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Measurement-induced quantum phases realized
in a trapped-ion quantum computer

Crystal Noel

and Christopher Monroe'234¢

Many-body open quantum systems balance internal dynam-
ics against decoherence and measurements induced by inter-
actions with an environment'?. Quantum circuits composed
of random unitary gates with interspersed projective mea-
surements represent a minimal model to study the balance
between unitary dynamics and measurement processes®=. As
the measurement rate is varied, a purification phase transition
is predicted to emerge at a critical point akin to a fault-tolerant
threshold®. Here we explore this purification transition with
random quantum circuits implemented on a trapped-ion quan-
tum computer. We probe the pure phase, where the system is
rapidly projected to a pure state conditioned on the measure-
ment outcomes, and the mixed or coding phase, where the
initial state becomes partially encoded into a quantum error
correcting codespace that keeps the memory of initial condi-
tions for long times®’. We find experimental evidence of the
two phases and show numerically that, with modest system
scaling, critical properties of the transition emerge.

An isolated many-body quantum system undergoes uni-
tary evolution until it is probed by its environment via quantum
measurement’”. The irreversible process of measurement con-
verts quantum coherence in the system into classical entropy in
the measurement apparatus due to the intrinsic randomness of
quantum measurements. When the rate of partial measurements
is high, this process ‘collapses’ the many-body system into a pure
quantum state consisting of locally correlated regions determined
by the recent unitary dynamics and measurement outcomes. At
low measurement rates, however, there is a mixed (coding) phase
where the associated projections can leave invariant a codespace in
the system that retains memory of the initial conditions for expo-
nentially long times®’. Such measurement-induced phase transi-
tions have recently been theoretically explored in models based
on random quantum circuits’’, but are believed to be a ubiqui-
tous phenomenon in monitored non-equilibrium quantum sys-
tems. The theory of these transitions, although still nascent, has
seemingly deep connections to percolation and conformal field
theory>>*’, as well as threshold theorems in fault-tolerant quan-
tum computing'®''. Observing these effects in experiments is a for-
midable challenge because measuring the observables that signify
the transition requires exquisite control and isolation of the sys-
tem, accurate monitoring by an external measurement apparatus,
and the use of sophisticated feedback or post-processing with the
measurement data.
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In this Letter we report on a direct experimental observation of
the two phases associated with a measurement-induced purification
transition in a trapped-ion quantum computer. We use a single ref-
erence qubit initially entangled with the system to directly test for
the existence of the codespace in the mixed phase and its absence
in the pure phase'. This approach has the practical benefit that it
relaxes experimental resource requirements compared to observ-
ables that require measuring entanglement entropies of large num-
bers of qubits, such as measuring Renyi entropy'’. We avoid the use
of post-selection on measurement outcomes through the addition
of feedback operations that reverse any measurement-induced uni-
tary rotations on the reference qubit (so-called ‘quantum steering’
effects®). As a result, absent noise, our experimental approach is
directly scalable to large systems.

From early measurements of the quantum-to-classical nature
of measurement in ion-trap systems' and cavity quantum electro-
dynamics'®, to the recent observation of wavefunction collapse in
superconducting qubits'’, the phenomenon of measurement itself
has been a subject of great interest experimentally. Many-body
coherent operations combined with controlled dissipation or mea-
surements have been explored experimentally in, for example,
the study of dissipative state preparation's, as well as in recent
theoretical proposals for many-body quantum non-demolition
measurements'’. We also note related experimental results show-
ing symmetry-resolved dynamical purification of spin chains in a
long-range XX model with local depolarizing noise'**. By contrast,
in our study, we employ a ‘digital’ model of computing with two-site
unitaries and projective measurements with a temporal randomness
to the dynamics.

Our quantum computer uses up to 13 'Yb* qubits in a sin-
gle chain of 15 trapped ions in a microfabricated chip trap. We
achieve a universal gate set with native single-qubit gate fidelities of
99.96% and two-qubit gate fidelities on any pair of 98.5-99.3%, as
detailed elsewhere™.

