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Many-body open quantum systems balance internal dynam-
ics against decoherence and measurements induced by inter-
actions with an environment1,2. Quantum circuits composed 
of random unitary gates with interspersed projective mea-
surements represent a minimal model to study the balance 
between unitary dynamics and measurement processes3–5. As 
the measurement rate is varied, a purification phase transition 
is predicted to emerge at a critical point akin to a fault-tolerant 
threshold6. Here we explore this purification transition with 
random quantum circuits implemented on a trapped-ion quan-
tum computer. We probe the pure phase, where the system is 
rapidly projected to a pure state conditioned on the measure-
ment outcomes, and the mixed or coding phase, where the 
initial state becomes partially encoded into a quantum error 
correcting codespace that keeps the memory of initial condi-
tions for long times6,7. We find experimental evidence of the 
two phases and show numerically that, with modest system 
scaling, critical properties of the transition emerge.

An isolated many-body quantum system undergoes uni-
tary evolution until it is probed by its environment via quantum 
measurement1,2. The irreversible process of measurement con-
verts quantum coherence in the system into classical entropy in 
the measurement apparatus due to the intrinsic randomness of 
quantum measurements. When the rate of partial measurements 
is high, this process ‘collapses’ the many-body system into a pure 
quantum state consisting of locally correlated regions determined 
by the recent unitary dynamics and measurement outcomes. At 
low measurement rates, however, there is a mixed (coding) phase 
where the associated projections can leave invariant a codespace in 
the system that retains memory of the initial conditions for expo-
nentially long times6,7. Such measurement-induced phase transi-
tions have recently been theoretically explored in models based 
on random quantum circuits3–7, but are believed to be a ubiqui-
tous phenomenon in monitored non-equilibrium quantum sys-
tems. The theory of these transitions, although still nascent, has 
seemingly deep connections to percolation and conformal field 
theory3,5,8,9, as well as threshold theorems in fault-tolerant quan-
tum computing10,11. Observing these effects in experiments is a for-
midable challenge because measuring the observables that signify 
the transition requires exquisite control and isolation of the sys-
tem, accurate monitoring by an external measurement apparatus,  
and the use of sophisticated feedback or post-processing with the 
measurement data.

In this Letter we report on a direct experimental observation of 
the two phases associated with a measurement-induced purification 
transition in a trapped-ion quantum computer. We use a single ref-
erence qubit initially entangled with the system to directly test for 
the existence of the codespace in the mixed phase and its absence 
in the pure phase12. This approach has the practical benefit that it 
relaxes experimental resource requirements compared to observ-
ables that require measuring entanglement entropies of large num-
bers of qubits, such as measuring Renyi entropy13. We avoid the use 
of post-selection on measurement outcomes through the addition 
of feedback operations that reverse any measurement-induced uni-
tary rotations on the reference qubit (so-called ‘quantum steering’ 
effects14). As a result, absent noise, our experimental approach is 
directly scalable to large systems.

From early measurements of the quantum-to-classical nature 
of measurement in ion-trap systems15 and cavity quantum electro-
dynamics16, to the recent observation of wavefunction collapse in 
superconducting qubits17, the phenomenon of measurement itself 
has been a subject of great interest experimentally. Many-body 
coherent operations combined with controlled dissipation or mea-
surements have been explored experimentally in, for example, 
the study of dissipative state preparation18, as well as in recent 
theoretical proposals for many-body quantum non-demolition 
measurements19. We also note related experimental results show-
ing symmetry-resolved dynamical purification of spin chains in a 
long-range XX model with local depolarizing noise13,20. By contrast, 
in our study, we employ a ‘digital’ model of computing with two-site 
unitaries and projective measurements with a temporal randomness 
to the dynamics.

Our quantum computer uses up to 13 171Yb+ qubits in a sin-
gle chain of 15 trapped ions in a microfabricated chip trap21. We 
achieve a universal gate set with native single-qubit gate fidelities of 
99.96% and two-qubit gate fidelities on any pair of 98.5–99.3%, as 
detailed elsewhere22.

We now describe the specific dynamics of the random circuits 
in this work with a system of L qubits subject to unitary evolution 
with all-to-all connectivity and measurements. For such all-to-all 
coupled models, spatial entanglement of the wavefunction is not 
a reliable diagnosis of the measurement-induced phase transition; 
instead we characterize the problem in terms of a purification tran-
sition6. In this picture, the system transitions at low measurement 
rates to a phase with long-range correlations in time, similar to  
the behaviour found in fault-tolerant error-correction thresholds. 
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This dynamical purification phase transition can be efficiently 
probed by studying how the system preserves entanglement over 
time with a single reference qubit12.

