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ABSTRACT. In previous work, we used an co-categorical version of ultraproducts to show
that, for a fixed height n, the symmetric monoidal co-categories of Ep p-local spectra are
asymptotically algebraic in the prime p. In this paper, we prove the analogous result for
the symmetric monoidal co-categories of Kj(n)-local spectra, where Kp(n) is Morava
K-theory at height n and the prime p. This requires co-categorical tools suitable for
working with compactly generated symmetric monoidal co-categories with non-compact
unit. The equivalences that we produce here are compatible with the equivalences for
the E, p-local co-categories.
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1. INTRODUCTION

Chromatic homotopy theory describes how the stable homotopy category can be built out
of irreducible building blocks depending on a prime p and a height n called the K,(n)-local
categories. In more detail, the chromatic assembly process starts with a finite spectrum
X, for example the sphere spectrum SY. After p-localization, X may be recovered as the
homotopy limit of a tower of chromatic approximations

X~lim(... > L, X > L, 1 X = ... > 11 X = LX),

n

starting with the rationalization Ly X = Xg of X. The consituent piece L, X of the chro-
matic tower lives in the E, p-local category Sp,, ,, where E,; denotes the n-th Morava
E-theory spectrum. This category decomposes further: Writing K,(n) for the n-th Morava
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K-theory spectrum, Sp,, , is glued together from Sp,_; , and the K(n)-local category
SPk,(n) Via a recollement. This is analogous to how the derived category of p-local abelian
groups is assembled from rational vector spaces and p-complete abelian groups. From this
perspective, Sp K,(n) arises from Sp,, , as an appropriate completion. Since Sp K, (n) admits
no further non-trivial localizations, it is considered an irreducible building block of the stable
homotopy category; see [BB19] for survey.

The categories él\)n,p = Sp Ky (n) have peculiar categorical properties that are not visible
in the global context of the stable homotopy category. In particular, the K,(n)-local cat-
egory inherits a symmetric monoidal structure from the stable homotopy category whose
invariants, such as Picard groups, have been an active area of research. When n is fixed
and p increases, the K,(n)-local category simplifies in various ways. For instance, the Pi-
card groups are purely algebraic [Pst18] and certain spectral sequences grow sparser leading
to controllable calculations and the capacity to construct spectra with prescribed FE,, p-
homology.

In [BSS17], we construct and describe the limit of the F,, ,-local categories Sp,, ,, for p —
oo. This is accomplished by introducing a categorification of the ultraproduct construction
and an algebraic analogue of Sp,, ,,, called Fry;, and by constructing an equivalence of
symmetric monoidal oo-categories

Pic Pic

(1.1) H]__ Sp,,.p = H}_ Fr, p,

where F is a non-principal ultrafilter on the set of prime numbers and H?C denotes the
Pic-generated protoproduct of [BSS17, Section 3]. This equivalence allows one to move
certain results in Fry, , to Sp,, , for large enough primes as shown in [BSS17, Section 6]. For
the purpose of applications, it is important to have a K,(n)-local version of the equivalence
above and to understand how it relates to the F, ,-local equivalence. That is the purpose
of the current paper, which may be viewed as a sequel to [BSS17].

In this paper, we build a monochromatic analogue of Fr,, ,, called ﬁ“n,p, and extend the
Pic-generated protoproduct construction to include the K,(n)-local categories él\)n,p and the

categories Fry, ;.

Theorem 1.2. There is an equivalence of symmetric monoidal co-categories

HPic§\ Pic]?‘\
~ r .
F pn,p F n,p

In particular, this induces an equivalence of Picard co-groupoids

Pic ~ Pic ~
Pic(Hf SP,.,) = Pic(Hf Fr,p).

Moreover, in Theorem 4.28, we relate these Picard oo-groupoids to the ultraproduct of
the Picard groups of the Kj,(n)-local categories at a non-principal ultrafilter. By [Pst18],
the Picard group of @n’p is the same as the Picard group of ]_E\‘rn’p for large enough primes.
Theorem 4.28 establishes a monomorphism from the ultraproduct of these Picard groups
into the Picard group of Hg’:lcgf)nJ,. It is the latter group that is more relevant to the study
of chromatic homotopy theory at a non-principal ultrafilter.

The proof of Theorem 1.2 is not purely formal primarily because the K, (n)-local category
é;)n’p behaves, in many ways, quite differently than the E, ,-local category. In particular, it
is a naturally occurring example of a symmetric monoidal compactly generated oo-category
in which the unit is not compact. This leads to real difficulties that must be surmounted in
order to produce a well-behaved Pic-generated protoproduct.
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The construction of the Pic-generated protoproduct in [BSS17] requires that the invertible
objects in the input co-categories are compact. This is not true in é?)n’p or PA‘rn,p. We define
a notion of the Pic-generated protoproduct that does not require the invertible objects to
be compact. In general, this construction produces non-unital symmetric monoidal oo-
categories. To address this issue in our situation, we make use of the fact that the units in
Spn p and Frn p can be built from compact objects uniformly in the prime. In this way we
obtain the symmetric mondoial co-categories in the equivalence of Theorem 1.2.

The proof of Theorem 1.2 follows the same steps as the proof of the main theorem in
[BSS17]. The first step was to produce equivalences

(1.3) H Mod ge- _H Mod s,

and the second step was to deduce the main theorem by descent along these equivalences.
From the point of view of local duality contexts [BHV18b], the K, (n)-local category can
be realized as a torsion subcategory in the E), ,-local category. Thus, to get the monochro-
matic analogue of the equivalence (1.3), we restrict it to an equivalence between suitable
torsion subcategories. For a more detailed explanation, see the next section.
We briefly comment on how these results fit in the long term goals of this project. The
Ax—Kochen isomorphism theorem produces a non-canonical isomorphism of fields (assuming

the continuum hypothesis)
11,2 =T1,%0

for any non-principal ultrafilter F on the set of prime numbers. We would like to extend
this isomorphism to an equivalence of categories between H;iclf\‘rn,p and the ultraproduct
of equicharacteristic versions of F/‘\rn,p. We hope that such a category can be built out
of the theory of formal Drinfeld modules. The completions appearing in the Ax—Kochen
isomorphism theorem motivate the monochromatic theorem presented here.

Acknowledgements. It is a pleasure to thank Rune Haugseng for helpful conversations.
We would like to thank the referee for useful comments on an earlier version of this paper.

2. MAIN THEOREM AND OUTLINE OF THE PROOF
2.1. The main theorem. The goal of this paper is to prove the following theorem:

Theorem 2.1. For any non-principal ultrafilter F on P, there is a symmetric monoidal
equivalence of compactly generated Q-linear stable co-categories

PIC/\ Pic /\
II Spop =11,

The notation in the statement of the theorem requires explanation. The oo-category
Sp,,, is the K(n)-local category, which can be constructed as the localization of Sp,, ,

by the E, ,-localization of a type m complex. Analogously, the oo-category ].E\‘rn,p is the
localization of Fr,, , at (Ey p)«/Inp (see Section 4.1 of [BSS17] for a discussion of the -
operator and formality) and Fr,, , is the underlying oo-category of the category of quasi-
periodic complexes of comodules over (7 Ey, p, To(En pAE, p)) periodized with respect to the
comodule 72 E,, ,. The Pic-generated protoproduct is a generalization of the Pic-generated
protoproduct of [BSS17] to symmetric monoidal compactly generated co-categories in which
the unit is not necessarily compact.

In [BSS17, Section 3], we introduce the notion of a protoproduct of compactly generated
oo-categories. The protoproduct takes in a collection of compactly generated co-categories
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equipped with a filtration on the subcategory of compact objects and produces a compactly
generated oo-category. The Pic-generated protoproduct of [BSS17, Section 3] is the special
case where the kth stage in the filtration consists of compact objects that can be built out of
at most k elements in the Picard group of the oo-category. Since the unit is assumed to be
compact in [BSS17], the unit is contained in every filtration degree and the Pic-generated
ultraproduct is symmetric monoidal by construction. In this paper, we are concerned with
Spn pand Frn p» Which are symmetric monoidal compactly generated oco-categories with non-
compact unit. However, intuition suggests that the Pic-generated protoproduct of these oco-
categories should still be symmetric monoidal: the units in these co-categories can be built
out of compact objects in a prime-independent way. A large part of the work in Section 4
goes towards proving that the oo-categories are also unital.

We single out two key ingredients from chromatic homotopy theory that allow us to
control the protoproducts of the co-categories §1\)n7p:

(1) The proof of the smash product theorem by Hopkins and Ravenel [Rav92, Section 8|
shows that the E, ,-local sphere may be built up to a retract in finitely many steps
from E, ,. Upon K,(n)-localization, this implies that the map LKP(,L)SO — By p of
Eoo-rings satisfies a strong form of descent. For primes p such that p — 1 does not
divide n, this descent is uniform in the prime p, in the sense that the corresponding
horizontal vanishing in the E, ,-Adams spectral sequence for the sphere has the
same intercept for all such primes.

(2) A generalized Moore spectrum of type n is a finite spectrum M with BP,.M 2

BP,/(p', vil, ... 7vi"_’l) for a sequence (ig,i1,...,i,—1). Using the periodicity the-

n—1
orem of Hopkins and Smith [HS98], we can can construct generalized Moore spectra
M of type n for a cofinal sequence I = (ig,1,...,in—1) by iteratively coning off

self-maps. In particular, each of the spectra sz has 2" cells, independent of the
ambient prime p. Since the FE, ,-localization of any p-local finite type n spectrum

provides a compact generator for é;)n’p, Proposition 7.10(e) in [HS99] gives a pre-

sentation of the unit of §f)n7p as a filtered colimit of compact objects each of which
has 2™ cells:

L, = lim L, , M;.

The second ingredient was not required in the study of HP;C Sp,,, in [BSS17].

2.2. Leitfaden for the proof. The next diagram summarizes the various steps in the proof
of Theorem 2.1:
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.l;icélf)n’pc—> Tot H;icmw%“) —= > Tot Hé_—m(ﬁ;g;fl) — = > Tot Hé_— Mod!rs

(BZ
I
‘ ~
‘ \ |
: Hi‘lc Spn"p(—> Tot H?_— I\/IOd(E%a;H) e TOt(H;_. l\/lOd(Ef?;ﬂ))tors
I
1 l” l~ ~
| .
I .173:10 Frn7pc—> Tot H?_— thd(E;?,;;rl)* e —— TOt(H;_- I\/IOd(Eg);fl)* )tors
I
I

| / -

;icﬁn,p<—> Tot H?Cl\/lOd(Agoerl) —= > Tot H;_—Mod(Agopﬂ) — = > Tot H?_— MOdEOEr%;)ﬂ)*

In this diagram:

e E, , is Morava E-theory at height n and the prime p and K,(n) denotes the corre-
sponding Morava K-theory spectrum. Implicitly in this notation is the choice of the
Honda formal group law over F,». By the Goerss-Hopkins—Miller theorem, E, ,
has a canonical structure as a K,(n)-local Eo-ring spectrum.

o Ay, =P((Enp)oEn,p)is the commutative algebra object in the symmetric monoidal
oo-category Fr,, ,, studied in [BSS17, Section 5.3].

o Mod (E3) denotes the symmetric monoidal oo-category of modules over L, () (ES?)
in é;)n’p, see Section 3.3 for a more precise definition.

