to networks lacking this plasticity. For non-plastic

networks, connections from Kenyon cells to output neurons are optimized through gradient

descent (with no constraints on excitatory or inhibitory sign) and fixed after optimization.

These networks evolve similarly to plastic networks except that the dynamics are determined

only by Eq 1 and not by the dopamine-gated plasticity of Eq 4.

In non-plastic networks, information about CS-US associations must be stored in the per-

sistent activity of the mushroom body output circuitry as an “attractor” of neural activity [57],

as opposed to being encoded in the KC-to-MBON weights. Such activity must maintain both

the identity of the CS+ odor and which US it was paired with in order to recall the learned

Fig 3. Behavior of network during reward conditioning paradigms. (A) Behavior of output neurons (MBONs) during first-order conditioning. During training, a CS+

(blue) is presented, followed by a US (green). Top: The network is optimized so that a readout of the output neuron activity during the second CS+ presentation encodes

valence (gray curve). Black curve represents the target valence and overlaps with the readout. Bottom: Example responses of output neurons. (B) Same as A, but for CS-

presentation without US. (C) Same as A, but for extinction, in which a second presentation of the CS+ without the US partially extinguishes the association. (D) Same as

A, but for second-order conditioning, in which a second stimulus (CS2) is paired with a conditioned stimulus (CS1). (E) Error rate averaged across networks in different

paradigms. An error is defined as a difference between reported and target valence with magnitude greater than 0.2 during the test period. Networks optimized with

recurrent output circuitry (control, black) are compared to networks without recurrence (no recur., red), and networks prior to optimization (initialization, gray). Error

rates for each network realization are evaluated over 50 test trials and used to generate p-values with a Mann-Whitney U-test over 20 network realizations.

https://doi.org/10.1371/journal.pcbi.1009205.g003
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valence without generalizing that valence to a different odor. We hypothesized that it would be

challenging for networks to support a large number of such attractors and therefore investi-

gated the performance of non-plastic networks in simulated environments in which there are

a fixed number of odors. We optimized networks both to respond appropriately to CS+

(Fig 4A) and avoid responding to neutral CS (Fig 4B).

Non-plastic networks can form CS-US associations (Fig 4A). Compared to networks with

dopamine-gated plasticity (Fig 3A), output neurons exhibit stronger persistent activity follow-

ing a CS-US pairing. However, when the number of odors in the environment is large, non-

plastic networks exhibit a high degree of overgeneralization of learned associations to neutral

CS that have not been paired with US (Fig 4B). This likely reflects the non-plastic networks’

inability to distinguish between odor identities when many odors are present. When odor

identities cannot be distinguished, the best compromise is to assume that the learned CS

+ valence applies to both the CS+ and to neutral CS, and indeed when many odors are present

Fig 4. Comparison to networks without dopamine-gated plasticity. (A) Behavior during first-order conditioning,

similar to Fig 3A, but for a non-plastic network. Because of the need for non-plastic networks to maintain information

using persistent activity, performance degrades with longer delays between training and test phases. We therefore

chose this delay to be shorter than in Fig 3A. Results are shown for a network optimized with 10 odors. (B) Same as A,

but for a trial in which a CS-US pairing is followed by the presentation of a neutral CS. (C) Difference in response

(reported valence) for CS+ and neutral CS as a function of the number of odors. Each CS+ is associated with either a

positive or negative US. For comparison, the corresponding response difference for networks with dopamine-gated

plasticity is shown in blue. Error bars represent s.e.m. over 8 network realizations.

https://doi.org/10.1371/journal.pcbi.1009205.g004
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the difference in the reported valence for these two classes of stimuli decreases to zero

(Fig 4C). Networks with dopamine-gated plasticity do not suffer from this shortcoming, as

they can store and update the identities of arbitrary novel stimuli in KC-to-MBON weights

(Fig 4C, blue curve).

In total, the comparison between plastic and non-plastic networks demonstrates that the

addition of dopamine-gated plasticity at KC-to-MBON synapses improves capacity and

reduces overgeneralization. Furthermore, plastic networks need not rely solely on persistent

activity in order to store associations (compare Figs 3A and 4A), likely prolonging the time-

scale over which information can be stored without being disrupted by ongoing activity.

Distributed representations across dopamine neurons

We next examined the responses of dopamine neurons to neutral, unconditioned, and condi-

tioned stimuli in the networks we constructed, to examine the “error” signals responsible for

learning (Fig 5A). Dopamine neurons exhibited heterogeneity in their responses. We per-

formed hierarchical clustering to identify groups of dopamine neurons with similar response

properties (Fig 5B, gray; see Methods). This procedure identified two broad groups of

Fig 5. Population analysis of dopamine neuron (DAN) activity. (A) First-order conditioning trials with positive or negative valence US.

(B) Responses of model dopamine neurons from a single network. Neurons are sorted according to hierarchical clustering (illustrated with

gray dendrogram) of their responses. (C) Principal components analysis of dopamine neuron population activity. Left: Response to CS

before conditioning. Middle: Response to a positive (green) or negative (red) valence US. Right: Response to a previously conditioned CS.

https://doi.org/10.1371/journal.pcbi.1009205.g005
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dopamine neurons—one that responds to positive-valence US and another that responds to

negative-valence US—as well as more subtle features in the population response. Consistent

with the known logic of the mushroom body output circuitry [48] and learning involving

depression of KC-to-MBON synapses, compartments whose dopamine neurons signal positive

valence US tend to have output neurons whose activation signals negative valence (S4 Fig).

