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Abstract – Macroscopic phase coherence in superconductors enables quantum interference and
phase manipulation at realistic device length scales. Numerous superconducting electronic devices
are based on the modulation of the supercurrent in superconducting loops. While the overall
behavior of symmetric superconducting loops has been studied, the effects of asymmetries in such
devices remain under-explored and poorly understood. Here we report on an experimental and
theoretical study of the flux modulation of the persistent current in a doubly connected asymmetric
aluminum nanowire loop. A model considering the length and electronic cross-section asymmetries
in the loop provides a quantitative account of the observations. Comparison with experiments give
essential parameters such as persistent and critical currents as well as the amount of asymmetry
which can provide feedback into the design of superconducting quantum devices.

Copyright c© 2022 EPLA

The superconducting order parameter has a well-defined
amplitude and phase, and the superconducting states
are characterized by long-range phase coherence. The
ability to control and manipulate the superconducting
phase and quantum interference of superconducting wave
functions over long length scales are at the core of nu-
merous functional quantum devices, such as the Super-
conducting QUantum Interference Device (SQUID) [1]
and superconducting qubits [2]. A ubiquitous component
of such devices are superconducting loops, in which the
flux quantization leads to the periodic modulation of a
host of observables, for instance its critical temperature
or resistance [3,4] and switching current in the case of
SQUIDs [5–7]. Aside from their fundamental interest,
interference-based superconducting devices are very sen-
sitive flux detectors [8] and are particularly suitable for
sensing small amounts of quantum spins [9] that have long
decoherence times [10], which constitutes an essential as-
pect for the development of quantum processors.

A hallmark of superconducting loops is the quantum pe-
riodicity exhibited by the persistent current with varying
external magnetic flux threading the loop. In symmet-
ric devices, the latter has long been evidenced as sinu-
soidal modulations in junction SQUIDs, corresponding to

(a)E-mail: ichiorescu@fsu.edu (corresponding author)

an out-of-phase sinusoidal pattern for the persistent cur-
rent and as symmetric triangular modulations in nanowire
loops, corresponding to a sawtooth persistent current pat-
tern with a sudden sign reversal at half-integer quantum
fluxes [1]. It has long been known that switching cur-
rent Isw(Φ) distribution measurements reveal a gradual
change between one branch of the sawtooth to the next
at these flux values, seen as a smooth change between two
Isw modes (see, e.g., [11]). In contrast, an asymmetric
device was predicted to produce a discontinuous jump in
the single-valued switching current Isw at the field of per-
sistent current sign reversal [12], although such an effect
was not observed.

Asymmetric devices present specific properties. A nu-
merical study based on the time-dependent Ginzburg-
Landau theory [13] revealed that, with increasing injected
current at a constant field, an asymmetric device self-
regulates in the form of vortex entry, which results in
multiple changes of the supercurrent in contrast to a
single jump into the normal state in a symmetric loop.
Experimentally, asymmetric flux modulation of Isw has
been observed in loop devices with geometric asymme-
try [12,14–16] leading to switching asymmetry [17,18]; a
similar behavior was even observed in a geometrically sym-
metric device, which was attributed to induced thermal
inhomogeneity in the device [11]. Moreover, the switching
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current relationship to winding number (or loop vorticity)
was studied as thermal activated [19] or quantum [13,20]
phase slips and for potential practical applications [21]. In
general, a comprehensive measurement and detailed mod-
eling of the multimodal switching currents in asymmet-
ric superconducting loops are necessary for the physical
understanding, performance optimization, and proper in-
terpretation of the measurement results of the supercon-
ducting quantum interference devices.
We present an experimental investigation and theoret-

ical modeling aimed at elucidating the effects of geomet-
ric and electronic asymmetries on the persistent current
dynamics in superconducting loops. First, we describe
the effect of these two asymmetries (in branch lengths
and cross-sections) on the field modulation curve, giving
theoretical and experimental evaluation for relevant pa-
rameters such as persistent and critical currents, and the
location of minima and maxima. In particular, the im-
portance of variations in the electronic (effective) cross-
section of a wire is discussed; this is particularly relevant
to granular films where device imagery may not directly
relate to transport properties. Also, we present the ob-
servation of a bi-modal switching behavior which has a
field modulation in agreement with our model. The two
switching modes are a result of the phase dynamics of the
system, for a given set of device parameters and relaxation
conditions. Our results are relevant to a wide range of ex-
perimental implementations and theoretical interpretation
of superconducting quantum interference devices, with or
without Josephson junctions [22,23].
To study the process of phase interference in the case