° Mo\d( A82) denotes the symmetric monoidal co-category of modules over the com-
pletion of A% as an object in ]F/‘\rn’p.

e Torsion objects in this context refers to torsion objects in the sense of local duality
contexts [BHV18b], and the corresponding categories of torsion objects are indicated
by a superscript “tors”.

e The protoproduct of the form H_};-ic is a generalization of the Pic-protoproduct of
[BSS17, Section 3.5] to the co-categories of interest in this paper. Its construction
and properties are given in more detail in Section 4.

e Similarly to the Pic-protoproduct, the protoproduct of the form Hb}- is a generaliza-
tion of the cell-protoproduct of [BSS17, Section 3.5] to the co-categories of interest
in this paper.

The equivalences in the top (topological) and bottom (algebraic) part of the diagram are
established in parallel, so we will only comment on the former:

e The symmetric monoidal equivalence

Pic_—— N b —
Tot H}_ Mod(Eg;’H) — Tot H]__Mod(Eg?;ﬂ)

uses the Picard group computation of Mod E,., together with a cosimplicial detection
result proved in [BSS17], see Corollary 5.4.
e The symmetric monoidal equivalence
b —— b
~ tors
Tot [T, Mod gge+i) = Tot [T Mod({32. 1)

follows from applying the protoproduct construction to the local duality equivalence
of Proposition 3.11, following [BHV18b)].
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e The symmetric monoidal equivalence
b b
tors ~ t
Tot 1_[]E Mod(‘;f.?yl) — TOt(H; Mod(E%H)) ors

follows from our study of torsion objects in protoproducts in Section 4.4.

In order to finish the proof, we need to relate the topological and algebraic sides of the
diagram. This is achieved in two steps:

e By Section 5.3, there is a symmetric monoidal equivalence

b N b
TOt(H}_ MOd(E%@;jl))tors — TOt(H}_ MOd(Eg;)ﬂ)* )tors.

e By making use of the uniform descent results described in [BSS17, Sections 5.1 and
5.2], Corollary 5.4 provides equivalences

Pic_~ Pic——
H}_ Sp,, , = LocPic Tot HF Mod peerty
and
Pic ~ Pic——
H}_ Fry, , ~ LocPic Tot H}_ Mod yger1y.

Since each of these equivalences is symmetric monoidal and colimit preserving, there
is an induced equivalence

The commutativity of the diagram is established in Section 5.4. In particular, this implies
that the equivalence produced here is compatible with the equivalence in the main theorem
of [BSS17].

It seems reasonable to wonder if the diagram is still commutative after reversing the
diagonal arrows. After all, there are canonical embeddings é?)n’p < Sp,, , and P/‘\rnm — Fry, p.
This motivates the following question that is intended to measure the difference between
objects built out of K, (n)-local Picard cells and objects built out of E,, ,-local spheres inside
Spy -

Question 2.2. Given a sufficiently large prime p and n > 0, does there exists a constant
N = N(n,p) such that for every P € Pic(§1\)n7p) and for a cofinal set of indices I, the spectra

M(n)®P e @:’p C Sp,, , can be built as retracts of objects in Spy, , with at most N cells?

2.3. Conventions. We describe some further conventions used throughout the paper:

o We write P for the set of prime numbers.

o We write Hom for mapping spectra in stable co-categories.

e The oco-category of commutative monoids in a symmetric monoidal co-category C
will be denoted by CAlg(C) and we refer to its objects as commutative algebras in
C. For C = Sp equipped with its natural symmetric monoidal structure, we usually
say Eoo-ring spectrum or E.-ring instead of commutative algebra.

e Let Pr” be the co-category of presentable co-categories and left adjoint functors, and
let Cat¥, denote the co-category of compactly generated oco-categories and colimit
preserving maps that preserve compact objects.

e Given two oo-categories, C and D, let Fun’(C,D) be the oo-category of colimit
preserving functors from C to D.

e A presentable symmetric monoidal oo-category C = (C,®) is called presentably
symmetric monoidal if C € CAlg(Pr”).
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e A compactly generated symmetric monoidal co-category is an object in CAlg(Cat¥.)
and a symmetric oidal co-category is an object in Alg]Egg (Cat), where EXY is the
non-unital version of the Eo-operad (See [Lur, Section 5.4.4]).

e If C is a presentably symmetric monoidal stable co-category and A is a commutative
algebra in C, then Mod 4(C) denotes the stable co-category of modules over A in C.
In the case C = Sp, we will write Mod 4 instead of Mod 4(C) for simplicity. Similarly,
we write CAlg4(C) for the oco-category of commutative A-algebras in C and omit
the co-category C when it is clear from context and in particular whenever C = Sp.

e A module M over a commutative ring R is said to be I-torsion for an ideal I C R
if any element m € M is annihilated by a power of I.

3. TORSION AND COMPLETION

In this section, we collect some material on categories of torsion and complete objects; in
order to develop the theory for the algebraic and topological sides in parallel, we formulate
our results in general terms.

3.1. The context. Throughout this section, suppose C = (C,®,1¢) is a presentably sym-
metric monoidal stable co-category which is compactly generated by its invertible objects.
In particular, this implies that the dualizable objects in C can be identifies with the compact
objects in C. Let F' € C¥ be a compact object. We will sometimes refer to the pair (C, F)
as a local duality context.

Given a pair (C, F) as above, consider the localizing ideal Loc®(F) in C generated by F,
which coincides with the localizing subcategory of C generated by F ®Pic(C). The canonical
inclusion of Loc® (F) into C admits a right adjoint I' by the adjoint functor theorem. The
symmetric monoidal product on C restricts to a symmetric monoidal product on Loc®(F)
whose unit is given by I'r1. Furthermore, write Lx: C — C for the Bousfield localization
functor associated to X given by inverting the (X ® —)-equivalences. We define the oo-
category C. x = LxC of X-complete objects in C as the essential image of Lx; if no confusion
is likely to arise, we will also omit the subscript X from the notation and write C for Cx.

Example 3.1. Given a nonnegative integer n and a prime p, an example of a local duality
context is given by the F,, ,-local category Sp,, , with ' = Lg,  F(n,p) for some finite type

n spectrum F'(n,p). In this case, Ly is equivalent to K, (n)-localization and C= éf)n’p is
the category of Kp(n)-local spectra.

The next result summarizes the key features of local duality contexts that we will use
throughout this paper; for the proofs, see [HPS97] and [BHV18b].

Proposition 3.2. The following holds for a local duality context (C, F) as defined above:

(1) The category Cisa presentable stable co-category compactly generated by F @Pic(C).
Furthermore, the canonical inclusion functor C—Cis fully faithful and preserves
limits and compact objects, while colimits in C are computed by applying Lg to the
corresponding colimit in C.

(2) The localized monoidal structure —@— = Lp(— ® —) equips C with the structure
of a presentably symmetric monoidal co-category with unit Lple. Moreover, if
X e Thick?(F), the thick tensor ideal, then LpX ~ X, so XQY ~ X @Y for all
Y eC. R R R R

(3) The co-groupoid Lg Pic(C) C Pic(C) generates C, i.e., C = Loc Pic(C).
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(4) The compact objects in C consist of the thick subcategory Thick(F ® Pic(C)) =
Thick (F).

(5) There exists a cofiltered system of compact objects (Mi(F')) in C and a natural
equivalence LpX ~ lim;(M;(F)® X) for all X € C.

(6) The localization functor Lr induces a symmetric monoidal equivalence Loc® (F) ~
C. In particular, there exists a nonunital symmetric monoidal colimit preserving
functor C—C.

Proof. The first two claims follow directly from the construction of Casa localization, see for
example [BHV18b, Theorem 2.21(3)], while the identification of a set of compact generators
is a consequence of (6). Since Pic(C) generates C, Part (3) follows from adjunction. Part of
Part (4) is [BHV18b, Lemma (2.15)]. To show that Thick(F ® Pic(C)) = Thick& (F), it is
enough to show that Thick(F ® Pic(C)) is a thick tensor ideal. This follows from the fact
that C* = Thick(Pic(C)). Part (5) is a consequence of [BHV18b, Equation (2.30)] and the
local duality equivalence [BHV18b, Theorem 2.21(4)].

The first part of the final claim is the content of [BHV18b, Theorem 2.21(3) and Proposi-
tion 2.34]. The desired functor C — Cis the composite of the equivalence with the canonical
inclusion Loc®(F) — C. Note that the latter functor is left adjoint to a symmetric monoidal
functor and hence has the structure of a symmetric colax monoidal functor. In order to see
that it is in fact nonunital strict symmetric monoidal, it thus suffices to pass to homotopy
categories, where it can be checked directly. (|

Remark 3.3. Note that the unit object Lpl¢ € Cisin general not compact, as Example 3.1
for n > 0 demonstrates.

Corollary 3.4. Let (C, F) be a local duality context, then C¥ C Thick(Pic(C)).

Proof. Since F' € C is compact, Proposition 3.2(1) gives F' € Thick(Pic(C)). It thus follows
from Proposition 3.2(3) that

F ® Pic(C) C Thick(Lp Pic(C)) C Thick(Pic(C)).
By Proposition 3.2(4), C¥ = Thick(F ® Pic(C)), which implies the claim.
O

3.2. Modules and local duality. Let (C, F') be a local duality context and let A € CAlg(C)
be a commutative algebra in C. Define Mods = Mod4(C) to be the oo-category of A-
modules internal to C and mA = ModLFA((?) to be the oo-category of LpA-modules
internal to C = (?p A standard argument (see e.g., [BHV18a, Lemma 2.25] applied
to A® —: C = Mod(C)) shows that the oo-category Mod 4 is compactly generated by
A®Pic(C). The oco-category M&u is compactly generated by LpA®(F ®Pic(C)) by Propo-
sition 3.2(1). An object X € C is called full if the functor X ® —: C — C is conservative.
The next proposition generalizes a result due to Hovey [Hov95, Corollary 2.2].

Proposition 3.5. LetC be a monogenic compactly generated presentably symmetric monoidal
stable co-category, A € CAlg(C) a commutative algebra, and F € C¥ a compact object in C,
then there is a natural equivalence

Lagr — LrLa

of endofunctors on C. In particular, if A is full, then Lagr ~ Lp.
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Proof. There is a natural transformation id — LgL 4 obtained by combining the unit maps
of Ly and L 4. We need to show that, for any X € C, the canonical morphism X — LpL X
is an (F ® A)-equivalence to an (F ® A)-local object. The map in question factors as
X — LaX — Lp(LaX), ie., an A-equivalence followed by an F-equivalence, hence the
composite is an (F' ® A)-equivalence.

In order to show that LpLsX is (F ® A)-local, consider an (F' ® A)-acyclic object Z.
By Parts (4) and (5) of Proposition 3.2, Lp(—) ~ lim;(M;(F) ® —) for a filtered diagram
consisting of objects My(F) € Thick& (F) C C for a cofinal set of indices. Consider the
objects M(F') as objects in C and let D(—) represent the monoidal dual in C. Since
(Z@K)® A~ Z® (K®A) ~0 for any K € Thicky (F) and since Thick§ (F) is closed
under taking monoidal duals, our assumption on Z implies that the object Z ® DM, (F) is
A-acyclic for any ¢ € I. Thus we have equivalences

Hom(Z, M;(F) ® LaX) ~Hom(Z ® DM[(F),LsX) ~0.
This implies that Hom(Z, LrL4X) ~ 0, hence LrpL4X is (F ® A)-local as claimed. O

The co-category of F-torsion A-modules Mod'y"™ is given as the localizing ideal in Mod 4 (C)
generated by A ® F', while the oo-category Mod;™ of F-complete A-modules in C is by
definition the essential image of the Bousfield localization Lf,® r: Modsg — Mod 4 with re-
spect to A ® F constructed in Mod 4. The next result lifts local duality with respect to F'
in C to the corresponding module categories over A.

