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Abstract: On-demand warehousing platforms match companies with underutilized warehouse and 

distribution capabilities with customers who need extra space or distribution services. These new business 

models have unique advantages, in terms of reduced capacity and commitment granularity, but also have 

different cost structures compared to traditional ways of obtaining distribution capabilities. This research 

is the first quantitative analysis to consider distribution network strategies given the advent of on-demand 

warehousing. Our multi-period facility location model – a mixed-integer linear program – simultaneously 

determines location-allocation decisions of three distribution center types (self-distribution, 3PL/lease, on-

demand). A simulation model operationally evaluates the impact of the planned distribution strategy when 

various uncertainties can occur. Computational experiments for a company receiving products produced 

internationally to fulfil a set of regional customer demands illustrate that the power of on-demand 

warehousing is in creating hybrid network designs that more efficiently use self-distribution facilities 

through improved capacity utilization. However, the business case for on-demand warehousing is shown to 

be influenced by several factors, namely on-demand capacity availability, responsiveness requirements, 

and demand patterns. This work supports a firm’s use of on-demand warehousing if it has tight response 

requirements, for example for same day delivery; however, if a firm has relaxed response requirements, 

then on-demand warehousing is only recommended if capacity availability of planned on-demand services 

is high. We also analyse capacity flexibility options leased by third-party logistics companies for a premium 

price and draw attention to the importance of them offering more granular solutions to stay competitive in 

the market.  

Keywords: warehouse, distribution, on-demand, supply chain network design, facility location models  

1. Introduction  

The proliferation of e-commerce has fundamentally altered demand characteristics and order profiles: the 

handlings units are smaller, the delivery locations are more dispersed, and the customers expect faster low-

cost or free deliveries. Consequently, nearly half of all US retailers offer same-day delivery (Saleh, 2018). 

This has increased investments in distribution centers (DCs) and warehouses closer to large populations 

(Breedam, 2016). Traditionally increasing the number of DC locations has also increased total facility, 

infrastructure, inventory, and operational costs. Binding outsourcing agreements for distribution services 

or investing in facility ownership are long-term commitments that come with overflow or underutilization 
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risks due to demand variability and volatility. Small and medium-sized enterprises often do not have the 

capital needed to own and operate such complex distribution networks (Dunke et al., 2016). Finally, the 

availability of warehouses and DCs is currently limited (Hudson, 2019). To address these challenges, 

innovative and more flexible business models (Grant, 2017) and new approaches to classic supply chain 

designs are required (Breedam, 2016). Rather than design distribution networks only through facility 

ownership or long-term partnerships, this study focuses on how a company can incorporate on-demand 

warehousing into their distribution network design decisions.  

On-demand warehousing platforms operate marketplaces to match companies with underutilized 

warehouse and distribution capabilities with customers who need extra space or distribution services 

(Forger, 2018; Pazour & Unnu, 2018; Supply Chain Digest, 2019; Tornese et al., 2020; Van der Heide et 

al., 2018). Several companies worldwide operate such platforms, including US-based platforms Flexe, 

Warehouse Exchange, Flowspace, and Ware2Go; European platforms, Stowga, OneVAST, Stockspots and 

Waredock; and African-based platform Logistify AI.  

An on-demand warehousing system consists of three primary actors. The supply owners (lenders) 

are the primary holders of the resources (e.g., warehouse space, fulfillment capabilities). They differ from 

traditional suppliers because, generally in on-demand models, outsourcing is not the supplier’s core 

business. Instead, the suppliers derive additional values from sharing access to their underutilized 

warehousing resources, and also, in some cases, benefit from a more stable workload (O’Brien, 2017). The 

demand requests are indicated needs for warehousing resources made by customers. The customers’ need 

for the service is mostly short term, for a small resource amount and required to be fulfilled immediately 

(on-demand). The platform is a third-party organization responsible for managing the interactions between 

the supply owners and the demand requests. The platform operates a marketplace and provides access and 

visibility to both suppliers and customers. Such systems create spatial and temporal resource elasticity by 

matching underutilized resources on-demand, where and when needed (Pazour & Unnu, 2018).  
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On-demand warehousing platforms are open, available on-demand, and priced on a per-use basis; 

thus, they embody the principles of open supply webs (Montreuil, 2011) and the Physical Internet (Pan et 

al., 2017). As on-demand warehousing provides unique advantages, but also have different cost structures, 

dynamics and risks, than traditional ways to acquire warehouse space and distribution capabilities, 

quantitative research is needed to aid in understanding who, when, and how to utilize these systems. The 

contributions of this paper – which take a customer viewpoint - are summarized as follows. Our paper is 

the first to formulate an optimization model incorporating on-demand system properties into distribution 

network design problems. We extend the dynamic facility location problem (DFLP) to simultaneously 

decide between three types of distribution capabilities (self-distribution, 3PL, on-demand), deciding which 

of these alternatives to use at which locations to meet demand over multiple locations and time periods. 

This requires a new optimization model capturing varying commitment granularity and capacity granularity 

properties, as well as varying cost structures, of the distribution center alternatives. Secondly, our model is 

used to evaluate and provide insights on how a firm’s distribution strategy should change with the advent 

of on-demand warehousing alternatives. Our design of experiment (DOE) captures different environmental 

and company factors to answer the open question: under what circumstances is on-demand warehousing 

beneficial for customers? The developed optimization model is used to evaluate network design decisions 

with and without the on-demand alternative being available. Then, to evaluate performance operationally, 

these network designs are fed into a Monte-Carlo simulation that incorporates uncertainty in customer 

demand and on-demand capacity availability. These extensive computational experiments allow us to 

quantify the impact of the on-demand alternative on total distribution costs and to provide managerial 

insights on which factors affect distribution network design decisions and performance.  

2. Distribution Types 

Companies have three main ways to increase their distribution and storage capabilities. They can (1) build 

and operate their own self-distribution facility, (2) outsource distribution operations to a third-party logistics 

provider (3PL) via a long-term lease agreement, or (3) access on-demand capabilities for short-term use. 
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Each distribution type has unique advantages and disadvantages, which we compare in Table 1 (Unnu & 

Pazour, 2019). From a distribution network design perspective, critical differences exist in terms of capacity 

granularity, commitment granularity, and access to scale (Pazour & Unnu, 2018).  

Table 1: Comparison of advantages and disadvantages of the distribution center types 

Type Advantages Disadvantages 

Self 

Distribution 

-Low variable operational costs if 

operated at high-capacity utilization. 

-Ownership allows control 

-Highest investment costs, creating the longest 

commitment duration. 

-Less flexible to demand variability and volatility 

-Highest latency from the decision to operation 

3PL  -More flexible than self-distribution 

-Shorter latency from decision to 

operation 

-Lower initial investments than self- 

distribution 

-Higher operational costs 

-Start-up time required for contract negotiations 

-Commitment with binding contracts 

-Potential trust, quality, and performance concerns 

On-Demand - Highest flexibility 

-Lowest latency between decision and 

implementation 

-No initial investment or fixed costs 

- Highest per unit variable costs 

-Without a contract, potential uncertainty in 

available capacities period to period. 

-Potential trust, quality, and performance concerns 

Capacity granularity is defined as the minimum capacity that can be acquired by a given distribution type. 

Capacity granularity is measured for self-distribution in full building units (e.g., number of warehouses). 

Most 3PLs require firms to commit up front to contracted capacity for the duration of the contracting period, 

with capacity granularity typically in square feet or number of storage units per period. A common 3PL 

policy is to enable temporary use of extra capacity beyond this contracted capacity (at a premium charge).  

For on-demand, minimum capacity requirements are either non-existent or very low. 

Commitment granularity is defined as the minimum commitment (in time units) a firm must maintain its 

decision. The commitment granularity of self-distribution is related to the payback period planned for the 

company’s return on investment, which is often at least 5 years but can be much longer, e.g., 30 years. For 

3PL it is 1 to 3 years because of the lengthy decision lead times, negotiation periods, contracting, and 

minimum leasing periods. Due to on-demand’s short, predefined leasing periods, its commitment 

granularity is typically monthly, but some platforms offer weekly commitments.  

Access to Scale is defined as the percent of demand reachable within a given distance of distribution 

resources. When companies own their distribution resources, high investment costs can lead to operating 

only a handful of facilities. This has low access to scale and long last leg deliveries and transportation costs. 
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Alternatively, access to scale can be increased by accessing distribution resources through an on-demand 

system, which does not have high fixed investment costs of ownership. 

These three attributes are interrelated; if a company decides to build a facility, this is a strategic decision, 

in which initial significant fixed costs drive long commitment granularity, but if used at full capacity, results 

in lower variable costs (Unnu & Pazour, 2019). Whereas with on-demand warehousing, distribution 

resources can be acquired at the pallet level and for short one-month commitment periods. Adoption of this 

alternative can lead to improved flexibility and agility, as well as access to scale, but also has higher variable 

costs for per pallet handling and holding, and the use of multiple companies’ resources creates more 

complex operations. Thus, given the different cost structures and operating attributes, many tradeoffs exist. 

Consequently, an open research question includes, “Is there a business case to be made for the use of on-

demand systems, and if so, in what environments?” 

3. Literature Review 

On-demand resource-sharing research is proliferating, including work focused on the logistics sector 

(Carbone et al., 2017; S. Melo et al., 2019; Mourad et al., 2019; Yu & Shen, 2020). The vast majority 

focuses on transportation and delivery, using crowd shipping or crowdsourced logistics (Kafle et al., 2017; 

Le et al., 2019; Mofidi & Pazour, 2019).  On-demand business models remain underexplored for warehouse 

and distribution services, and research incorporating on-demand warehousing into distribution network 

modeling, as well as quantitatively analyzing on-demand warehousing’s suitable applications have not yet 

been addressed. Recently Rogers et al. (2020) argue that on-demand distribution systems (a) improve 

customer service and reduce costs, (b) enable dynamically reconfigurable distribution networks and (c) 

enable companies to adopt multiple distribution channels for their different products. The work is empirical, 

using survey data and use cases to support their propositions. They also advocate for the need of new 

quantitative models, and in this paper, we address many of their proposed future research suggestions. 

Both dynamic and static facility location models have been extensively used for locating 

DCs/warehouses and assigning demand points to them, as well as supporting other tactical/operational 
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decisions such as inventory and routing. A detailed taxonomy of these models can be found in the review 

papers (Boloori Arabani & Farahani, 2012; Daskin et al., 2005; Klose & Drexl, 2005; Seyedhosseini et al., 

2016). Dynamic facility location problems (DFLP) are multi-period models where the input parameters, 

such as costs, demands, and capacities, vary over time, and multiple decisions are allowed throughout a 

given planning horizon (Klose & Drexl, 2005). A vast literature exists for DFLPs, which includes papers 

studying DFLP’s with capacity adjustments at production facilities (Bayram et Al., 2019; Bhat & 

Krishnamurthy, 2015; Malladi et al., 2020; Zhao et al., 2018). Focusing our review on DFLP for 

distribution, we identify a scarcity in research capturing different DC/warehouse types with varying 

commitment, capacity, and cost structures.  

Jena et al. (2015) classifies capacity adjustment options into three groups: (1) capacity is adjusted 

by changing the capacity levels of an existing single facility; (2) adjustments are realized by 

adding/removing modular capacities or opening/closing the same type of facilities; and (3) facilities with 

different capacities are opened/closed. Our work does not fit into any of these existing categories as we 

consider capacity adjustments for multiple locations, and those adjustments can be achieved by combining 

multiple types of facilities, and/or changing the capacity of an open facility and/or opening and closing 

facilities. Thus, we introduce a new option, which represents the combination of the previous three capacity 

adjustments based on the warehouse type. 

Most DFLP with capacity adjustment papers restrict opening and closing decisions for ease of 

solution approaches. For example, Dias et al. (2007) constrain the maximum number of facilities operating 

at the same location in the same period. Wilhelm et al. (2013) highlight facility opening-closing decision 

flexibility; however, these decisions are still limited by a maximum number of open facilities and a 

restriction on re-opening facilities. In Hinojosa et al. (2000), new facilities can be opened in any period, but 

closing is only allowed for the facilities opened in the first period and once a facility is closed, it cannot be 

re-opened. Other papers consider modular capacity adjustment options. Antunes and Peeters (2001) add or 

remove a capacity module. Jena et al. (2015) also study modular capacities for facility closing and re-
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opening and for capacity expansion and reduction. In their models, only one facility is allowed to be opened 

on the selected candidate location, and the capacity adjustment or opening-closing decisions are considered 

for these individual facilities. Recently Jena, Cordeau, and Gendron (2017) studied its multi-commodity 

version. Other work considers interconnected but restricted time periods for strategical and tactical 

decisions. The tactical decisions are made in each period and might include production, inventory, and 

routing decisions. Whereas strategic decisions, including the location, opening/closing, or capacity 

adjustment decisions, can only be realized at predefined strategic periods (Bashiri et al., 2012; Correia & 

Melo, 2016; Fattahi et al., 2016).   

Related is work considering different warehouse types with unique capacity, cost and commitment 

properties (Bashiri et al., 2012; Fattahi et al., 2016; Thanh et al., 2008; Vila et al., 2006). In Vila et al. 

(2006), the facility locations are initially defined. Then, dynamic decisions are made related to production 

and distribution capacities. The cost structure of the three types of warehouses (owned, rented, public) and 

also their approach to consider expansion and reduction are similar to our model; however, they do not 

consider any commitment constraints. In Bashiri et al. (2012), public warehouses have no initial setup or 

closing costs but relatively higher operational costs and are uncapacitated. On the other hand, private 

warehouses have setup costs and lower operational costs and are restricted to be closed once opened. For 

open private warehouses, capacity expansion can be considered; however, capacity contraction is not 

allowed. Similarly, in Fattahi et al. (2016) public warehouses do not have restricted opening and closing 

decisions. In contrast, the private warehouses can only be opened once and are not allowed to be closed. 

Thanh et al. (2008) start with all facility locations and capacities known, and decide facility closing, 

opening, and capacity expansions over time. In their model, private warehouses should be kept open or 

closed for the entire planning horizon after a decision is made. However, a public warehouse can be opened 

and closed multiple times, but there should be at least a two-period gap between the decision points. This 

property is like our commitment duration (granularity), but we capture it for different types of warehouses. 

To the best of our knowledge, Thanh et al. (2008) is the only existing paper introducing such an approach 
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to decision periods. However, they do not incorporate a 3PL warehouse type with a commitment duration 

between totally flexible (public) and totally constrained (private), nor do they consider location decisions.  

To model a firm’s decision of simultaneously having the option to utilize three different warehouse 

types over multiple unrestricted time periods, we need to incorporate multiple types of facilities and their 

unique characteristics into a multi-period facility location-allocation optimization model. The model needs 

to capture (a) multiple decision periods, (b) the ability for multiple facility types to be located in a given 

location, (c) the ability to open facilities during any period, (d) the ability to capture different cost structures 

associated with the different facility types, and (e) varying commitment and capacity granularities of 

different facility types. Despite the vast amount of distribution system and supply chain network design 

literature, none have all of these unique properties.    

4. Optimization Model to Plan a Firm’s Distribution Strategy 

In this section, we introduce a deterministic mixed-integer linear model for our DFLP with capacity 

adjustment and commitment options. All notations used in the model are defined in Table 2. 

Table 2: Notations for sets, input parameters, and decision variables 

Sets 

𝐼  : Set of supply locations; indexed on 𝑖 

𝐽  : Set of candidate DC locations; indexed on 𝑗 

𝐷 : Set of customer locations; indexed on 𝑑 

𝑈 : Superset (union) of all location points 𝑈 = { 𝐼 ∪ 𝐽 ∪ 𝐷 }; indexed on 𝑢 

𝑇 : Set of time periods; indexed on 𝑝 

𝐴 : Set of distribution center alternatives indexed on 𝑎 where 𝐴 = {𝐴𝑜 ∪ 𝐴𝑙 ∪ 𝐴𝑠}.  

The subsets of 𝐴 are disjoint, i.e., i.e., 𝐴𝑜 ∩ 𝐴𝑙 = ∅; 𝐴𝑜 ∩ 𝐴𝑠 = ∅; 𝐴𝑙 ∩ 𝐴𝑠 = ∅.   