While some dopamine neurons increase their firing only for US, many also respond to rein-

forced CS. In some cases, this response includes a decrease in firing rate in response to the

omission of a predicted US that would otherwise cause an increase in rate, consistent with a

reward prediction error. In other cases, neurons respond only with increases in firing rate for

US of a particular valence, and for omitted US of the opposite valence, consistent with cross-

compartmental interactions supporting the prediction of valence [31]. The presence of both

reward prediction error-like responses and valence-specific omission responses suggests that

multiple mechanisms are employed by the network to perform tasks such as extinction and

second-order conditioning.

The examination of their responses demonstrates that dopamine neurons in our models are

diversely tuned. This tuning implies that KC-to-MBON synapses change in a heterogeneous

manner in response to CS and US presentations, but that these changes are sufficient to pro-

duce an appropriate behavioral response collectively. Consistent with this idea, principal com-

ponents analysis of dopamine neuron responses identified modes of activity with

interpretable, task-relevant dynamics. The first principal component (Fig 5C) reflects US

valence and predicted CS+ valence, while rapidly changing sign upon US omission, consistent

with a reward prediction error. It is notable that such a signal emerges as the dominant mode

of dopamine neuron activity, as our optimization procedure does not explicitly require the for-

mation of a reward prediction error. Subsequent principal components include components

that respond to CS and US of both valences (principal component 2) or are tuned primarily to

a single stimulus, such as a positive valence CS+ (principal component 4). When we con-

strained networks to have fewer compartments, error increased (S5 Fig) suggesting that diver-

sity in dopamine signaling improves performance, though we note that this trend does not

distinguish task difficulty and ease of optimization.

To further explore how dopamine neuron responses depend on the task being learned, we

extended the model to require encoding of novelty and familiarity, inspired by a recent study

that showed that the mushroom body is required for learning and expressing an alerting

behavior driven by novel CS [29]. We added a second readout that reports CS novelty, in addi-

tion to the readout of valence described previously. Networks optimized to report both vari-

ables exhibit enhanced CS responses and a large novelty-selective component in the

population response identified by principal components analysis (Fig 6), compared to net-

works that only report valence (Fig 5B). These results suggest that dopamine neurons collec-

tively respond to any variables relevant to the task for which the output circuitry is optimized,

which may include variables distinct from reward prediction. Furthermore, the distributed

nature of this representation implies that individual variables may be more readily decoded

from populations of dopamine neurons than from single neurons.

Continual learning of associations

In the previous sections, we modeled the dynamics of networks during individual trials con-

taining a limited number of associations. We next ask whether these networks are capable of

continual learning, in which long sequences of associations are formed, with recent associa-

tions potentially overwriting older ones. Such learning is often challenging, particularly when

synaptic weights have a bounded range, due to the tendency of weights to saturate at their
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minimum or maximum value after many associations are formed [58]. To combat this, a

homeostasic process that prevents such saturation is typically required. We therefore asked if

our optimized networks can implement such homeostasis.

In certain compartments of the mushroom body, it has been shown that the activation of

dopamine neurons in the absence of Kenyon cell activity leads to potentiation of KC-to-

MBON synapses [33]. This provides a mechanism for the erasure of memories formed follow-

ing synaptic depression. We hypothesized that this non-specific potentiation could implement

a form of homeostasis that prevents widespread synaptic depression after many associations

are formed. We therefore augmented our dopamine-gated synaptic plasticity rule (Fig 1C)

with such potentiation (Fig 7A). The new synaptic plasticity rule is given by:

dwijðtÞ
dt

¼ �rDANi ðtÞrKCj ðtÞ � �rKCj ðtÞrDANi ðtÞ þ b�rDANi ðtÞ; ð5Þ

where β represents the rate of non-specific potentiation (compare with Eq 4). We allowed β to

be optimized by gradient descent individually for each compartment but constrained it to be

nonnegative.

We modeled long sequences of associations in which CS+, CS-, and US are presented ran-

domly (Fig 7B) and the network is again optimized to produce a target valence (Eq 3). In opti-

mized networks, the KC-to-MBON weights are initialized at the beginning (t = 0) of trial n to

be equal to those at the end (t = T) of trial n − 1, WKC!MBON
n ð0Þ ¼ WKC!MBON

n�1
ðTÞ, rather than

Fig 6. Behavior of a network that encodes both valence and novelty. The network is similar to Fig 5 but a second readout that computes novelty is added. The novelty

readout is active for the first presentation of a given CS and zero otherwise. (A) The addition of novelty as a readout dimension introduces dopamine neuron responses

that are selective for novel CS. Compare with Fig 5B. (B) The first principal component (PC1) for the network in A is selective for CS novelty. Compare with Fig 5C.

https://doi.org/10.1371/journal.pcbi.1009205.g006
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being reset to their baseline values as done previously. We examined the distribution of KC-

to-MBON synaptic weights after such sequences of trials. Without non-specific potentiation,

most synaptic weights are clustered near 0 (Fig 7C, red). However, the addition of this potenti-

ation substantially changes the synaptic weight distribution, with many weights remaining

potentiated even after thousands of CS and US presentations (Fig 7C, black). We also exam-

ined performance and dopamine neuron responses in the two types of networks. Without

non-specific potentiation, dopamine neuron responses are weaker and the reported valence

less accurately tracks the target valence, compared to networks with such potentiation (Fig 7D

and 7E).