Proposition 3.6. The localization functors induce symmetric monoidal equivalences

Lg@F Lp —
_— Mochomp — MOdA.

~

tors
Mody

Proof. The first symmetric monoidal equivalence is an instance of local duality, see Propo-
sition 3.2(6). Bousfield localization at F' induces a symmetric monoidal functor between
module categories Lr: Moda(C) — Modr,a(LrC). We claim that this functor annihi-
lates Lﬁ®F—acyclic A-modules. Indeed, let M € Moda(C) be A ® F-acyclic, then 0 ~
M®s (A® F) ~ M ® F. We thus obtain a factorization

Mod A (C) —=E > Mody,, 4(LrC)

-

—
—

A
LA@Fi _
_~~ LF

L4 s pModa(C).

The dashed functor Ep is symmetric monoidal by [Hinl16, Proposition 3.2.2], and it remains
to show that E: is an equivalence.

Note that Lf@F Mod 4(C) is compactly generated by the oco-groupoid (A® F) ®4 (A®
Pic(C) ~ A® F®Pic(C), while Mod,, 4(LrC) is compactly generated by L A®(F®Pic(C)).
Since I; induces an essentially surjective functor between these co-groupoids, it suffices to
show that Ly is fully faithful. To this end, first consider for fixed N € L4 pMod(C) the
full subcategory S(N) spanned by all M € L4 » Mod4(C) such that the map

Homypa  woda(c) (M, N) —— Homiod,, 4 (Lre)(LrM, LiN)

induced by Lp is an equivalence. Because Ly preserves all colimits, S(INV) is closed under
colimits, so if F® A®Pic(C) C S(N), then L4y Moda(C) = S(N). Because the objects in
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F ® A®Pic(C) are compact, both mapping spectra preserve colimits in the second variable
when M is in F® A®Pic(C). Thus we can reduce to proving the claim for N € F® A®Pic(C).
In other words, it suffices to show that the restriction of Lz to F ®A®Pic(C) is fully faithful.

This is now a consequence of the fact that, for any P € Pic(C), FRA®RP ~ Lp AQ(F®P)
in C by Proposition 3.2(2): for any P, P’ € Pic(C), we have natural equivalences

HomLﬁ(X)FMOdA(C)(A@F®P,A®F®P’) ~ Hom¢(F® P,A® F ® P)
~ Hom¢(F ® P,LrARF @ P')
o~ HomModLFA(LFC)(LFA®F®Pa LrAQF ® P’).

It follows that Ly L4 s pModa(C) = Modp, 4(LpC) is a symmetric monoidal equivalence,
as claimed. g

3.3. Examples. In this subsection, we exhibit some special features of the two examples
we will study in the present paper and use them to deduce a result about Picard groups of
module categories.

Suppose (C, F') is a local duality context with C the full subcategory of the oo-category
Sp of spectra consisting of local objects with respect to a ®-localization, in particular, the
inclusion C' — Sp is lax monoidal. Let A € CAlg(C) and assume additionally that the triple
(C, F, A) satisfies the following conditions:

(1) AeCisfull,ie., A® —: C — C is conservative.

(2) Ais F-complete, i.e., the canonical map A — LpA is an equivalence.

(3) A considered as an E,-ring spectrum is even periodic and m9A is a Noetherian
complete regular local ring. Furthermore, there exists an ideal J C myA which is
generated by a regular sequence (z1,...,z,) and such that K(A) .= AQ F ~ A/J
in C.

Under these assumptions, we get the following result:
Lemma 3.7. Bousfield localization at F induces a canonical isomorphism
7o Pic(Mod 4) —= s Pic(l\f(;iA),
of abelian groups.

Proof. Since Bousfield localization is symmetric monoidal, L restricts to a homomorphism

¢: mo Pic(Mod s) —— mg Pic(@A)

of abelian groups and it remains to show that ¢ is an isomorphism. The unit A € Mod, is
compact as 1¢ € C¥, so the dualizable and compact objects agree in Mod 4; in particular,
Pic(Mod4) C Mod. Moreover, A is F-complete by assumption, so any P € 7o Pic(Mod 4)
is already F-local and hence ¢ is injective. Conversely, by Property (3) above and [Mat16,
Proposition 10.11], any P € mg Pic(@A) is in Thick(A), hence we have equivalences

A~ LpA~PoaP ' ~P®, P!
in Mod 4, which implies the surjectivity of ¢. ]

We now turn to the two main examples of this paper, starting with the topological one.
Fix a prime p and an integer n > 0, and let K,(n) be Morava K-theory of height n and

prime p and write §1\)n7p = Spg,,(n) for the stable co-category of K, (n)-local spectra. Recall
that a p-local compact spectrum F is said to be of strict type n if K,(n) ® F # 0 and
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K,(n—1)®F = 0. For any n and p, compact spectra of strict type n exist at p: As recalled
in Section 2.1, by the periodicity theorem of Hopkins and Smith, there exists a generalized
Moore spectrum M?(n) = M/ (n) of type n with Brown-Peterson homology

BP,M!(n) = BP,/(p™,vi*, ..., 0,
for an appropriate sequence I = (ig,i1,...,i,—1) of positive integers. In particular, strict
type n spectra F' with 2™ cells exist.

Remark 3.8. In fact, for p large enough with respect to n, I, p-local Smith-Toda complexes
exist by [BSS17, Theorem 6.10], so may choose L, F(n) to have BP-homology v, ! BP,/I,.

Let E,, be Morava E-theory of height n at the prime p, with coefficients moFE, , =
WIFpn [us, ..., un—1] and associated category Sp,, , of E, p-local spectra. The pair (C, F') =
(SPy s L, , F(n)) form a local duality context. The monochromatic category Spy is
defined as the localizing ideal of Sp,, ,, generated by Lg, ,F'(n); note that by the thick
subcategory theorem, the definition of Spflojf does not depends on the choice of F(n). Lo-
cal duality in the form of Proposition 3.2(6) establishes a canonical symmetric monoidal
equivalence

(3.9) M Sppy === 5Py Licy(n)

where M, ,, denotes the monochromatic layer functor.
Let A = E,, € CAlg(Sp,, ). There is a natural equivalence Ly >~ L (n) by Proposi-
tion 3.5, and the formula Proposition 3.2(4) takes the concrete form

(3.10) Lp(X) 2 Ly, () (X) ~ lim DM'(n)® X,

p(n)

where the limit is indexed on a cofinal sequence of integers as above and X € Sp,, ,,.
Conditions (1)-(3) above hold for (Sp,, ,,, Lg, ,F(n), E, ). More generally, the terms

appearing in the Amitsur complex of Lg, ,S 0 E, p satisfy a weak form of these conditions:

Proposition 3.11. Let s > 1, then K,(n)-localization induces a canonical symmetric
monoidal equivalence

t ~ —
Mod!%s, —== Mod . .
n,p n,p

Furthermore, the E-ring spectrum L, (n) (E,‘%;) is even periodic and WOLKp(n)(E,%;) is
complete with respect to the reqular sequence (p,u1, ..., Uun—1). If s =1, then Lk, (n) induces
an isomorphism

Z/2 = o Pic(Mod g, ) —— mo Pic(Modg, ),
sending the generator of /2 to LE,, ,.
Proof. The first claim is a direct consequence of Proposition 3.6. Next, we note that the
statement about L Kp(n)(Efi;) holds for s = 1. Write X for the underived tensor product
and —R— = (— X —)A for the m-completed tensor product of 7, FE-modules. By [BH16,
Corollary 1.24] and for any s > 1 there is an isomorphism

T L, () (BSS) 2 (mu L, () (BS2)) B Bnp (571,

reducing the proof to the case s = 2. Recall that W*LKp(n)(ESi) ~ EYEFE is isomorphic
to the algebra of 7, E,, ,-valued continuous functions on the Morava stabilizer group, see
[Hov04]. In particular, Lg, (n) (E,?%) is even periodic, 7o is complete, and (p, w1, ..., Up_1)
is a regular sequence.
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The final claim follows from Lemma 3.7 and [BRO5]. O

On the algebraic side, the role of the category of E,, ,-local spectra is played by Franke’s
category C = Fr, ,, a symmetric monoidal oo-categorical version of which has been con-
structed and studied in our earlier paper [BSS17]. We refer to Sections 4.3 and 5.4 of
loc. cit. for the main properties of this category. Note that, in particular, Fr, , is mono-
genic. The analogue of L, ,F(n) is given by the periodization F' = P(Ey/I,) of the quo-
tient Ey/I, = Eo/(p, ..., un—1), while we take A4, , € CAlg(Fr,, ,) to be P(EyE). Here P is
the quasi-periodization functor of [BSS17, Corollary 5.31]. The pair (Fr,, ,,, P(Eo/I,)) forms
a local duality context, because Ey/I,, is a finitely presented FyFE-comodule. We write FA‘rnm
for the corresponding completed version of Franke’s category and Fr;*r = Loc® (P(Eo/I,,))
for the algebraic analogue of the monochromatic category Sp‘:ff]r:. As in the topological
context, local duality Proposition 3.2(6) produces a canonical pair of mutually inverse sym-
metric monoidal equivalences

(3.12) Bl —=Fr,, .

As in [BSS17], we can employ Morita theory to compare the algebraic and topological
sides. Recall that, for any spectrum M € Sp, we write M, = Hn,M; this construction can
be extended to a lax symmetric monoidal functor (—).: Sp — Modgz. With the above
notation, the argument of [BSS17, Lemma 5.34] provides a symmetric monoidal equivalence

(3.13) Ty: Mod e (Fry, ) — Mod ges ), (Modpz) =~ Mod e, (Sp)

for any s > 1. We now investigate how the functor ¥, interacts with torsion and complete

objects. To this end, let Mc;lA% = Mod,,, 49:)(LF Fry ) and Modf&%}ip (Fryp) be the

localizing ideal in Mod A% (Fry,p) generated by AS?;; ® F, as in Section 3.2. Furthermore,

Modzc;%S) is defined to be the localizing ideal in Mod e ~generated by (E25) e/ (In)x
n,p)x n,pJ)* )
i.e., by the (I,,)«-torsion objects. Here, we use the notation (I,), to indicate the algebraic

analogue of the ideal I,, so that (Ey, p)«/(In)« = (Enp)s @ Eo/I.
Proposition 3.14. For any s > 1, there is an equivalence Mo\dAgsp ~ Modzgﬁ?;)* of sym-

metric monoidal co-categories.