We now describe the specific dynamics of the random circuits
in this work with a system of L qubits subject to unitary evolution
with all-to-all connectivity and measurements. For such all-to-all
coupled models, spatial entanglement of the wavefunction is not
a reliable diagnosis of the measurement-induced phase transition;
instead we characterize the problem in terms of a purification tran-
sition®. In this picture, the system transitions at low measurement
rates to a phase with long-range correlations in time, similar to
the behaviour found in fault-tolerant error-correction thresholds.
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Fig. 1| Model and purification dynamics. a, Schematic of a circuit with
L=6 system qubits, N,=6 two-qubit gates, two z measurements and

one x measurement. The first XX gate entangles the reference with a
system qubit. Next, we scramble the system, Us. The time evolution

of the unitary-measurement dynamics starts at the red dashed line.
Probabilistic measurement is deferred until the end of the circuit using
CNOT gates between system qubits and measurement ancillae. The
x-basis measurement is shown after the third XX gate. Finally, a feedback
operation Ug is applied (Methods and Extended Data Fig. 3). b, The entropy
of the reference qubit for two L =6 circuits where the reference qubit stays
mixed (upper panel) and purifies (lower panel). The x axis shows the
evolution of time in units of applied two-qubit gates (N,) after scrambling
is complete (indicated again by the red dashed line). In this example,

the entropy is measured by performing single-qubit tomography of the
reference by making measurements in the x, y and z bases. Error bars (16)
are smaller than the markers, with 4,000 and 10,000 shots for experiment
and simulation, respectively. Missing experiment data are due to ion loss
events, which are assumed to be uncorrelated with the data being taken.

This dynamical purification phase transition can be efficiently
probed by studying how the system preserves entanglement over
time with a single reference qubit'.

An example circuit is shown in Fig. la. After preparing all
qubits in |0), the reference is entangled to a randomly selected sys-
tem qubit to form a Bell pair. The entangling operation is followed
by a scrambling unitary, which consists of random single-qubit
Clifford gates and two-qubit XX(n/4) gates on random qubit pairs.
The scrambling stage spreads the entanglement to the entire sys-
tem and reduces finite-size effects (Methods and Extended Data
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Fig. 1). After scrambling the system qubits, we evolve the system in
time with random unitary dynamics and measurements with a total
number N = |Lv/L] of XX(n/4) gates applied to randomly chosen
qubit pairs.

After each entangling gate we add a measurement with probabil-
ity P (Methods). Although mid-circuit readout of ion qubits is pos-
sible”, we use ancilla qubits to defer readout. When a circuit calls
for measurement, we entangle that qubit with an ancilla in a chosen
measurement basis. Because the unitaries are XX gates, the mea-
surement choice of the z or x basis has a strong effect on the sub-
sequent dynamics. This feature of our model allows us to tune the
probability, P,, that a measurement is in the x basis to go across the
purification transition without directly changing P. At the end of
the circuit, all the qubits are read out in the z basis via fluorescence
imaging. For each circuit, we rotate the reference qubit to measure
in x, y and z bases and post-select the observations to obtain Pauli
expectations conditioned on measurement outcomes (Methods and
Extended Data Fig. 2). The set of three Pauli expectations are then
used to construct the density matrix of the reference qubit and mea-
sure its entropy S,. These circuits are examples of stabilizer circuits,
whose noiseless dynamics are classically simulable***.

As an illustrative example, in Fig. 1b we consider the experi-
mentally measured evolution of S, in two circuits sampled from
ensembles with P=0.15. We choose one circuit sampled from P,=0
that stays mixed (encoded) and one sampled from P, =1 that puri-
fies over time. Units of time are measured in the number of applied
two-qubit gates, N,, for consistency between theory and experi-
ment. For noiseless stabilizer circuits, the entropy is always either 0
or 1bit>* and, as a result, the circuits that purify must do so at pre-
cisely one time step. However, this property no longer holds exactly
in the presence of noise. Experimentally, we find that the mixed cir-
cuit maintains a high value of S,. In the second circuit, the reference
qubit purifies at the expected time in the circuit, albeit to a constant
offset due to experimental noise. It is apparent from these examples
that we observe a clear separation between pure and mixed results
for S, For each circuit, we ran 4,000 shots of each measurement
basis (x, y, z) to compute S, at each time step.