An example circuit is shown in Fig. 1a. After preparing all 
qubits in |0⟩, the reference is entangled to a randomly selected sys-
tem qubit to form a Bell pair. The entangling operation is followed 
by a scrambling unitary, which consists of random single-qubit 
Clifford gates and two-qubit XX(π/4) gates on random qubit pairs. 
The scrambling stage spreads the entanglement to the entire sys-
tem and reduces finite-size effects (Methods and Extended Data 

Fig. 1). After scrambling the system qubits, we evolve the system in 
time with random unitary dynamics and measurements with a total 
number Ng = ⌊L

√
L⌋ of XX(π/4) gates applied to randomly chosen 

qubit pairs.
After each entangling gate we add a measurement with probabil-

ity P (Methods). Although mid-circuit readout of ion qubits is pos-
sible23, we use ancilla qubits to defer readout. When a circuit calls 
for measurement, we entangle that qubit with an ancilla in a chosen 
measurement basis. Because the unitaries are XX gates, the mea-
surement choice of the z or x basis has a strong effect on the sub-
sequent dynamics. This feature of our model allows us to tune the 
probability, Px, that a measurement is in the x basis to go across the 
purification transition without directly changing P. At the end of 
the circuit, all the qubits are read out in the z basis via fluorescence 
imaging. For each circuit, we rotate the reference qubit to measure 
in x, y and z bases and post-select the observations to obtain Pauli 
expectations conditioned on measurement outcomes (Methods and 
Extended Data Fig. 2). The set of three Pauli expectations are then 
used to construct the density matrix of the reference qubit and mea-
sure its entropy SQ. These circuits are examples of stabilizer circuits, 
whose noiseless dynamics are classically simulable24,25.

As an illustrative example, in Fig. 1b we consider the experi-
mentally measured evolution of SQ in two circuits sampled from 
ensembles with P = 0.15. We choose one circuit sampled from Px = 0 
that stays mixed (encoded) and one sampled from Px = 1 that puri-
fies over time. Units of time are measured in the number of applied 
two-qubit gates, Ng, for consistency between theory and experi-
ment. For noiseless stabilizer circuits, the entropy is always either 0 
or 1 bit5,25 and, as a result, the circuits that purify must do so at pre-
cisely one time step. However, this property no longer holds exactly 
in the presence of noise. Experimentally, we find that the mixed cir-
cuit maintains a high value of SQ. In the second circuit, the reference 
qubit purifies at the expected time in the circuit, albeit to a constant 
offset due to experimental noise. It is apparent from these examples 
that we observe a clear separation between pure and mixed results 
for SQ. For each circuit, we ran 4,000 shots of each measurement 
basis (x, y, z) to compute SQ at each time step.

To characterize the many-body dynamics, we generated large 
ensembles of circuits and averaged their entropy for given values 
of P, Px and L. In Fig. 2a we show the theoretical phase diagram for 
the model versus P and Px. For low P and Px, the system is driven to 
a mixed (coding) phase where the non-unitary dynamics projects 
quantum information about the initial state into a random quan-
tum error correcting code. As either P or Px is increased, the system 
enters a pure phase, where an initial mixed state collapses to a fixed 
quantum state and the encoding operation fails. The behaviour 
at P = 0 can be smoothly connected to the finite P behaviour by 
scaling Ng by 1/P and taking the limit P → 0. In this limit, there 
is residual purification dynamics that leads to a phase transition 
along the P = 0+ axis. This special critical point arises because of 
the restricted nature of our gates, which do not effectively scramble 
the system in the absence of measurements26. The critical point 
at each value of P was obtained from finite-size scaling analysis 
using simulations of L = 16 to L = 64 qubits (Methods). Our scaling 
analysis is based on extracting the exponential decay rate of 〈SQ(t)〉 
at late times.