Proof. The desired equivalence is a composite of the following two symmetric monoidal
equivalences:

—_—
= tors = tors
Mod y9: — ModAg; (Fry,p) — Mod(Eg; L

Indeed, applying Proposition 3.6 to the triple (Fr,, ,, P(Eo/I,), A%ﬁ‘;) yields the first sym-

metric monoidal equivalence, while the second one results from (3.13) together with the
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equivalence W (AY% @ F) ~ (E$?),/I,. This last equivalence is obtained from the equiva-
lences of HZ-modules:

U (AZS @ F) ~ Homytoq . (Fr,) (AR5, ASS @ F)

~ Homp,, ,(P(Eo), AS?;; ® F)
~ Homen Modg, (Fo, UP(Eo) @ (EoE)®°~! @ Eo/I,,)
~ UP(Ey) ® (EoE)®* ™' ® Eo/I,
~ (Enp)e ® (E®S)0 ® Eo/In
~ (Eyp)s/ (In )
which is proven as in [BSS17, Lemma 5.34]. O

We now establish the analogue of the Picard group computation of Proposition 3.11.

Corollary 3.15. Bousfield localization at F = P(Ey) induces an isomorphism
72 = m Pic(Moda, , (Fr,, ,)) —— m Pic(Mod.a, ),
sending the generator of Z/2 to LA, p.
Proof. By the proof of Proposition 3.14, ¥; maps A, , @ F to (E, ,)./(In)«, so Proposi-
tion 3.6 and (3.13) provide symmetric monoidal equivalences

Mody, , — La, ,er Moda, ,(Frn,) — Lz, ), /(1.), Mod(g

n,p)* :

The isomorphism
7o Pic(Mod a,, ) (Fr,, ) 2 mo Pic(Mod.a,, )

is thus a consequence of Lemma 3.7 applied to (Mod (g, ), (Enp)ss (Enp)x/(In)+), since
(Enp)« is complete with respect to (Ey p)«/(I5)«. Finally, both groups are isomorphic to
Z/2 by [BSS17, Lemma 5.5], which is essentially due to Baker and Richter [BRO5]. O

Remark 3.16. Note that, by Proposition 3.5, the localization functor Ly on Fr,, , restricted

to the category Mod 4, , (Fry ;) is equivalent to the restriction of the functor L4, ,¢r, which

in turn transforms to Bousfield localization at (E, p)«/(I5 ), under Morita equivalence.
For any s > 1, an argument similar to the one used in Proposition 3.14 shows that

Uo(Lr(AT5)) = (L, (m) ()

As an immediate consequence of Proposition 3.11, we see that the E..-algebra (L k., (n) (ES';))*
is even periodic and Fo(LKp(n) (Ef?j,))* is complete with respect to the regular sequence

(p,u1y...,un—1). However, we will not make use of these results in the remainder of this

paper.

4. PROTOPRODUCTS

The category §I\)np has the property that éf)np ~ LocPic éf)np and it is compactly
generated by the E, p—locahzatlon of any finite type n complex. However, unless n = 0, the
invertible objects in Spn p are not compact and Spn p s not equivalent to Ind Thick Pic Spn P
This leads to various complications that we resolve by constructing a modified version of
the protoproduct introduced originally in [BSS17].
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4.1. Modified Pic-generated protoproducts. Suppose C is a compactly generated sta-
ble oo-category and let G C C be a collection of (not necessarily compact) generators of
C such that C¥ C Thick(G). We filter the full subcategory Thick(G) of C by G-cells up to
retracts as in [BSS17, Section 3.5], i.e., we define the k-th filtration category Celly to be the
full subcategory of Thick(G) consisting of those objects which can be built in & steps from
G. We write Cell, Thick(G) for the resulting filtration and (C*), and (Thick(G)). for the
constant filtrations on C* and Thick(G), respectively.

By viewing these three filtrations as functors from N to Cat.,, we may form a new
filtration using the following homotopy pullback in Fun(N, Cats,):

G Cell, (C¥) — Cell, Thick(G)

| |

(€*)s» ——— (Thick(9))«,

where the legs of the pullback diagram are the canonical inclusions. In other words,
G Cell,(C¥) is the filtration obtained by intersecting the Cell, filtration with the compact
objects. We refer to G Cell,(C*) as the G-cell filtration on C¥. Note that the filtrations
G Cell,.(C¥) and (C¥), in this diagram satisfy the conditions of a compact filtration given in
[BSS17, Definition 3.31].

We now specialize to the case of interest in the remainder of the paper.

Definition 4.1. A set of objects G C C is called a set of Pic-generators for a compactly gen-
erated presentably symmetric monoidal stable co-category C if the following three conditions
are satisfied:

(1) G is a subgroup of 7y Pic(C). In particular, the elements of G are invertible.

(2) G generates C (i.e., Loc(G) = C) and C¥ C Thick(G).

(3) G is closed under suspensions and desuspensions.
When G = Pic(C), we denote the resulting G-cell filtration on C* by PicCell,(C*), and call
it the Pic-cell filtration. We say C is Pic-generated if it admits a set of Pic-generators.

Remark 4.2. The unit in a compactly generated symmetric monoidal co-category is necessar-
ily compact. The language above is somewhat unwieldly, but chosen carefully to distinguish
from this case.

Definition 4.3. Let I be a set and let (G;);er be a collection of sets of Pic-generators for
a collection of compactly generated presentably symmetric monoidal stable co-categories
(Ci)ier, l.e., for each i € I, G; is a set of Pic-generators for C;. The Pic-generated proto-
product is defined to be
Pic b
HF (Ci,Gs) = Hf(cl-, G; Cell,(C¥)) = Ind CogmHFQi Cellg(C¥).
If G; = Pic(C;) for all ¢, then we write
Pic Pic
HF Ci = Hf (C;, PicCell,. (C¥)).

Example 4.4. For a compactly generated presentably symmetric monoidal stable oo-
category C, there may be several distinct sets of Pic-generators for C or no set of Pic-
generators. The maximal candidate is given by Pic(C). There is also a minimal candidate
given by the set G&°!' of all shifts of the unit of C. In case this is a set of Pic-generators, let
gge“ Cell,(C¥) be the associated filtration. Suppose (gge“ = gg‘:“)iej is a collection of sets
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of Pic-generators for a collection of compactly generated presentably symmetric monoidal
stable co-categories (C;);er. As an instance of Definition 4.1, we define the cell protoproduct
as

b Pi b
I1,c= HF‘C (€. G5") = [T (Co, 65" Cell.(€7)) = Ind colim] ] _G¢*" Cellu(C?).
This choice of notation is justified by the observation that in the case where the unit of C;
is compact for almost all ¢ € I, the construction of the cell protoproduct specializes to the
protoproduct as defined in [BSS17, Section 3.5].

Our goal will be to study these protoproducts. In particular, we will show that the
protoproduct is symmetric monoidal and Pic-generated under a uniformity condition.

Convention 4.5. For the rest of this section and unless specified otherwise, (C;)ic; and
(Dy)icr are collections of compactly generated presentably symmetric monoidal stable oo-
categories.

4.2. Multiplicative properties of Pic-generated protoproducts. The goal of this sub-
section is to study the monoidal properties of the Pic-generated protoproduct construction
for symmetric monoidal co-categories in which the unit is not necessarily compact. In order
to find suitable conditions on a collection of oco-categories to guarantee the existence of a
monoidal unit in the Pic-generated protoproduct, we need to work with a non-unital version
E2Y of the Eo operad introduced and studied by Lurie in [Lur, Section 5.4.4].

Definition 4.6. A symmetric oidal co-category is an object in the co-category AlgEgg (Caty,)
and we refer to a map in this co-category as a symmetric oidal functor. If C = (C,®) is a
symmetric oidal co-category, then the adjoint to ®: C x C — C is a functor C — Fun(C, C).
By construction, this functor lands in the subcategory of colimit preserving functors and we
refer to the resulting functor

¢: C — Fun’(C,0),

as the Cayley functor.! Informally speaking, ¢ sends an object = € C to the colimit preserv-
ing functor z ® —: C — C.

Just as there is a notion of a symmetric monoidal filtration of [BSS17, Definition 3.33],
there is an analogous notion of a symmetric oidal filtration on the compact objects in a
symmetric monoidal co-category. Note that if G is a set of Pic-generators for a compactly
generated presentably symmetric monoidal stable co-category C, then G Cell,(C¥) is a sym-
metric oidal filtration.

Lemma 4.7. Let (G;)icr be a collection of sets of Pic-generators for (C;)icr, then the Pic-

generated protoproduct
Pic

HF (Ci,Gi)
is a full symmetric oidal subcategory of H“}CZ with laz symmetric oidal right adjoint n.
Proof. Lemma 3.37 in [BSS17] gives fully faithfullness. Note that [[%C; is symmetric oidal.
Also, ;lc(Ci,Qi) is a full subcategory of [[%C;. Thus, to check that H;lc (Ci, G;) is sym-
metric oidal, we just need to check the tensor product on []%C; restricts to E-IC (Ci, Gi).

But this follows from the fact that the filtration is symmetric oidal. The right adjoint is
naturally promoted to a lax symmetric oidal functor by [Lur, Corollary 7.3.2.7]. O

IThis terminology is motivated by the classical Cayley embedding for groups.
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When (C;)icr and (G;);er satisfy the conditions of the lemma, we will write €x for the
Cayley functor associated to the symmetric oidal category Hl;_-lc (Ci, Gi).

Corollary 4.8. Let (G;)ier and (H;)icr be collections of sets of Pic-generators for (C;)icr
and (D;)qicr, respectively, let (f;)icr be symmetric monoidal functors (necessarily preserving
compact objects) such that f; takes G; to H;. The protoproduct

ic Hpicfi ic
2C, G) —== T15°(Di, Ha)

is a symmetric oidal functor with lax symmetric oidal Tight adjoint g.

Our next goal is to establish conditions on a collection (G;);cs of sets of Pic-generators

that guarantee the existence of a unit in H?C(Ci, G;). We begin with the definition of a
quasi-unit.

Definition 4.9. An object u in a symmetric oidal oco-category C is called a quasi-unit if
there exists a natural equivalence

Clu) >u®— = Id¢
of endofunctors on C.

In light of the following result due to Lurie [Lur, Corollary 5.4.4.7], the problem reduces
to the construction of a quasi-unit in H;‘C(Ci, G;).

Lemma 4.10. [Lur, Corollary 5.4.4.7] A symmetric oidal co-category C can be promoted
to a symmetric monoidal co-category in a unique way if it contains a quasi-unit. A sym-
metric oidal functor C — D between symmetric monoidal oco-categories can be promoted to
a symmetric monoidal functor in a unique way if it send a quasi-unit to a quasi-unit.

Let J be a filtered diagram and let C be a small co-category. Consider a functor f: J* —
C. We will call f a formal colimit cone if the composite

L~ mdc

is a colimit cone. Since the functor C — IndC is fully faithful, a formal colimit cone is a
colimit cone in C. However, the notion of a formal colimit cone is stronger than the notion
of a colimit cone: For example, if C is pointed and f: J> — C is a functor sending the cone
point to the 0-object in C, then f is a formal colimit cone if and only if for each n € J there
exists an m € J and a map [: n — m in J such that f(I) is null.

For the remainder of this subsection, let I be a set and let F be an ultrafilter on I.

Recall that the join % of simplicial sets is built using finite products and coproducts and
thus commutes with the ultraproduct. Therefore, there is an isomorphism of simplicial sets
[1-(A; % B;) = (] 7Ai) » ([1 7Bi), which specializes to an isomorphism of diagrams

(4.11) [I, =I5~

Lemma 4.12. Assume that G: C — D is a fully faithful finite colimit preserving functor
between oo-categories with finite colimits and assume that J is a filtered diagram. Then
f:J% — C is a formal colimit cone if and only if G o f is a formal colimit cone.