These results suggest that such homeostatic mechanisms, or other modifications to the syn-

aptic plasticity rule in Eq 4 that avoid weights clustering near 0, are important for performance

on continual learning tasks. However, we note that non-specific potentiation might also

shorten memory lifetime, for example in a situation where a CS-US pairing is followed by

unpaired US presentations. Investigating how this tradeoff is resolved across compartments is

an interesting topic for future study.

Associating stimuli with changes in internal state

In the previous sections, we focused on networks whose dopamine neurons exhibited transient

responses to the presentation of relevant external cues. Recent studies have found that dopa-

mine neurons also exhibit continuous fluctuations that track the state of the fly, even in the

Fig 7. Model behavior for long sequences of associations. (A) Illustration of non-specific potentiation following dopamine neuron

activity (compare with Fig 1C). (B) Example sequence of positive and negative associations between two odors CS+ and CS2+ and US.

Neutral gray odors (CS-) are also presented randomly. (C) Histogram of synaptic weights after a long sequence of CS and US

presentations for networks with (black) and without (red) non-specific potentiation. Weights are normalized to their maximum value.

The means of the distributions across 18 network realizations for each condition were significantly different (p < 2 � 10−7, Mann-

Whitney U-test). (D) Left: dopamine neuron responses for the sequence of CS and US presentations. Right: same as left, but for a

network without non-specific potentiation. (E) Error rate (defined as a difference between reported and target valence with magnitude

greater than 0.5 during a CS presentation; we used a higher threshold than Fig 3 due to the increased difficulty of the continual learning

task) for networks with (black) and without (red) non-specific potentiation. Error rates for each network realization are evaluated over

20 test trials and used to generate p-values with a Mann-Whitney U-test over 18 network realizations.

https://doi.org/10.1371/journal.pcbi.1009205.g007
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absence of overt external reinforcement. These fluctuations are correlated with transitions

between, for example, movement and quiescence [33], or hunger and satiation [59]. Under-

standing the functional role of this activity is a major challenge for models of dopamine-

dependent learning. We hypothesized that such activity could permit the association of stimuli

with a transition to an arbitrary internal state of the organism. This could allow downstream

networks to read out whether a stimulus has previously been experienced in conjuction with a

particular change in state, which might inform an appropriate behavioral response to that

stimulus.

To test this hypothesis, we constructed networks that, in addition to supporting associative

conditioning (as in Fig 3), also transitioned between a set of three discrete internal states, trig-

gered on input pulses that signal the identity of the next state (Fig 8A). This input represents

signals from other brain areas that drive state transitions. We optimized the output circuitry

to, in addition to encoding valence as before, continuously maintain a state representation,

quantified by the ability of a linear readout of dopamine neuron activity to decode the current

state (Fig 8B, top). Specifically, the loss function equaled

Ly ¼
1

T

XT

n¼1

ðvðtnÞ � v�ðtnÞÞ
2

þ
1

T

XT

n¼1

jjsðtnÞ � s�ðtnÞjj
2
; ð6Þ

where s = Softmax(Wstater rDAN) is a 3-dimensional vector that represents the decoded proba-

bilities of being in each state and s� is a vector with one nonzero entry corresponding to the

actual current state. Here, Wstate is a 3 × NDAN matrix of weights that represents a linear read-

out of the state from DANs, while as before valence is read out from MBONs. Because we were

interested in networks that exhibited continuous fluctuations in dopamine neuron activity, we

did not impose an additional penalty on dopamine neuron firing rates as in Eq 3. Optimizing

networks with this loss function led to widespread state-dependent activity throughout the net-

work, including among dopamine neurons (Fig 8B, bottom). This activity coexists with activity

evoked by CS or US presentation.

We next examined output neuron responses to the presentation of stimuli that had previ-

ously preceded a transition to some state. If a transition to a given state reliably evokes a partic-

ular pattern of dopamine neuron activity, then KC-to-MBON synapses that are activated by

any stimulus preceding such a transition will experience a similar pattern of depression or

potentiation. We assessed this response similarity by computing the Pearson’s correlation

coefficient CorrðrMBON
A ; rMBON

B Þ, where rMBON
A is the average output neuron activity during the

presentation of stimulus A. Consistent with this prediction, the pattern of output neuron

responses evoked by a stimulus that predicts a transition to state S1 is more similar to the cor-

responding responses to other stimuli that predict the same state than any other state S2

(Fig 8C). The representations of state-transition-predictive stimuli are thus “imprinted” with

the identity of the predicted state. While these modifications could potentially interfere with

the ability of the system to support associative conditioning, these networks still exhibited high

performance on the tasks we previously considered (Fig 8D). Thus, state-dependent activity

and activity required for conditioning are multiplexed in the network. The presence of state-

dependent fluctuations could allow circuits downstream of the mushroom body to consistently

produce a desired behavior that depends on the internal state, instead of or in addition to the

external reinforcement, that is predicted by a stimulus. Our model thus provides a hypothesis

for the functional role of state-dependent dopamine neuron activity.
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Mixed encoding of reward and movement in models of navigation

We also examined models of dynamic, goal directed behaviors. An important function of

olfactory associations in Drosophila is to enable navigation to the sources of reward-predicting

odor cues, such as food odors [60]. We therefore modeled an agent that is first presented with