of superconducting waves, first a superconducting loop
of size 2.5μm × 2.5μm is fabricated on an undoped
Si substrate by two-layer (PMGI/PMMA) electron-beam
lithography, followed by thermal evaporation of Al and
liftoff. Two additional samples were studied to show
the reproducible and systematic nature of our theory-
experiment agreement, as shown below. The loop wire
has a designed width and thickness of 70 nm and 30 nm,
respectively. A Scanning Electron Microscopy (SEM) im-
age of a typical sample is shown in fig. 1 (dashed box). The
amount of length asymmetry between the two branches is
controlled by the positioning of the second lead, connected
to ground. The device presented in fig. 1 is designed to
have only a small amount of geometrical asymmetry. The
opposite corner of the square loop is connected to the
input-output electronics. The sample is mounted on a
holder and inserted in a dilution refrigerator such that the
loop is located in the middle of a superconducting coil.
A programmable digital-to-analog voltage source is used

to generate a train of current pulses (via an in-line resistor
Rin = 50 kΩ) with increasing amplitude, as shown in the
solid box of fig. 1. The pulses have a length τp = 10μs,
repetition time τ = 100μs and a rise time of about 1.5μs.
The output voltage is monitored via an amplifier by an
analog-to-digital converter (AdWin Gold). The switching
of the loop from superconducting to normal state takes

Fig. 1: Schematics of the measurement setup. The dashed box
shows an SEM image of the aluminium loop, placed in the mid-
dle of a superconducting coil at T ≈ 0.3K. A programmable
digital-to-analog converter sends a series of current pulses to
the loop (solid box), via an in-line resistor Rin and when the
detected loop voltage is larger than a set threshold (dashed
line), the loop is declared as switched from the superconduct-
ing to normal state.

place when the loop voltage pulse is larger than a thresh-
old value Vth corresponding to a bias current Ith, as shown
in fig. 1 (here Vth = 0.2mV). When that happens, the
corresponding current and voltage values Iin and Vout are
recorded. After the switch, a device normal state resis-
tance of approximately 140 Ω is attained, which generates
about ∼ 1

3 μW of heat for a time of the order of μs � τ ,
before the bias current is reset. The measurement pro-
tocol employed ensures that the device is not heated up
after a switch.

During an experiment, the magnetic field φ is fixed and
the train of pulses is repeated for N = 1000 times, in
order to obtain a histogram of the switching currents, a
method inspired by experiments done with direct-current
SQUIDs [5,11,19]. The flux is then changed by 34.5 mΦ0

and the procedure is repeated, for the desired range of
fields, here scanned from negative to positive values. Since
the device is fully switched after each pulse, it is expected
that a switching histogram reveals all possible outcomes at
each field, without the possibility of a field hysteresis. The
temperature of the experiment is set at T ≈ 0.3K, which
is about a fifth of the critical temperature Tc ≈ 1.4K [24]
(the base temperature inside the superconducting magnet
bore is ≈0.1–0.2K).

Using the experimental procedure described previously,
series of N = 1000 values of switching current Isw at fixed
fields Φ are obtained. A waiting time is introduced be-
tween consecutive values of the field, to ensure its stabil-
ity. An Isw(Φ) series allows to create histograms of the
switching current, as is the one presented in fig. 2, that
represents the modulation curve of a loop threaded by
magnetic field. The field period of the modulation is mul-
tiplied by the effective area of the loop (the midpoint of
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Fig. 2: Color map of the switching current histogram as a func-
tion of the flux φ threading the aluminum loop, measured at
0.3K. The legend shows the counts as percentage of N associ-
ated with each color. The modulation curve shows asymmetric
positive and negative slopes and the existence of two switching
branches.

the wire is used to approximate the contour) and the re-
sult is indeed Φ0, within the limits of this approximation.
The total time to perform such a field scan is ≈ 2 h dur-
ing which a small cooling effect is observed on the critical
current Ic0 as a linear drift of 0.6% per Φ0; this drift is
subtracted before obtaining the plot of fig. 2. Knowing
that Ic0 ∝ [1 − (T/Tc)

2]3/2 [25] a cooling of several mK
during the experiment is sufficient to explain the observed
Ic0 drift.