𝐴𝑜  : Set of on-demand type DCs, 𝐴𝑜 ⊂ 𝐴 

𝐴𝑙  : Set of 3PL type DCs, 𝐴𝑙 ⊂ 𝐴 

𝐴𝑠  : Set of self-distribution type DCs, 𝐴𝑠 ⊂ 𝐴 

𝐴𝑐  : Set of DCs without the on-demand type, 𝐴𝑐 = {𝐴𝑙 ∪ 𝐴𝑠} 

𝐴𝑙𝑜  : Set of 3PL and on-demand type DCs, 𝐴𝑙𝑜 = {𝐴𝑜 ∪ 𝐴𝑙} 

O : Set of whole numbers capturing the operating facility quantity O ={1..|A|*|J|}; indexed on 𝑓 
Input Parameters 

𝑁𝑎 : Commitment granularity in number of periods for an alternative 𝑎 (𝑎 ∈ 𝐴) 

𝐾𝑎𝑗𝑝 : Capacity of a DC at location 𝑗 for alternative 𝑎 at time period 𝑝 (𝑎 ∈ 𝐴𝑐 , 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑇) 

𝐹𝑎𝑗𝑝 : Cost of initial set-up of an alternative 𝑎 DC at location 𝑗 at time period 𝑝 (𝑎 ∈ 𝐴𝑐 , 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑇) 

𝐻𝑎𝑗𝑝 : Cost of holding one unit in an alternative 𝑎 DC for period 𝑝 (𝑎 ∈ 𝐴𝑜 , 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑇) 

𝑅𝑎𝑗𝑝 : Fixed cost of keeping open an alternative 𝑎 DC for period 𝑝 (𝑎 ∈ 𝐴𝑐 , 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑇) 

𝐺𝑎𝑗𝑝 : Cost of handling one unit in an alternative 𝑎 DC at location 𝑗 at time period 𝑝 (𝑎 ∈ 𝐴𝑙𝑜 , 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑇) 

𝐶𝑖𝑗𝑝  : Freight cost per mile per unit between supply point 𝑖 and DC at location 𝑗 at time period 𝑝 (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑇) 

𝐶𝐹𝑖𝑗𝑝  : Freight cost per unit between supply point 𝑖 and DC at location 𝑗 at time period 𝑝 (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑇) 
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𝐸𝑗𝑑𝑝 : Freight cost per mile per unit between DC at location  𝑗 and customer 𝑑 at time period 𝑝 (𝑗 ∈ 𝐽, 𝑑 ∈ 𝐷, 𝑝 ∈ 𝑇) 

𝐸𝐹𝑗𝑑𝑝 : Freight cost unit between DC at location  𝑗 and demand 𝑑 at time period 𝑝 (𝑗 ∈ 𝐽, 𝑑 ∈ 𝐷, 𝑝 ∈ 𝑇) 

𝜆𝑑𝑝 : Expected demand at customer 𝑑 in time period  𝑝  ( 𝑑 ∈ 𝐷, 𝑝 ∈ 𝑇) 

𝜃𝑢1𝑢2  : Distance between location point 𝑢1 and location point 𝑢2; (𝑢1, 𝑢2 ∈ 𝑈) 

𝛼 : Max distance (range) allowed to assign a demand point 𝑑 to a DC at location 𝑗 

𝛾   : Sales price of the product 

𝜑 : Loss of sales cost in percentage of product sales price 

𝜌  : Cost increase factor defining the premium cost for extra capacity usage of 3PL facilities 

𝛽  : Extra capacity ratio allowed additional to the capacity of 3PL facilities (𝛽 ≤ 1) 

𝑆𝑆𝑝 : amount of safety stock for the distribution system if a single centralized location is used at period 𝑝 (𝑝 ∈ 𝑇) 

𝑀  : A large positive number (Big-M) 

 

Decision Variables 

𝑍𝑎𝑗𝑝 : {
1 if alternative 𝑎 at location 𝑗 is 𝐟𝐢𝐫𝐬𝐭 opened at period 𝑝,
0 otherwise (𝑎 ∈ 𝐴, 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑇)

 

𝑂𝐶𝑎𝑗𝑝 : {
1 if a 3PL alternative 𝑎 at location 𝑗 uses an extra capacity option (at a premium costs) in period 𝑝 
 0 otherwise (𝑎 ∈ 𝐴, 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑇)

 

𝑋𝑎𝑖𝑗𝑝  : Units delivered from supply location 𝑖 to alternative 𝑎  at location 𝑗 at period 𝑝 (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑎 ∈ 𝐴, 𝑝 ∈ 𝑇) 

𝑊𝑎𝑗𝑑𝑝  : Demand ratio fulfilled by alternative 𝑎 at location 𝑗 to demand 𝑑 at period 𝑝 (𝑑 ∈ 𝐷, 𝑗 ∈ 𝐽, 𝑎 ∈ 𝐴, 𝑝 ∈ 𝑇) 

𝑆𝑎𝑗𝑝   : Amount of inventory in alternative 𝑎 at location 𝑗 at the end period 𝑝 (𝑎 ∈ 𝐴, 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑇) 

𝐿𝑆𝑑𝑝  : Ratio of demand not fulfilled (Loss of sales) at demand point 𝑑 at period 𝑝 (𝑑 ∈ 𝐷, 𝑝 ∈ 𝑇) 

𝑄𝑓𝑝 : {
1 if 𝑓 number of DCs are operating at period 𝑝
0 otherwise

 

 

We model three echelons, in which the supply and demand locations are given input parameters, 

and we decide where to locate DCs. Given each DC type can have multiple alternative capacities and costs, 

we use subsets over the DC alternative set 𝐴 = {𝐴𝑜 ∪ 𝐴𝑙 ∪ 𝐴𝑠} to denote DC alternatives of each type: on-

demand (𝐴𝑜), 3PL (𝐴𝑙), and self distribution (𝐴𝑠). These subsets are disjoint, i.e., 𝐴𝑜 ∩ 𝐴𝑙 = ∅; 𝐴𝑜 ∩ 𝐴𝑠 =

∅; 𝐴𝑙 ∩ 𝐴𝑠 = ∅.  For a multi-period planning horizon (𝑝 ∈ 𝑇), the model decides whether to open a DC of 

alternative a in location j at period p with the binary variable 𝑍𝑎𝑗𝑝 and for 3PL alternatives 𝑎 ∈ 𝐴𝑙 whether 

temporary extra capacity (at a premium cost) in location j at period p is planned with the binary variable 

𝑂𝐶𝑎𝑗𝑝. Additional continuous decisions made every period (see Table 2) include the units delivered from 

supply locations to DCs, the ratio of fulfilled demand from DCs to assigned customer locations, the ratio 

of unfulfilled demand at a customer location, and the inventory at each alternative and location. We also 

capture the number of open DC facilities at a given period to approximate network safety stock impacts. 

We model a single commodity problem, and the model can be extended by adding a new index representing 

different commodities with different properties.  
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The previously introduced capacity and commitment granularities of DC alternatives correspond 

to the input parameters 𝐾𝑎𝑗𝑝 and 𝑁𝑎, respectively. Self-distribution and 3PL alternatives (𝑎 ∈ 𝐴𝑐) have 

finite capacities 𝐾𝑎𝑗𝑝 and can be opened at any period p and location j but an opened DC stays operational 

until the end of their commitment duration of 𝑁𝑎 periods. To capture a common 3PL practice, we allow the 

temporary capacity of 3PL alternatives (𝑎 ∈ 𝐴𝑙) in location j at period p to exceed their contracted capacity 

𝐾𝑎𝑗𝑝 with up to an extra capacity level (𝛽) at a premium cost (𝜌). In the optimization model, we assume the 

on-demand type is uncapacitated and can be opened and closed without any restrictions (𝑁𝑎 = 1, ∀𝑎 ∈ 𝐴
𝑜).  

Access to scale is captured via a parameter for the allowed maximum distance (𝛼) between a demand 

location and the DC that satisfies the demand.  

The DC types have different cost structures, which we break into four cost parameters that can vary 

based on their location j and time period p. For self-distribution and 3PL alternatives 𝑎 ∈ 𝐴𝑐, initial costs 

(𝐹𝑎𝑗𝑝) are one-time costs required before becoming operational. Operational costs (𝑅𝑎𝑗𝑝) are fixed per 

period recurring expenses required to keep the self-distribution or 3PL DC functioning, regardless of the 

satisfied demand amount. On-demand alternatives 𝑎 ∈ 𝐴𝑜 incur holding costs (𝐻𝑎𝑗𝑝), which are variable 

costs of one unit storage per each time period. On-demand and 3PL alternatives 𝑎 ∈ 𝐴𝑙𝑜 also incur handling 

costs (𝐺𝑎𝑗𝑝), which are per unit costs every time a unit is handled for receiving, put-away, and picking.   

Aligned with common freight practices, transportation costs have two components. The first 

(𝐶𝐹𝑖𝑗𝑝, 𝐸𝐹𝑗𝑑𝑝) is the fixed (per unit delivery cost) independent of the distance between two locations and 

the second (𝐶𝑖𝑗𝑝, 𝐸𝑗𝑑𝑝) are per unit distances. Additionally, the transportation costs capture differences in 

more efficient inbound (𝐶𝐹𝑖𝑗𝑝, 𝐶𝑖𝑗𝑝) versus outbound (𝐸𝐹𝑗𝑑𝑝, 𝐸𝑗𝑑𝑝) loads. The inventory at the beginning 

of the first period at each DC location and alternative is set to zero (𝑆𝑎𝑗0 = 0, ∀𝑎 ∈ 𝐴, ∀𝑗 ∈ 𝐽).  

The objective function minimizes the total costs related to the complete distribution system design, 

where (1)-(a) is the total first-mile costs captured as the sum of the delivery costs from supply locations to 

DCs, (1)-(b), (1)-(c) and (1)-(d) incorporate DC opening costs, handling costs, and inventory holding costs, 

respectively. We assume that a holding cost for one period occurs for the fulfilled demand quantity 
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(𝑊𝑎𝑗𝑑𝑝𝜆𝑑𝑝) and (1)-(e) is this additional holding cost. The total operational costs of DCs are calculated by 

(1)-(f) and (1)-(g). The former is used when the commitment duration’s last period is within the planning 

horizon (𝑝 ≤ |𝑇| − 𝑁𝑎), and (1)-(g) when the remaining planning horizon is shorter than the commitment 

period. We also assume that when the extra capacity option is triggered for a 3PL alternative, the premium 

cost for the entire expansion ratio is added to the objective function at that period, as shown in (1)-(h). 

Finally, the last mile delivery costs and the costs regarding the unfulfilled demand are incorporated into the 

objective function with expressions (1)-(i) and (1)-(j). In reporting results, we denote the sum of (1)-(b) to 

(1)-(h) as DC Costs and the sum of (1)-(a) and (1)-(i) as Transportation Costs. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 

{
 
 

 
 

∑∑∑∑𝑋𝑎𝑖𝑗𝑝 (𝜃𝑖𝑗𝐶𝑖𝑗𝑝 + 𝐶𝐹𝑖𝑗𝑝)

𝑎∈𝐴𝑝∈𝑇

 

𝑗∈𝐼𝑖∈𝐼⏟                        
𝑎

+∑∑ ∑ 𝑍𝑎𝑗𝑝𝐹𝑎𝑗𝑝
𝑎∈𝐴𝑐𝑝∈𝑇

 

𝑗∈𝐽⏟            
𝑏

+  
 

 ∑∑∑ ∑ 𝑋𝑎𝑖𝑗𝑝𝐺𝑎𝑗𝑝
𝑎∈𝐴𝑙𝑜𝑝∈𝑇𝑗∈𝐽𝑖∈𝐼⏟                
𝑐

+∑∑ ∑ 𝑆𝑎𝑗𝑝 𝐻𝑎𝑗𝑝
𝑎∈𝐴𝑜𝑝∈𝑇

 

𝑗∈𝐽⏟              
𝑑

+ 
 

 

 ∑∑∑ ∑  𝑊𝑎𝑗𝑑𝑝𝜆𝑑𝑝𝐻𝑎𝑗𝑝
𝑎∈𝐴𝑜𝑝∈𝑇𝑑∈𝐷𝑗∈𝐽⏟                    

𝑒

+∑ ∑ ∑𝑍𝑎𝑗𝑝 𝑁𝑎𝑅𝑎𝑗𝑝
𝑎∈𝐴𝑝∈𝑇∶ 𝑝≤(|𝑇|−𝑁𝑎)𝑗∈𝐽⏟                    

+

𝑓

 
 

 

 ∑ ∑ ∑𝑍𝑎𝑗𝑝 (|𝑇| − 𝑝) 𝑅𝑎𝑗𝑝
𝑎∈𝐴𝑝∈𝑇∶ 𝑝>(|𝑇|−𝑁𝑎)𝑗∈𝐽⏟                          

+

𝑔

∑∑∑(𝑂𝐶𝑎𝑗𝑝 𝑅𝑎𝑗𝑝) 𝛽 𝜌

𝑎∈𝐴𝑙𝑝∈𝑇𝑗∈𝐽⏟                  
ℎ

+ 
 

 

 

∑∑∑∑𝑊𝑎𝑗𝑑𝑝𝜆𝑑𝑝(𝜃𝑗𝑑𝐸𝑗𝑑𝑝 + 𝐸𝐹𝑗𝑑𝑝)

𝑎∈𝐴𝑝∈𝑇

 

𝑑∈𝐷𝑗∈𝐽⏟                            
𝑖

+∑∑𝐿𝑆𝑑𝑝𝜆𝑑𝑝𝛾𝜑

𝑝∈𝑇𝑑∈𝐷⏟            
𝑗

 

}
 
 

 
 

 
(1) 

 
 

While multiple alternatives can be operating at the same location, opening the same alternative DC at the 

same location is not allowed. This is defined by constraint (2), which also enforces that once a decision to 

open an alternative 𝑎 warehouse at location 𝑗, it will stay open during the entire commitment period.   

∑ 𝑍𝑎𝑗𝑧

𝑝

𝑧=max {1,(𝑝−𝑁𝑎+1)}

≤ 1 ∀𝑗 ∈ 𝐽 ;   ∀𝑝 ∈ 𝑇 ;  ∀𝑎 ∈ 𝐴 (2) 

In (3) and (4) the distribution facility capacity constraints limit the inbound and outbound deliveries. As the 

self-distribution and 3PL alternatives are capacitated, and the on-demand alternatives are uncapacitated, the 

capacity constraints only consider the alternative subset 𝐴𝑐.  
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∑𝑋𝑎𝑖𝑗𝑝
𝑖∈𝐼

+ 𝑆𝑎𝑗𝑝−1 ≤ ( ∑ 𝑍𝑎𝑗𝑧𝐾𝑎𝑗𝑝

p

𝑧=max {1,(𝑝−𝑁𝑎+1)}

) + (𝑂𝐶𝑎𝑗𝑝𝐾𝑎𝑗𝑝𝛽) 
∀𝑗 ∈ 𝐽 ;   
∀𝑎 ∈ 𝐴𝑐 ;   
∀𝑝 ∈ 𝑇 

(3) 

∑𝑊𝑎𝑗𝑑𝑝𝜆𝑑𝑝 + 𝑆𝑎𝑗𝑝
𝑑∈𝐷

≤ ( ∑ 𝑍𝑎𝑗𝑧𝐾𝑎𝑗𝑝

𝑝

𝑧=max {1,(𝑝−𝑁𝑎+1)}

) + (𝑂𝐶𝑎𝑗𝑝𝐾𝑎𝑗𝑝𝛽) 

∀𝑗 ∈ 𝐽 ;   

∀𝑎 ∈ 𝐴𝑐 ;   

∀𝑝 ∈ 𝑇 

(4) 

The extra capacity option is limited only to the opened 3PL alternatives with constraints (5) and (6). 

Constraint (7) guarantees demand locations must be assigned a DC within the maximum distance allowed 

(range). The model allows lost sales and demand quantities can be fulfilled from more than one DC; the 

total demand fulfillment and lost sales are linked to each other with constraint (8).  