To characterize the many-body dynamics, we generated large
ensembles of circuits and averaged their entropy for given values
of P, P, and L. In Fig. 2a we show the theoretical phase diagram for
the model versus P and P,. For low P and P,, the system is driven to
a mixed (coding) phase where the non-unitary dynamics projects
quantum information about the initial state into a random quan-
tum error correcting code. As either P or P, is increased, the system
enters a pure phase, where an initial mixed state collapses to a fixed
quantum state and the encoding operation fails. The behaviour
at P=0 can be smoothly connected to the finite P behaviour by
scaling N, by 1/P and taking the limit P— 0. In this limit, there
is residual purification dynamics that leads to a phase transition
along the P=0* axis. This special critical point arises because of
the restricted nature of our gates, which do not effectively scramble
the system in the absence of measurements®. The critical point
at each value of P was obtained from finite-size scaling analysis
using simulations of L =16 to L =64 qubits (Methods). Our scaling
analysis is based on extracting the exponential decay rate of (Sy(t))
at late times.

In Fig. 2b we show the simulated dynamics of (Sy(t)) at two rep-
resentative points in the phase diagram with P=0.15. In the mixed
phase, probed at P,=0, (S,) stays near one for exponentially long
times in L. Deep in the pure phase, the reference qubit rapidly puri-
fies, with an average entropy that exponentially approaches zero. In
the experiment, we probe small systems L <8 after a number L'* of
gate operations. For larger numbers of qubits L, this scaling limit is
sufficient to probe the phase because the effective depth of the cir-
cuit scales as 2v/L, much greater than any fixed correlation time in
the system. At the critical point, as we show in Extended Data Fig. 6,
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Fig. 2 | Phase diagram and scaling limit of average purification dynamics. a, The phase diagram of the model, parameterized by P and P,. The green
shaded region indicates the numerical uncertainty in the critical region between the top phase, where the reference qubit rapidly purifies, and the bottom
phase, where it stays mixed. In our experiment, we fix P=0.15, and tune P, to probe the phase transition along the dashed line. In the limit P— O (left blue
shaded region) with N, also scaled as 1/P, the restricted nature of our gate ensemble leads to a purification transition (circle) when tuning P, along the
line P=0*. b, The simulated entropy of the reference qubit averaged over many random circuits (S,) in the two phases. Here we use the same fixed value
of P=0.15 from A, with P,.=0 (mixed) and P,=1 (pure) plotted against time (measured in units of two-qubit gates) scaled by L'*. The dashed vertical line
indicates the experimental probe time of N,=L"*, and the intersection of this line with different system sizes shows increasing (decreasing) entropy in the

mixed (pure) phase that is the signature of the two phases.
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Fig. 3 | Experimental observation of phases and simulated critical behaviour. a, Classical entropy after thresholding (S¢;), averaged over an ensemble

of random circuits at varying system sizes. We show evidence of mixed (top), intermediate (middle) and pure (bottom) phase, with P,=0, P,=0.5 and
P.=1, respectively, and with size scaling as predicted in Fig. 2b. Error bars are 16 uncertainty with 300 circuits for P,=0, 1 and with 100 circuits for p,=0.5.
b, Simulated results showing the late-time decay rate 7 of (S4) near the transition. z&1/5 is the dynamical critical exponent, vx1/2 is the correlation length
exponent and P,.=0.72(1) is the critical value of P,. These critical parameters are extracted from a finite-size scaling analysis (Methods and Extended

Data Fig. 6).

the entropy decay time scales as L' to conform to the universal
critical dynamics of the system.

To reduce the number of circuits needed to evaluate S, we
append a feedback circuit to the end of each circuit that is expected
to purify. The feedback uses single-qubit rotations and a circuit of
CNOT gates between the reference and measurement ancillae to
disentangle it from the measurement ancillae (Methods). With this
addition, we replace measurement of S, with the classical entropy
Sc and eliminate the need to measure in the x basis and y basis.
This feedback approach avoids post-selection and remains tractable
for stabilizer circuits on any system size because we can efficiently
find the feedback circuit*. Finding efficient extensions of this feed-
back approach for arbitrary gate sets and circuit architectures is an
unsolved problem'”. Many of the naive approaches to investigating
the phase transition for random circuit ensembles with a univer-
sal gate set requires some form of post-selection on the measure-
ment outcomes. It is therefore an important goal to develop efficient
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feedback protocols (or other methods to circumvent post-selection)
for generic random circuit models. Alternatively, it may be possible
in some cases to give complexity theoretic evidence that an efficient
feedback protocol does not exist.