Fig 8. Behavior of a network whose activity transitions between a sequence of discrete states in addition to supporting

associative conditioning. (A) Brief pulse inputs to the network signal that a switch to a new state should occur. (B) Top: A linear

readout of dopamine neuron activity can be used to decode the network state. Bottom: dopamine neuron (DAN) activity exhibits

state-dependent fluctuations in addition to responding to CS and US. (C) Decoding of stimuli that predict state transitions. Heatmap

illustrates the correlation between output neuron population responses to the presentation of different stimuli that had previously

been presented prior to a state transition. Stimuli are ordered based on the state transitions that follow their first presentation. Blue

blocks indicate that stimuli that predict the same state transition evoke similar output neuron activity. (D) Performance of networks

on conditioning tasks. For each network realization, error rates are computed over 50 test trials and bars represent s.e.m. over 40

network realizations.

https://doi.org/10.1371/journal.pcbi.1009205.g008
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a CS+ followed by reward and then is placed in a two-dimensional environment and must nav-

igate to the rewarded odor (Fig 9A, top). The activity of the mushroom body output circuitry

controls the forward velocity u(t) and angular velocity ω(t) of the agent. The agent’s heading is

given by dy

dt ¼ oðtÞ, which, along with the forward velocity, determines the change in its loca-

tion dx
dt ¼ uðtÞ cosyðtÞx̂1 þ sin yðtÞx̂2ð Þ (Fig 9A). We assumed that these movement variables

are not decoded directly from output neurons but from other feedback neurons which may

represent locomotion-related downstream regions (see Methods). The environment contains

Fig 9. Model behavior for a navigation task. (A) Top: Schematic of navigation task. After conditioning, the simulated organism

uses odor concentration input (blue) and information about wind direction w relative to its heading h. Bottom: Diagram of a

network that uses these signals to compute forward and angular velocity signals for navigation. Velocity signals are read out from

other neurons in the mushroom body output circuitry (gray), rather than output neurons. (B) Position of the simulated organism as

a function of time during navigation. Black: Simulation with intact dopamine-gated plasticity during navigation; Red: Simulation

with plasticity blocked. Arrowheads indicate direction of movement. In the top left plot, the starting location (gray circle) is

indicated. (C) Position error (mean-squared distance from rewarded odor source at the end of navigation) for control networks and

the same networks in which dopamine-gated plasticity is blocked during the navigation phase. For each network realization, error

rates are computed over 50 test trials and bars represent s.e.m. over 30 network realizations. Significance is computed with a

Wilcoxon signed-rank test. (D) Forward (top) and angular (bottom) velocity as a function of time during one example navigation

trial. (E) Left: Dopamine neuron activity during CS and US presentation in the conditioning phase of a trial. Right: Dopamine

neuron activity during the navigation phase of the trial (same trial as in D).

https://doi.org/10.1371/journal.pcbi.1009205.g009
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multiple odor sources that produce odor plumes that the the agent encounters as it moves. The

mushroom body output circuitry supports this behavior by integrating odor concentration

input from Kenyon cells and information from other brain areas about wind direction relative

to the agent’s orientation [61] (Fig 9A, bottom; see Methods for a description of how wind

input is encoded). Because x(t) is a differentiable function of network parameters, we can use

as a loss function the Euclidean distance between the agent’s location and the rewarded odor

source at the end of this navigation period:

Ly ¼ jjxðTÞ � x�jj
2
; ð7Þ

where x� is the location of the rewarded odor source and T is the time at which the navigation

period ends. Successfully executing this behavior requires storing the identity of the rewarded

odor, identifying the upwind direction for that odor, moving toward the odor source using

concentration information, and ignoring neutral odors.

The agent successfully navigates to the rewarded odor source (Fig 9B), and success requires

plasticity during conditioning that encodes the CS+/US pairing (S6 Fig). We wondered

whether dopamine-gated plasticity might also be operative during navigation, based on recent

findings that recorded ongoing dopamine neuron fluctuations correlated with movement [33].

We asked whether such plasticity during navigation affects the behavior of the model by exam-

ining the performance of networks in which it is blocked after optimization. Blocking plasticity

during navigation impairs performance (Fig 9C). In particular, networks lacking plasticity

often exhibit decreased forward velocity after entering a plume corresponding to a rewarded

odor (Fig 9B), suggesting that ongoing plasticity may reinforce salient odors as they are

encountered and promote odor-seeking, consistent with a recent report [62]. These results

make the prediction that increased levels of dopamine neuron activity and dopamine-gated

plasticity occur upon encounters of rewarded odor plumes.

We also examined the relationship between dopamine neuron activity and movement vari-

ables during navigation. The agent exhibits increased forward velocity and turning upon

encountering an odor, with greater increases for rewarded than for neutral odors (Fig 9D).

Model dopamine neurons exhibit activity during navigation that correlates with movement

(Fig 9E and S7 Fig). Many of the same dopamine neurons also exhibit reward-related activity,

as has been observed in neural recordings [33].

An important caveat to our results is that it is possible to construct networks in which plas-

ticity is active during the conditioning phase but gated off during the navigation phase of the

task from the beginning of optimization. In natural environments where learning and naviga-

tion are not clearly separated into distinct phases, such a gating mechanism may be difficult to

implement. However, in our setting, these networks exhibit similar performance to networks

in which plasticity is always active (S6 Fig). Thus, unconstrained optimization of networks

produces solutions in which ongoing plasticity during navigation is behaviorally relevant (Fig

9B and 9C), but our results cannot be taken to conclude that this plasticity is always required

to solve our task. More complex tasks that require moment-by-moment decisions to be made

throughout the navigation process may rely on such plasticity and are an exciting direction for

future study.