𝑂𝐶𝑎𝑗𝑝 = 0 ∀j ∈ 𝐽 ;   ∀𝑝 ∈ 𝑇; ∀𝑎 ∈ (𝐴𝑠𝑈𝐴𝑜) (5) 

𝑂𝐶𝑎𝑗𝑝 ≤ ∑ 𝑍𝑎𝑗𝑧

𝑝

𝑧=max {1,(𝑝−𝑁𝑎+1)}

 ∀𝑗 ∈ 𝐽 ;   ∀𝑝 ∈ 𝑇; ∀𝑎 ∈ 𝐴𝑙 (6) 

𝑊𝑎𝑗𝑑𝑝(𝛼 − 𝜃𝑗𝑑) ≥ 0  ∀𝑎 ∈ 𝐴 ;  ∀𝑝 ∈ 𝑇; ∀𝑗 ∈ 𝐽; ∀𝑑 ∈ 𝐷 (7) 

𝐿𝑆𝑑𝑝 +∑∑𝑊𝑎𝑗𝑑𝑝
𝑗∈𝐽𝑎∈𝐴

= 1 ∀𝑑 ∈ 𝐷 ;  ∀𝑝 ∈ 𝑇 (8) 

The capacity constraint (3) incorporates the inventory at the end of each period. Thus, to keep inventory at 

the end of a period (𝑝 − 1) the subject DC should be open with available capacity on the following period 

(𝑝). In addition, (9) constrains the inventory kept in an open facility for the last period 𝑝 = |T| to be less 

than its capacity. Constraints (10) and (11) link the on-demand alternative’s inventory keeping decisions to 

the opening decisions. Constraints (12) assure the inventory is balanced at each DC.  

𝑆𝑎𝑗|𝑇| ≤ ( ∑ 𝑍𝑎𝑗𝑧𝐾𝑎𝑗|𝑇|

|𝑇|

𝑧=max {1,(|𝑇|−𝑁𝑎+1)}

) + (𝑂𝐶𝑎𝑗|𝑇|𝐾𝑎𝑗|𝑇|𝛽) ∀𝑗 ∈ 𝐽 ;   ∀𝑎 ∈ 𝐴𝑐  (9) 

𝑆𝑎𝑗(𝑝−1) ≤ 𝑍𝑎𝑗𝑝𝑀 ∀𝑗 ∈ 𝐽 ;   ∀𝑎 ∈ 𝐴0 ; ∀𝑝 ∈ 𝑇 (10) 

𝑆𝑎𝑗|𝑇| ≤ 𝑍𝑎𝑗|𝑇|𝑀 ∀𝑗 ∈ 𝐽 ;   ∀𝑎 ∈ 𝐴0  (11) 

𝑆𝑎𝑗(𝑝−1) + ∑𝑋𝑎𝑖𝑗𝑝
𝑖∈𝐼

= ∑𝑊𝑎𝑗𝑑𝑝𝜆𝑑𝑝
𝑑∈𝐷

+ 𝑆𝑎𝑗𝑝 ∀𝑗 ∈ 𝐽 ; ∀𝑎 ∈ 𝐴 ; ∀𝑝 ∈ 𝑇 (12) 

For a (Q, r) inventory policy that moves from centralized stocking to one where stock is kept amongst 𝑓  

facilities, then the total safety stock will increase with a ratio of √𝑓  (assuming same parameters, fill rate, 
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and demand being independent and identically distributed) (Eppen, 1979). In any given period, the number 

of open facilities can be up to |𝐽| ∗ |𝐴| which can increase the required system safety stock drastically. As 

the direct use of the square root rule requires non-linear constraints, the model considers the safety stock 

changes at the echelon level and then decides the distribution of the inventory to the open DCs. Using a set 

of linear constraints (13)-(15), a stepwise function captures safety stock being the square root of the total 

number of open DCs at a given period. Finally, (16)-(22) capture non-negativity and binary conditions. 

∑𝑄𝑓𝑝
𝑓∈𝑂

=  1 ∀𝑝 ∈ 𝑇 (13) 

∑𝑄𝑓𝑝𝑓

𝑓∈𝑂

= ∑ ∑ ∑ 𝑍𝑎𝑗𝑧

𝑝

𝑧=max {1,(𝑝−𝑁𝑎+1)}𝑗∈𝐽𝑎∈𝐴𝑐

+ ∑ ∑𝑍𝑎𝑗𝑝
𝑗∈𝐽𝑎∈𝐴𝑜

 ∀𝑝 ∈ 𝑇 (14) 

∑𝑄𝑓𝑝
𝑓∈𝑂

𝑆𝑆𝑝√𝑓 ≤ ∑∑𝑆𝑎𝑗𝑝
𝑗∈𝐽𝑎∈𝐴

 ∀𝑝 ∈ 𝑇 (15) 

   

𝑍𝑎𝑗𝑝 ∈ {0,1} ∀𝑎 ∈ 𝐴, ∀𝑗 ∈ 𝐽, ∀𝑝 ∈ 𝑇 (16) 

𝑂𝐶𝑎𝑗𝑝 ∈ {0,1} ∀𝑎 ∈ 𝐴, ∀𝑗 ∈ 𝐽, ∀𝑝 ∈ 𝑇 (17) 

𝑄𝑓𝑝 ∈ {0,1} ∀𝑓 ∈ 𝑂 , ∀𝑝 ∈ 𝑇 (18) 

𝑋𝑎𝑖𝑗𝑝 ≥ 0 ∀𝑎 ∈ 𝐴, ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀𝑝 ∈ 𝑇 (19) 

𝑊𝑎𝑗𝑑𝑝 ≥ 0 ∀𝑎 ∈ 𝐴, ∀𝑗 ∈ 𝐽, ∀𝑑 ∈ 𝐷, ∀𝑝 ∈ 𝑇 (20) 

𝑆𝑎𝑗𝑝 ≥ 0 ∀𝑎 ∈ 𝐴, ∀𝑗 ∈ 𝐽, ∀𝑝 ∈ 𝑇 (21) 

𝐿𝑆𝑑𝑝 ≥ 0 ∀𝑑 ∈ 𝐷, ∀𝑝 ∈ 𝑇 (22) 

Valid inequalities (23) and (24) connect the demand fulfillment variables with the opening decisions, and 

are added to improve solution times (Jena et al., 2015); e.g., such valid inequalities have reduced the 

computational time on other DFLPs by a ratio of 1.2-2 (Jardin et al., 2006).  

𝑊𝑎𝑗𝑑𝑝 ≤ ∑ 𝑍𝑎𝑗𝑧

𝑝

𝑧=max {1,(𝑝−𝑁𝑎+1)}

 ∀𝑗 ∈ 𝐽 ;   ∀𝑝 ∈ 𝑇 ; ∀𝑑 ∈ 𝐷;  ∀𝑎 ∈ 𝐴𝑐 (23) 

𝑊𝑎𝑗𝑑𝑝 ≤ 𝑍𝑎𝑗𝑝 ∀𝑗 ∈ 𝐽 ;   ∀𝑝 ∈ 𝑇; ∀𝑑 ∈ 𝐷; ∀𝑎 ∈ 𝐴0 (24) 

5. Description of the Design of Experiments 

Using representative input parameters from industry and a design of experiments (DOE), we provide new 

understanding of which DC alternatives should be selected when and where and quantify the influence of 

different factors on distribution network design with and without on-demand warehousing. The 
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optimization model presented in Section 4 is helpful as a strategic planning tool to determine facility 

alternative and location decisions, especially as deciding to build a DC or committing to a 3PL contract 

requires some lead time to implement. Like aggregate planning in manufacturing, these facility decisions 

(i.e., 𝑍𝑎𝑗𝑝 = 1 values) would be made using a forecast for demand across locations and time periods. We 

assess operational performance of this plan using a Monte Carlo simulation (see supplemental materials for 

details) that updates operational decision variables due to (i) demand variability or (ii) on-demand 

warehousing capacity variability (as there are no long-term contacts, the amount and location of on-demand 

warehousing capacity can vary period to period beyond what was expected). In the simulation, demand 

quantities (𝜆̿𝑑𝑝 ∀𝑑 ∈ 𝐷, ∀ 𝑝 ∈ 𝑇) and on-demand warehousing capacities (𝐾𝑎𝑗𝑝 ∀𝑎 ∈ 𝐴
𝑜 , ∀ 𝑗 ∈ 𝐽, ∀ 𝑝 ∈ 𝑇) 

are now random variables, which influences the units supplied, units delivered, demand ratios fulfilled, lost 

sales, and inventory levels. Due to insufficient capacity, a firm may need to return some inventory and these 

return costs are incorporated into the total cost values reported in the simulation.  

In the DOE, first, the deterministic optimization model is used to find optimal/near-optimal network 

designs for the first full factorial design given in Table 3-(1). Then each of these optimization solutions are 

evaluated operationally via a simulation model, with a second full factorial design conducted on factors in 

Table 3-(2). A full factorial set of experiments based on these factors requires 96 optimization runs and for 

each optimization run we run 32 simulation runs (based on a full factorial experiment for factors (2-1) 

through (2-5)), for a total of 3072 simulation runs. For each simulation run, we report results using 100 

replications.  
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Table 3: (1) Optimization and (2) Simulation Model Design of Experiment Factors and Levels 

No 
Factor  

(Short Description) 
Factor Level Definitions 

(1-1)  
On-demand Alternative 

(Opt_OnDemand) 

(OD) - With on-demand alternative 

(NOD) -Without on-demand alternative 

(1-2) 
Demand Trend 

(Opt_Trend) 

(TDown) - Increasing Demand (trend upwards) 𝑂𝑝𝑡_𝑇𝑟𝑒𝑛𝑑= +0.01 

(TNone) - No trends in demand 𝑂𝑝𝑡_𝑇𝑟𝑒𝑛𝑑= 0 

(TDown) - Decreasing Demand (trend downwards) 𝑂𝑝𝑡_𝑇𝑟𝑒𝑛𝑑 = -0.01 

(1-3) 
Seasonality 

(Opt_Season) 

(SNone) - No seasonal effect (𝑂𝑝𝑡𝑆𝑒𝑎𝑠𝑜𝑛𝑝 = 0   ∀𝑝 ∈ 𝑇 

(SMajor) - Major Seasonal effects 

based on quarters (𝑂𝑝𝑡𝑆𝑒𝑎𝑠𝑜𝑛𝑝) 

𝑂𝑝𝑡_𝑆𝑒𝑎𝑠𝑜𝑛𝑝= -4.70%   ∀𝑝 ∈ {1,5,9,13,17} 

𝑂𝑝𝑡_𝑆𝑒𝑎𝑠𝑜𝑛𝑝= -0.90%   ∀𝑝 ∈ {2,6,10,14,18} 

𝑂𝑝𝑡_𝑆𝑒𝑎𝑠𝑜𝑛𝑝= -1.30%   ∀𝑝 ∈ {3,7,11,15,19} 

𝑂𝑝𝑡_𝑆𝑒𝑎𝑠𝑜𝑛𝑝= 6.90%    ∀𝑝 ∈ {4,8,12,16,20} 

(1-4) 
Response requirement 

(Opt_Range) 

(100) miles range (same day delivery) 𝛼 = 100 

(250) miles range (one day delivery) 𝛼 = 250 

(1-5) 
3PL option capacity expansion 

(Opt_ ExtraCapacity) 

(NOC) - No capacity expansion 𝛽 = 0 

(OC) - Capacity expansion w/ penalty 
𝜌 = 0.2 

𝛽 = 0.1 

(1-6) 
Safety Stock 

(Opt_SafetyStock) 

(NSS) - No Safety stock at DC echelon 𝑆𝑆𝑝 = 0 ; ∀𝑝 ∈ 𝑇   

(SS) - Safety stock in DCs 𝑆𝑆𝑝 = 0.025∑ 𝜆𝑑𝑝
𝑑∈𝐷

; ∀𝑝 ∈ 𝑇 

 

(2-1) 
Demand Variability 

(Sim_DemandVariability) 

(0.1) - Low variability  𝑆𝑖𝑚_𝐷𝑒𝑚𝑎𝑛𝑑𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 0.10 

(0.3) - High variability 𝑆𝑖𝑚_𝐷𝑒𝑚𝑎𝑛𝑑𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 0.30 

(2-2) 
Time dependent forecast uncertainty 

(Sim_TimeVariability) 

(0) - Time independent 𝑆𝑖𝑚_𝑇𝑖𝑚𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 0 

(0.1) - Yes 𝑆𝑖𝑚_𝑇𝑖𝑚𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 0.10 

(2-3) 
New On-Demand alternative  

(Sim_NewOndemand) 

(0-NO) - No new on-demand DCs (only optimization results) 

(1-YES) - Allow additional on-demand DCs 

(2-4) 

New 3PL alternative capacity 

expansion  

(Sim_NewExtraCapacity) 

(0-NO) - No capacity expansion (only optimization results) 

(1-YES) - Allow additional capacity expansion for opened 3PL facilities 

(2-5) 

On-Demand alternative available 

capacity 

(Sim_OnDemandCapacity) 

(0-NO) - No capacity constraints 

(1-YES) - Variable Capacity  𝐾10𝑗𝑝 = 𝐾4𝑗𝑝𝑈[0,1] 

The factor (1-1)’s no on-demand decision (NOD) level is enforced in the optimization formulation 

with an additional constraint 𝑍10𝑗𝑝 = 0 ∀𝑗 ∈ 𝐽; ∀𝑝 𝑖𝑛 𝑇. The factors (1-4), (1-5) and (1-6) are tested by 

changing the input parameter values as given in Table 3-(1). To generate the demand quantities for the 

entire planning horizon (∀𝑝 ∈ 𝑇) at each demand location (∀𝑑 ∈ 𝐷), the optimization and simulation 

models use the initial demand input parameter based on city populations (see Section 6 for detailed 

calculations of 𝜆𝑑1) and equation (25). For a given demand location, the demand quantity is a function of 

its initial demand in the first period, adjusted for trends, seasonal factors, and variability (noise). Expected 
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demand forecast values, used in the optimization model, are created for different trend (1-2) and seasonality 

(1-3) factors using (25)-a. Specifically, the seasonality factors replicate the retail sector and emphasize the 

impact of the holiday season. Then the second part, denoted as (25)-b, incorporates demand variability (2-

1) and forecasting errors (2-2) factors and simulates demand uncertainty with a randomly generated 

coefficient (𝑈[−1,1]). For the optimization model, (25)-b is assumed to take on a value of zero, whereas 

in the simulation model, a random demand generation is created due to the Uniform random variable.  

𝜆𝑑𝑝 = 𝜆𝑑1  (1 +  𝑂𝑝𝑡_𝑇𝑟𝑒𝑛𝑑(𝑝 − 1) + 𝑂𝑝𝑡_𝑆𝑒𝑎𝑠𝑜𝑛𝑝⏟                          
𝑎

+ 

(𝑆𝑖𝑚_𝐷𝑒𝑚𝑎𝑛𝑑𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 𝑆𝑖𝑚_𝑇𝑖𝑚𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
𝑝

|𝑇|
 )𝑈[−1,1]

⏟                                          
𝑏

) ∀ 𝑑 ∈ 𝐷, ∀ 𝑝 ∈ 𝑇: 𝑝 > 1 

(25) 

𝑂𝑝𝑡_𝑇𝑟𝑒𝑛𝑑  : (1-2) trend; demand increase/decrease in each period  

𝑂𝑝𝑡_𝑆𝑒𝑎𝑠𝑜𝑛𝑝   : (1-3) seasonality factor for period 𝑝 (∀𝑝 ∈ 𝑇) 

𝑆𝑖𝑚_𝐷𝑒𝑚𝑎𝑛𝑑𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦  : (2-1) demand variability; uncertainty 

𝑆𝑖𝑚_𝑇𝑖𝑚𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 : (2-2) forecast error at the end of planning horizon (linearly increasing over time) 

𝑈[ ]    : uniform distribution  

The on-demand alternative capacity factor (2-5), used in the simulation, is based on the smallest 3PL 

alternative size.  The factors (2-3) and (2-4) consider whether new capacity decisions can be made period 

to period or if the firm must stick with the capacity decisions planned with the optimization model. The 

simulation model does not allow reducing planning capacities, i.e., opened facility locations and alternatives 

and extra capacity decisions determined by the optimization model are directly adopted. We do explore the 

impact of operationally obtaining on-demand DCs and 3PL extra capacity in addition to the planned 

capacity from the optimization model (see the factors in Table 3). Specifically, when the factor 

Sim_NewOndemand = 1, then if there is not enough capacity at an opened 3PL or self-distribution facility, 

a new on-demand DC is opened at that location and period (with this new capacity decision denoted as 

𝑍̿𝑎𝑗𝑝 ∀𝑎 ∈ 𝐴
𝑜 , 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑇). This adjusts the available in-bound capacity to include 𝑍̿𝑎𝑗𝑝𝐾̿𝑎𝑗𝑝. Further, if 

the factor Sim_NewExtraCapacity = 1, then new 3PL extra capacity is executed when there is insufficient 

3PL capacity at a location and period (and this new decision is denoted as 𝑂𝐶̿̿ ̿̿ 𝑎𝑗𝑝 ∀𝑎 ∈ 𝐴
𝑙 , 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑇). 
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This adjusts the available in-bound capacity to include 𝑂𝐶̿̿ ̿̿ 𝑎𝑗𝑝𝐾𝑎𝑗𝑝𝛽 and can occur only when and where 

the opened 3PL alternative with insufficient capacity had not planned to execute the extra capacity option. 