Proof. This follows from the fact that Ind(G) is a fully faithful colimit preserving functor.
O
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Lemma 4.13. Let (J;);csr be a collection of filtered diagram categories and let (C;)ier be
a collection of small stable co-categories. Assume that, for each i € I, we have a formal
colimit cone f;i: J© — C;. Then

[[-77 —=115C
is a formal colimit cone.

Proof. We must show that the induced map
[1xfi: I1£4:)" ——115Ci

is a formal colimit. By stability, we can reduce to the case that each functor f;: J& — C;
sends the cone point to the zero object. Thus the cone point in (][] J;)> is sent to the zero
object in [ 2C; by []£fi- It now suffices to check that for each [n;] € [[zJ; there exists an
object [m;] € [[zJ; and a map I: [n;] = [m;] in [[+J; such that (J]-f;)() is null. We may
choose [ to be [l;], where I; has the corresponding property for J;. O

Let (C, F,) and (D, G.) be compactly generated co-categories with filtrations. Let 8: N —
N be a non-decreasing function. We define Fun”((C, F,), (D, G.)) to be the full subcategory
of Cat%, (C,D) on the functors f: C — D such that
has the property that if ¢ € F.C then f(c) € Gg)D.

Lemma 4.14. Let (C;, F; .)ic1 be a symmetric oidal collection of compactly generated sym-
metric oidal co-categories and let k be a fized natural number. There exists a non-decreasing
function B: N — N such that the restriction of the Cayley map €x to [[-FirC; factors as
indicated in the following commutative diagram:

[1-FixCi H;(Ci, F;.)

H]—' Funﬁk((ci’ Fi,*)v (Clv FZ,*)) - == FunL(H?-'(Civ Fi-,*)v Hl}:(cu Fz,*))

Proof. Fix a non-decreasing function 5: N — N, then for any two subsets V C U in F and
s > 0, there are natural coordinate-wise evaluation functors

[Licy Fi.sCi x [Licy Fan® ((Ciy Fiv), (Di, Gis)) — [Licv Gipes) Di-

Note that the functors in Fun®((C;, F;..), (D;, Gi..)) preserve all colimits. Passing to the
colimit first over all V € F contained in U and then over s > 0 thus induces a functor

Ind colim, [] 7 F;,sC; % [, Fan®((Ci, F;..), (D, Gy,x)) — Ind colim, [] G () Di-

By naturality in U and the definition of the protoproduct, varying U, and using adjunction
then yields a functor

(4.15) [1- Fun®((C;., Fiv), (Di, Gi)) — Fan([T5(Ci, F0), TT5 (D, Giv)).-
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Returning to the specific situation of the lemma, we first observe that for any i € I and
fixed k, the Cayley map €&; for C; factors as follows

F; Ci C;
|

Cix | l@i
Y

Fun® ((C;, Fi ), (Ci, Fi..)) — Fun®(C;, Cy),

with (i independent of ¢ by assumption. Let V' C U be subsets in F. Composing the
functor [,y idr, .c; X [ ;e €ix With the evaluations, we thus obtain natural functors

HiEV Fi,sci X HieU Fi,kci —_— Hiev Fi,sci X HiEU FUH’g’“((Cia Fi,*)» (Ci7 Fz*))

|

HieV Fi,ﬁk(ﬁ)ci'

Informally speaking, this composite is given in each coordinate i € V by the monoidal
product in C; restricted to the corresponding filtration step, i.e., the functor ®: F; ;C; x
F; xCi = F; g, (s)Ci- Passing to colimits and unwinding the adjunction as in the construction
of the functor in (4.15) gives the desired factorization. O

Definition 4.16. A collection (G;);cr of sets of Pic-generators for (C;);c; is called unital if
there is a natural number d such that for all ¢ € I the co-category Ind(G; Celly(CY¥)) C C;
contains the unit of C;. In the special case when (G;);er = (Pic(C;))icr, we will refer to
(Ci)icr as a unital collection of Pic-generated oco-categories.

A collection of functors (f;);er between two such collections (C;, G;)icr and (D;, H;)ier is
by definition a set of symmetric monoidal functors f;: C; — D; that preserve colimits and
compact objects.

Proposition 4.17. For any unital collection (G;)icr of sets of Pic-generators for (C;)ier
and any ultrafilter F on I, the category H?C(Ci,gi) contains a quasi-unit.

Proof. The definition of a unital collection of Pic-generated oco-categories implies that there
exists a d € N and functors f;: J; — G; Celly(Cy) for each ¢ € I such that J; is filtered and
fi picks out the unit in C;. In [BSS17, Proposition 3.19], we show that [ »J; is filtered. Let

. I1-fi w Pic
u= cohm(HfJi A Hfgi Cellyg(C¥) — HF (Ci,Gi)).
We will show that u is a quasi-unit for ;iC(C'i,gi). First we will construct a natural
transformation

u®— = Id.

For each C;, the functor f;: J; — G;Cellg(C¥) C C; has a colimit, giving us functors
fZ: J? — C;. Now consider the composite

gt J” 0, S Fun(Ci, ).
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By the oidality assumption on the filtration, there exists a function 8;: N — N independent
of 7 and a diagram (not including the lifting)

Ji — L Gy Celly(C¥) — Fun®((C;, G; Cell. (C¥)), (C;, G; CelL, (C2)))

JP == Fun(Ci,Ci)

? gi

for each i. We will show that the lift exists. Since the right vertical arrow is fully faithful,
it is enough to provide a lift on objects. For the objects in J;, this is clear. Since the cone
point goes to the identity functor in Fun(C;,C;), it lifts as well. Since the Cayley functor is
a colimit preserving functor, the dashed arrow is a colimit diagram.

By applying the ultraproduct to the above diagrams and using Lemma 4.14, we get the
following commutative diagram:

[1-7: [17G: Celly(C¥) [15(Ci. Gi)

| | |

[1577 — [1r Fun®((Ci, G; Celly(C¥)), (Ci, Gi Celly(C¥))) — Fun ([TR(Ci, Gi), TT5C(Cs, Go).-

Recall that [[-J7 = (I]z/i)® by Equation (4.11). Consider the composition h of the
horizontal bottom arrows which sends the cone point to the identity functor. Since the
tensor product commutes with colimits in each variable, the colimit of h restricted to [ [ »J;
is equivalent to u ® —. Therefore, to show that u is a quasi-unit, it is enough to show that
h is a colimit diagram.

To this end, let X = [X;] € [[£G; Cell,(Cy), we can extend the diagram above to

[ [17G: Cella(C) e, G)

|

[17J7 — 1> Fun®*((C;, G; Cell.(C¥)), (Ci, Gi Cell, (CF))) — Fun”( ?C(Czﬁgz‘% ]P-‘ic(ci>gi))
Gx

evx

[17G: Cellg, 1) (C}) evx

(TT15(Ci, Gi))* 2, G,

where evy and ev’y are the evaluation maps at X. Since colimits in functor categories are
computed pointwise and because the objects of []r G; Cell,(Cy’) as k varies form a set of
generators for H;ic (Ci, Gi), to check that h is a colimit diagram, it suffices to check that
ev’y o h is a colimit diagram for each such X. Therefore, we have reduced the claim to
showing that Hx is a formal colimit for all X. Lemma 4.12 implies that the map

[17Gi Cellg, () (C) — (TT5°(Ci, Gi))*

preserves formal colimits. Therefore it is enough to show that G x is a formal colimit cone.
The functor fP defined above is a colimit diagram. Define Gx, = (— ® X;) o f&. The
functor Gy, factors through G; Cellg, 1) (Cy’), and we will take this to be the target of Gx,.
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By Lemma 4.12, G, is a formal colimit cone and since Gx =[] Gx,, by Lemma 4.13 we
are done. 0

Corollary 4.18. For any unital collection (G;)ier of sets of Pic-generators for (C;)icr and
any ultrafilter F on I, the category H?C(Ci,gi) is equipped with a canonical symmetric
monoidal structure. Moreover, there is a canonical symmetric monoidal functor

29(Ci,G) —T17°(Ci, Pic(Cy) = [T7°C:
with lax symmetric monoidal right adjoint.

Proof. By Lemma 4.7 and Proposition 4.17, ?C(Cz-, G;) is a symmetric oidal co-category
equipped with a quasi-unit, so the first claim is a consequence of Lemma 4.10, while the
second follows from this and Corollary 4.8. ]

We record another corollary.

Corollary 4.19. Let (f;: C; — D;)icr be a collection of functors between unital collections
of Pic-generated co-categories (see Definition 4.16). For any ultrafilter F on I, the collection
(fi)ier induces a colimit preserving symmetric monoidal functor

;icci H;lCDz

Proof. The definition of functors between unital Pic-generated co-categories guarantees that
the Pic-cell filtrations and the quasi-unit are preserved, hence by Corollary 4.8 and Propo-
sition 4.17 we obtain an induced functor between Pic-protoproducts with the desired prop-
erties. 0

The previous two corollaries admit a common generalization, which will be required in
the construction of the comparison functor in Section 5.4. The next lemmas will be useful
in the proof.

Lemma 4.20. Let I be a set and F an ultrafilter on I. Further, let (A;)icr and (B;)icr be
two collections of oo-categories. Any collection of functors (f;: A; — Ind B;)icr induces a
functor

[1-A; — Ind ] B

which, informally speaking, can be described as follows: Given a; € A;, represent f;(a;) by a
filtered diagram KC; — Bj;. The image of [a;) 7 is then the filtered diagram []fi(a:): [ K —
[1-Bi. Moreover, if (f;: A; — IndB;) € Alg]Egg(Catoo) for all i € I, then we obtain a sym-
metric oidal functor

Ind[[rA; ——Ind [[~B;
by extending to the ind-category in the source.

Proof. The functor in the statement of the lemma is the composite
H]:Ai E—— H}— Ind Bl L Ind H]-'BZ s

where m is the map constructed at the beginning of [BSS17, Section 3.3]. The first map is
symmetric oidal as it is an ultraproduct of symmetric oidal functors. The second functor
is symmetric oidal functor by the proof of [BSS17, Corollary 3.26], ignoring Condition (4)
(the unit condition) of [AFT17] that plays a role in [BSS17, Lemma 3.25]. O
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Proposition 4.21. Suppose (G;)icr and (H;)icr are unital collections of sets of Pic-generators
for (Ci)icr and (D;);cr, respectively. Let (f;)icr be a collection of functors f;: C; — D; be-
tween stable co-categories satisfying the following properties:

(1) For each i € I, the functor f; is symmetric monoidal and preserves colimits.
(2) There exists a strictly increasing function 8: N — N such that for all i € I and all
k > 0, the functor f; restricts to a functor

fi,k : gl Cellk (C;’J) —>1Ind Hz Cellg(k) ('D;‘))
For any ultrafilter F on I, there exists a colimit preserving symmetric oidal functor
P L 174G, Gi) —= TT7°(Di, M),

Proof. We start with the construction of the desired functor. For fixed £ > 0, we may apply
Lemma 4.20 to the collection (f; x)icr to obtain a functor

H]_—gi Cellk (C;‘J) —Ind H]_-HZ Cellﬁ(k) (D;‘J)

Extending this functor to the ind-category of the source and passing to colimits over k in
Caty, then yields a colimit preserving functor
Pic

1

which we denote by H?_-ic fi
It remains to verify the symmetric monoidal properties of this functor. To this end, first
observe that H?C fi fits into a commutative square

Pic
(Ci,Gs) =~ colim Ind Hfgi Celly(C}*) — colim Ind HIHZ- Cellg ) (DY) =~ HF (Di, Hi)

ic npicf"' ic
; (Ci, Gi) — T~ JPT (Di, Hi)

| |

[TxC: [T5Di,

in which the bottom functor is symmetric oidal by Lemma 4.20 and the vertical arrows are
fully faithful and symmetric oidal by Lemma 4.7. This implies that HI;-IC fi is symmetric
oidal as well. (]

Corollary 4.22. Under the assumptions of Proposition 4.21, if additionally the unit in C;
is compact, then H?C fi is unital.