Discussion

We have developed models of the mushroom body that use a biologically plausible form of

dopamine-gated synaptic plasticity to solve a variety of learning tasks. By optimizing the mush-

room body output circuitry for task performance, these models generate patterns of dopamine

neuron activity sufficient to produce the desired behaviors. Model dopamine responses are
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distributed, tuned to multiple task-relevant variables, and exhibit rich temporal fluctuations.

This diversity is a result of optimizing our models only for task performance rather than

assuming that dopamine neurons uniformly represent a particular quantity of interest, such as

a global reward prediction error signal [3]. Our results predict that individual dopamine neu-

rons may exhibit diverse tuning while producing coherent activity at the population level.

They also provide the first unified modeling framework that can account for valence and

reward prediction (Fig 5), novelty (Fig 6), and movement-related (Fig 9) dopamine neuron

responses that have been recorded in experiments.

Relationship to other modeling approaches

To construct our mushroom body models, we took advantage of recent advances in recurrent

neural network optimization to augment standard network architectures with dopamine-

gated plasticity. Our approach can be viewed as a form of “meta-learning” [45–47], or “learn-

ing to learn,” in which a network learns through gradient descent to use a differentiable form

of synaptic plasticity (Eq 4) to solve a set of tasks. As we have shown, this meta-learning

approach allows us to construct networks that exhibit continual learning and can form associa-

tions based on single CS-US pairings (Fig 7). Recent studies have modeled networks with

other forms of differentiable plasticity, including Hebbian plasticity, [63–65] but have not

studied gated plasticity of the form of Eq 4. Another recent study examined networks with a

global neuromodulatory signal rather than the heterogeneous signals we focus on [66]. Meta-

learning approaches have also recently been applied to infer alternative learning algorithms to

backpropagation through time [67].

Another recent study used a meta-learning approach to model dopamine activity and activ-

ity in the prefrontal cortex of mammals [68]. Unlike our study, in which the “slow” optimiza-

tion is taken to represent evolutionary and developmental processes that determine the

mushroom body output circuitry, in this study the slow component of learning involved dopa-

mine-dependent optimization of recurrent connections in prefrontal cortex. This process

relied on gradient descent in a recurrent network of long short-term memory (LSTM) units,

leaving open the biological implementation of such a learning process. Like in actor-critic

models of the basal ganglia [69], dopamine was modeled as a global reward prediction error

signal.

In our case, detailed knowledge of the site and functional form of plasticity [28] allowed us

to build models that solved multiple tasks using only a biologically plausible synaptic plasticity

rule. This constraint allows us to predict patterns of dopamine neuron activity that are suffi-

cient for solving these tasks (Fig 5). Similar approaches may be effective for modeling other

brain areas in which the neurons responsible for conveying “error” signals can be identified,

such as the cerebellum or basal ganglia [2, 70].

Heterogeneity of dopamine signaling across species

Dopamine is responsible for a variety of functions in arthropods, including associative mem-

ory in honeybees [6], central pattern generation in the stomatogastric ganglion of lobsters [7],

escape behaviors [8] and salivation [9] in the cockroach, and flight production in moths [10].

While dopamine similarly plays many roles in Drosophila, including the regulation of locomo-

tion, arousal, sleep, and mating [11], until recently most studies of Drosophila mushroom body

dopamine neurons have focused on their roles in appetitive and aversive memory formation

[12, 13, 16, 18, 20–22]. In mammals, while numerous studies have similarly focused on reward

prediction error encoding in midbrain dopaminergic neurons [2], recent reports have also

described heterogeneity in dopamine signals reminiscent of the heterogeneity across
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dopamine neurons in the mushroom body [5, 43]. These include reports detailing distinct sub-

types of dopamine neurons that convey positive or negative valence signals or respond to

salient signals of multiple valences [39, 71], novelty responses [34–38, 40], responses to threat

[72], and modulation of dopamine neurons by movement [41, 42]. In many cases, these sub-

types are defined by their striatal projection targets, suggesting a compartmentalization of

function similar to that of the mushroom body [5]. However, the logic of this compartmentali-

zation is not yet clear.

Standard reinforcement learning models of the basal ganglia, such as actor-critic models,

assume that dopamine neurons are globally tuned to reward prediction error signals [69]. Pro-

posals have been made to account for heterogeneous dopamine responses, including that dif-

ferent regions produce prediction errors based on access to distinct state information [73], or

that dopamine neurons implement an algorithm for learning the statistics of transitions

between states using sensory prediction errors [74]. Our results are compatible with these the-

ories, but different in that our model does not assume a priori that all dopamine neurons

encode prediction errors. Instead, prediction error coding by particular modes of population

activity emerges in our model as a consequence of optimizing for task performance (Fig 5).

This heterogeneity emerged even though we penalized dopamine activity that exceeded a base-

line value (Eq 3). In networks in which this penalization is absent, such as networks whose

dopamine neurons encode arbitrary changes in internal state (Fig 8), an even higher level of

dopamine fluctuations is present in the optimized models.

Connecting mushroom body architecture and function

The identification of groups of dopamine neurons that respond to positive or negative valence

US [16, 24, 30, 75, 76], output neurons whose activity promotes approach or avoidance [26],

and dopamine-gated plasticity of KC-to-MBON synapses [27, 28, 77] has led to effective mod-

els of first-order appetitive and aversive conditioning in Drosophila. A minimal model of such

learning requires only two compartments of opposing valence and no recurrence among out-

put neurons or dopamine neurons. The presence of extensive recurrence [33, 48, 52, 78] and

dopamine neurons that are modulated by other variables [29, 31–33] suggests that the mush-

room body modulates learning and behavior along multiple axes.