6. Description of Input Parameters 

We introduce our remaining input parameters, which are representative of a company that receives pallets 

of products produced outside of the US into the Newark, NJ port to fulfill the US Northeast region’s 

demand. Cost expressions capture DC and freight costs associated with storing, handling and delivery of a 

40x48 inch standard GMA pallet as the smallest stock-keeping unit (SKU). We use quarters as the periods 

and five years (20 periods) as the planning horizon. In the optimization model, the total demand is 

normalized for all instances. Therefore, regardless of the trend and seasonality factors, the total expected 

demand quantity for each location summed over the planning horizon is kept the same for all instances.  

DC Data: Alternatives, capacities, commitment durations, and costs used in the computational experiments 

are presented in Table 4. This represents ten total alternatives, with three capacity levels for self-

distribution, six for 3PL, and one uncapacitated on-demand alternative. As given in Table 4, these 

capacities are set based on a max capacity assumption as presented in equation (26). After generating the 

demand quantities for the model run, the maximum demand quantity over the entire planning horizon are 

summed over the demand locations and divided by 0.6P, where P is the minimum number of DCs required 

to cover all locations, found by solving a classical set covering model based on the selected response 

requirement 𝛼. To accommodate for spatial demand variations that require some DCs to need additional 

capacities to fulfill the requirements, we incorporate a safety coefficient of 0.6 when setting capacities.  

 max(𝐾) =  
∑ max

𝑝∈𝑇
(𝜆𝑑𝑝)d∈𝐷

0.6𝑃
 (26) 

For self-distribution alternatives, the commitment covers the entire planning horizon (20 periods or five 

years), whereas 3PL alternatives have a commitment of 4 quarters (one year), and the on-demand 

alternative’s commitment is one quarter (see Table 4). The DC cost input parameter values are calculated 

for each DC alternative using formulations, assumptions, and cost references in Unnu & Pazour, 2019. We 

assume alternative capacities and costs are the same for all locations over the entire planning horizon, and 
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thus we drop the index for location and period for the cost input parameters. We validate the cost relations 

between the alternatives and confirm that they incorporate the economies of scale and the ownership cost 

advantages (see supplemental materials for details).   

Table 4: Capacities and costs of the 10 alternatives used in the computational studies 

𝑎 Type Capacity (𝑲𝒂) Capacity  

(units) 

(𝑲𝒂) 

Commitment  

(period) 

(𝑵𝒂) 

Initial Costs 

($) 

(𝑭𝒂) 

Operational 

Costs 

($/period) 

(𝑹𝒂) 

Holding Costs 

($/period/unit) 

(𝑯𝒂) 

Handling 

Costs 

($/unit) 

(𝑮𝒂) 
1 Self 0.20 * Max(K) 10,000 20 1,030,000 368,550 0 0 

2 Self 0.50 * Max(K) 25,000 20 2,400,000 897,000 0 0 

3 Self Max(K) 50,000 20 4,700,000 1,691,000 0 0 

4 3PL 0.05 * Max(K) 2,500 4 7,000 115,000 0 6.33 

5 3PL 0.08 * Max(K) 4,000 4 8,100 175,000 0 6.00 

6 3PL 0.10 * Max(K) 5,000 4 8,900 210,000 0 5.67 

7 3PL 0.20 * Max(K) 10,000 4 13,000 405,000 0 5.33 

8 3PL 0.50 * Max(K) 25,000 4 24,500 975,000 0 5.00 

9 3PL Max(K) 50,000 4 45,000 1,900,000 0 4.33 

10 On-Demand Infinite Infinite 1 0 0 33.00 15.00 

Locations: The 49 metropolitan areas with populations more than 50,000 in the US Northeast region are 

used as demand points (US Census, 2018). The center of each of the metropolitan area is set as the center 

of its most populated county (US Census, 2019). The great-circle distances between the locations’ centers 

(𝜃𝑢1𝑢2), calculated with the Haversine formula, are used as surrogates for the transportation costs and are 

gathered from the US Census and National Bureau of Economic Research’s County Distance Databases 

(US Census, 2010; County distance database). One of US’s largest ports is located at Newark, NJ, and is 

used as a single supply point in our model (McCahill, 2017).  

To set candidate DC locations, we rely on the 14 publicly available locations of Amazon, Walmart 

and Target’s DCs in the Northeast US region. Two maximum ranges (∝) represent customer delivery 

expectations, with ∝=250 miles capturing next day delivery and ∝=100 miles capturing same day delivery. 

The feasibility of meeting these maximum range constraints using the 14 identified locations was tested 

using a set covering model with the 49 demand points being candidate locations and with an additional 

constraint to keep the identified 14 DC locations open. The set covering model solution required 3 

additional candidate DC locations (for the 100 miles range) and we adopted these 17 candidate locations in 

our models for both values of ∝. 
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Demand Quantity: The population of each metro (Metropolitan and Micropolitan Statistical Areas Totals, 

2019) divided by 1000 are used to set the initial demands 𝜆𝑑1 = (
𝑚𝑒𝑡𝑟𝑜 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

1000
).  

Freight Cost Data: Data from transportation resources (Lojistic, 2020; National van Rates, 2020; Keller, 

2017) are used to estimate freight costs based on truck deliveries. The inbound and outbound costs are 

different due to capacity utilization, number of stops on the route, and distances traveled. Inbound trucks 

are assumed, on average, 75% utilized, and trucks from DCs to demand locations are assumed 60% utilized 

(Mathers, 2015). A logistic practice is to use the weight cost or cost per unit delivery in addition to distance-

based costs to estimate the freight costs (2020 UPS Rate & Service Guide, 2019; FedEx Freight Zone-Based 

Rates, 2018). Accordingly, these values are used in our computational studies: 𝐶𝑖𝑗𝑝: 0.083 $/mile/unit, 

𝐶𝐹𝑖𝑗𝑝: 3.00 $/unit, 𝐸𝑗𝑑𝑝: 0.251 $/mile/unit, and 𝐸𝐹𝑗𝑑𝑝: 15.00 $/unit.  

Other Data: The lost sales cost (𝛾 ∗ 𝜑) is 200 $/unit, which is higher than the unit distribution cost, and 

thus in the optimization model, for all experiments, it will be optimal to have no lost sales. 

7. Computational Results 

This section summarizes the computational results from the previously introduced datasets, assumptions, 

and factor levels. The optimization models are solved with IBM ILOG CPLEX 12.9 with a maximum time 

limit based on the model characteristics.  The optimization solution times varied between 30 seconds up to 

of 22 hours and returned optimality gaps between 0% and 1.15%. All 96 optimization runs were solved 

using 154 hours of solve time. The simulation models are coded with Python 3.7.3 and results are based on 

100 replications per simulation run. 516 hours of computational time were required to solve the 3072 

simulation runs explained in Table 4. This number of replications is selected based on confidence interval 

calculations and variability analysis of the total distribution costs (see supplemental materials for details).  

Optimization Model Results  

Figure 1 provides the box plots of the optimization objective function values grouped by factor levels if the 

total distribution cost difference between factor levels was greater than one million dollars. Factors having 
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the largest impact at the planning stage are whether on-demand warehousing is considered or not, the 

response requirement range value, and whether safety stock is planned for or not.   

 
Figure 1: Optimization model factors’ box plots of the total distribution costs for factor levels that 

have a difference greater than or equal to $1Million.   

Utilizing the on-demand alternative yields nearly a 4% decrease, on average, in total planned 

distribution costs. The optimal decision variable values indicate that solely using on-demand warehousing 

to fulfill customer requests is not justified; instead, hybrid solutions, utilizing a mix of self-distribution, 

3PL, and on-demand alternatives, are recommended. Companies should consider on-demand warehousing 

(in addition to self distribution and 3PL facilities) when designing their distribution network to reduce total 

costs. To understand the reasons for the distribution cost differences, we analyze the average number of 

open facilities at each period by type. There are 17 candidate locations, with each location having the 

opportunity to open 10 alternatives (if the on-demand alternative is considered, and only 9 alternatives if 

on-demand warehousing is not considered). Therefore, considering on-demand warehousing, the 

optimization model has 170 candidate facilities across 17 locations available per period. As presented in 

Table 5, with the advent of on-demand warehousing, the average number of total open locations per period 

increased, both through use of on-demand facilities but also by increasing the number of self-distribution 

facilities. Yet, the reliance on lease facilities (at least with 3PL’s current commitment granularities and cost 

structures) decreased. 
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Table 5: The average number of open facilities per period and the transportation, DC and total 

costs of the optimization runs, segregated into when the on-demand alternative is not available 

(NOD) and when on-demand warehousing is available (OD) 

 Opt_OnDemand 
Average Number of Open Facilities per Period Transportation 

Costs 
DC Costs Total Costs 

Total Self 3PL On-demand 

NOD 10.08 2.52 7.56 0.00 94,106,294 58,095,684 152,201,978 

OD 12.00 2.92 2.63 6.45 94,673,816 51,691,326 146,365,142 

    Diff -0.60% 12.54% 3.99% 

When the number of facilities increases, we would traditionally expect an increase in total DC 

costs. However, with on-demand warehousing, the DC costs decrease by 12.54%, even though the number 

of facilities has increased, and on-demand warehousing has higher costs. This cost reduction is due to on-

demand warehouses being only opened for one period at a time, which creates more efficient demand 

fulfillment and better capacity utilization amongst the opened DCs (of all types). As presented in Table 6, 

with on-demand warehousing, the average capacity utilization for both self-distribution and 3PL 

alternatives increases (94% to 98% and 85% to 98%, respectively). Also, the demand fulfilled by self-

distribution increases (71% to 80%). Thus, on-demand warehousing’s reduced granularity enables better 

capacity utilization and decreased DC costs of the opened self-distribution and 3PL facilities.  

Table 6: Broken down by DC type, the optimization model results of total costs, percent demand 

fulfilled and capacity utilization, without and with on-demand warehousing.  

  Opt_OnDemand  
 Opt_OnDemand   Opt_OnDemand 

  NOD OD  
 NOD   OD 

  Total Costs 

 
 % Demand  Capacity 

Utilization   
% Demand  Capacity 

Utilization  Fulfilled Fulfilled 

  Diff  Self 3PL OnD Self 3PL   Self 3PL OnD Self 3PL 

Mean 152,201,978 146,365,142 5,836,836 3.99%   71% 29% 0% 94% 85%   80% 13% 7% 98% 98% 

StDev 4,883,296 981,810  4,432,216                 

As shown in Table 7, in scenarios with a maximum 100-mile range, using on-demand warehousing 

decreases the costs by 6.93% compared to when on-demand was not considered. Yet, the savings with on-

demand is only 1.03% with looser response requirements of 250-miles. Thus, on-demand warehousing has 

the most value when a firm has tight responsiveness requirements. For both response requirements, on-

demand warehousing changes the alternative selected, as well as how many and where facilities are located.   

Using on-demand warehousing in looser response requirement environments led to a greater increase in the 

average number of facilities opened per period than for the tighter response requirement environments.   
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Table 7: For both response requirements, the mean, min, and max open facilities per period and the 

optimization’s total costs, when on-demand is not available (NOD) versus available (OD).  

 
 Opt_OnDemand    

 NOD OD  

 
 

Open Facilities  

per Period Total Costs 

Open Facilities  

per Period Total Costs 
Diff 

  Mean Min Max Mean Min Max % Mean Stdev 

Opt 

Range 

100 13.1 12 16 156,944,553 13.2 12 17 146,778,733 6.93% 10,165,819 908,475 

250 7.1 5 11 147,459,403 10.8 7 17 145,951,551 1.03% 1,507,852 456,166 

 

 Diff 

% 6.43% 

Diff 

% 0.57%    

 Mean 9,485,150 Mean 827,182    

 Stdev 1,054,812 Stdev 224,552    

To observe how the optimization model decisions affect specific DC-to-demand location 

assignments, capacity utilization and costs, with and without on-demand warehousing, we examine an 

instance in detail. This instance has demand with a downward trend and seasonality, allows 3PL extra 

capacity at a premium, has safety stock depending on the number of open DCs, and a 100 miles maximum 

range. Figure 2 illustrates how demand is fulfilled differently with and without on-demand warehousing. 

Similar DC locations are selected, but different DC alternative combinations are used. Figure 3 illustrates 

that with the inclusion of on-demand warehousing, most of the 3PLs are replaced with on-demand 

alternatives and the number of self-distribution types also increased. As shown in Table 8, when we analyze 

DC type capacities and demand fulfillments over the planning horizon, the capacity utilization of 3PL 

option is 79% on average without the on-demand alternative. With on-demand warehousing, the 3PL 

capacity utilization increases to 95% and self-distribution to 99%. Thus, the on-demand alternative’s 

reduced granularity and commitment, allows for changing capacity levels over time that better match with 

demand requirements and enables better capacity utilization for the other DC alternative types. 

 
Figure 2: Location allocation decisions of a selected example 
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Table 8: Cost and demand fulfilment details of the selected example  
Without On-demand (NOD) With On-demand (OD) Diff 

DC Types Fulfilled Demand Capacity 

Utilization 

Fulfilled Demand Capacity 

Utilization 

 

Self-Distribution 633,243 60.8% 93% 825,994 79.3% 99%  

3PL  408,456 39.2% 79% 118,915 11.4% 95%  

On-Demand    96,790 9.3%   

Across all DC Types 1,041,700 100.0%  1,041,700 100.0%   

Total Costs 156,364,049 147,830,309 5.8% 

Transportation Costs 91,818,793 93,864,946 -2.2% 

DC Costs 64,545,256 53,965,363 19.6% 

 

 

 

Figure 3: DC type capacity, demand fulfilment and number of facilities per period of the selected 

example, with and without on-demand warehousing 
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Simulation Model Results 

To assess operational performance of the distribution networks created by our optimization model, in this 

section we analyze the mean total distribution cost from using 100 replications for each of the 3072 

simulation runs. Figure 4 presents box plots of the simulation’s mean total distribution costs between main 

factor levels that change available capacity; this includes in the planning stage whether on-demand 

warehousing as well as whether premium extra 3PL capacity was considered or not, as well as in the 

simulation whether new on-demand facilities could be opened, whether new extra 3PL capacity can be 

obtained, and whether on-demand capacity is available as planned.    

 
Figure 4: Boxplots of the simulation runs’ mean distribution cost values for factors that change 

available capacity  

Even when demand operationally varies from the estimates used to create the distribution network 

and only limited adjustments to the planned decisions are allowed, the presence of on-demand warehousing 

can decrease total distribution costs. Yet, in general, the impact is small. As we explore in this section, the 

business case for on-demand warehousing is influenced by several interactions.   

As displayed in Figure 5 (a), if there is a demand trend (opt_Trend - either upward or downward), 

using on-demand warehousing can reduce distribution costs. However, if no trend exists, traditional ways 

of obtaining distribution capacity are sufficient. Capacity sizing decisions, specifically whether to plan to 

obtain extra capacity over expected demand during the network design planning stage, is investigated 

through the safety stock factor (Opt_SafetyStock) in Figure 5 (b). If a company does not plan to use on-

demand warehousing in its distribution network, it is better not to incorporate an extra demand buffer (NSS 
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– No safety stock). This is because of the larger capacity granularities of the self-distribution and 3PL DCs, 

which already have a built-in capacity buffer due to their higher capacity granularities.  However, due to 

on-demand’s low capacity granularity and higher capacity utilization of 3PL and self-distribution options 

when on-demand is present, less of such buffers exist with hybrid distribution networks using on-demand 

warehousing. Therefore, firms planning to utilize on-demand alternatives are advised to incorporate an 

extra capacity buffer during distribution network design planning.   