Proof. Let u; € C¢ be the unit. Consider the commutative diagram

2 G, Celly (CF) —— Ind #; Cellg1) (DY)

| |

C; D;,

fi

where the vertical functors are fully faithful. Since f; is unital, the top composite thus gives
a representation of the unit in D;. Applying ultraproducts to this diagram and the map in
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Lemma 4.20 gives the following commutative diagram

% H;; [17G: Celli (Cf) —— Ind [[ zH; Cellg1)(Dy)

Pic Pic
Ci7 gi - Di7 Hi .
700 0) o T (D1 )
The proof of Proposition 4.17 and the description of the functor in Lemma 4.20 shows that
the composite along the top is a quasi-unit for ?C(Di, H;). In other words, we see that

E-ic fi preserves quasi-units, so Lemma 4.10 furnishes the claim. ([l

4.3. Pic-generated protoproducts are Pic-generated. Our next goal is to prove that
under the assumptions that (C;);cs is a unital collection of Picard-generated oco-categories
in the sense of Definition 4.16, the Pic-generated protoproduct H?CCZ- is in fact generated
by its Picard oo-groupoid.

Lemma 4.23. Assume C is a symmetric monoidal co-category. Then Pic(C) ® C¥ = C¥.

Proof. Let X € Pic(C), then X ® — is an equivalence of co-categories. Since an equivalence
sends compact objects to compact objects, we see that X ® W is compact for any compact
W ec~. O

In the proof of the next proposition we will make use of (Catperf O, Sp¥), the symmetric
monoidal co-category of small idempotent complete stable co-categories and exact functors
(see [BGT13, Section 3.1] for more details). We will also make use of (Cat*:**, X, Sp), the
oo-category of compactly generated stable oo-categories and colimit and compact object
preserving maps. These symmetric monoidal structures are closely related: given C and D
in Cat%*", we have

CX D ~Ind(C*OD").

Proposition 4.24. Let (C,),GI be a unital collection of Pic-generated co-categories and F

an ultrafilter on I, then H}- i 15 a unital Pic-generated oco-category, i.e., the canonical
inclusion functor

~

Pi Pi
LocPic[]7°C FC
is an equivalence of symmetric monoidal oo—categories,

Proof. Throughout this proof, we write C = H?CC and C for the Pic-generated protoprod-

uct H;ic Ind Thick Pic(C;) of the compactly Pic-generated oo-categories Ind Thick Pic(C;).

In order to show that Pic H 7 C; provides a collection of generators for C, we will construct
a symmetric monoidal functor

L£: C = T Ind Thick Pic(C;) — [[7°C; = C

with a conservative right adjoint R. It follows that £(Pic(C)) forms a collection of generators
for C ([BHV18a, Lemma 2.25]). Because £ is symmetric monoidal, £(Pic(C)) C Pic(C).
Moreover, given X € C¥, there exists a natural number d such that

. Wy : (O,
Xe HF PicCelly(C¥) C Hr Cellg Thick(Pic(C;))
Therefore, X € Thick(Pic(C)), hence C¥ C Thick(Pic(C)). This proves the proposition.
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We begin with the construction of £. Observe that C is a symmetric monoidal stable
oo-category compactly generated by its Picard co-groupoid and in particular has a compact
unit 1z (see [BSS17, Corollary 3.59]). For any s > 0, the construction of the Pic-cell
filtration comes with an inclusion

PicCell; s C; — Cell; 5 Thick(PicC;)

that extends to a fully faithful and oidal functor ¢: C¥ — C” as ultraproducts preserve fully
faithfulness of functors by [BSS17, Corollary 3.15]. The first step in the construction of £
is to produce a factorization as indicated in the next diagram:

1z

Oid —g w
(4.25) Sp¥Ocy ——c“0Ocv -2 >

cv
idDL\L \LL

c’oc” —=c”.
®

Here, we have written ® for the symmetric monoidal structure of C. Furthermore, 15 denotes
the canonical finite colimit preserving functor Sp* — C which sends S° to 1z.

To see that the desired factorization A% in (4.25) exists, it suffices to check the claim
objectwise since ¢ is fully faithful. Indeed, unwinding the construction of the Pic-cell filtra-
tion, this reduces to the fact that Pic(C;) ® C¥ C Thick Pic(C;) is contained in C¥, which
follows from Lemma 4.23. Furthermore, note that the composite A“ o (17 Xid) of the top
horizontal functors in (4.25) is equivalent to the identity on C¥.

By Corollary 4.18, C is symmetric monoidal and we denote the (not necessarily compact)
unit by 1¢. The second step in the proof is to show that the ind-extension of A, i.e., the
functor

A: TRC ~ nd(@0c*) 2 ma(ev) ~ ¢

is symmetric monoidal. The first equivalence in the equation follows from specializing
Remark 4.8.1.8 in [Lur] to K = {finite simplicial sets} and K’ = {all simplicial sets}. To
prove that A is symmetric monoidal, first note that A has an oidal structure, since A
does so as the restriction of a symmetric monoidal functor along the oidal inclusion ¢. In
view of [Lur, Corollary 5.4.4.7], it remains to check that A sends a quasi-unit on CXC to a
quasi-unit on C. But we have already seen that A o (17 X1id) is equivalent to the identity
functor on C, hence A(1l; ® 1¢) ~ 1¢.
Finally, we define the desired functor £ as the following composite

_ — id=X —
L:C~CRSp XfRe—Asc.

As a composite of symmetric monoidal functors, £ has the structure of a symmetric monoidal
functor as well, so it remains to show that £ admits a conservative right adjoint. Both
7 = Ind(:) and £ preserve colimits, so there is a diagram of adjunctions
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with the left adjoints displayed on top. By virtue of the commutative diagram

4eMlerme 95 ¢

C——
l . l“ﬁ
C

——CRC——=C
i c‘zlc A

the composite £ o Z is equivalent to id¢, hence J o R ~ id¢ as well. It follows that R is

conservative, which concludes the proof. ]

As in the proof of Proposition 4.24, the symmetric monoidal structure on a Pic-generated
oo-category C gives rise to a restricted action map A: Pic(C) K C*¥ — C¥. By construction
of the Pic-cell filtration and Lemma 4.23, the adjoint of A preserves the filtration, i.e., there
is a factorization

Pic(C) —— Fun(C¥,C%¥)

~
~
~
Cpicic) > o

un'® (Cv, C¥).
In particular, any invertible object P € Pic(C) gives rise to an endofunctor €pi.c)(P) of
PicCell, C¥ for any s > 0.

Definition 4.26. A unital collection of Pic-generated oo-categories (C;);ecs is said to be
uniformly separated if the associated set of restricted Cayley functors (€pic(c,)) has the
property that there exists m > 0 independent of ¢ € I such that P, € Pic(C;) is trivial if
and only if

ToCpic(c,) (Ps): mo((PicCell,y, ; Cy)°) —— mo((PicCell,, ; Cf)° )
is the identity map. Here, the superscript o indicates the maximal co-subgroupoid.

The purpose of this definition is to provide a condition which implies that the Pic-
generated protoproduct generically detects invertible objects in (C;);ecr, in the sense of the
following result:

Proposition 4.27. Let (C;)ier be a uniformly separated unital collections of Pic-generated
oco-categories, then the functor of oco-groupoids

Loic: [y Pic(Ci) = Pic([T5 Ind Thick Pic(C;)) —= pic [T5¢C;

is injective on my. Note that the first equivalence follows from [BSS17, Lemma 5.15].

Proof. Consider the diagonal composite

Ty, i
70 LPpic OTpic I,

mo Pic[T5eC mo Fun((TT5°C;)*, (TT5°C:))°

1
Pic » \wyo Pic s \wyo
Fun(ﬂ'O(( F Ci) ) ’770(( F Ci)¥) )
We claim that the monoid homomorphism ¢p;. is injective. Working in the homotopy cat-

egory, let P = [P;]r € mo[ [z Pic(C;) = [] zmo Pic(C;); note that, without loss of generality,
we may assume that P; € myPic(C;) is non-trivial for all 4 € I. By assumption, there

7T()H]_— PIC(CZ)
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exists m such that, for any ¢ € I, there exists an object X; € PicCell,, ;C{ satisfying
ToCpic(c,) (Ps)(Xi) # Xi. Therefore, we may take

Pic
[Xi]F € HF PicCell,, ; C; C (HF Ci)
to detect that ¢p;.(P) is not the identity functor. O

We end this discussion of the salient features of the Pic-generated protoproducts by
applying the results above to the two key examples in this paper, namely the K,(n)-local

categories Sp,, ,, and the completed Franke categories Fry, ;.

Theorem 4.28. For any ultrafilter F on P, the protoproducts H;icgl\)mp and H;icfrmp
are Pic-generated. Moreover, there are canonical monomorphisms

Ar: [Txmo Pic(éf)mp) — mg Pic H;icgf)n,p

and

X3 T] 7o Pic(Frn,) — mo Pic [15 Fry p.

Proof. We verify the claim for g;)n’p, the one for FA‘rn,p being proven similarly. Since the
unit L, ,S° € Sp,, , is compact, it follows from Proposition 3.2(3) and Corollary 3.4 that
§f)n,p is Pic-generated. In light of Proposition 4.24 and Proposition 4.27, it remains to
show that (é?)n,p)pep is a unital and uniformly separated collection. To this end, recall the
generalized Moore spectra M’ (n) from Section 3.3 that may be built using 2" Pic-cells, i.e.,
M (n) € PicCellgn , é?)n’p for all p € P. Applying K,(n)-local Spanier Whitehead duality
D to (3.10) and specializing to X = S yields

LKp(n)SO ~ colim; DM;(n) € Ind PicCellsn ,, gl\%,p:

so the collection (é?)n’p)pep is unital.
In the proof of [HS99, Proposition 14.3], Hovey and Strickland show that for any non-

—~

trivial P € Pic(Sp,,,) there exists I with P ® M'(n) not equivalent to M'(n). Thus
(§5n7p)pep is uniformly separated with m = 2.

The analogous arguments prove that the collection (f‘\rn,p)pep is unital and uniformly

separated. (Il
4.4. Torsion in protoproducts. Let (R;);c; be a collection of even periodic Eqo-ring
spectra indexed on a set I. Let (x1,,...,2,,) be a regular sequence in myR;. For k; € N,
define the compact R;-module ngki) to be Rl/(xlf‘z, e ,xsz) so that w*ngki) is an even

periodic m, R;-module with wongki) = (WORZ)/(xlflz,,foQ) For each i € I, let A; €

CAlgg, be a flat Ri-module (ie., m.A; is a flat m,R;-module) and define M(ki)(Ai) =

A; ®rg, Iiz(ki). Note that M®*)(A;) is a compact A;-module built out of 2" A;-cells. Let

Ji = (14, -.,Tn,;), the category of J;-torsion A;-modules is the localizing subcategory
Mod$g™ = Loc(M(M(A;)) = Loc({M®)(4;)k; € N})

of Mod 4, generated by M) (A;). We will write

ta,: Mod'{™ — Mod 4,
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for the corresponding inclusion functor and I' 4, for its right adjoint. Since Mod 4, is com-
pactly generated by its unit A;, it follows that G{°™ = T'4. A; is an invertible generator for
Mod{™™.