To probe the phases experimentally, we generate an ensemble of
random circuits for the chosen values of P, P, and L. To constrain
the number of measurements to a low value, we study a fixed line
of parameters at P=0.15 (Fig. 2a), and the evolution is applied for
a time N,. At the end of the circuit, we measure the reference in
the z basis. We average over many shots to determine S for each
circuit. The majority of experimental noise can be explained with a
simple noise model using XX-gate crosstalk (see the Supplementary
Information, where we also describe techniques to further mitigate
errors). We assume a Gaussian distribution of expected S;=0 cir-
cuit outcomes and S.=1 circuit outcomes and find their intersec-
tion, which is used as a threshold at S; =0.93 (Extended Data Figs. 4
and 5). Any outcome below the threshold is counted as S;;=0,
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and those above as Sc;=1. For P,=0,1 (P,=0.5), we average the
entropy after binning with the threshold, (S¢), over the results of
300 (100) unique circuits.

We study (S.;) at P,=(0,0.5,1) and L=(4,6,8), and observe
the first experimental evidence of the phases of a dynamical puri-
fication phase transition. Although the measured entropy increases
with system size in the mixed phase (P,=0), in the pure phase
(P,=1), the entropy decreases with system size (Fig. 3a). This
behaviour is expected and can readily be seen in simulations at the
experimental probe time in the example in Fig. 2b. To probe the
crossover behaviour on these system sizes, we also sample at an
intermediate value of P, =0.5 close (for these sizes) to the critical
point at P,.=0.72(1). We observe consistent results with the simula-
tions in this near-critical regime, showing behaviour that interpo-
lates between the two extremes.

Having obtained conclusive evidence for the two phases in our
system, it remains an outstanding challenge to experimentally
probe the universal critical behaviour of this model. We predict that
such effects will become accessible in our system through modest
increases in system sizes from L =8 to L =232 qubits, combined with
periodic sympathetic cooling”, which enables mid-circuit measure-
ments, improves fidelities at late times, and should allow for deeper
circuits. We have found that a sensitive probe of the critical proper-
ties of the purification transition is the late-time exponential decay
constant 7 of the order parameter (Sy(¢)) ~e™". Figure 3b shows an
example of a finite-size scaling analysis that can be used to extract
critical properties of the model. Here we use direct simulations of
the ideal circuit evolution to predict the behaviour of our system as
it is scaled to larger sizes. Crucially, these scaling results illustrate
that the critical properties of the purification transition are obtain-
able using the modest systems sizes and circuit depths accessible in
near-term ion-trap hardware.

Our results show that measurement-induced quantum phases
are accessible in near-term quantum computing systems, despite
the formidable experimental challenges. Recent years have seen a
host of advances in mapping out the phenomenology of these novel
non-equilibrium phases of matter, including the prediction of topo-
logical order stabilized by measurements in random circuits*****
and applications in computational complexity theory’® and quan-
tum error correction’’. These developments point to a broad
potential for the advancement of many-body physics and quantum
information science through the continued explorations of quan-
tum measurement.

From the perspective of fault-tolerant quantum computation,
our results open up a number of new directions. Investigating simi-
lar physics in fault-tolerant operating regimes with error correction
and feedback built into the model is an exciting direction for future
work. Although the resource demands are often difficult to satisfy
for fault-tolerant simulations, the intrinsic flexibility in implement-
ing random circuit models allows one to circumvent the worst-case
behaviour analysed in fault-tolerant threshold theorems'. As a
result, many of the resource costs for fault tolerance can be low-
ered for random circuits. For example, much of the overhead in the
standard models for fault tolerance arises from implementing a uni-
versal gate set. We have shown that measurement-induced phase
transitions are experimentally accessible with discrete gate sets, like
the Clifford group, which have efficient fault-tolerant transversal
implementations in systems with long-range interactions, such as
ion traps. Additional gates outside this set can be introduced with
a low density to avoid a large increase in the overhead for more
generic random circuit models.