 

 

 
(a) Demand Trend  (b) Safety Stock 

Figure 5:  Evaluation of the mean total costs with and without on-demand warehousing for (a) 

different demand trends, and (b) whether safety stock is considered at the planning stage or not. 

The business case for on-demand warehousing is influenced by a firm’s response requirements 

(Opt_Range) and whether on-demand capacity is always available when and where a firm needs it 

(Sim_OnDemandCapacity). Figure 6(a) displays the interaction effects of response requirements and 

whether the network is designed considering on-demand warehousing. If a firm has a tight service 

requirement (maximum 100-miles of service range), then on-demand warehousing is useful. However, if a 

company has less stringent response requirements of 250 miles, then on-demand warehousing’s higher per 

unit costs are not justified because the longer-range enables self-distribution and 3PL type DCs to better 

utilize their larger capacity granularities to serve multiple demand locations. On-demand warehousing does 

not have long-term contracts, resulting in a risk that the on-demand alternative is not always available period 

to period as planned. This risk is captured in the simulation factor, with Sim_OnDemandCapacity=1. If on-

demand warehousing needs are always met as planned (Sim_OnDemandCapacity=0), Figure 6(b) illustrates 

network designs with on-demand warehousing are beneficial in both response ranges, and the impact is 
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greater with tighter response times. Yet, as shown in Figure 6(c), when on-demand capacity is not always 

available (Sim_OnDemandCapacity=1), on-demand warehousing’s benefits are minor for tight response 

times, and not justified for relaxed response requirements.  

 

 
(a) (b) (c) 

Figure 6: Evaluation of mean total costs with and without on-demand warehousing and for 

different response requirements over (a) all simulation cases, (b) when on-demand warehousing is 

available as planned, and (c) when on-demand warehousing is not always available as planned.   

Finally, we analyze the impact of on-demand warehousing on the business model of 3PLs.  As 

shown in Figure 4, costs increase when firms use 3PLs extra capacity at a premium price if they do not 

have enough capacity to fulfill their demand (Sim_NewExtraCapacity=1). In Table 9, we display the mean 

total distribution costs for the different cases of obtaining extra capacity in the simulation. Planning and 

operating the distribution network without on-demand warehousing (opt_Ondemand=NOD, 

sim_newOndemand=NO) and adding 10% more 3PL capacity for a 20% premium cost, increases the 

overall distribution costs because the firm pays for unused premium capacity. As a reminder, the contract 

simulated was that 3PL capacity is increased by 10% once a unit arrives over the contracted amount. Such 

3PL premium capacity expansion clauses are found not cost effective for the lost sale parameters tested 

because of both the higher costs and the requirement of paying for 10% capacity, even when the firm does 

not need all this extra capacity. Without 3PL capacity expansions (Sim_NewExtraCapacity=0), and instead 

both planning the network to use on-demand warehousing and operationally having a firm add new on-

demand facilities if capacity is insufficient (opt_Ondemand=OD, sim_newOndemand=YES) are better at 

reducing costs and returns the lowest cost value in Table 9. 



Page 27 of Author Accepted Version for IISE Transactions (2022) 

doi = 10.1080/24725854.2021.2008066 

Table 9: The mean total costs of using 3PL premium capacity expansion or adding new on-demand 

warehousing, by whether the firm planned to use on-demand warehousing or not. (Highest and 

lowest values are shaded.)   
Opt 

OnDemand 

Sim 

NewOndemand 

Sim_NewExtraCapacity 

0 1 

NOD 
NO 183,034,724 184,006,420 

YES 182,364,909 183,856,086 

OD 
NO 182,533,362 183,036,588 

YES 182,047,985 182,919,942 

8. Conclusions and Future Research 

On-demand warehousing matches companies with underutilized warehouse and DC capabilities with 

customers who need extra space or distribution services. Via reduced capacity and commitment 

granularities, they create flexibility and increase responsiveness for customers, but also have different cost 

structures, with much higher variable per-pallet costs, than traditional types of DCs. Given these tradeoffs, 

this work is motivated by the following open question, “Is there a business case to be made for the use of 

on-demand warehousing, and if so, in what environments?” Answering this question requires development 

of a dynamic facility location model able to simultaneously consider the location and allocation decisions 

of three DC types (self-distribution, 3PL, on-demand). A mixed-integer linear program captures the three 

DC types’ varying commitment granularities, capacity reduction-expansion policies, and cost structures, 

across multiple periods and locations. Through a comprehensive design of experiments based on industry 

data, we evaluate the impact of having the on-demand alternative available.   

As the first quantitative approach to understanding when and how to utilize on-demand 

warehousing in a firm’s network design, we provide insights valuable to supply chain managers, especially 

those at companies receiving products produced outside of the US to fulfill a set of regional customer 

demands. Even with on-demand warehousing’s higher per unit costs, a company can reduce its distribution 

costs by adopting on-demand warehousing as part of its network design strategy. The power of on-demand 

warehousing’s reduced commitment and capacity granularity is in creating network designs that can meet 

tight response requirements and more efficiently use owned and 3PL/leased facilities through improved 

capacity utilization. Thus, on-demand warehousing can be a good supplement to more traditional forms of 

acquiring fulfillment services. With the advent of on-demand warehousing, we expect firms to increase the 
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number of DC locations, both using on-demand facilities but also by increasing the number of self-

distribution facilities. Companies planning to utilize on-demand warehousing should incorporate an extra 

capacity buffer during distribution network planning   

 Evaluating the network designs obtained from the optimization model using a simulation model to 

capture demand and on-demand warehousing capacity uncertainty, we find that the business case for on-

demand warehousing is influenced by several operational factors. With no long-term contracts, the 

availability of on-demand capacity where and when a firm needs it depends on the markets’ supply-demand 

relations. Therefore, a risk, which is not widely discussed in practice, is that the on-demand alternative may 

not always be available as planned. We recommend considering on-demand warehousing if your firm has 

tight response requirements, for example for same day delivery; however, if your firm has relaxed response 

requirements, then on-demand warehousing is only recommended if capacity availability of planned on-

demand services is high.  Lastly, 3PLs should consider offering more granular solutions to their customers 

to stay competitive in the market. 

This research opens several future research directions. The current model only captures truck 

delivery, future research can incorporate multiple transportation modes into the model. In addition to 

deciding what mode to select for each demand point and time period, an extended model could also relax 

the maximum range constraint, capturing different transportation mode costs in the objective function. The 

current optimization model is useful for planning, but additional tactical or operational models would be 

useful to adjust and adapt a firm’s network strategy to changes dynamically. Another direction is to 

incorporate the varying time of the different DC types required between a facility opening decision and the 

facility being operational. On-demand systems enable quick access to the market, which is a competitive 

advantage that should be captured in a dynamic model. Finally, future research also includes developing 

specialized solution methods and heuristics for large scale networks. These large-scale dynamic facility 

location problems could help to better model tight response requirements for national use cases.  
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1. Cost Structural Differences between different DC types. 

Supplemental Table 1: Cost Structures of the Different DC Types (Unnu & Pazour, 2019) 

Cost 

Type 

DC 

Type 

Initial Costs  

($) 

(𝑭𝒂𝒋𝒑) 

Operational Costs 

($/period) 

(𝑹𝒂𝒋𝒑) 

Holding Costs 

($/unit/period) 

(𝑯𝒂𝒋𝒑) 

Handling Costs 

($/unit) 

(𝑮𝒂𝒋𝒑) 

Self  

Distributi

on  

(𝑨𝒔) 

- Construction or 

acquisition 

- Equipment (handling, 

storage, etc.) 

- Closing costs, due 

diligence  

- Labor (direct labor, 

common, management, 

etc.) 

- Equipment rental (e.g. 

forklift) 

- Other charges 

(insurance, outsourced 

services, etc.) 

- - 

3PL  

(𝑨𝒍) 
- Security deposit, legal 

fees (contract review), 

account setup fees 

- Contractual payments 

per period 

- Other charges 

(insurance, outsourced 

services, etc.) 

- Variable (per use) 

handling costs 

On-

Demand  

(𝑨𝒐) 

- - Variable storage 

cost  

Variable (per use) 

handling costs 

 

Reference:  

Unnu, K., & Pazour, J. A. (2019). Analyzing varying cost structures of alternative warehouse strategies. 

Proc. of the 2019 IISE Annual Conf., 480–485. 
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2. Monte Carlo Simulation Model Description 

The optimization model presented in Section 4 is helpful as a strategic planning tool to determine facility 

alternative and location decisions, especially because deciding to build a DC or committing to a 3PL 

contract requires some lead time to implement. Like an aggregate planning problem in manufacturing, these 

facility decisions (i.e., 𝑍𝑎𝑗𝑝 = 1 values) would be made using a forecast for demand across locations and 

time periods. We assess operational performance of this plan using a Monte Carlo simulation that updates 

the remaining operational decision variables due to (i) demand variability or (ii) on-demand warehousing 

capacity variability (as there are no long-term contacts, the availability of on-demand warehousing capacity 

where and when a firm may want it can vary period to period beyond what was expected). Specifically, in 

the simulation, demand quantities (𝜆̿𝑑𝑝 ∀𝑑 ∈ 𝐷, ∀ 𝑝 ∈ 𝑇) and on-demand warehousing capacities 

(𝐾𝑎𝑗𝑝 ∀𝑎 ∈ 𝐴
𝑜, ∀ 𝑗 ∈ 𝐽, ∀ 𝑝 ∈ 𝑇) are now random variables. As we illustrate in Supplemental Figure 1, such 

uncertainty can result in a firm updating their units supplied, units delivered, demand ratios fulfilled, lost 

sales, and inventory levels.  Further, due to insufficient capacity, a firm may need to return some inventory 

back to supply locations, which requires introducing two additional variables, 𝑟𝑒𝑡𝑢𝑟𝑛𝐶̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿
𝑎𝑗𝑝  and 

𝑟𝑒𝑡𝑢𝑟𝑛𝑂𝑓𝑓̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿̿
𝑎̿𝑗𝑝.   

In all our experiments, if the optimization model sets 𝑍𝑎𝑗𝑝 = 1, then in the simulation model a 

facility of alternative a is opened in location j in period p and the available capacity associated with this 

decision is 𝐾𝑎𝑗𝑝.  Similarly, if the optimization has set 𝑂𝐶𝑎𝑗𝑝 = 1, then in the simulation model the extra 

capacity for a 3PL alternative a is executed in location j at period p, providing 𝐾𝑎𝑗𝑝𝛽 available capacity. 

For some of the computational factors (described in our design of experiments in Section 6), additional 

capacity can be made available in limited situations. Specifically, in the case of a period having insufficient 

capacity, we explore the value of a firm being able to add additional 3PL extra capacity options or to add 

additional on-demand warehousing options for that period.   
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Supplemental Figure 1: Simulation model decision flow chart.   

For each period 𝑝 ∈ 𝑇, the simulation takes the optimization model’s optimal decision variable 

values for DC opening, 3PL over capacity, inbound deliveries from supply location to DCs and demand 

fulfill ratios (𝑍𝑎𝑗𝑝, 𝑂𝐶𝑎𝑗𝑝, 𝑋𝑎𝑖𝑗𝑝 and 𝑊𝑎𝑗𝑑𝑝, respectively) as inputs. Then after observing values for the 

simulated demand (𝜆̿𝑑𝑝) and on-demand DC capacities (𝐾𝑎𝑗𝑝), an associated value for the simulated 
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decision variables: new inbound deliveries, new demand fulfilled ratios, inventory and lost sales (ratio of 

demand not fulfilled)  are calculated, and are denoted as  𝑋̿𝑎𝑖𝑗𝑝, 𝑊̿𝑎𝑗𝑑𝑝, 𝑆𝑎̿𝑗𝑝, and 𝐿𝑆̿̿ ̿𝑑𝑝, respectively.  

First, the simulation model checks the available capacity for each DC that is to receive products. 

The available capacity from the optimization model decisions for 3PL or self-distribution facilities is 

calculated using the right-hand side of constraint (3).  For the on-demand facilities, it is determined by the 

simulated random variable 𝐾𝑎𝑗𝑝. Further, depending on the factor value in the DOE (see Section 6), this 

available capacity may be further augmented to incorporate new 3PL extra capacity and new on-demand 

warehousing decisions.  If there is enough in-bound capacity remaining, then 𝑋̿𝑎𝑖′𝑗𝑝 = 𝑋𝑎𝑖′𝑗𝑝where the 

closest supply location is denoted as 𝑖′. Otherwise,  𝑋̿𝑎𝑖′𝑗𝑝 = 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 − 𝑆𝑎̿𝑗𝑝−1, with the 

excessive quantity shipped back to the closest supply location 𝑖′ using a new variable, 𝑟𝑒𝑡𝑢𝑟𝑛𝐶̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿
𝑎𝑗𝑝 =

𝑋𝑎𝑖′𝑗𝑝 − 𝑋̿𝑎𝑖′𝑗𝑝.  

For the outbound delivery, the simulation model initially tries to apply the 𝑊𝑎𝑗𝑑𝑝 ratios of the 

optimization model. If the simulated demand 𝜆̿𝑑𝑝 cannot be fulfilled completely due to insufficient available 

inventory levels at the facility, new 𝑊̿𝑎𝑗𝑑𝑝 values are calculated as 𝑊̿𝑎𝑗𝑑𝑝 =
𝑆𝑎̿𝑗𝑝−1+𝑋̿𝑎𝑖′𝑗𝑝

∑ 𝑊𝑎𝑗𝑑𝑝𝜆̿𝑑𝑝𝑑∈𝐷
𝑊𝑎𝑗𝑑𝑝. The loss 

sales are updated based on constraint (8). This process results in the lost sales being equally divided across 

all demand locations served by an inadequately supplied DC. We then calculate the inventories (𝑆𝑎̿𝑗𝑝) at 

the DC locations with the balance equation (12). If a DC reaches the end of its commitment period with 

any remaining inventory, the excess inventory is shipped back to the closest supply location using 

𝑟𝑒𝑡𝑢𝑟𝑛𝑂𝑓𝑓̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿̿
𝑎̿𝑗𝑝. The detailed sets, variables and calculations are presented in the supplemental materials 

simulation pseudocode section. The costs of the new 𝑟𝑒𝑡𝑢𝑟𝑛 decisions, as shown in S(27) and S(28), are 

added onto the objective function (1) and used to report total distribution costs from our simulation model.  

𝑟𝑒𝑡𝑢𝑟𝑛𝐶̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿
𝑎𝑗𝑝 :Total units shipped back to the closest supply location (denoted as 𝑖′) to location 𝑗  

due to insufficient capacity at an alternative 𝑎 DC at location 𝑗 at period 𝑝 

𝑟𝑒𝑡𝑢𝑟𝑛𝑂𝑓𝑓̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿̿
𝑎̿𝑗𝑝 : Total units shipped back to the closest supply location (denoted as 𝑖′) to location 

j due to closing of an alternative 𝑎 DC at location 𝑗 at period 𝑝.  
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 ∑∑∑𝑟𝑒𝑡𝑢𝑟𝑛𝐶̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿
𝑎𝑗𝑝

𝑝∈𝑇𝑗∈𝐽

(𝜃𝑖′𝑗𝐶𝑖′𝑗𝑝 + 𝐶𝐹𝑖′𝑗𝑝 + 𝐺𝑎𝑗𝑝)

𝑎∈𝐴

  S(27) 

 ∑∑∑𝑟𝑒𝑡𝑢𝑟𝑛𝑂𝑓𝑓̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿̿
𝑎̿𝑗𝑝

𝑝∈𝑇𝑗∈𝐽

(𝜃𝑖′𝑗𝐶𝑖′𝑗𝑝 + 𝐶𝐹𝑖′𝑗𝑝 + 𝐺𝑎𝑗𝑝)

𝑎∈𝐴

  S(28) 

 

  



Page 38 of Author Accepted Version for IISE Transactions (2022) 

doi = 10.1080/24725854.2021.2008066 

3. Data Input Validation to Confirm Economies of Scale and Ownership Cost Advantages 

The costs presented in Table 4 can change significantly based on various inputs. Therefore, we 

validate the cost relations between the alternatives and confirm that they incorporate the economies of scale 

and the ownership cost advantages. The cost input values are fed into equations S(29)-S(31) to estimate 

unit cost, 𝑈𝐶𝑎, of distribution alternative 𝑎, given in $ per unit per period. These costs are a function of the 

time a unit spends in a facility, and thus depend on inventory turns. Let 𝜓 denote the average number of 

turns per period.  Assuming 100% capacity utilization for self and 3PL alternatives and 𝜓 = 3 inventory 

turns per quarter in all DCs, then unit costs per period (quarter) and the relationship between alternatives’ 

input costs are presented in Supplemental Table 2. For example, economies of scale are seen in the self-

distribution alternatives, when the second largest capacity self-distribution alternative (a=2) has unit costs 

(𝑈𝐶2) which are 3% to 8% more compared to the largest self-distribution alternative (a=3, 𝑈𝐶3). Further, 

economies of ownership (when fully utilized) are captured, for example, the 3PL alternative (a=9) has unit 

costs that are 30% to 35% more compared to the same sized self-distribution alternative (a=3).    