The histograms clearly show two branches for Isw, one
below and one above ∼ 52μA. The lower branch his-
togram is generally significantly sharper than the top one,
but their areas (total count per branch per φ) are very sim-
ilar, meaning that the device has ∼ 50% chance to switch
on either of them. Furthermore, a first-neighbor correla-
tion study between consecutive values in a Isw series indi-
cates that, if the device switched on one branch, the next
event is two times more likely to be on the other branch
than the same one. An interpretation of such correlation
is based on the fact that after a switch, the device may
cool off in a metastable minimum of its washboard poten-
tial, different from the initial one [19]. This leads to the
appearance of coreless vortices in the loop (persistent cur-
rents) which can shift the Isw modulation curve by one or
more periods. The subsequent switching event will there-
fore have the tendency to be on the other branch. The
difference in width between the two modes is in line with
the existence of a thermally excited metastable branch;
at higher temperatures, the second branch will likely be
washed out and the faster relaxation process will reset the
system in the initial state.

The bimodal nature of histograms is exemplified in
fig. 3(a) for two values of the threaded flux φ (see also the

Fig. 3: (a) Bi-modal histograms for two values of flux φ, with
location shown on the flux axis in panel (b) (dark red and yel-
low arrows for histograms of same color). The solid line is a
double-peaked Gaussian fit that gives the center position and
its uncertainty for each mode (dark blue and green dashed lines
for the lower and top branch respectively). (b) The fit proce-
dure of panel (a) gives the switching current and uncertainty
(with error bars of size similar to dot sizes) for each branch,
as a function of φ. The labels indicate the n parameter for the
linear fits based on eq. (3) (dotted lines).

position of corresponding arrows on the horizontal axis of
panel (b)). In this example, at φ = 0.17φ0 (dark red) the
lower branch has a maximum while at φ = 0.59φ0 (dark
yellow) the top branch has a minimum. The solid black
line shows a double-peak Gaussian fit used to extract the
location and uncertainty of the modes. The position is
indicated with dashed lines (dark blue and green for the
lower and top branch, respectively).

To study the observed phase interference, we consider
two branches that can have different lengths as well as
electronic cross-sections. In our devices, the kinetic in-
ductance dominates over the geometrical inductance and
any magnetic flux fully penetrates the superconductor.
The geometric inductance is estimated using the Fast
Henry software; for instance, the device of fig. 1 has a
Lgeo = 2.1 pH. The kinetic inductance is given by [26]:
Lkin = μ0sλ

2, where s is the ratio between loop’s length
and cross-section, λ2 = λ2

0ξ0/� with λ0 = 16nm the clean
penetration depth, ξ0 = 1600 nm the coherence length [26]
and the mean-free path limited by thickness � ≈ 30 nm.
For the same device, we obtain Lkin ≈ 95 pH thus much
larger than Lgeo. In this case, the following quantization
formula holds:

∮
mvdl = h(n− Φ

Φ0
), where the integral is

over the loop contour, v and m are the velocity and mass
of electrons, n is an integer, h is Planck’s constant, Φ0 is
the flux quantum for Cooper pairs and Φ is the external
flux threading the loop. The above integral can be split
along the two branches of the loop which can be identi-
cal or different. First, we follow the length asymmetry
model [12] to which we add asymmetry in the electronic
cross-section (area available for current flow). We note
with L± the length of branches where the integral is done
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along the current direction and opposite to it, respectively.
The quantization condition can thus be rewritten as

Iv+
1 + α

2
− Iv−

1− α

2
= Ip

nΦ0 − Φ

Φ0/2
, (1)

where α = L+−L−
L++L−

is the length asymmetry parameter,

Iv± are the electron velocities in each branch multiplied
by a factor qA0ns, q = 2e is the Cooper pair charge, A0 is
the average cross-section of the loop, ns is the Cooper pair
density and Ip = qA0nsv represents the maximum amount
of persistent current that would run in a symmetric loop,
situation that occurs when Φ is a half-integer multiple of
Φ0. The velocity v results from the contour integral above
as v = h