The architecture of our model reflects the connectivity between Kenyon cells and output

neurons, compartmentalization among output neurons and dopamine neurons, and recur-

rence of the mushroom body output circuitry. These constraints match the key architectural

features of the mushroom body, but also reflect simplifications made in the absence of addi-

tional data. While the identities and functional properties of output neurons and dopamine

neurons have been mapped anatomically [48, 79], the feedback pathways have not, so the feed-

back neurons in our model (gray neurons in Fig 1A) represent any neurons that participate in

recurrent loops involving the mushroom body, which may involve paths through other brain

areas. For most of our analyses (but see S3 Fig), we also neglected direct projections from Ken-

yon cells to dopamine neurons [49, 56]. When they were added to the model, our qualitative

results were unchanged, although it is possible that future studies may uncover a specific role

for these connections. Our model could also be extended by including direct depolarizing or

hyperpolarizing effects of dopamine on output neurons, which has been observed experimen-

tally [50], or by introducing recurrence among Kenyon cells [49]. Additionally, explicitly

modeling the integration of projection neuron to Kenyon cell signaling could provide a more

realistic account of the representation of sensory stimuli [80].

Our model could also be extended by considering other forms of synaptic plasticity. There

is evidence that dopamine-gated synaptic plasticity rules (Fig 1B) are heterogeneous across
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compartments [26, 27], and non-dopamine-dependent plasticity could also lead to new behav-

ior [80]. While we have primarily focused on the formation of associations over short time-

scales because the detailed parameters of compartment-specific learning rules have not been

described, such heterogeneity will likely be particularly important in models of long-term

memory [21, 81–85].

Our model makes several predictions. It predicts that reward prediction error should

emerge as a dominant mode of population activity across dopamine neurons, even though

individual dopamine neurons may be diversely tuned (Fig 5). It predicts that compartments

that exhibit a large degree of non-specific potentiation may be particularly important for form-

ing short-term associations in complex environments with many background or distractor

odors (Fig 7). It also suggests the possibility of pairing an odor presentation with a change in

internal state and reading out this pairing from the pattern of output neuron activity upon a

subsequent presentation (Fig 8C). Our results also suggest that plasticity during navigation

may promote odor-seeking (Fig 9), an idea with experimental support [62]. For each of these

predictions, input to dopamine neurons from pathways other than those that convey purely

external reinforcement is required. Identifying the pathways that convey these signals is an

important direction. In the absence of an explicit correspondence between neurons in our

model and their biological counterparts, direct analysis of the connectivity in our optimized

networks is unlikely to be sufficient to do so. Future studies should build models that incorpo-

rate recently available mushroom body wiring diagrams to further constrain models [49, 50,

52, 53].

However, it is unlikely that purely anatomical information, even at the level of a synaptic

wiring diagram, will be sufficient to infer how the mushroom body functions [86]. We have

used anatomical information and parametrized synaptic plasticity rules along with hypotheses

about which behaviors the mushroom body supports to build “task-optimized” models, related

to approaches that have been applied to sensory systems [87]. The success of these approaches

for explaining neural data relies on the availability of complex tasks that challenge and con-

strain the computations performed by the models. Therefore, experiments that probe the axes

of fly behavior that the mushroom body supports, including behaviors that cannot be

described within the framework of classical conditioning, will be a crucial complement to con-

nectivity mapping efforts as models of this system are refined.

Methods

Time discretization

For computational efficiency and ease of training, we assume τ in Eq 1 is equal to 1 s and simu-

late the system with a timestep of Δt = 0.5 s, but our results do not depend strongly on these

parameters.

Optimization

Parameters are optimized using PyTorch (www.pytorch.org) with the RMSprop optimizer

[88] and a learning rate of 0.001. The loss to be minimized is described by Eqs 3 and 6 or Eq 7

for networks optimized for conditioning tasks, continuous state representations, or navigation

respectively. Optimization is performed over a set number of epochs, each of which consists of

a batch of B = 30 trials. The loss Ltot
y

ðmÞ for epoch m is the average of the individual losses over
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each trial in the batch:

Ltot
y

ðmÞ ¼
1

B

XB

b¼1

Lyðb;mÞ; ð8Þ

where Lyðb;mÞ represents the loss for bth trial drawn on epoch m.

All optimized weights are initialized as zero mean Gaussian variables. To initialize Wrecur,

weights from a neuron belonging to neuron type X (where X = MBON, DAN, or FBN) have 0

mean and variance equal to 1ffiffi
2

p
NX

, where NX equals the number of neurons of type X. For Wread-

out, the variance is 1/NMBON while for Wext, the variance is 1. Bias parameters are initialized at

0.1. At the beginning of each trial, firing rates are reset to an initial state r0, with r0 = 0 for out-

put neurons and 0.1 for dopamine neurons or feedback neurons, to permit these neurons to

exhibit low levels of baseline activity.

Conditioning tasks

For conditioning tasks in which the predicted valence of a conditioned stimulus (CS) is

reported (such as first- and second-order conditioning and extinction), each CS is encoded by

setting 10% of the entries of rKC to 1 and the rest to 0. Unconditioned stimuli (US) are encoded

by rext which is equal to (1, 0)T when a positive-valence US is present, (0, 1)T when a negative-

valence US is present, and (0, 0)T otherwise. CS and US are presented for 2 s. Tasks are split

into 30 s intervals (for example conditioning and test intervals; see Fig 3). Stimulus presenta-

tion occurs randomly between 5 s and 15 s within these intervals. Firing rates are reset at the

beginning of each interval (e.g. r(t = 30 s) = r0), which prevents networks from using persistent

activity to maintain associations.