Self-distribution  𝑈𝐶𝑎 =
1

𝐾𝑎
(
𝐹𝑎
𝑁𝑎
+ 𝑅𝑎)  ∀𝑎 ∈ 𝐴𝑠 S(29) 

3PL 𝑈𝐶𝑎 =
1

𝐾𝑎
(
𝐹𝑎
𝑁𝑎
+ 𝑅𝑎) + 𝜓 𝐺𝑎 ∀𝑎 ∈ 𝐴𝑙 S(30) 

On-Demand  𝑈𝐶𝑎 = 𝐻𝑎 + 𝜓 𝐺𝑎 ∀𝑎 ∈ 𝐴𝑜 S(31) 

 

 

 

 

 

 

 

 

 

 

Supplemental Table 2: Capacity and cost relationship input data validation of DC alternatives 
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𝒂 Type Cost per unit per period (𝑈𝐶𝑎) Cost per unit per period (quarter) 

(𝑈𝐶𝑎) 
1 Self Distribution 1  (𝑈𝐶2 ∗ 1.03) ≤ 𝑈𝐶1 ≤ (𝑈𝐶2 ∗ 1.08) 42.00 

2 Self Distribution 2 (𝑈𝐶3 ∗ 1.03) ≤ 𝑈𝐶2 ≤ (𝑈𝐶3 ∗ 1.08) 40.68 

3 Self Distribution 3 𝑈𝐶3 38.52 

4 3PL 1 (𝑈𝐶5 ∗ 1.03) ≤ 𝑈𝐶4 ≤ (𝑈𝐶5 ∗ 1.08) 65.70 

5 3PL 2 (𝑈𝐶6 ∗ 1.03) ≤ 𝑈𝐶5 ≤ (𝑈𝐶6 ∗ 1.08) 62.25 

6 3PL 3 (𝑈𝐶7 ∗ 1.03) ≤ 𝑈𝐶6 ≤ (𝑈𝐶7 ∗ 1.08) 59.46 

7 3PL 4 (𝑈𝐶8 ∗ 1.03) ≤ 𝑈𝐶7 ≤ (𝑈𝐶8 ∗ 1.08) 56.82 

8 3PL 5 (𝑈𝐶9 ∗ 1.03) ≤ 𝑈𝐶8 ≤ (𝑈𝐶9 ∗ 1.08) 54.24 

9 3PL 6 (𝑈𝐶3 ∗ 1.30) ≤ 𝑈𝐶9 ≤ (𝑈𝐶3 ∗ 1.35) 51.24 

10 On-demand (𝑈𝐶4 ∗ 1.15) ≤ 𝑈𝐶10 ≤ (𝑈𝐶4 ∗ 1.20) 78.00 
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4. Additional Simulation Results 

Supplemental Figure 2 presents the confidence intervals calculated based on the samples selected from 

the simulation replicates with bootstrapping method (5000 times random selection with replacement). This 

graph shows that the variability of simulation result decrease over the number of simulation replicates and 

we decided to use 100 replicates for our simulation models which appears to be adequate. 

 

Supplemental Figure 2: Simulation Replicate Adequacy 

 

Supplemental Figure 3 presents the total distribution costs from the 96 optimization and the 307,200 

simulation outputs. As expected, the optimization values are smaller than the related replications from the 

simulation models. 



Page 41 of Author Accepted Version for IISE Transactions (2022) 

doi = 10.1080/24725854.2021.2008066 

 

Supplemental Figure 3: The total distribution costs for each of the optimization runs and 

simulation replications.   
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5. Reproducibility Report 

1. Metadata 

Manuscript Title: Evaluating on-demand warehousing via dynamic facility location models 

Manuscript ID (if available): UIIE-6397.R1 

Authors: Kaan Unnu and Jennifer Pazour 

 

2. Data availability 

 

__________ A. Either no data are used in this study or all data used are included in the main text or 

supplemental materials. 

 

___X_______ B. The data used in this study is publicly available at the following website  

   

https://jenpazour.wordpress.com/research-2/ 

 

__________ C.  The data used in this study is not yet publically available but will be made publically 

available at the time of paper acceptance** or will be made publically available subject 

to an embargo period of ____ years, counting from the time of paper acceptance.  If an 

embargo period is invoked, please explain the reason for embargo.  

   

__________ D.  The data used in this study is not and will not be made publically available due to the 

following reason(s).  Please present the reason(s). 

 

3. Data use ethics 

__________ My choice in Section 2 is (A). 

 

___X_______ I certify that the authors have the legitimate access to the data and that nothing in the 

provisions governing the use of the data prohibits the authors from using the data in this 

research. 

 

4.  Computer code# availability 

__________ A.  Either no computer code is used in this study or the settings used in software are fully 

described in the main text or supplemental materials. 

 

___X_______ B.The computer code used in this study is publically available at the following website.  

https://jenpazour.wordpress.com/research-2/ 

 

__________ C.  The computer used in this study is not publically yet available but will be made 

publically available at the time of paper acceptance or will be made publically available 

subject to an embargo period of ____ years, counting from the time of paper 

acceptance.  Please describe where to make the data publically available.  If an 

embargo period is invoked, please explain the reason for embargo. 

__________ D.  The computer code used in this study is not and will not be made publically available 

due to the following reason(s).  Please present the reason(s). 

 

 

 

 

 

https://jenpazour.wordpress.com/research-2/
https://jenpazour.wordpress.com/research-2/
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5.  Reproducibility  

 

5.1 Computer and software environment 

Please describe the computer hardware conditions and software environment on which the authors 

produce the results reported in the paper. 

 

The optimization models are solved with IBM ILOG CPLEX 12.9 with a maximum time limit based on 

the model characteristics.  The optimization solution times varied between 30 seconds up to of 22 hours 

and returned optimality gaps between 0% and 1.15%. All 96 optimization runs were solved using 154 

hours of solve time. The simulation models are coded with Python 3.7.3 and results are based on 100 

replications per simulation run.  516 hours of computational time were required to solve the 3072 

simulation runs explained in Table 4. 

 

5.2 Workflow 

Which results 

to reproduce 
Data File Code File 

Expected 

output 

CPLEX 

Optimization 

Runs 

1_TUp_SNone_VNone.dat 

2_TUp_SMajor_VNone.dat 

3_TNone_SNone_VNone.dat 

4_TNone_SMajor_VNone.dat 

5_TDown_SNone_VNone.dat 

6_TDown_SMajor_VNone.dat 

 

ScenarioSet.xlsx 

1_OD_100_NOC_NSS.mod 

2_OD_100_NOC_SS.mod 

3_OD_100_OC_NSS.mod 

4_OD_100_OC_SS.mod 

5_OD_250_NOC_NSS.mod 

6_OD_250_NOC_SS.mod 

7_OD_250_OC_NSS.mod 

8_OD_250_OC_SS.mod 

9_NOD_100_NOC_NSS.mod 

10_NOD_100_NOC_SS.mod 

11_NOD_100_OC_NSS.mod 

12_NOD_100_OC_SS.mod 

13_NOD_250_NOC_NSS.mod 

14_NOD_250_NOC_SS.mod 

15_NOD_250_OC_NSS.mod 

16_NOD_250_OC_SS.mod 

Optimization, 

and decision 

variables 

(see example 

folder) 

Simulation 

runs based on 

optimization 

results  

Optimization outputs and 

ScenarioSet.xlsx 

 

 

Simulation.py  

(simulation model) 

 

SimulationRunner.py (automates 

simulation runs and automatically 

changes the factor levels) 

Simulation 

results, and 

plots 

(see example 

folder) 
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Simulation Model Pseudocode 

Input: Sets, parameters and decision variable results of the optimization model 

𝑍̿𝑎𝑗𝑝 ← 𝑍𝑎𝑗𝑝 

𝒇𝒐𝒓 ⟨𝑎, 𝑗, 𝑝⟩ 𝑖𝑛 (𝑍𝑎𝑗𝑝 = 1      ∀𝑎 ∈ 𝐴, ∀𝑗 ∈ 𝐽, ∀𝑝 ∈ 𝑇) 

𝒇𝒐𝒓 𝑡 𝑖𝑛 [𝑝, (𝑝 + 𝑁𝑎)]: 𝑍𝑎𝑗𝑡
′ ← 1 

𝒇𝒐𝒓 rep = 1 to Number of Replicates: 

𝑋̿𝑖𝑎𝑗𝑝, 𝑊̿𝑎𝑗𝑑𝑝, 𝑆𝑎̿𝑗0, 𝑆𝑎̿𝑗𝑝, 𝐿𝑆̿̿ ̿𝑑𝑝, 𝑂𝐶̿̿ ̿̿ 𝑎𝑗𝑝 ← 0   ∀𝑖 ∈ 𝐼; ∀𝑑 ∈ 𝐷; ∀𝑝 ∈ 𝑇; ∀𝑗 ∈ 𝐽; ∀𝑎 ∈ 𝐴 

𝐾𝑎𝑗𝑝 = 𝐾𝑎𝑗𝑝 ∀𝑎 ∈ 𝐴; ∀𝑗 ∈ 𝐽; ∀𝑝 ∈ 𝑇 

𝑟𝑒𝑡𝑢𝑟𝑛𝐶𝑎𝑗𝑝 , 𝑟𝑒𝑡𝑢𝑟𝑛𝑂𝑓𝑓𝑎𝑗𝑝 ← 0  ∀𝑎 ∈ 𝐴; ∀𝑗 ∈ 𝐽; ∀𝑝 ∈ 𝑇 

𝒇𝒐𝒓 𝑡 = 1 to |T|: 

𝒊𝒇 demand variability = low 𝒕𝒉𝒆𝒏 

𝜆̿𝑑𝑡 = 𝜆𝑑𝑡(1 + (𝑈𝑛𝑖[−0.1, 0.1])  ∀𝑑 ∈ 𝐷 

𝒆𝒏𝒅𝒊𝒇  

𝒊𝒇 demand variability = high 𝒕𝒉𝒆𝒏 

𝜆̿𝑑𝑡 = 𝜆𝑑𝑡(1 + (𝑈𝑛𝑖[−0.3, 0.3])  ∀𝑑 ∈ 𝐷  
𝒆𝒏𝒅𝒊𝒇  

𝒊𝒇 forecast variability = yes 𝒕𝒉𝒆𝒏 

𝜆̿𝑑𝑡 = 𝜆̿𝑑𝑡  (1 + (𝑈𝑛𝑖[−0.1, 0.1] ∗
𝑡

|𝑇|
)) ∀𝑑 ∈ 𝐷 

𝒆𝒏𝒅𝒊𝒇  

𝒊𝒇 on-demand capacity = yes 𝒕𝒉𝒆𝒏 

𝐾10𝑗𝑡 = 𝐾4𝑗𝑡 . 𝑈𝑛𝑖[0,1] ∀𝑗 ∈ 𝐽 

𝒆𝒏𝒅𝒊𝒇  

𝑋̿𝑖𝑎𝑗𝑡 ← 𝑋𝑖𝑎𝑗𝑡 ∀𝑑 ∈ 𝐷; ∀𝑗 ∈ 𝐽; ∀𝑎 ∈ 𝐴 

𝑂𝐶̿̿ ̿̿ 𝑎𝑗𝑡 ← 𝑂𝐶𝑎𝑗𝑡 ∀𝑑 ∈ 𝐷; ∀𝑗 ∈ 𝐽; ∀𝑎 ∈ 𝐴 

𝒊𝒇 𝑡 ≠ |𝑇|𝒕𝒉𝒆𝒏 

𝒇𝒐𝒓 𝑎 𝑖𝑛 𝐴 

𝒇𝒐𝒓 𝑗 𝑖𝑛 𝐽   

𝑝𝑟𝑒𝑣𝑖𝑛𝑣 ←  𝑆𝑎̿𝑗𝑡−1  

𝑎𝑣𝑎𝑖𝑙𝑐𝑎𝑝 ← (𝐾𝑎𝑗𝑡(1 + 𝑂𝐶̿̿ ̿̿ 𝑎𝑗𝑡𝛽) − 𝑝𝑟𝑒𝑣𝑖𝑛𝑣),  

𝑡𝑚𝑝𝑟𝑒𝑐 ←∑𝑋𝑖𝑎𝑗𝑡
𝑖∈𝐼

 

𝑡𝑚𝑝𝑑𝑒𝑙 ← ∑𝑊𝑎𝑗𝑑𝑡𝜆̿𝑑𝑡
𝑑∈𝐷

 

𝒊𝒇 (𝑡𝑚𝑝𝑑𝑒𝑙 + 𝑡𝑚𝑝𝑟𝑒𝑐 ≥ 0) 𝒕𝒉𝒆𝒏  

𝒊𝒇 (𝑎𝑣𝑎𝑖𝑙𝑐𝑎𝑝 ≥ 𝑡𝑚𝑝𝑟𝑒𝑐) 𝒕𝒉𝒆𝒏 

𝒊𝒇 𝑡𝑚𝑝𝑑𝑒𝑙 ≤  (𝑡𝑚𝑝𝑟𝑒𝑐 + 𝑝𝑟𝑒𝑣𝑖𝑛𝑣)  𝒕𝒉𝒆𝒏 

𝒇𝒐𝒓 𝑑 𝑖𝑛 𝐷: 𝑊̿𝑎𝑗𝑑𝑡 ← 𝑊𝑎𝑗𝑑𝑡 

𝒊𝒇 𝑍𝑎𝑗𝑡+1
′ = 1 𝒕𝒉𝒆𝒏 

𝒊𝒇 (𝑡𝑚𝑝𝑟𝑒𝑐 −  𝑡𝑚𝑝𝑑𝑒𝑙 +  𝑝𝑟𝑒𝑣𝑖𝑛𝑣 > 𝐾𝑎𝑗𝑡+1)𝒕𝒉𝒆𝒏 

𝑆𝑎̿𝑗𝑡 ← 𝐾𝑎𝑗𝑡+1 

𝑟𝑒𝑡𝑢𝑟𝑛𝐶𝑎𝑗𝑝 ← 𝑚𝑝𝑟𝑒𝑐 −  𝑡𝑚𝑝𝑑𝑒𝑙 +  𝑝𝑟𝑒𝑣𝑖𝑛𝑣 − 𝐾𝑎𝑗𝑡+1 

𝒆𝒍𝒔𝒆 

𝑆𝑎̿𝑗𝑡 ← (𝑡𝑚𝑝𝑟𝑒𝑐 −  𝑡𝑚𝑝𝑑𝑒𝑙 +  𝑝𝑟𝑒𝑣𝑖𝑛𝑣) 

𝒆𝒏𝒅𝒊𝒇 
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𝒆𝒍𝒔𝒆 

𝑆𝑎̿𝑗𝑡 ← 0  

𝑟𝑒𝑡𝑢𝑟𝑛𝑂𝑓𝑓𝑎𝑗𝑡 ← (𝑡𝑚𝑝𝑟𝑒𝑐 −  𝑡𝑚𝑝𝑑𝑒𝑙 +  𝑝𝑟𝑒𝑣𝑖𝑛𝑣) 

𝒆𝒏𝒅𝒊𝒇 

𝒆𝒍𝒔𝒆 

𝒇𝒐𝒓 𝑑 𝑖𝑛 𝐷: 𝑊̿𝑎𝑗𝑑𝑡 ← (𝑊𝑎𝑗𝑑𝑡  ∗
𝑡𝑚𝑝𝑟𝑒𝑐 + 𝑝𝑟𝑒𝑣𝑖𝑛𝑣

𝑡𝑚𝑝𝑑𝑒𝑙
) 