In Fig. 2b we show the simulated dynamics of 〈SQ(t)〉 at two rep-
resentative points in the phase diagram with P = 0.15. In the mixed 
phase, probed at Px = 0, 〈SQ〉 stays near one for exponentially long 
times in L. Deep in the pure phase, the reference qubit rapidly puri-
fies, with an average entropy that exponentially approaches zero. In 
the experiment, we probe small systems L ≤ 8 after a number L1.5 of 
gate operations. For larger numbers of qubits L, this scaling limit is 
sufficient to probe the phase because the effective depth of the cir-
cuit scales as 2

√
L, much greater than any fixed correlation time in 

the system. At the critical point, as we show in Extended Data Fig. 6,  
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Fig. 1 | Model and purification dynamics. a, Schematic of a circuit with 
L = 6 system qubits, Ng = 6 two-qubit gates, two z measurements and 
one x measurement. The first XX gate entangles the reference with a 
system qubit. Next, we scramble the system, US. The time evolution 
of the unitary-measurement dynamics starts at the red dashed line. 
Probabilistic measurement is deferred until the end of the circuit using 
CNOT gates between system qubits and measurement ancillae. The 
x-basis measurement is shown after the third XX gate. Finally, a feedback 
operation UF is applied (Methods and Extended Data Fig. 3). b, The entropy 
of the reference qubit for two L = 6 circuits where the reference qubit stays 
mixed (upper panel) and purifies (lower panel). The x axis shows the 
evolution of time in units of applied two-qubit gates (Ng) after scrambling 
is complete (indicated again by the red dashed line). In this example, 
the entropy is measured by performing single-qubit tomography of the 
reference by making measurements in the x, y and z bases. Error bars (1σ) 
are smaller than the markers, with 4,000 and 10,000 shots for experiment 
and simulation, respectively. Missing experiment data are due to ion loss 
events, which are assumed to be uncorrelated with the data being taken.
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the entropy decay time scales as L1/5 to conform to the universal 
critical dynamics of the system.

To reduce the number of circuits needed to evaluate SQ, we 
append a feedback circuit to the end of each circuit that is expected 
to purify. The feedback uses single-qubit rotations and a circuit of 
CNOT gates between the reference and measurement ancillae to 
disentangle it from the measurement ancillae (Methods). With this 
addition, we replace measurement of SQ with the classical entropy 
SC, and eliminate the need to measure in the x basis and y basis. 
This feedback approach avoids post-selection and remains tractable 
for stabilizer circuits on any system size because we can efficiently 
find the feedback circuit24. Finding efficient extensions of this feed-
back approach for arbitrary gate sets and circuit architectures is an 
unsolved problem12. Many of the naïve approaches to investigating 
the phase transition for random circuit ensembles with a univer-
sal gate set requires some form of post-selection on the measure-
ment outcomes. It is therefore an important goal to develop efficient  

feedback protocols (or other methods to circumvent post-selection) 
for generic random circuit models. Alternatively, it may be possible 
in some cases to give complexity theoretic evidence that an efficient 
feedback protocol does not exist.

To probe the phases experimentally, we generate an ensemble of 
random circuits for the chosen values of P, Px and L. To constrain 
the number of measurements to a low value, we study a fixed line 
of parameters at P = 0.15 (Fig. 2a), and the evolution is applied for 
a time Ng. At the end of the circuit, we measure the reference in 
the z basis. We average over many shots to determine SC for each 
circuit. The majority of experimental noise can be explained with a 
simple noise model using XX-gate crosstalk (see the Supplementary 
Information, where we also describe techniques to further mitigate 
errors). We assume a Gaussian distribution of expected SC = 0 cir-
cuit outcomes and SC = 1 circuit outcomes and find their intersec-
tion, which is used as a threshold at SC = 0.93 (Extended Data Figs. 4  
and 5). Any outcome below the threshold is counted as SC,T = 0, 
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shaded region indicates the numerical uncertainty in the critical region between the top phase, where the reference qubit rapidly purifies, and the bottom 
phase, where it stays mixed. In our experiment, we fix P = 0.15, and tune Px to probe the phase transition along the dashed line. In the limit P → 0 (left blue 
shaded region) with Ng also scaled as 1/P, the restricted nature of our gate ensemble leads to a purification transition (circle) when tuning Px along the 
line P = 0+. b, The simulated entropy of the reference qubit averaged over many random circuits 〈SQ〉 in the two phases. Here we use the same fixed value 
of P = 0.15 from A, with Px = 0 (mixed) and Px = 1 (pure) plotted against time (measured in units of two-qubit gates) scaled by L1.5. The dashed vertical line 
indicates the experimental probe time of Ng = L1.5, and the intersection of this line with different system sizes shows increasing (decreasing) entropy in the 
mixed (pure) phase that is the signature of the two phases.
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Fig. 3 | Experimental observation of phases and simulated critical behaviour. a, Classical entropy after thresholding 〈SC,T〉, averaged over an ensemble  
of random circuits at varying system sizes. We show evidence of mixed (top), intermediate (middle) and pure (bottom) phase, with Px = 0, Px = 0.5 and 
Px = 1, respectively, and with size scaling as predicted in Fig. 2b. Error bars are 1σ uncertainty with 300 circuits for Px = 0, 1 and with 100 circuits for px = 0.5. 
b, Simulated results showing the late-time decay rate τ of 〈SQ〉 near the transition. z ≈ 1/5 is the dynamical critical exponent, ν ≈ 1/2 is the correlation length 
exponent and Pxc = 0.72(1) is the critical value of Px. These critical parameters are extracted from a finite-size scaling analysis (Methods and Extended  
Data Fig. 6).
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and those above as SC,T = 1. For Px = 0, 1 (Px = 0.5), we average the 
entropy after binning with the threshold, 〈SC,T〉, over the results of 
300 (100) unique circuits.

