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Abstract: On-demand warehousing platforms match companies with underutilized warehouse and
distribution capabilities with customers who need extra space or distribution services. These new business
models have unique advantages, in terms of reduced capacity and commitment granularity, but also have
different cost structures compared to traditional ways of obtaining distribution capabilities. This research
is the first quantitative analysis to consider distribution network strategies given the advent of on-demand
warehousing. Our multi-period facility location model — a mixed-integer linear program — simultaneously
determines location-allocation decisions of three distribution center types (self-distribution, 3PL/lease, on-
demand). A simulation model operationally evaluates the impact of the planned distribution strategy when
various uncertainties can occur. Computational experiments for a company receiving products produced
internationally to fulfil a set of regional customer demands illustrate that the power of on-demand
warehousing is in creating hybrid network designs that more efficiently use self-distribution facilities
through improved capacity utilization. However, the business case for on-demand warehousing is shown to
be influenced by several factors, namely on-demand capacity availability, responsiveness requirements,
and demand patterns. This work supports a firm’s use of on-demand warehousing if it has tight response
requirements, for example for same day delivery; however, if a firm has relaxed response requirements,
then on-demand warehousing is only recommended if capacity availability of planned on-demand services
is high. We also analyse capacity flexibility options leased by third-party logistics companies for a premium
price and draw attention to the importance of them offering more granular solutions to stay competitive in

the market.
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1. Introduction

The proliferation of e-commerce has fundamentally altered demand characteristics and order profiles: the
handlings units are smaller, the delivery locations are more dispersed, and the customers expect faster low-
cost or free deliveries. Consequently, nearly half of all US retailers offer same-day delivery (Saleh, 2018).
This has increased investments in distribution centers (DCs) and warehouses closer to large populations
(Breedam, 2016). Traditionally increasing the number of DC locations has also increased total facility,
infrastructure, inventory, and operational costs. Binding outsourcing agreements for distribution services
or investing in facility ownership are long-term commitments that come with overflow or underutilization
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risks due to demand variability and volatility. Small and medium-sized enterprises often do not have the
capital needed to own and operate such complex distribution networks (Dunke et al., 2016). Finally, the
availability of warehouses and DCs is currently limited (Hudson, 2019). To address these challenges,
innovative and more flexible business models (Grant, 2017) and new approaches to classic supply chain
designs are required (Breedam, 2016). Rather than design distribution networks only through facility
ownership or long-term partnerships, this study focuses on how a company can incorporate on-demand
warehousing into their distribution network design decisions.

On-demand warehousing platforms operate marketplaces to match companies with underutilized
warehouse and distribution capabilities with customers who need extra space or distribution services
(Forger, 2018; Pazour & Unnu, 2018; Supply Chain Digest, 2019; Tornese et al., 2020; Van der Heide et
al., 2018). Several companies worldwide operate such platforms, including US-based platforms Flexe,
Warehouse Exchange, Flowspace, and Ware2Go; European platforms, Stowga, OneVAST, Stockspots and
Waredock; and African-based platform Logistify Al.

An on-demand warehousing system consists of three primary actors. The supply owners (lenders)
are the primary holders of the resources (e.g., warehouse space, fulfillment capabilities). They differ from
traditional suppliers because, generally in on-demand models, outsourcing is not the supplier’s core
business. Instead, the suppliers derive additional values from sharing access to their underutilized
warehousing resources, and also, in some cases, benefit from a more stable workload (O’Brien, 2017). The
demand requests are indicated needs for warehousing resources made by customers. The customers’ need
for the service is mostly short term, for a small resource amount and required to be fulfilled immediately
(on-demand). The platform is a third-party organization responsible for managing the interactions between
the supply owners and the demand requests. The platform operates a marketplace and provides access and
visibility to both suppliers and customers. Such systems create spatial and temporal resource elasticity by

matching underutilized resources on-demand, where and when needed (Pazour & Unnu, 2018).
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On-demand warehousing platforms are open, available on-demand, and priced on a per-use basis;
thus, they embody the principles of open supply webs (Montreuil, 2011) and the Physical Internet (Pan et
al., 2017). As on-demand warehousing provides unique advantages, but also have different cost structures,
dynamics and risks, than traditional ways to acquire warehouse space and distribution capabilities,
quantitative research is needed to aid in understanding who, when, and how to utilize these systems. The
contributions of this paper — which take a customer viewpoint - are summarized as follows. Our paper is
the first to formulate an optimization model incorporating on-demand system properties into distribution
network design problems. We extend the dynamic facility location problem (DFLP) to simultaneously
decide between three types of distribution capabilities (self-distribution, 3PL, on-demand), deciding which
of these alternatives to use at which locations to meet demand over multiple locations and time periods.
This requires a new optimization model capturing varying commitment granularity and capacity granularity
properties, as well as varying cost structures, of the distribution center alternatives. Secondly, our model is
used to evaluate and provide insights on how a firm’s distribution strategy should change with the advent
of on-demand warehousing alternatives. Our design of experiment (DOE) captures different environmental
and company factors to answer the open question: under what circumstances is on-demand warehousing
beneficial for customers? The developed optimization model is used to evaluate network design decisions
with and without the on-demand alternative being available. Then, to evaluate performance operationally,
these network designs are fed into a Monte-Carlo simulation that incorporates uncertainty in customer
demand and on-demand capacity availability. These extensive computational experiments allow us to
quantify the impact of the on-demand alternative on total distribution costs and to provide managerial
insights on which factors affect distribution network design decisions and performance.