An important conceptual aspect of our work is that we experi-
mentally study an error-correction threshold as a physical phe-
nomenon, exploring its connections to universality in quantum
many-body physics. This approach contrasts with many earlier
works on experimental quantum error correction that have so far
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focused primarily on demonstrations of few-body gadgets in the
below-threshold regime”. In addition, although error-correction
thresholds can be studied numerically, applying those theories in
practice requires a deeper understanding of the errors in real physi-
cal systems, and how the corresponding thresholds behave. The
ability to successfully operate quantum computing systems in these
near-critical regimes is likely to be a crucial aspect in the future of
fault-tolerant quantum computing.
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Methods

Scrambling unitary. A scrambling unitary, Uy, is applied after the system is
entangled with the reference, before the random time evolution begins. The
scrambling unitary consists of four layers: odd-numbered layers are composed of
single-qubit operations on each qubit and even-numbered layers are composed of
fully entangling XX(n/4) gates on L/2 random qubit pairs.

Measurement protocol. In our circuit ensemble, each gate after the scrambling
layer is followed by a probabilistic measurement. Given the constraints of
the hardware, we choose a measurement strategy that reduces the number of
measurements. In addition, the ensemble generated with our measurement strategy
scales to system sizes that are beyond the reach of available hardware and can only
be studied with numerical simulations.

We maintain a list M that is initialized to all system qubits in the beginning
of the circuit. After each gate, we measure one of the qubits involved in the gate
with probability P. Having decided to perform a measurement after an XX gate, we
randomly choose the qubit to measure and the basis of measurement. If both qubits
participating in the XX gate are in M, we randomly select one with probability half
and measure it in the x basis with probability P, and in the z basis with probability
1—P,. If only one of the qubits is in M, we measure that qubit in the x basis with
probability P, and in the z basis with probability 1 — P.. If neither qubit is in M, we
do not measure any. Measurement outcomes in Clifford circuits are deterministic
or are equally likely to be zero or one. In the absence of noise, measuring a qubit
with a deterministic outcome has no effect on the purification of the reference. As
a result, we only measure qubits with non-deterministic outcomes. Additionally,
after each physically performed measurement, we remove the measured qubit from
M. Once | M| = L — 4, we reinitialize the list with all the qubits in the system.
With a low measurement probability, P=0.15, used in our experiment, the number
of measurements in the circuits investigated is less than 4, so the list M need not
be reinitialized. This ensures that no system qubit in the experiment is measured
more than once.

Feedback. The feedback circuit is added at the end to disentangle the reference
from the ancillae qubits. In the pure phase, the reference qubit purifies in one of
x, y or z bases and its state (0 or 1) depends on the projections induced upon the
measurement ancillae. The basis of purification can be anticipated with classical
simulation of the Clifford circuit. A single-qubit rotation is performed on the
reference qubit to ensure that it returns to the z basis following purification.
Because we do not have access to the measurement outcome until the very end of
the circuit, we construct a logic circuit, consisting of CNOT gates, to ensure that
the reference qubit purifies to the zero state. This is done by classically anticipating
the entanglement between measurement ancillae and reference qubit, then
generating a sequence of CNOT gates to disentangle the reference.

For example, in batch L=4, P, =0, circuit #45 purifies the reference in the x
basis. There are three measurements. The outcomes of the measurement ancillae
and the reference qubit are related by the truth table in Extended Data Fig. 2.

The feedback circuit, in this particular case, is given by the circuit diagram
in Extended Data Fig. 3. The Hadamard gate is used to align the reference along
the z basis. The following sequence of CNOT and X gates implement the logic to
disentangle the reference from the ancillae. When implementing the circuit, all
CNOT gates are compiled to XX gates™.

Circuit optimization. For each circuit, commuting single-qubit rotations and
XX(n/4) gates are merged, wherever possible, to reduce the size of the circuit.

Raw data and thresholding. Data presented in Fig. 3a are presented after binning
via a threshold. Extended Data Fig. 4 presents histograms of the outcomes for all
circuits, with each entropy averaged over the outcome of 1,000 shots per circuit.
Furthermore, Extended Data Fig. 5a shows the average classical entropy over all
circuits for each system size and P, value. These averages are clearly much higher
than the simulations.

The primary reason for the discrepancy between the simulations and
the experimental data is that the simulations do not include noise. When
including realistic noise sources in the simulations (‘Noise model section in the
Supplementary Information), such as dephasing or gate amplitude errors, we find
that the entropy outcomes are pushed to higher values. Nevertheless, we see in
the data for L=4 and L=6 that there is a clear separation observed in the entropy
values for circuits that are mixed or pure (Supplementary Fig. 2). This separation
is also evident in Fig. 1b, with the clear jump from mixed to pure in the evolution
of the circuit.