We study 〈SC,T〉 at Px = (0, 0.5, 1) and L = (4, 6, 8), and observe 
the first experimental evidence of the phases of a dynamical puri-
fication phase transition. Although the measured entropy increases 
with system size in the mixed phase (Px = 0), in the pure phase 
(Px = 1), the entropy decreases with system size (Fig. 3a). This 
behaviour is expected and can readily be seen in simulations at the 
experimental probe time in the example in Fig. 2b. To probe the 
crossover behaviour on these system sizes, we also sample at an 
intermediate value of Px = 0.5 close (for these sizes) to the critical 
point at Pxc = 0.72(1). We observe consistent results with the simula-
tions in this near-critical regime, showing behaviour that interpo-
lates between the two extremes.

Having obtained conclusive evidence for the two phases in our 
system, it remains an outstanding challenge to experimentally 
probe the universal critical behaviour of this model. We predict that 
such effects will become accessible in our system through modest 
increases in system sizes from L = 8 to L = 32 qubits, combined with 
periodic sympathetic cooling27, which enables mid-circuit measure-
ments, improves fidelities at late times, and should allow for deeper 
circuits. We have found that a sensitive probe of the critical proper-
ties of the purification transition is the late-time exponential decay 
constant τ of the order parameter 〈SQ(t)〉 ~ e−t/τ. Figure 3b shows an 
example of a finite-size scaling analysis that can be used to extract 
critical properties of the model. Here we use direct simulations of 
the ideal circuit evolution to predict the behaviour of our system as 
it is scaled to larger sizes. Crucially, these scaling results illustrate 
that the critical properties of the purification transition are obtain-
able using the modest systems sizes and circuit depths accessible in 
near-term ion-trap hardware.

Our results show that measurement-induced quantum phases 
are accessible in near-term quantum computing systems, despite 
the formidable experimental challenges. Recent years have seen a 
host of advances in mapping out the phenomenology of these novel 
non-equilibrium phases of matter, including the prediction of topo-
logical order stabilized by measurements in random circuits26,28,29 
and applications in computational complexity theory30 and quan-
tum error correction31. These developments point to a broad 
potential for the advancement of many-body physics and quantum 
information science through the continued explorations of quan-
tum measurement.

From the perspective of fault-tolerant quantum computation, 
our results open up a number of new directions. Investigating simi-
lar physics in fault-tolerant operating regimes with error correction 
and feedback built into the model is an exciting direction for future 
work. Although the resource demands are often difficult to satisfy 
for fault-tolerant simulations, the intrinsic flexibility in implement-
ing random circuit models allows one to circumvent the worst-case 
behaviour analysed in fault-tolerant threshold theorems11. As a 
result, many of the resource costs for fault tolerance can be low-
ered for random circuits. For example, much of the overhead in the 
standard models for fault tolerance arises from implementing a uni-
versal gate set. We have shown that measurement-induced phase 
transitions are experimentally accessible with discrete gate sets, like 
the Clifford group, which have efficient fault-tolerant transversal 
implementations in systems with long-range interactions, such as 
ion traps. Additional gates outside this set can be introduced with 
a low density to avoid a large increase in the overhead for more 
generic random circuit models.