Example 4.29. The example to keep in mind is / = P and, for p a prime, R, = F, p,
ﬁékp) ~ E,,/(p",. .. ,uff_l), and A, = E2% for some s > 1. The category ModE{% then
coincides with the category of I,-torsion Efi;’,—modules. Similarly, we may consider the

algebraic analogues R, = (Ey )+, Iﬂ?z()l) = (Enp)s/In, and Ay = (E2%)s.
Suppose F is an ultrafilter on I, we define:

Definition 4.30. An object W € H;- Mod 4, is said to be m[,j-torsion if every element in
7x)W is annihilated by [Ji][;-l"'] = [J¥] 7 for some [d;] € N7.

For example, for every [k;] € N7, Mkl .= [M*)(A;)]# is a compact T[4]-torsion object
in H;- Mod ;. The goal of this section is to show that all torsion objects can be built from
the set of compact objects {Mil|[k;] € N7},

Lemma 4.31. If W € H?_- Mod 4, is m[.j-torsion, then there exists an object

b
M e Loc({M¥|[k;] e N7 V) C H; Mod 4,

together with a map f: M — W which is surjective on homotopy groups.

Proof. For any w = [w;] € m,)W, there exists [k;],, € N7 and a map f,: M¥lv - W with
w € im(mpy fo). Explicitly, we may choose (k;)icr € N’ so that

{i: JFw; =0} € F.
Consequently, the map

f=@fu: M= @ Mkl —sWw
wEﬂ'[*]W

gives what we want. U

Lemma 4.32. Suppose W € Hb}- Mod g, and we are given a map f: M — W with M €

Loc({M"|[k;] € N7}) and 7, f surjective, then there exists N € Loc({M*il|[k;] € N7})
and a factorization

M—LsN

’ l /

w

—

such that m,g is surjective and ker(mp, f) C ker(mp,j).

Proof. Let I be the fiber of f: M — W, so that 7, F' = ker(n[,1 f). Since M is 7},3- torsion,
so is 7, F" and we can apply Lemma 4.31 to obtain a map h: N’ — F with N’ € Hbf Modfgrs
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and 7, h surjective. Consider the following commutative diagram of cofiber sequences:

The dashed map g exists because the composite N’ — M — W factors through F and is
thus null. Since 7, f is surjective, so is 7,jg. To verify that ker(m,)f) C ker(m,j), observe
that, by construction, any m € 7wy, M with 7, f(m) = 0 lifts to an element m’ € 7, N’,
hence 7,15(m) = 0.

For each i € I, recall that G{°™ = {S*T' 4, A;|k € Z} is a set of Pic-generators for Mod'y™.

The resulting G{°**-cell filtration on Mod'{™ will be denoted by G{°* Cell, ((Mod'{™®)~), see
Example 4.4.

Definition 4.33. With notation as above, suppose F is an ultrafilter on I, then we define

the protoproduct of the torsion categories Modfffs as

b Pic b
H; Mod (™ = HF (Mod'{™, glors) = Hf(Modt:;S, GLo™s Cell, (Mod'y™)“)).

Since the unit I'4, A; of Mod'{™ is contained in Ind G{°™* Cell» ((Mod's™)“), the pro-
toproduct Hbf Modfffs comes equipped with a natural symmetric monoidal structure by
Corollary 4.18.

Lemma 4.34. There is a fully faithful symmetric oidal functor
tF = (ta,)F: Hl} Mod{"® —— Hb}- Mody;, .

Proof. Let i € I. By the construction of I'4,, there exists a cofinal sequence of elements
(ki) € N™ and a natural equivalence

Conm(ki) M(kl)(A’L) = FA:‘, Az = gitors7

so that G!° € Ind Cellyn Mod% . If X € G Cellp((Mod$™)%) for some k € N, then
X ® G ~ X, so the compactness of X € (Mod'{™)“ provides the existence of a sequence
(k;) such that X is a retract of X ® M) (A;). This implies that X € Cellyny, Mod 4, and
hence

Gio™ Celly (Mod!y™)“) C Cellyny Mody, .
By passing to the associated protoproducts, we thus obtain from Corollary 4.8 a fully faithful
symmetric oidal functor ¢z, as claimed. |

Note that ¢7 preserves colimits and compact objects and that, as mentioned before, M¥:!
is a compact object in Hbf ModX™ for all [k;] € N7. We are now ready to state the main
result of this section.

Proposition 4.35. Let W € Hbf Moda,. The following are equivalent:

(1) W is in Loc({M¥]|[k;] € N7}).
(2) W is in the essential image of vx.
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(3) W is mp,-torsion.

Proof. For every [k;] € N7 the object M¥il is in the essential image of ¢ so (1) implies (2).
It is clear that (2) implies (3). We will show that (3) implies (1). Assume W € Hb}- Mod 4,
is 7,)-torsion. We will construct an Adams type resolution

J2

Jo J1

My M, M
fol 7
f2
w

to show that W is in Loc({M¥|[k;] € N7}). Indeed, using Lemma 4.31 and Lemma 4.32
iteratively implies that there is such a resolution satisfying the following: For all k£ > 0

(1) My, € Loc({M*i|[k;] € NT}),
(2) 7 fr is surjective, and
(3) ker(w[*]fk) - ker(w[*]jk).
Thus the structure maps in the induced diagram

fib(fo) ——=fib(f1) ——=fib(fo) —— ...

are trivial in homotopy, hence [BSS17, Proposition 3.59] implies that colim fib( f) ~ 0 and
so we see that colim M} ~ W as desired. O

Definition 4.36. With notation as above, define (Hbf Mod 4, )" as the localizing subcat-
egory in H?_- Mod 4, generated by {[E™ M ¥ (A;)]#|[n:] € Z7, [k;] € N7}

Corollary 4.37. For any ultrafilter F on I, there is a canonical symmetric monoidal equiv-
alence

[T (Mod'§™) —~ ([T Mod 4,)*".
Proof. Proposition 4.35 identifies the essential image of tx with (HBT Mod g, )™, so it re-
mains to verify that the induced symmetric oidal equivalence is unital. This is a formal
consequence of the fact that, in light of Corollary 4.18, both oco-categories are unital. (]

5. THE PROOF OF THE MAIN THEOREM

In this section, we will put the pieces together to prove Theorem 2.1. The missing ingredi-
ents at this point are the relationship between descent and the Pic-generated protoproducts
of Section 4 as well as the compatibility of the main equivalence of [BSS17] with passing to
torsion subcategories.

Throughout this section, let I be a set and let (C;, F;);cr be a collection of local duality

~ A

contexts such that C; is Pic-generated for each i € I. Let (C;,®);er be the collection
of presentably symmetric monoidal stable co-categories of Fj-complete objects in C; as in
Section 3.1. Recall from Proposition 3.2 and Corollary 3.4, that CAZ is compactly generated
and Pic-generated for each ¢ € I. We will assume that the collection (C;);es is unital in the

sense of Definition 4.16. We remind the reader that the unit object in C; is not assumed to
be compact.

Given A; € CAlg(C;), we write @Ai for the oco-category of Lp, A;-modules in C:.
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5.1. Reduction to the totalization: Descent. We refer to [BSS17, Section 5.1] for
some background material on descent and, in particular, the terminology we are going to
use throughout this subsection.

Definition 5.1. A collection of commutative algebras (A;);cs is said to be uniformly de-
scendable in (Cl)le 7 if there exists an integer > 0 such that for all ¢ € I, A; is descendable
of fast-degree less than or equal to r. If additionally the A;-based Adams spectral sequence
for End(1; ) collapses at the Fs-page for almost all ¢ € I, then we call (A4;);c; strongly
uniformly descendable

The next result generalizes [BSS17, Theorem 5.1] to the modified Pic-generated proto-
product of a collection (C;, ®)scs in which the corresponding units are not necessarily com-
pact. As explained in [BSS17, Section 4.2], the Amitsur complex associated to A; provides

a diagram of cosimplicial symmetric monoidal co-categories Mod ,@e+1.
i

Proposition 5.2. Let F be an ultrafilter on I and suppose that (A;)icr is strongly uniformly
descendable, then there is a canonical symmetric monoidal equivalence

FieC; —== Loc Pic Tot [T ¢ ModA®.+1

Proof. By Corollary 4.19 and for any s > 0, the canonical symmetric monoidal and colimit
preserving functors C — Mod ABH induce a symmetric monoidal functor after applying
the Pic-generated protoproduct. "This provides a canonical symmetric monoidal and colimit
preserving functor

(1

PICC —— Tot HIJD_-ICMOdAcgoH

We claim that = is fully faithful and induces an equivalence on Picard spectra: The proof
of [BSS17, Proposition 5.13] can be adapted easily to give fully-faithfulness of =, while the
same argument as for [BSS17, Proposition 5.16] shows the claim about Picard spectra.

It follows from Proposition 4.24 that = descends to a canonical symmetric monoidal
equivalence

FicC; —== Loc Pic Tot H}-ICModA@.H
(|

We next verify that the conditions of the previous proposition are satisfied for the two
main examples in this paper. This is mostly a matter of collecting results from the literature.
Recall that P is the set of prime numbers.

Proposition 5.3. Let n > 0 be an integer.
(1) Ifp is an odd prime with 2p—2 > n?, then (E, p)pep is strongly uniformly descend-

able in (Sp,, ,)pep-
(2) If p is a prime with p > n+ 1, then (Anp)pep is strongly uniformly descendable in

(Frn,p)pep'

Proof. If p > n+ 1, the Morava stabilizer group has no p-torsion, which implies that it has
finite cohomological dimension, see [Mor85, Proposition 2.2.2]. As in the proof of [BSS17,
Lemma 5.33], this shows that (A, ,)yep is strongly uniformly descendable in (I:—\‘I'nm)pep.
Lifting the finite cohomological dimension of the stabilizer group to Sp,, ,, as in the proof
of the smash product theorem [Rav92, Section 8] yields that E, , is descendable of uni-
formly bounded fast degree, see also [Mat16, Proposition 10.10]. Furthermore, the sparsity
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argument in [HMS94, Proposition 7.5] provides the collapsing of the K, (n)-local E,, ,-based
Adams spectral sequence for Lg,(n)S O with uniformly bounded intercept in the given range,

hence (E, p)pep is uniformly descendable in (él\)nyp)pep. O
By the proof Theorem 4.28, both (§I\)n7p)p€'p and (ﬁ‘n,p)pep are unital collections of
Pic-generated oo-categories. The following corollary is now immediate:

Corollary 5.4. For any ultrafilter on the set of primes P there are canonical symmetric
monoidal equivalences

Picg s o~ . Pienr Pic o~ . Picyr
F Spy,, — Loc Pic Tot I+ MOdES?;,“ , = Fry, , —— LocPicTot [ ]~ MOdAE?fp“ .