We can use these properties of the circuits to mitigate noise effects. In the
final data processing, we assume a Gaussian distribution of expected S;=0 and
Sc=1 circuit outcomes and find their intersection, which is used as a threshold
at S;=0.93. Circuit outcomes below the threshold are counted as 0 and outcomes
above are counted as 1. We find three thresholded circuit outcomes disagree with
the simulated expected value for that circuit, for an error of 3/699 circuits for the
L =38 case. Extended Data Fig. 5b shows the result after all processing alongside
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simulations of the exact circuits for sizes L= (4, 6,8) and representative samples for
sizes L=(16,32). The same threshold is used for all system sizes.

Critical scaling theory. Our method for locating the critical point in these
all-to-all models is illustrated in Extended Data Fig. 6. For P,~ P,, we can run the
dynamics out to a time where (Sq(#)) exhibits a simple exponential decay xe™"".
We then use least-squares fitting to find the exponential decay rate 7 for each value
of P, and L. Deep in the mixed phase, 7 diverges exponentially with L (ref. ©),
whereas in the pure phase 7 approaches a constant independent of system size.
At the critical point (P=P,.), 7~ L, where z is the dynamical critical exponent.
Thus, we can estimate P, by looking for the value of P, where 7(L) goes through an
inflection point on a log-log plot. This behaviour is illustrated in Extended Data
Fig. 6b for the model with P=0.15 and [ M| > L — 4). Near P,=0.7-0.75, we see
that the decay rate 7 grows as power law L' over the given range of sizes. This
value of z=1/5 is consistent with the scaling one would expect from mean-field
percolation. The close ties between these phase transitions and percolation have
been noted in past works. Notably, for the Hartley entropy of Haar random circuits
with measurements, there is an exact mapping to a percolation problem in the
circuit geometry”’. In the all-to-all setting considered here, this mapping also
predicts z=1/5.

Using this estimate for z, we can accurately measure the critical point P,  and
critical exponent v of the purification transition using the method illustrated in
Fig. 3b. We hypothesize the following scaling form for =

7 = Lf{(Pe — Po)L?"], 1)

which predicts that a crossing will appear with increasing sizes when plotting

7/L* versus P,. We see consistent results with this scaling assumption in Fig. 3b,
from which we locate P,.=0.72(1). A similar analysis was used for other values of
P#0.15 to extract the phase diagram in Fig. 2a. After locating P, ., we then collapse
the data as shown in the inset to Fig. 3b to obtain an estimate v = 1/2, which is

also consistent with the predication from mean-field percolation. We leave a more
detailed analysis of the critical properties of this model for future work.
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All data is available in the manuscript or the Supplementary Information.
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Extended Data Fig. 1| Scrambling Unitary. Example of a scrambling unitary on a system with L = 6 qubits. Each single-qubit gate C refers to a random
single-qubit Clifford gate. The XX gates have an implied rotation angle of z/4.
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Extended Data Fig. 2 | Feedback Truth Table. Truth table for outcomes of measurement ancillae and reference qubit for a circuit.
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Extended Data Fig. 3 | Feedback Circuit. Feedback circuit corresponding to example circuit #45 described in Methods.
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Extended Data Fig. 4 | Histogram of Experimental Data for S_C. All raw outcomes of S. in study of phases (main text Fig. 3a). The legend indicates the
simulated expected outcome for that circuit. The bin size is .033 and Sc =.93 (dashed line) is used as a threshold for all the data.
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Extended Data Fig. 5 | Comparison of Theory and Experiment. (a) Raw average of all circuit outcomes without thresholding applied. (b) Thresholded data

with extended simulations showing expected behaviour up to L=32.
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Extended Data Fig. 6 | Analysis Method to Extract Critical Data. (a) Late time decay of (S) showing the exponential decay regime used to extract the
decay rate 7. Here, we took (P, P,) = (0.15, 0.7) near the critical point. (b) Scaling of z vs L for different values of P, at P = 0.15. We can estimate P, and
extract z by looking for the inflection point in this family of curves and fitting the slope.
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