An important conceptual aspect of our work is that we experi-
mentally study an error-correction threshold as a physical phe-
nomenon, exploring its connections to universality in quantum 
many-body physics. This approach contrasts with many earlier 
works on experimental quantum error correction that have so far 

focused primarily on demonstrations of few-body gadgets in the 
below-threshold regime22. In addition, although error-correction 
thresholds can be studied numerically, applying those theories in 
practice requires a deeper understanding of the errors in real physi-
cal systems, and how the corresponding thresholds behave. The 
ability to successfully operate quantum computing systems in these 
near-critical regimes is likely to be a crucial aspect in the future of 
fault-tolerant quantum computing.
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Methods
Scrambling unitary. A scrambling unitary, US, is applied after the system is 
entangled with the reference, before the random time evolution begins. The 
scrambling unitary consists of four layers: odd-numbered layers are composed of 
single-qubit operations on each qubit and even-numbered layers are composed of 
fully entangling XX(π/4) gates on L/2 random qubit pairs.

Measurement protocol. In our circuit ensemble, each gate after the scrambling 
layer is followed by a probabilistic measurement. Given the constraints of 
the hardware, we choose a measurement strategy that reduces the number of 
measurements. In addition, the ensemble generated with our measurement strategy 
scales to system sizes that are beyond the reach of available hardware and can only 
be studied with numerical simulations.

We maintain a list M that is initialized to all system qubits in the beginning 
of the circuit. After each gate, we measure one of the qubits involved in the gate 
with probability P. Having decided to perform a measurement after an XX gate, we 
randomly choose the qubit to measure and the basis of measurement. If both qubits 
participating in the XX gate are in M, we randomly select one with probability half 
and measure it in the x basis with probability Px and in the z basis with probability 
1 − Px. If only one of the qubits is in M, we measure that qubit in the x basis with 
probability Px and in the z basis with probability 1 − Px. If neither qubit is in M, we 
do not measure any. Measurement outcomes in Clifford circuits are deterministic 
or are equally likely to be zero or one. In the absence of noise, measuring a qubit 
with a deterministic outcome has no effect on the purification of the reference. As 
a result, we only measure qubits with non-deterministic outcomes. Additionally, 
after each physically performed measurement, we remove the measured qubit from 
M. Once |M| = L − 4, we reinitialize the list with all the qubits in the system. 
With a low measurement probability, P = 0.15, used in our experiment, the number 
of measurements in the circuits investigated is less than 4, so the list M need not 
be reinitialized. This ensures that no system qubit in the experiment is measured 
more than once.

Feedback. The feedback circuit is added at the end to disentangle the reference 
from the ancillae qubits. In the pure phase, the reference qubit purifies in one of 
x, y or z bases and its state (0 or 1) depends on the projections induced upon the 
measurement ancillae. The basis of purification can be anticipated with classical 
simulation of the Clifford circuit. A single-qubit rotation is performed on the 
reference qubit to ensure that it returns to the z basis following purification. 
Because we do not have access to the measurement outcome until the very end of 
the circuit, we construct a logic circuit, consisting of CNOT gates, to ensure that 
the reference qubit purifies to the zero state. This is done by classically anticipating 
the entanglement between measurement ancillae and reference qubit, then 
generating a sequence of CNOT gates to disentangle the reference.

For example, in batch L = 4, Px = 0, circuit #45 purifies the reference in the x 
basis. There are three measurements. The outcomes of the measurement ancillae 
and the reference qubit are related by the truth table in Extended Data Fig. 2.

The feedback circuit, in this particular case, is given by the circuit diagram 
in Extended Data Fig. 3. The Hadamard gate is used to align the reference along 
the z basis. The following sequence of CNOT and X gates implement the logic to 
disentangle the reference from the ancillae. When implementing the circuit, all 
CNOT gates are compiled to XX gates32.

Circuit optimization. For each circuit, commuting single-qubit rotations and 
XX(π/4) gates are merged, wherever possible, to reduce the size of the circuit.

Raw data and thresholding. Data presented in Fig. 3a are presented after binning 
via a threshold. Extended Data Fig. 4 presents histograms of the outcomes for all 
circuits, with each entropy averaged over the outcome of 1,000 shots per circuit. 
Furthermore, Extended Data Fig. 5a shows the average classical entropy over all 
circuits for each system size and Px value. These averages are clearly much higher 
than the simulations.

The primary reason for the discrepancy between the simulations and 
the experimental data is that the simulations do not include noise. When 
including realistic noise sources in the simulations (‘Noise model’ section in the 
Supplementary Information), such as dephasing or gate amplitude errors, we find 
that the entropy outcomes are pushed to higher values. Nevertheless, we see in 
the data for L = 4 and L = 6 that there is a clear separation observed in the entropy 
values for circuits that are mixed or pure (Supplementary Fig. 2). This separation 
is also evident in Fig. 1b, with the clear jump from mixed to pure in the evolution 
of the circuit.