𝑆𝑎̿𝑗𝑡 ← 0 

𝒆𝒏𝒅𝒊𝒇 

𝒆𝒍𝒔𝒆 

𝒊𝒇 (𝑎 ∈ 𝐴𝑙) & (𝑂𝐶̿̿ ̿̿ 𝑎𝑗𝑡 = 0) & (overcapacity open = yes) 𝒕𝒉𝒆𝒏 

𝑂𝐶̿̿ ̿̿ 𝑎𝑗𝑡 ← 1  

𝑎𝑣𝑎𝑖𝑙𝑐𝑎𝑝 ← (𝐾𝑎𝑗𝑡(1 + 𝑂𝐶̿̿ ̿̿ 𝑎𝑗𝑡𝛽) − 𝑝𝑟𝑒𝑣𝑖𝑛𝑣) 

𝒊𝒇 (𝑎𝑣𝑎𝑖𝑙𝑐𝑎𝑝 < 𝑡𝑚𝑝𝑟𝑒𝑐) 𝒕𝒉𝒆𝒏 

𝒇𝒐𝒓 𝑖 𝑖𝑛 𝐼: 𝑋̿𝑖𝑎𝑗𝑡 ← (𝑋𝑖𝑎𝑗𝑡 ∗
𝑎𝑣𝑎𝑖𝑙𝑐𝑎𝑝

𝑡𝑚𝑝𝑟𝑒𝑐
) 

𝑡𝑚𝑝𝑟𝑒𝑐2 ←∑𝑋̿𝑖𝑎𝑗𝑡
𝑖∈𝐼

 

𝒊𝒇 𝑡𝑚𝑝𝑑𝑒𝑙 ≤  (𝑡𝑚𝑝𝑟𝑒𝑐2 + 𝑝𝑟𝑒𝑣𝑖𝑛𝑣) 𝒕𝒉𝒆𝒏 

𝒇𝒐𝒓 𝑑 𝑖𝑛 𝐷: 𝑊̿𝑎𝑗𝑑𝑡 ← 𝑊𝑎𝑗𝑑𝑡 

𝒊𝒇 𝑍𝑎𝑗𝑡+1
′ = 1 𝒕𝒉𝒆𝒏 

𝑆𝑎̿𝑗𝑡 ← (𝑡𝑚𝑝𝑟𝑒𝑐2  −  𝑡𝑚𝑝𝑑𝑒𝑙 +  𝑝𝑟𝑒𝑣𝑖𝑛𝑣) 

𝒆𝒍𝒔𝒆 

𝑆𝑎̿𝑗𝑡 ← 0   

𝑟𝑒𝑡𝑢𝑟𝑛𝑂𝑓𝑓𝑎𝑗𝑡 ← (𝑡𝑚𝑝𝑟𝑒𝑐2  −  𝑡𝑚𝑝𝑑𝑒𝑙 +  𝑝𝑟𝑒𝑣𝑖𝑛𝑣) 

𝒆𝒏𝒅𝒊𝒇 

𝒆𝒍𝒔𝒆 

𝒇𝒐𝒓 𝑑 𝑖𝑛 𝐷: 𝑊̿𝑎𝑗𝑑𝑡 ← (𝑊𝑎𝑗𝑑𝑡  ∗
𝑡𝑚𝑝𝑟𝑒𝑐2 + 𝑝𝑟𝑒𝑣𝑖𝑛𝑣

𝑡𝑚𝑝𝑑𝑒𝑙
) 

𝑆𝑎̿𝑗𝑡 ← 0 

𝒆𝒏𝒅𝒊𝒇 

𝑟𝑒𝑡𝑢𝑟𝑛𝐶𝑎𝑗𝑡 ← 𝑡𝑚𝑝𝑟𝑒𝑐 − 𝑡𝑚𝑝𝑟𝑒𝑐2 

𝒆𝒏𝒅𝒊𝒇 

𝒊𝒇 (𝑎𝑣𝑎𝑖𝑙𝑐𝑎𝑝 ≥ 𝑡𝑚𝑝𝑟𝑒𝑐) 𝒕𝒉𝒆𝒏 

𝒊𝒇 𝑡𝑚𝑝𝑑𝑒𝑙 ≤  (𝑡𝑚𝑝𝑟𝑒𝑐 + 𝑝𝑟𝑒𝑣𝑖𝑛𝑣) 𝒕𝒉𝒆𝒏 

𝒇𝒐𝒓 𝑑 𝑖𝑛 𝐷: 𝑊̿𝑎𝑗𝑑𝑡 ← 𝑊𝑎𝑗𝑑𝑡 

𝒊𝒇 𝑍𝑎𝑗𝑡+1
′ = 1 𝒕𝒉𝒆𝒏 

𝒊𝒇 (𝑡𝑚𝑝𝑟𝑒𝑐 −  𝑡𝑚𝑝𝑑𝑒𝑙 +  𝑝𝑟𝑒𝑣𝑖𝑛𝑣 > 𝐾𝑎𝑗𝑡+1)𝒕𝒉𝒆𝒏 

𝑆𝑎̿𝑗𝑡 ← 𝐾𝑎𝑗𝑡+1 

𝑟𝑒𝑡𝑢𝑟𝑛𝐶𝑎𝑗𝑝 ← 𝑚𝑝𝑟𝑒𝑐 −  𝑡𝑚𝑝𝑑𝑒𝑙 +  𝑝𝑟𝑒𝑣𝑖𝑛𝑣

− 𝐾𝑎𝑗𝑡+1 

𝒆𝒍𝒔𝒆 

𝑆𝑎̿𝑗𝑡 ← (𝑡𝑚𝑝𝑟𝑒𝑐 −  𝑡𝑚𝑝𝑑𝑒𝑙 +  𝑝𝑟𝑒𝑣𝑖𝑛𝑣) 

𝒆𝒏𝒅𝒊𝒇 

𝒆𝒍𝒔𝒆 



Page 46 of Author Accepted Version for IISE Transactions (2022) 

doi = 10.1080/24725854.2021.2008066 

𝑆𝑎̿𝑗𝑡 ← 0,   

𝑟𝑒𝑡𝑢𝑟𝑛𝑂𝑓𝑓𝑎𝑗𝑡 ← (𝑡𝑚𝑝𝑟𝑒𝑐 −  𝑡𝑚𝑝𝑑𝑒𝑙 +  𝑝𝑟𝑒𝑣𝑖𝑛𝑣) 

𝒆𝒏𝒅𝒊𝒇 

𝒆𝒍𝒔𝒆 

𝒇𝒐𝒓 𝑑 𝑖𝑛 𝐷: 𝑊̿𝑎𝑗𝑑𝑡 ← (𝑊𝑎𝑗𝑑𝑡  ∗
𝑡𝑚𝑝𝑟𝑒𝑐 + 𝑝𝑟𝑒𝑣𝑖𝑛𝑣

𝑡𝑚𝑝𝑑𝑒𝑙
) 

𝑆𝑎̿𝑗𝑡 ← 0 

𝒆𝒏𝒅𝒊𝒇 

𝒆𝒏𝒅𝒊𝒇 

𝒆𝒏𝒅𝒊𝒇 

 

𝒊𝒇 (𝑎 ∈ 𝐴𝑙) & (𝑂𝐶̿̿ ̿̿ 𝑎𝑗𝑡 = 0) & (overcapacity open = no) 𝒕𝒉𝒆𝒏 

𝒇𝒐𝒓 𝑖 𝑖𝑛 𝐼: 𝑋̿𝑖𝑎𝑗𝑡 ← (𝑋𝑖𝑎𝑗𝑡 ∗
𝑎𝑣𝑎𝑖𝑙𝑐𝑎𝑝

𝑡𝑚𝑝𝑟𝑒𝑐
) 

𝑡𝑚𝑝𝑟𝑒𝑐2 ←∑𝑋̿𝑖𝑎𝑗𝑡
𝑖∈𝐼

 

𝒊𝒇 𝑡𝑚𝑝𝑑𝑒𝑙 ≤  (𝑡𝑚𝑝𝑟𝑒𝑐2 + 𝑝𝑟𝑒𝑣𝑖𝑛𝑣) 𝒕𝒉𝒆𝒏 

𝒇𝒐𝒓 𝑑 𝑖𝑛 𝐷: 𝑊̿𝑎𝑗𝑑𝑡 ← 𝑊𝑎𝑗𝑑𝑡 

𝒊𝒇 𝑍𝑎𝑗𝑡+1
′ = 1 𝒕𝒉𝒆𝒏 

𝑆𝑎̿𝑗𝑡 ← (𝑡𝑚𝑝𝑟𝑒𝑐2  −  𝑡𝑚𝑝𝑑𝑒𝑙 +  𝑝𝑟𝑒𝑣𝑖𝑛𝑣) 

𝒆𝒍𝒔𝒆 

𝑆𝑎̿𝑗𝑡 ← 0, 𝑟𝑒𝑡𝑢𝑟𝑛𝑂𝑓𝑓𝑎𝑗𝑡
← (𝑡𝑚𝑝𝑟𝑒𝑐2  −  𝑡𝑚𝑝𝑑𝑒𝑙 +  𝑝𝑟𝑒𝑣𝑖𝑛𝑣) 

𝒆𝒏𝒅𝒊𝒇 

𝒆𝒍𝒔𝒆 

𝒇𝒐𝒓 𝑑 𝑖𝑛 𝐷: 𝑊̿𝑎𝑗𝑑𝑡 ← (𝑊𝑎𝑗𝑑𝑡  ∗
𝑡𝑚𝑝𝑟𝑒𝑐2 + 𝑝𝑟𝑒𝑣𝑖𝑛𝑣

𝑡𝑚𝑝𝑑𝑒𝑙
) 

𝑆𝑎̿𝑗𝑡 ← 0 

𝒆𝒏𝒅𝒊𝒇 

𝑟𝑒𝑡𝑢𝑟𝑛𝐶𝑎𝑗𝑡 ← 𝑡𝑚𝑝𝑟𝑒𝑐 − 𝑡𝑚𝑝𝑟𝑒𝑐2 

𝒆𝒏𝒅𝒊𝒇 

𝒆𝒏𝒅𝒊𝒇 

𝒆𝒏𝒅𝒊𝒇 

𝒊𝒇 𝑡 = |𝑇|𝒕𝒉𝒆𝒏 

𝒇𝒐𝒓 𝑎 𝑖𝑛 𝐴 

𝒇𝒐𝒓 𝑗 𝑖𝑛 𝐽   

𝑝𝑟𝑒𝑣𝑖𝑛𝑣 ←  𝑆𝑎̿𝑗𝑡−1, 𝑎𝑣𝑎𝑖𝑙𝑐𝑎𝑝 ← (𝐾𝑎𝑗𝑡(1 + 𝑂𝐶̿̿ ̿̿ 𝑎𝑗𝑡𝛽) − 𝑝𝑟𝑒𝑣𝑖𝑛𝑣),  

𝑡𝑚𝑝𝑟𝑒𝑐 ←∑𝑋

𝑖∈𝐼 𝑖𝑎𝑗𝑡

, 𝑡𝑚𝑝𝑑𝑒𝑙 ← ∑𝑊𝑎𝑗𝑑𝑡𝜆̿𝑑𝑡
𝑑∈𝐷

 

𝒊𝒇 (𝑡𝑚𝑝𝑑𝑒𝑙 + 𝑡𝑚𝑝𝑟𝑒𝑐 ≥ 0) 𝒕𝒉𝒆𝒏  

𝒊𝒇 (𝑎𝑣𝑎𝑖𝑙𝑐𝑎𝑝 ≥ 𝑡𝑚𝑝𝑟𝑒𝑐) 𝒕𝒉𝒆𝒏 

𝒊𝒇 𝑡𝑚𝑝𝑑𝑒𝑙 ≤  (𝑡𝑚𝑝𝑟𝑒𝑐 + 𝑝𝑟𝑒𝑣𝑖𝑛𝑣)  𝒕𝒉𝒆𝒏 

𝒇𝒐𝒓 𝑑 𝑖𝑛 𝐷: 𝑊̿𝑎𝑗𝑑𝑡 ← 𝑊𝑎𝑗𝑑𝑡 

𝑆𝑎̿𝑗𝑡 ← 0, 𝑟𝑒𝑡𝑢𝑟𝑛𝑂𝑓𝑓𝑎𝑗𝑡 ← (𝑡𝑚𝑝𝑟𝑒𝑐 −  𝑡𝑚𝑝𝑑𝑒𝑙 +  𝑝𝑟𝑒𝑣𝑖𝑛𝑣) 

𝒆𝒍𝒔𝒆 
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𝒇𝒐𝒓 𝑑 𝑖𝑛 𝐷: 𝑊̿𝑎𝑗𝑑𝑡 ← (𝑊𝑎𝑗𝑑𝑡  ∗
𝑡𝑚𝑝𝑟𝑒𝑐 + 𝑝𝑟𝑒𝑣𝑖𝑛𝑣

𝑡𝑚𝑝𝑑𝑒𝑙
) 

𝑆𝑎̿𝑗𝑡 ← 0 

𝒆𝒏𝒅𝒊𝒇 

𝒊𝒇 (𝑎𝑣𝑎𝑖𝑙𝑐𝑎𝑝 < 𝑡𝑚𝑝𝑟𝑒𝑐) 𝒕𝒉𝒆𝒏 

𝒊𝒇 (𝑎 ∈ 𝐴𝑙) & (𝑂𝐶̿̿ ̿̿ 𝑎𝑗𝑡 = 0) & (overcapacity open = yes) 𝒕𝒉𝒆𝒏 

𝑂𝐶̿̿ ̿̿ 𝑎𝑗𝑡 ← 1  

𝑎𝑣𝑎𝑖𝑙𝑐𝑎𝑝 ← (𝐾𝑎𝑗𝑡(1 + 𝑂𝐶̿̿ ̿̿ 𝑎𝑗𝑡𝛽) − 𝑝𝑟𝑒𝑣𝑖𝑛𝑣) 

𝒊𝒇 (𝑎𝑣𝑎𝑖𝑙𝑐𝑎𝑝 < 𝑡𝑚𝑝𝑟𝑒𝑐) 𝒕𝒉𝒆𝒏 

𝒇𝒐𝒓 𝑖 𝑖𝑛 𝐼: 𝑋̿𝑖𝑎𝑗𝑡 ← (𝑋𝑖𝑎𝑗𝑡 ∗
𝑎𝑣𝑎𝑖𝑙𝑐𝑎𝑝

𝑡𝑚𝑝𝑟𝑒𝑐
) 

𝑡𝑚𝑝𝑟𝑒𝑐2 ←∑𝑋̿𝑖𝑎𝑗𝑡
𝑖∈𝐼

 

𝒊𝒇 𝑡𝑚𝑝𝑑𝑒𝑙 ≤  (𝑡𝑚𝑝𝑟𝑒𝑐2 + 𝑝𝑟𝑒𝑣𝑖𝑛𝑣) 𝒕𝒉𝒆𝒏 

𝒇𝒐𝒓 𝑑 𝑖𝑛 𝐷: 𝑊̿𝑎𝑗𝑑𝑡 ← 𝑊𝑎𝑗𝑑𝑡 

𝑆𝑎̿𝑗𝑡 ← 0 

𝑟𝑒𝑡𝑢𝑟𝑛𝑂𝑓𝑓𝑎𝑗𝑡 ← (𝑡𝑚𝑝𝑟𝑒𝑐2  −  𝑡𝑚𝑝𝑑𝑒𝑙 +  𝑝𝑟𝑒𝑣𝑖𝑛𝑣) 

𝒊𝒇 𝑡𝑚𝑝𝑑𝑒𝑙 >  (𝑡𝑚𝑝𝑟𝑒𝑐2 + 𝑝𝑟𝑒𝑣𝑖𝑛𝑣) 𝒕𝒉𝒆𝒏 

𝒇𝒐𝒓 𝑑 𝑖𝑛 𝐷: 𝑊̿𝑎𝑗𝑑𝑡 ← (𝑊𝑎𝑗𝑑𝑡  ∗
𝑡𝑚𝑝𝑟𝑒𝑐2 + 𝑝𝑟𝑒𝑣𝑖𝑛𝑣

𝑡𝑚𝑝𝑑𝑒𝑙
) 