5.2. Reduction to the cell-protoproduct: Picard groups. The next step in the proof
is to replace the modified Pic-generated protoproduct by the cell-protoproduct, so that we

can apply the cosimplicial formality theorem of [BSS17, Section 4]. To this end, let gzoéfp

be the unit in Mod a@s and consider the cell-protoproduct

[1 Modyer = I (Vod 4o, g522) = [T, (ModA?s,g;°§2P Cell*(ModAgs))

as in Example 4.4.

Proposition 5.5. Let F be an ultrafilter on I and suppose that (A;)icr is strongly uni-
formly descendable. If the Picard groups mo Pic(Mod a,) are generated by the corresponding
suspension functor for each i € I, then there is a canonical symmetric monoidal equivalence

Tot H?_—l\Z-O\dAgoﬂ —= - Tot H;icl\fo\dAgoﬂ .

Proof. The assumption on the Picard groups guarantees that the Pic-cell filtration coincides
with the cell filtration, hence we obtain a canonical symmetric monoidal equivalence

[Moda, —— [ Mod.,.

The comparison lemma [BSS17, Lemma 5.19] thus reduces the proof to showing that the
canonical maps

b —_— Plc/\
HFMOdA®5+1 E— H]_- MOdA®s+1

are fully faithful for all s > 0. This is a consequence of the construction, as the constituent
maps between the filtration steps are fully faithful, thereby finishing the proof. O

Corollary 5.6. For any ultrafilter on P there are canonical symmetric monoidal equiva-
lences

Tot H;mEgp—l —=> Tot H_P;-icl\ZO\dEgz)ﬂ , Tot H;@Ag%ﬂ —= < Tot H;icmAg%ﬂ .

Proof. By virtue of Proposition 3.11 and Corollary 3.15, these equivalences are consequences
of Proposition 5.5. |
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5.3. Finishing the proof: Formality. We will focus on the two main examples of this pa-
per, which are discussed at a finite prime in detail in Section 3.3, so let I = P. On the topo-
logical side, we take (C;, A;)ier to be (Sp,, ,,, En p)per and define nélg;?p = Eyp/(p", ..., u’:ﬂl)
so that
(kp) ’ ; (kp) , k k
Mtop][; (ES?,Z—’_I) = E’?,;Jrl ®En,p Htog,p = E;?i;—’_l (p p? e 7unp71)

for all s > 0 and k, > 1. Analogously, on the algebraic side we consider (PA‘rn,p, Ay p)pep. For
k, > 1 an integer, we set ﬁgfé’})p = (Enp)s/(@,... ,uff’_l)* and, for s > 0, Méfg”)(Agjj‘l) =
(B2t (M, ... ,uﬁil)*. This choice of notation is justified by the Morita equivalence of
(3.13). The notion of torsion in the rest of this section will consequently be determined by

the ideals (p*r,... ,uﬁ’il) and (p*»,... ,uﬁ’il)* as in Section 4.4. In particular:

Definition 5.7. For all s > 0 and any ultrafilter F on P, we define localizing subcategories
b b
([T, Modggoen)ters = Loc([M2) (EE5)] #|[ky) 7 € N) € [1, Modg.
and

b s kp S b
(H; Mod ggsi1),)' = Loc([M?) (A251)] 2|k, » € NF) C HF Mod o1y

alg

Recall from [BSS17, Theorem 5.38] that we have established a canonical symmetric
monoidal equivalence

Dyyr: H?_— MOdE,@}“ = H;- MOd(Eg;ﬂ)*

of cosimplicial compactly generated Q-linear stable co-categories. The next result establishes
the compatibility of this equivalence with the torsion objects.

Lemma 5.8. Forall s > 0 and k, > 1 and any non-principal ultrafilter F on P, the functor
®yi1 sends [MED (B25H)] 2 to M2 (A5H)]

top alg
Proof. By construction, it suffices to check the statement for s = 0, i.e., that <I>1([n§§§?p}f) ~
[Iigfg))p] r forall (k, > 1),ep. The equivalence ®; is symmetric monoidal by [BSS17, Theorem

5.38], so in particular preserves the tensor unit. Moreover, by [BSS17, Proposition 6.7], the
natural map

o[ Enplr = mo End([Ey 5] 7) 7704:; mo End([(En,p)+]7) = mo[(En,p)«] 7

induced by ®; can be identified with the isomorphism

’
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o [En,p}]: = End(ﬂo [En,p]]:) = End(ﬂ-o[(En,P)*}f)

1%

o [(En,p)*]}'

induced by ¢ = [[r¢p: [[7m0Enp = [1#70(Enp)«. Therefore my®, sends the sequence
([p*]#,..., [uiﬂl}f) to the sequence ([p*r]=,..., [uﬁ’il]}-); the claim follows. O

Proposition 5.9. For any non-principal ultrafilter F on P, there is a symmetric monoidal
equivalence of cosimplicial compactly generated Q-linear stable co-categories

Tot([ T Mod!giza 1)) —== Tot([ [ Mod!5i5 1, ).
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Proof. For any s > 0, consider the following commutative diagram, in which all functors
are symmetric monoidal and colimit preserving:

~

b tors b tors b
H]_— MOdEgspJA (H]_— MOdEf?;,'H) H]_- MOdE;Q?;-%—l
I
~ | NS :\L<I>S+1 zl/‘?yrl
Y

b rs =~ b ors b
[T Mod 3211, — ([T Mod geesr) ) —— [ Mod o) -

The right vertical functor is an equivalence by [BSS17, Theorem 5.38] and hence restricts

to an equivalence on localizing ideals generated by [Mff; )(E§;+1)] 7 and [Mélkgp )(Afasp“)} F
for all [k,] € N, respectively, using Lemma 5.8. Corollary 4.37 yields the horizontal equiv-
alences in the left square. Since the generators of the torsion categories are induced up
from the zeroth level of the respective cosimplicial diagram, the equivalences ®4%% are com-
patible with the cosimplicial structure maps. Therefore, we obtain a symmetric monoidal

equivalence upon passage to totalizations. O
We are now ready for the proof of the main theorem.

Proof of Theorem 2.1. There is a string of symmetric monoidal equivalences

Pic—— b ——
Tot H}_ Mod(Engz;H) ~ Tot HFModEg;H by Corollary 5.6
~ Tot Hb}_ Modg}iﬂ by Proposition 3.11
’ tors -
~ Tot H}_ Mod(Egﬁl)* by Proposition 5.9
b ——
~ Tot HFMOdAg’o;rl by Proposition 3.14
Pic——
~ Tot HF Mod e 11 by Corollary 5.6.

Note that this equivalence relies on the main result of [BSS17] via Proposition 5.9. It thus
follows from Corollary 5.4 that there are symmetric monoidal equivalences

Pic_~ Pic—— Pic—— Pic ~
H}_ Sp,, ,, = Loc Pic Tot H}_ Mod(Eg?l) ~ Loc Pic Tot H}_ ModAg.pH ~ H}_ Fry, »
which finishes the proof. (|

5.4. Comparison to the FE-local category. The goal of this section is to compare the
Pic-generated protoproduct of the K, (n)-local categories to the Pic-generated protoproduct
of the E, p-local category Sp,, , studied in [BSS17]. As a consequence, we will establish the
compatibility of the main equivalence of [BSS17] with the equivalence of Theorem 2.1.

We begin with the construction of a topological comparison functor, leaving the (entirely
notational) modifications necessary on the algebraic side to the interested reader. Recall
the symmetric monoidal local duality equivalence

M”hP: Spn,p S — Spﬁl‘?;)s ZLKp(n)
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between the monochromatic category Spt‘”b and the K, (n)-local category §;\)n’p from (3.9).
For any s > 0, there are commutative squares

_QE ®5+1
(5.10) Spn’p MOdE®s+1
Mn,pl lFE;@;ﬂ
tors tors
Spn,p 7®E§‘;+1 MOdE?jf“

where T’ B85 is the functor constructed in Section 4.4. These squares are compatible with
each other for varying s.

For all s > 0, the functors appearing in the square (5.10) are symmetric monoidal and
preserve colimits. Furthermore, (3.10) shows that, for any P € Pic(Sp,, ), the object
M, ,(P) is a filtered colimit of spectra P ® M](n) € (Spto“)°J that can be built from
elements in Plc(Spm“) in 2™ steps. In other words, if we equip each of the categories with

their Pic-cell filtrations, then (5.10) restricts to a commutative square

_®E§s+1
PicCell;,(Sp¥ ) PicCelly (Mod%e. 1)

Mn,pl lFE,@,z“

Ind Piccequ” ((Sptorb) ) W Ind PicCellk.gn ((Mod%jéseJrl) )

n,p

for any s > 0 and any k£ > 0. Note that the analogous claim for the Ind-completed analogue
of the right vertical arrow is the content of the proof of Lemma 4.34. This puts us in
the situation of Proposition 4.21. By taking the totalization of the resulting squares, we
obtain the topological part of the following proposition; we omit the analogous details for
the algebraic one:

Proposition 5.11. For any ultrafilter F on P, there are commutative squares

‘l;’_ic Spnm —— Tot H?_— MOdES?,;“ Fr,, , — Tot H]_- MOd(E®-+1)

| | | |

Picg__tors b tors Pic tors b tors
Sp HTOt H]_- MOdES?;,"'l F Frmp HTOt H]_- MOd(E§7;+1)*7

PlC

in which the horizontal functors are fully faithful. Moreover, all functors in the displayed
diagrams are symmetric monoidal.

Local duality allows us to replace the torsion categories in this result by their symmetric
monoidally equivalent complete counterparts. We are now ready for the proof of our main
comparison theorem.
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Theorem 5.12. For any non-principal ultrafilter F on P, there is a commutative diagram
of symmetric monoidal functors:

Pic Picg

Spn,p - H Spn,p
Pic Frn,p HPlc -

Proof. Consider the diagram of symmetric monoidal functors

Picg b tors
F SPpp Tot [ [ MOdE;?;’{»l

N —

PIC Spn P — TOt H]_— MOdE®o+1

| |

2 Fr,, , — Tot H]_- Mod ety

e T

Hl;_-iclf‘\rn,p Tot H}— MOthr%.JA)

The top and bottom commutative squares have been constructed in Proposition 5.11, while
the commutativity of the right square has been established in the proof of Proposition 5.9:
Indeed, after post-composition with the inclusion functors we obtain a diagram of cosimpli-
cial co-categories

b b tors b
H]_— MOdE;{?‘;)Jrl —_— H]_— MOdEg;Jrl —_— H}- MOdE;?;fl

l | |

Hbf MOd(Eg;ﬂ)* —_— Hbf Modz(;%);ﬂ)* S Hég Mod(Eg;ﬂ)*

The right horizontal functors are fully faithful and the right square commutes by Proposi-
tion 5.9. Since the outer rectangle commutes when restricted to [ Celly(Mod E®6+1) for
any k,s > 0 by construction of the functors, it has to commute as well. Therefore, the left
square commutes and passing to totalizations yields the desired commutativity of the right
trapezoid in the larger diagram above.

The inner central and outer squares commute by the proofs of [BSS17, Theorem 5.39]
and of Theorem 2.1, respectively. Since the bottom horizontal functor is fully faithful, it
follows that the left trapezoid commutes as well. O

Remark 5.13. One may wonder whether the canonical inclusions gf)mp — Sp,, , and P"\rM, —
Fr,, , assemble into a commutative diagram of Pic-generated protoproducts as well. This
appears to be related to Question 2.2.
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