We can use these properties of the circuits to mitigate noise effects. In the 
final data processing, we assume a Gaussian distribution of expected SC = 0 and 
SC = 1 circuit outcomes and find their intersection, which is used as a threshold 
at SC = 0.93. Circuit outcomes below the threshold are counted as 0 and outcomes 
above are counted as 1. We find three thresholded circuit outcomes disagree with 
the simulated expected value for that circuit, for an error of 3/699 circuits for the 
L = 8 case. Extended Data Fig. 5b shows the result after all processing alongside 

simulations of the exact circuits for sizes L = (4, 6, 8) and representative samples for 
sizes L = (16, 32). The same threshold is used for all system sizes.

Critical scaling theory. Our method for locating the critical point in these 
all-to-all models is illustrated in Extended Data Fig. 6. For Px ~ Pxc, we can run the 
dynamics out to a time where 〈SQ(t)〉 exhibits a simple exponential decay ∝ e−t/τ.  
We then use least-squares fitting to find the exponential decay rate τ for each value 
of Px and L. Deep in the mixed phase, τ diverges exponentially with L (ref. 6),  
whereas in the pure phase τ approaches a constant independent of system size. 
At the critical point (P = Pxc), τ ~ Lz, where z is the dynamical critical exponent. 
Thus, we can estimate Pxc by looking for the value of Px where τ(L) goes through an 
inflection point on a log–log plot. This behaviour is illustrated in Extended Data 
Fig. 6b for the model with P = 0.15 and |M| ≥ L − 4). Near Px = 0.7–0.75, we see 
that the decay rate τ grows as power law L1/5 over the given range of sizes. This 
value of z = 1/5 is consistent with the scaling one would expect from mean-field 
percolation. The close ties between these phase transitions and percolation have 
been noted in past works. Notably, for the Hartley entropy of Haar random circuits 
with measurements, there is an exact mapping to a percolation problem in the 
circuit geometry3. In the all-to-all setting considered here, this mapping also 
predicts z = 1/5.

Using this estimate for z, we can accurately measure the critical point Pxc and 
critical exponent ν of the purification transition using the method illustrated in 
Fig. 3b. We hypothesize the following scaling form for τ

τ = Lzf[(Px − Pxc)Lz/ν], (1)

which predicts that a crossing will appear with increasing sizes when plotting 
τ/Lz versus Px. We see consistent results with this scaling assumption in Fig. 3b, 
from which we locate Pxc = 0.72(1). A similar analysis was used for other values of 
P ≠ 0.15 to extract the phase diagram in Fig. 2a. After locating Pxc, we then collapse 
the data as shown in the inset to Fig. 3b to obtain an estimate ν = 1/2, which is 
also consistent with the predication from mean-field percolation. We leave a more 
detailed analysis of the critical properties of this model for future work.

Data availability
All data is available in the manuscript or the Supplementary Information.
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Extended Data Fig. 1 | Scrambling Unitary. Example of a scrambling unitary on a system with L = 6 qubits. Each single-qubit gate C refers to a random 
single-qubit Clifford gate. The XX gates have an implied rotation angle of π/4.
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Extended Data Fig. 2 | Feedback Truth Table. Truth table for outcomes of measurement ancillae and reference qubit for a circuit.
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Extended Data Fig. 3 | Feedback Circuit. Feedback circuit corresponding to example circuit #45 described in Methods.
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Extended Data Fig. 4 | Histogram of Experimental Data for S_C. All raw outcomes of SC in study of phases (main text Fig. 3a). The legend indicates the 
simulated expected outcome for that circuit. The bin size is .033 and SC = . 93 (dashed line) is used as a threshold for all the data.
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Extended Data Fig. 5 | Comparison of Theory and Experiment. (a) Raw average of all circuit outcomes without thresholding applied. (b) Thresholded data 
with extended simulations showing expected behaviour up to L=32.
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Extended Data Fig. 6 | Analysis Method to Extract Critical Data. (a) Late time decay of 〈SQ〉 showing the exponential decay regime used to extract the 
decay rate τ. Here, we took (P, Px) = (0.15, 0.7) near the critical point. (b) Scaling of τ vs L for different values of Px at P = 0.15. We can estimate Pxc and 
extract z by looking for the inflection point in this family of curves and fitting the slope.
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