𝑆𝑎̿𝑗𝑡 ← 0   

𝑟𝑒𝑡𝑢𝑟𝑛𝐶𝑎𝑗𝑡 ← 𝑡𝑚𝑝𝑟𝑒𝑐 − 𝑡𝑚𝑝𝑟𝑒𝑐2 

𝒊𝒇 (𝑎𝑣𝑎𝑖𝑙𝑐𝑎𝑝 ≥ 𝑡𝑚𝑝𝑟𝑒𝑐) 𝒕𝒉𝒆𝒏 

𝒊𝒇 𝑡𝑚𝑝𝑑𝑒𝑙 ≤  (𝑡𝑚𝑝𝑟𝑒𝑐 + 𝑝𝑟𝑒𝑣𝑖𝑛𝑣) 𝒕𝒉𝒆𝒏 

𝒇𝒐𝒓 𝑑 𝑖𝑛 𝐷: 𝑊̿𝑎𝑗𝑑𝑡 ← 𝑊𝑎𝑗𝑑𝑡 

𝑆𝑎̿𝑗𝑡 ← 0 

𝑟𝑒𝑡𝑢𝑟𝑛𝑂𝑓𝑓𝑎𝑗𝑡 ← (𝑡𝑚𝑝𝑟𝑒𝑐 −  𝑡𝑚𝑝𝑑𝑒𝑙 +  𝑝𝑟𝑒𝑣𝑖𝑛𝑣) 

𝒊𝒇 𝑡𝑚𝑝𝑑𝑒𝑙 >  (𝑡𝑚𝑝𝑟𝑒𝑐2 + 𝑝𝑟𝑒𝑣𝑖𝑛𝑣) 𝒕𝒉𝒆𝒏 

𝒇𝒐𝒓 𝑑 𝑖𝑛 𝐷: 𝑊̿𝑎𝑗𝑑𝑡 ← (𝑊𝑎𝑗𝑑𝑡  ∗
𝑡𝑚𝑝𝑟𝑒𝑐 + 𝑝𝑟𝑒𝑣𝑖𝑛𝑣

𝑡𝑚𝑝𝑑𝑒𝑙
) 

𝑆𝑎̿𝑗𝑡 ← 0   

𝒆𝒏𝒅𝒊𝒇 

𝒊𝒇 (𝑎 ∈ 𝐴𝑙) & (𝑂𝐶̿̿ ̿̿ 𝑎𝑗𝑡 = 0) & (overcapacity open = no) 𝒕𝒉𝒆𝒏 

𝒇𝒐𝒓 𝑖 𝑖𝑛 𝐼: 𝑋̿𝑖𝑎𝑗𝑡 ← (𝑋𝑖𝑎𝑗𝑡 ∗
𝑎𝑣𝑎𝑖𝑙𝑐𝑎𝑝

𝑡𝑚𝑝𝑟𝑒𝑐
) 

𝑡𝑚𝑝𝑟𝑒𝑐2 ←∑𝑋̿𝑖𝑎𝑗𝑡
𝑖∈𝐼

 

𝒊𝒇 𝑡𝑚𝑝𝑑𝑒𝑙 ≤  (𝑡𝑚𝑝𝑟𝑒𝑐2 + 𝑝𝑟𝑒𝑣𝑖𝑛𝑣) 𝒕𝒉𝒆𝒏 

𝒇𝒐𝒓 𝑑 𝑖𝑛 𝐷: 𝑊̿𝑎𝑗𝑑𝑡 ← 𝑊𝑎𝑗𝑑𝑡 

𝑆𝑎̿𝑗𝑡 ← 0 

𝑟𝑒𝑡𝑢𝑟𝑛𝑂𝑓𝑓𝑎𝑗𝑡 ← (𝑡𝑚𝑝𝑟𝑒𝑐2  −  𝑡𝑚𝑝𝑑𝑒𝑙 +  𝑝𝑟𝑒𝑣𝑖𝑛𝑣) 

𝒆𝒏𝒅𝒊𝒇 

𝒊𝒇 𝑡𝑚𝑝𝑑𝑒𝑙 >  (𝑡𝑚𝑝𝑟𝑒𝑐2 + 𝑝𝑟𝑒𝑣𝑖𝑛𝑣) 𝒕𝒉𝒆𝒏 

𝒇𝒐𝒓 𝑑 𝑖𝑛 𝐷: 𝑊̿𝑎𝑗𝑑𝑡 ← (𝑊𝑎𝑗𝑑𝑡  ∗
𝑡𝑚𝑝𝑟𝑒𝑐2 + 𝑝𝑟𝑒𝑣𝑖𝑛𝑣

𝑡𝑚𝑝𝑑𝑒𝑙
) 
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𝑆𝑎̿𝑗𝑡 ← 0   

𝑟𝑒𝑡𝑢𝑟𝑛𝐶𝑎𝑗𝑡 ← 𝑡𝑚𝑝𝑟𝑒𝑐 − 𝑡𝑚𝑝𝑟𝑒𝑐2 

𝒆𝒏𝒅𝒊𝒇 

𝒆𝒏𝒅𝒊𝒇 

𝒆𝒏𝒅𝒊𝒇 

𝒆𝒏𝒅𝒊𝒇 

𝒊𝒇 new ondemand = yes  𝒕𝒉𝒆𝒏 

𝒇𝒐𝒓 ⟨𝑎, 𝑗, 𝑝⟩ 𝑖𝑛 (𝑟𝑒𝑡𝑢𝑟𝑛𝐶𝑎𝑗𝑝 > 0      ∀𝑎 ∈ 𝐴, ∀𝑗 ∈ 𝐽, ∀𝑝 ∈ 𝑇) 

𝒊𝒇 (𝑎 ∉ 𝐴𝑜 𝒂𝒏𝒅 (∑𝑊𝑎𝑗𝑑𝑡
𝑑∈𝐷

−∑ 𝑊̿𝑎𝑗𝑑𝑡
𝑑∈𝐷

) > 0)  𝒕𝒉𝒆𝒏 

𝑍̿𝑎′𝑗𝑝 ← 1 (𝑎′ ∈ 𝐴𝑜), 𝑎𝑣𝑎𝑖𝑙𝑐𝑎𝑝 ← 𝐾𝑎′𝑗𝑡   (𝑎
′ ∈ 𝐴𝑜) 

𝒇𝒐𝒓 𝑑 𝑖𝑛 𝐷 

𝑟𝑒𝑡𝑢𝑟𝑛𝐶𝑎𝑗𝑝
(−)

← (𝑊𝑎𝑗𝑑𝑝 − 𝑊̿𝑎𝑗𝑑𝑝) 𝜆̿𝑑𝑝 

𝒊𝒇 (𝑎𝑣𝑎𝑖𝑙𝑐𝑎𝑝 ≥ 𝑟𝑒𝑡𝑢𝑟𝑛𝐶𝑎𝑗𝑝
(−)
) 𝒕𝒉𝒆𝒏 

𝑊̿𝑎′𝑗𝑑𝑝 ← (𝑊𝑎𝑗𝑑𝑝 − 𝑊̿𝑎𝑗𝑑𝑝) + 𝑊̿𝑎′𝑗𝑑𝑝   (𝑎
′ ∈ 𝐴𝑜) 

𝑟𝑒𝑡𝑢𝑟𝑛𝐶𝑎𝑗𝑝 ← (𝑟𝑒𝑡𝑢𝑟𝑛𝐶𝑎𝑗𝑝 − 𝑟𝑒𝑡𝑢𝑟𝑛𝐶𝑎𝑗𝑝
(−)
) 

𝑎𝑣𝑎𝑖𝑙𝑐𝑎𝑝 ← 𝑎𝑣𝑎𝑖𝑙𝑐𝑎𝑝 −  𝑟𝑒𝑡𝑢𝑟𝑛𝐶𝑎𝑗𝑝
(−)

 

𝒆𝒏𝒅𝒊𝒇 

𝒊𝒇 (𝑎𝑣𝑎𝑖𝑙𝑐𝑎𝑝 < 𝑟𝑒𝑡𝑢𝑟𝑛𝐶𝑎𝑗𝑝
(−)
 𝒂𝒏𝒅 𝑎𝑣𝑎𝑖𝑙𝑐𝑎𝑝 > 0) 𝒕𝒉𝒆𝒏 

𝑊̿𝑎′𝑗𝑑𝑝 ← (
𝑎𝑣𝑎𝑖𝑙𝑐𝑎𝑝

𝜆̿𝑑𝑝
 ) + 𝑊̿𝑎′𝑗𝑑𝑝   (𝑎′ ∈ 𝐴𝑜) 

𝑟𝑒𝑡𝑢𝑟𝑛𝐶𝑎𝑗𝑝 ← (𝑟𝑒𝑡𝑢𝑟𝑛𝐶𝑎𝑗𝑝 − 𝑎𝑣𝑎𝑖𝑙𝑐𝑎𝑝) 

𝑎𝑣𝑎𝑖𝑙𝑐𝑎𝑝 ← 0 

𝒆𝒏𝒅𝒊𝒇 

𝒆𝒏𝒅𝒊𝒇 

𝒆𝒏𝒅𝒊𝒇 

𝒇𝒐𝒓 𝑑 𝑖𝑛 𝐷 

𝒇𝒐𝒓 𝑝 𝑖𝑛 𝑇 

𝐿𝑆̿̿ ̿𝑑𝑝 ← (1 −∑∑𝑊𝑎𝑗𝑑𝑝
𝑗∈𝐽𝑎∈𝐴

) 

 

𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝐶𝑜𝑠𝑡1𝑟𝑒𝑝 ←∑∑∑∑𝑋̿𝑎𝑖𝑗𝑝 (𝜃𝑖𝑗𝐶𝑖𝑗𝑝 + 𝐶𝐹𝑖𝑗𝑝)

𝑎∈𝐴𝑝∈𝑇

 

𝑗∈𝐼𝑖∈𝐼

 

𝑆𝑡𝑎𝑟𝑡𝑢𝑝𝐶𝑜𝑠𝑡𝑟𝑒𝑝 ←∑∑∑𝑍̿𝑎𝑗𝑝𝐹𝑎𝑗𝑝
𝑎∈𝐴𝑝∈𝑇𝑗∈𝐽

 

𝐻𝑎𝑛𝑑𝑙𝑖𝑛𝑔𝐶𝑜𝑠𝑡𝑟𝑒𝑝 ←∑∑∑∑𝑋̿𝑖𝑎𝑗𝑝𝐺𝑎𝑗𝑝 

𝑎∈𝐴𝑝∈𝑇

 

𝑗∈𝐽𝑖∈𝐼

 

𝐻𝑜𝑙𝑑𝑖𝑛𝑔𝐶𝑜𝑠𝑡1𝑟𝑒𝑝 ←∑∑ ∑ 𝑆𝑎̿𝑗𝑝 𝐻𝑎𝑗𝑝
𝑎∈𝐴𝑜𝑝∈𝑇

 

𝑗∈𝐽

 

𝐻𝑜𝑙𝑑𝑖𝑛𝑔𝐶𝑜𝑠𝑡2𝑟𝑒𝑝 ←∑∑∑ ∑  𝑊̿𝑎𝑗𝑑𝑝𝜆̿𝑑𝑝𝐻𝑎𝑗𝑝
𝑎∈𝐴𝑜𝑝∈𝑇

 

𝑑∈𝐷𝑗∈𝐽
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𝐹𝑖𝑥𝑒𝑑𝑐𝑜𝑠𝑡1𝑟𝑒𝑝 ←∑ ∑ ∑𝑍̿𝑎𝑗𝑝 𝑁𝑎𝑅𝑎𝑗𝑝
𝑎∈𝐴𝑝∈𝑇∶

𝑝≤(|𝑇|−𝑁𝑎)

 

𝑗∈𝐽

 

𝐹𝑖𝑥𝑒𝑑𝐶𝑜𝑠𝑡2𝑟𝑒𝑝 ←∑ ∑ ∑𝑍̿𝑎𝑗𝑝 (|𝑇| − 𝑝) 𝑅𝑎𝑗𝑝
𝑎∈𝐴𝑝∈𝑇:

𝑝>(|𝑇|−𝑁𝑎)

 

𝑗∈𝐽

 

𝑂𝑣𝑒𝑟𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑟𝑒𝑝 ←∑∑ ∑(𝑂𝐶̿̿ ̿̿ 𝑎𝑗𝑝 𝑅𝑎𝑗𝑝) 𝛽 𝜌

𝑎∈𝐴𝑙𝑝∈𝑇𝑗∈𝐽

+ 

𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝐶𝑜𝑠𝑡2𝑟𝑒𝑝 ←∑∑∑∑𝑊̿𝑎𝑗𝑑𝑝𝜆̿𝑑𝑝(𝜃𝑗𝑑𝐸𝑗𝑑𝑝 + 𝐸𝐹𝑗𝑑𝑝)

𝑎∈𝐴𝑝∈𝑇

 

𝑑∈𝐷𝑗∈𝐽

 

𝐿𝑜𝑠𝑠𝑆𝑎𝑙𝑒𝑠𝐶𝑜𝑠𝑡𝑟𝑒𝑝 ← ∑ ∑ 𝐿𝑆̿̿ ̿𝑑𝑝𝜆̿𝑑𝑝𝛾𝜑𝑝∈𝑇𝑑∈𝐷  

𝑅𝑒𝑡𝑢𝑟𝑛𝐶𝑜𝑠𝑡𝐶𝑙𝑜𝑠𝑒𝑟𝑒𝑝 ← ∑ ∑ ∑ 𝑟𝑒𝑡𝑢𝑟𝑛𝑂𝑓𝑓𝑎𝑗𝑝𝑎∈𝐴𝑝∈𝑇𝑗∈𝐽 (𝜃𝑖𝑗𝐶𝑖𝑗𝑝 + 𝐶𝐹𝑖𝑗𝑝 + 𝐺𝑎𝑗𝑝) ∶ 𝑖 𝑖𝑛 min(𝜃𝑖𝑗)   

𝑅𝑒𝑡𝑢𝑟𝑛𝐶𝑜𝑠𝑡𝐶𝑎𝑝𝑟𝑒𝑝 ← ∑ ∑ ∑ 𝑟𝑒𝑡𝑢𝑟𝑛𝐶𝑎𝑗𝑝𝑎∈𝐴𝑝∈𝑇𝑗∈𝐽 (𝜃𝑖𝑗𝐶𝑖𝑗𝑝 + 𝐶𝐹𝑖𝑗𝑝 + 𝐺𝑎𝑗𝑝) ∶ 𝑖 𝑖𝑛 min(𝜃𝑖𝑗) 

𝑆𝑖𝑚𝑂𝑏𝑗𝐹𝑢𝑛𝑐𝑡𝑟𝑒𝑝 ← (𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝐶𝑜𝑠𝑡1𝑟𝑒𝑝 + 𝑆𝑡𝑎𝑟𝑡𝑢𝑝𝐶𝑜𝑠𝑡𝑟𝑒𝑝 +  𝐻𝑎𝑛𝑑𝑙𝑖𝑛𝑔𝐶𝑜𝑠𝑡𝑟𝑒𝑝 +  

𝐻𝑜𝑙𝑑𝑖𝑛𝑔𝐶𝑜𝑠𝑡1𝑟𝑒𝑝 + 𝐹𝑖𝑥𝑒𝑑𝑐𝑜𝑠𝑡1𝑟𝑒𝑝 + 𝐹𝑖𝑥𝑒𝑑𝑐𝑜𝑠𝑡2𝑟𝑒𝑝 + 𝑂𝑣𝑒𝑟𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑟𝑒𝑝 

+ 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝐶𝑜𝑠𝑡2𝑟𝑒𝑝 + 𝐿𝑜𝑠𝑠𝑆𝑎𝑙𝑒𝑠𝐶𝑜𝑠𝑡𝑟𝑒𝑝 + 𝑅𝑒𝑡𝑢𝑟𝑛𝐶𝑜𝑠𝑡𝐶𝑙𝑜𝑠𝑒𝑟𝑒𝑝 
+ 𝑅𝑒𝑡𝑢𝑟𝑛𝐶𝑜𝑠𝑡𝐶𝑎𝑝𝑟𝑒𝑝) 

 