2m(L++L−) . Note that Iv± are quantities propor-

tional to carrier velocities and have units of current but in
general they are not the actual currents I± running in the
two branches. Assuming an asymmetry in the currents
cross-sections A± of the two branches, defined by the pa-

rameter α′ = A+−A−
A++A−

with A0 = A++A−
2 , the currents in

the two branches are given by I± = Iv±(1±α′). The total
current is then:

I = I+ + I− = Iv+(1 + α′) + Iv−(1− α′). (2)

It is therefore possible to obtain the critical current of each
branch, and thus of the device, by solving for I when the
carriers approach the critical (depairing) velocity vc. With

notations Ic0 = 2qA0nsvc and β =
4Ip
Ic0

, one solves for Iv∓
from eq. (1) and take Iv± = Ic0/2 in eq. (2) to obtain the
switching current of each branch:

Ic±
Ic0

=
1− αα′

1∓ α
∓ β

1∓ α′

1∓ α

(
n− Φ

Φ0

)
. (3)

The asymmetry parameters α and α′ are thus tuning the
amount of current flowing in each branch. The quantities
Ic±, measured as a function of flux Φ, describe the mod-
ulation curve of the switching current, which consists of
a series of alternating positive (Ic+) and negative slopes
(Ic−). The theoretical model allows to calculate several
parameters of the loop, such as the slope which determines
its sensitivity as flux detector, or the crossing of branches
leading to minima and maxima of the modulation curve.
For instance, maxima occur at positions (n − α

β )Φ0 and

currents equal to Ic0 irrespective of α
′, while minima occur

at [n+ 1
2 −

α
β + α−α′

2(1−αα′) ]Φ0 and currents Ic0(1− β
2

1−α′2

1−αα′ ).

The measured device (see fig. 1) is designed to have
a small asymmetry of branches length α and no cross-
section asymmetry α′. However, the modulation curve of
fig. 2 shows a significant asymmetry between its positive
and negative slopes, effect that can be analyzed using our
model.
Using Gaussian fits (as described in fig. 3), for each

flux φ one obtains two maxima for Isw as well as their
uncertainties which serve as error bars in the representa-
tion Isw(φ). It is thus possible to group points from both

branches that belong to the same n parameter in eq. (3),
as shown with boxed labels in fig. 3. Subsequent linear fits

(dotted lines) provide slopes S
(n)
± and intercepts I

(n)
± with

their uncertainties for each n and type of slope (positive
or negative).

In particular, intercepts I
(n)
− for n = −1, . . . , 3 and their

uncertainties have a linear dependence on n, as shown by
eq. (3), with an intercept In− = Ic0

1−αα′

1+α . One can thus
find experimentally In− and its uncertainty. Similarly, the

values of I
(n)
+ for n = −1, 0, 1 and their uncertainties, lead

to the value of In+ = Ic0
1−αα′

1−α and its uncertainty. Their
values are In− = 50.57±0.07μA and In+ = 48.1±0.1μA.
Using the ratio In−/In+ one can find the value of α and its
uncertainty as α = −0.025 and σα = 0.002, respectively.
Hereon, uncertainties on the model parameter are found
using standard error propagation techniques.

The weighted averages and uncertainties of S
(n)
+ as

well as S
(n)
− are noted with S+ and S−, respectively;

their values are S+ = 12.09 ± 0.07μA/period and S− =

−3.81 ± 0.02μA/period. Their ratio is −S−
S+

= In−
In+

1+α′

1−α′ .

Therefore one can find the value of α′ and its uncertainty
as α′ = −0.538 and σα′ = 0.003, respectively.