When optimizing networks in Fig 3, random extinction and second-order conditioning tri-

als were drawn. With probability 1/2, CS or US are randomly omitted (and the target valence

updated accordingly—e.g., if the US is omitted, the network should not report a nonzero

valence upon the second CS presentation; Fig 3B) in order to prevent the networks from over-

generalizing to CS that are not paired with reinforcement. Optimization progressed for 5000

epochs for networks trained to perform extinction and second-order conditioning. For net-

works trained only for first-order conditioning, (Fig 3E, top; Fig 4), only first-order condition-

ing trials were drawn, and optimization progressed for 2000 epochs.

Principal components of dopamine neuron activity (Fig 5) were estimated using 50 ran-

domly chosen trials of extinction and second-order conditioning in previously optimized net-

works. To order dopamine neurons based on their response similarity (Fig 5A), hierarchical

clustering was performed using the Euclidean distance between the vector of firing rates corre-

sponding to pairs of dopamine neurons during these trials.

For networks also trained to report stimulus novelty (Fig 6), an additional readout dimen-

sion n(t) that is active for the first presentation of a given CS and inactive otherwise is added.

The full network readout is then given by

RðtÞ ¼
vðtÞ

nðtÞ

 !

¼ WreadoutrMBONðtÞ; ð9Þ
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and the loss equals

Ly ¼
1

T

XT

n¼1

jjRðtnÞ � R�ðtnÞjj
2

þ
l

T

XT

n¼1

XNDAN

i¼1

½rDANi ðtnÞ � 0:1�
2

þ
: ð10Þ

Adding this second readout does not significantly impact the performance of the networks

for classical conditioning tasks.

Networks without dopamine-gated plasticity

For networks without dopamine-gated plasticity, KC-to-MBON synaptic weights were opti-

mized through gradient descent, similar to the weights that determine the output circuitry,

and then fixed. The time of CS+ presentation is 5 s, and the second CS presentation occurs at

15 s. Networks were optimized to perform first-order conditioning with positive and negative

valence US for a fixed set of stimuli numbering between 2 and 20. On half of the trials, a differ-

ent CS is presented instead of the second CS+ presentation (Fig 4B) and networks must not

respond to this CS.

Continual learning

To model continual learning (Fig 7), networks are augmented with non-specific potentiation

gated by dopamine neuron activity according to Eq 5. The potentiation parameter β is com-

partment-specific and updated through gradient descent. Each parameter is initialized at 0.01

and constrained to be positive.

Trials consist of 200 s intervals, during which two CS+ and two CS- odors are presented

randomly. For each CS, the number of presentations in this interval is chosen from a Poisson

distribution with a mean of 2 presentations. Unlike other networks, for these networks the val-

ues of WKC!MBON at the end of one trial are used as the initial condition for the next trial. To

prevent weights from saturating early in optimization, the weights at the beginning (t = 0) of

trial l are set equal to:

wlð0Þ ¼ ð1 � xÞw0 þ xwl�1ðTÞ; ð11Þ

where w0 = 0.05 corresponds to the initial weight at the beginning of optimization, wl−1(T) are

the weights at the end (t = T) of trial l − 1, and x increases linearly from 0 to 1 during the first

2500 epochs of optimization. Hence, at the end of the optimization phase, wl(t) = wl−1(T). Net-

works were optimized for a total of 5000 epochs.

Networks that encode changes in state

For networks that encode changes in state (Fig 8), we modified our training protocol to

include an additional three-dimensional readout of dopamine neuron activity that encodes the

state (at each moment in time, the target is equal to 1 for the corresponding readout dimension

and 0 for the others; Eq 6). The external input rext is five-dimensional and signals both state

transitions using input pulses of length 2 s and the valence of US as before. The length of time

between pulses ΔTstate is a random variable distributed according to ΔTstate * 10 s � (1 + Exp

(1)). Networks were optimized for 500 epochs.

To test how state-dependent dopamine neuron dynamics affect stimulus encoding, a CS is

presented for 2 s, beginning 8 s prior to the second state change of a 300 s trial. Afterward, the

same CS is presented for 5 s. This was repeated for 50 CS, and the correlation coefficient

between output neuron responses during the second 5 s presentation was calculated (Fig 8C).
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Models of navigation

To model navigation toward a rewarded odor source (Fig 9), a CS+/US pairing is presented at

t = 2 s in a 20 s training interval with a US strength of rexti ¼ 0:1. This is followed by a 200 s

interval during which the model organism navigates in a two-dimensional environment.

During navigation, two odor sources are present, one CS+ and one neutral CS. The sources

are randomly placed at x1 = ±1 m and x2 chosen uniformly between 0 m and 2 m, with a mini-

mum spacing of 0.5 m. Associated with each odor source is a wind stream that produces an

odor plume that the model organism encounters as it navigates. These are assumed to be paral-

lel to the horizontal x1 axis and oriented so that the odor plume diffuses toward the origin,

with a vertical height of 0.5 m and centered on the x2 position of each odor source. For loca-

tions within these plumes and downwind of an odor source, the concentration of the odor is

given by:

cðDx1; Dx2Þ ¼
1

1 þ 0:5Dx1

exp �ðDx2Þ
2
=ð0:1Dx1Þ

� �
; ð12Þ

where Δx1 and Δx2 are the horizontal and vertical displacements from the odor source in

meters. This equation expresses a Gaussian odor plume with a width that increases and magni-

tude that decreases with distance from the odor source.

During navigation, when the model organism encounters an odor plume, Kenyon cell

activity is assumed to be proportional to the pattern of activity evoked by an odor (as before, a

random pattern that activates 10% of Kenyon cells) scaled by c(Δx1, Δx2). The network further

receives 4-dimensional wind direction input via Wext (representing the magnitude in each of

the cardinal directions with respect to the model organism). Each input is given by [w � hi]+,

where w is a unit vector representing wind direction and hi for i = 1. . .4 is a unit vector point-

ing in the anterior, posterior, or lateral directions with respect to the model organism.

The organism is initially placed at the origin and at an angle distributed uniformly on the

range p

2
ð1 � gÞ; p

2
ð1 þ gÞ

� �
, with γ increasing linearly from 0 to 0.5 during the optimization.

The movement of the organism is given by two readouts of the feedback neurons. The first

determines the forward velocity u(t) = Softplus(Wu � r(t) + bu), and the second determines the

angular velocity ω(t) = Wω � r(t) + bω. The weights and bias parameters of these readouts are

included in the parameter vector θ that is optimized using gradient descent. For each trial, the

loss is determined by the Euclidean distance of the model organism from the rewarded odor

source at the end of the navigation interval (Eq 7). Networks were optimized for 500 epochs.

Networks that failed to converge (defined as an average position error of greater than 0.4 m)

were discarded.

Supporting information

S1 Fig. Loss function over the course of optimization. Loss is shown for five networks opti-

mized to perform first-order conditioning, second-order conditioning, and extinction (as in

Fig 3).

(EPS)

S2 Fig. Behavior of networks optimized to perform classical conditioning on a reversal

learning task. (A) Top: Schematic of reversal learning task. In the first phase, CS1 but not CS2

is paired with US, while during reversal the contingencies are reversed. Preference between

CS1 and CS2 is compared in the test phase. Bottom: Example MBON and DAN activity during

reversal learning. (B) The average difference in reported valence for CS2 vs. CS1. Positive or

negative values for positive or negative-valence US, respectively, indicate successful reversal
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learning. Bars indicate standard deviation across model networks.

(EPS)

S3 Fig. Behavior of networks with direct KC-to-DAN connections. Performance on extinc-

tion (top) and second-order conditioning (bottom) is shown for control networks (black), net-

works with optimized KC-to-DAN connections (blue), and networks with KC-to-DAN

connections that undergo plasticity according to Eq 4 (green). Corresponding networks that

lack recurrence are shown in red, cyan, and magenta, respectively. In all cases, the addition of

KC-to-DAN connections does not qualitatively change the results. Error rates for each net-

work realization are evaluated over 50 test trials and used to generate p-values with a Mann-

Whitney U-test over 12 network realizations. For networks in which KC-to-DAN connections

are optimized with gradient descent, we initialized the weights uniformly between 0 and 0.05

and constrained them to remain positive during optimization. The optimization procedure

reduced the magnitude of these weights significantly across networks in the control (0.025 to

0.021; p < 10−4) but not no recurrence condition (0.025 to 0.026; n.s.), suggesting that these

weights are not critical for performance.

(EPS)

S4 Fig. Relationship between US response and associated compartment readout. Results

are shown for a representative example optimized network as in Fig 3. Each point represents

one compartment. The horizontal axis denotes the corresponding entry of Wreadout and the

vertical axis denotes the difference between that compartment’s dopamine neuron’s response

to a positive and negative valence US. Consistent with learning involving depression of KC-to-

MBON synapses, compartments whose output neuron activity biases the readout toward nega-

tive valence (avoidance) have dopamine neurons that preferentially respond to positive valence

US.

(EPS)

S5 Fig. Performance of networks with fixed numbers of output neurons and dopamine

neurons, but different numbers of compartments. For a network with Nc compartments, the

dopamine neuron to output neuron connection matrix is block-diagonal with Nc blocks of

nonzero weights. Weights within blocks are equal to 1/Nc. Nc = 20 corresponds to the networks

used elsewhere in this manuscript. Error bars represent s.e.m. across 10 network realizations.

Error rates for each network realization are evaluated over 50 test trials and used to generate p-

values with a Mann-Whitney U-test over 10 network realizations. Comparisons are made to

networks with Nc = 20.

(EPS)

S6 Fig. Dependence of navigation performance on synaptic plasticity. (A) Performance of

control networks from Fig 9 (black), networks that were optimized with KC-to-MBON plastic-

ity only active during training and not navigation (gray), and networks lacking plasticity alto-

gether (blue). The gray condition corresponds to networks for which plasticity was blocked

during optimization and testing, rather than only during testing (red bar in Fig 9C). Error

rates for each network realization are evaluated over 50 test trials and used to generate p-values

with a Mann-Whitney U-test over 30 network realizations. (B) Similar to Fig 9B, but for a net-

work lacking KC-to-MBON synaptic plasticity altogether. The model organism is unable to

identify the rewarded odor and navigate toward it. Trajectories tend toward points located

between the two odor sources.

(EPS)
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S7 Fig. Example cross-correlation functions between dopamine neuron activity and veloc-

ity during navigation. Left: Expectation of d(t)u(t + τ), where d(t) is dopamine neuron activity

and u(t) is forward velocity. Each color represents a different dopamine neuron. Right: Same

as left, but for d(t)ω(t + τ), where ω(t) is angular velocity.

(EPS)
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