Using either S− or S+ one can calculate the persistent

current (for instance Ip = −S−
4

1+α
1+α′ ) and its uncertainty as

Ip = 2.01μA and σIp = 0.02μA, respectively. Similarly,
using either In− or In+ one can calculate the critical cur-
rent (for instance Ic0 = In−

1+α
1−αα′ ) and its uncertainty as

Ic0 = 50.0μA and σIc0 = 0.1μA. Using the Ic0 value, one
can estimate the nsvc product as

Ic0
4eA0

� 4·10−32 (m2s)−1;
we note that the separate evaluations of ns and vc de-
pend of factors such as dimensionality, geometry and
clean/dirty limit (see [27,28]). The model parameters al-
low to predict the position of minima and maxima on the
modulation curve, using the equations presented above.
For instance for the lower branch, one obtains maxima at
(0.156φ0, 50μA) and minima at (−0.084φ0, 47μA) with a
φ0 periodicity, in very good agreement with the experi-
mental data. We do note that the presence of Earth’s
magnetic field can give a shift of the zero field (or flux)
of ∼ 0.25 G (or ∼ 0.07Φ0) if the chip’s normal direction
is along north-south; for our setup geometry this could
be ∼ 0.1 G which is typically within the uncertainty of α.
Also, we use the superconducting coil only at small fields,
to avoid trapping any extra vortices that could lead to
another field shift.

The model parameters are therefore in the expected
range of currents and length asymmetry. For instance,
an inspection of the sample image in fig. 1 gives an es-
timate of |α| of about 0.035, very close to the measured
value. We do note however a striking discrepancy in the
designed value of α′ = 0 and measured α′, visible as a
large asymmetry between the negative and positive slopes
of the Isw modulation. This is most likely due to the large
aspect ratio of branches leading to an increased probabil-
ity of having fabrication imperfections along the wires.
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Fig. 4: Switching histograms as a function of flux. The red
dots represent the location of maxima found using a Gaussian
fit (error bars are of similar size as the dots) while the dotted
lines represent linear fits using the model equation (3) with
n labeled by each line. The top plot corresponds to a loop
designed to have an asymmetry α1 = 0.21 while the bottom
plot corresponds to a loop with α2 = 0.47. On the right side,
SEM images of the devices are shown.

Surface oxidization and grain boundaries can create an
effective narrowing of the current path (electronic cross-
section), leading to an increase in α′. This type of asym-
metry has been previously observed in granular aluminum
SQUIDs [11] and the model presented here gives a robust
way to quantify it and explain it. We note that the dis-
continuous jumps in the switching current, mentioned in
the introductory section and [12], were not observed. As
expected, the flux modulates the switching currents dis-
tribution following eq. (3).

The effect of α asymmetry is studied experimentally
using two devices designated to have medium and high
length asymmetry, namely α1 = 0.21 and α2 = 0.47 as

estimated using the SEM photos shown in fig. 4. Using the
same experimental and data analysis techniques described
above, switching histograms are obtained (see fig. 4) to-

gether with their corresponding fit parameters I
(n)
± and

S
(n)
± with n = 0, 1, 2, 3 and n = 2, 3, 4, 5 for devices α1,2

respectively. The labels n depend strongly on α and β
since the modulation maxima are located at (n − α

β )φ0.
The following parameters are obtained: Ip1,2 = 1.60 ±
0.04/2.04±0.04μA, Ic1,2 = 66.6±0.5/50.5±0.7μA, α1,2 =
0.24± 0.01/0.37 ± 0.01 and α′

1,2 = 0.1± 0.02/0.16 ± 0.02
for devices α1,2, respectively. Once again, we observed
a good agreement between the measured α and the one
estimated from SEM photos. As it was the case for the
first device, an asymmetry of electrical cross-sections α′

is observed in these two devices as well, but of a smaller
value. Such imperfections are inherent in wires with such
long aspect ratio and thus somewhat unpredictable. Nev-
ertheless, it seems plausible to assume that shorter and
wider nanowires would have α′ values closer to zero. The
measurements presented in fig. 4 are done at T ∼ 0.4K,
higher than that used for the device of fig. 2 and no second
switching branch was observed. This is in line with the
view of a metastable state generating the second branch,
which relaxes faster to the initial state with the increase
of temperature.

Our theoretical and experimental study allows to quan-
tify for a device with two branches the effect of asymmetry
on the result of superconducting wave interference. There-
fore, it can be used to design and predict essential parame-
ters such as persistent current, modulation depth and flux
sensitivity on a given slope, essential to devices such as su-
perconducting qubits and SQUIDs. The model also allows
to extract device parameters, like α and α′ thus provid-
ing feedback on how to improve the relationship between
design and fabrication for quantum devices.
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