2. Distribution Types
Companies have three main ways to increase their distribution and storage capabilities. They can (1) build
and operate their own self-distribution facility, (2) outsource distribution operations to a third-party logistics

provider (3PL) via a long-term lease agreement, or (3) access on-demand capabilities for short-term use.
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Each distribution type has unique advantages and disadvantages, which we compare in Table 1 (Unnu &
Pazour, 2019). From a distribution network design perspective, critical differences exist in terms of capacity
granularity, commitment granularity, and access to scale (Pazour & Unnu, 2018).

Table 1: Comparison of advantages and disadvantages of the distribution center types

Type Advantages Disadvantages
Self -Low variable operational costs if -Highest investment costs, creating the longest
Distribution operated at high-capacity utilization. commitment duration.
-Ownership allows control -Less flexible to demand variability and volatility
-Highest latency from the decision to operation
3PL -More flexible than self-distribution -Higher operational costs
-Shorter latency from decision to -Start-up time required for contract negotiations
operation -Commitment with binding contracts
-Lower initial investments than self- -Potential trust, quality, and performance concerns
distribution
On-Demand - Highest flexibility - Highest per unit variable costs
-Lowest latency between decision and -Without a contract, potential uncertainty in
implementation available capacities period to period.
-No initial investment or fixed costs -Potential trust, quality, and performance concerns

Capacity granularity is defined as the minimum capacity that can be acquired by a given distribution type.
Capacity granularity is measured for self-distribution in full building units (e.g., number of warehouses).
Most 3PLs require firms to commit up front to contracted capacity for the duration of the contracting period,
with capacity granularity typically in square feet or number of storage units per period. A common 3PL
policy is to enable temporary use of extra capacity beyond this contracted capacity (at a premium charge).
For on-demand, minimum capacity requirements are either non-existent or very low.

Commitment granularity is defined as the minimum commitment (in time units) a firm must maintain its
decision. The commitment granularity of self-distribution is related to the payback period planned for the
company’s return on investment, which is often at least 5 years but can be much longer, e.g., 30 years. For
3PL it is 1 to 3 years because of the lengthy decision lead times, negotiation periods, contracting, and
minimum leasing periods. Due to on-demand’s short, predefined leasing periods, its commitment
granularity is typically monthly, but some platforms offer weekly commitments.

Access to Scale is defined as the percent of demand reachable within a given distance of distribution
resources. When companies own their distribution resources, high investment costs can lead to operating

only a handful of facilities. This has low access to scale and long last leg deliveries and transportation costs.
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Alternatively, access to scale can be increased by accessing distribution resources through an on-demand
system,  which does not have high fixed investment costs of  ownership.
These three attributes are interrelated; if a company decides to build a facility, this is a strategic decision,
in which initial significant fixed costs drive long commitment granularity, but if used at full capacity, results
in lower variable costs (Unnu & Pazour, 2019). Whereas with on-demand warehousing, distribution
resources can be acquired at the pallet level and for short one-month commitment periods. Adoption of this
alternative can lead to improved flexibility and agility, as well as access to scale, but also has higher variable
costs for per pallet handling and holding, and the use of multiple companies’ resources creates more
complex operations. Thus, given the different cost structures and operating attributes, many tradeoffs exist.
Consequently, an open research question includes, “Is there a business case to be made for the use of on-
demand systems, and if so, in what environments?”’
3. Literature Review
On-demand resource-sharing research is proliferating, including work focused on the logistics sector
(Carbone et al., 2017; S. Melo et al., 2019; Mourad et al., 2019; Yu & Shen, 2020). The vast majority
focuses on transportation and delivery, using crowd shipping or crowdsourced logistics (Kafle et al., 2017;
Leetal., 2019; Mofidi & Pazour, 2019). On-demand business models remain underexplored for warehouse
and distribution services, and research incorporating on-demand warchousing into distribution network
modeling, as well as quantitatively analyzing on-demand warehousing’s suitable applications have not yet
been addressed. Recently Rogers et al. (2020) argue that on-demand distribution systems (a) improve
customer service and reduce costs, (b) enable dynamically reconfigurable distribution networks and (c)
enable companies to adopt multiple distribution channels for their different products. The work is empirical,
using survey data and use cases to support their propositions. They also advocate for the need of new
quantitative models, and in this paper, we address many of their proposed future research suggestions.
Both dynamic and static facility location models have been extensively used for locating

DCs/warehouses and assigning demand points to them, as well as supporting other tactical/operational
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decisions such as inventory and routing. A detailed taxonomy of these models can be found in the review
papers (Boloori Arabani & Farahani, 2012; Daskin et al., 2005; Klose & Drexl, 2005; Seyedhosseini et al.,
2016). Dynamic facility location problems (DFLP) are multi-period models where the input parameters,
such as costs, demands, and capacities, vary over time, and multiple decisions are allowed throughout a
given planning horizon (Klose & Drexl, 2005). A vast literature exists for DFLPs, which includes papers
studying DFLP’s with capacity adjustments at production facilities (Bayram et Al., 2019; Bhat &
Krishnamurthy, 2015; Malladi et al., 2020; Zhao et al., 2018). Focusing our review on DFLP for
distribution, we identify a scarcity in research capturing different DC/warehouse types with varying
commitment, capacity, and cost structures.

Jena et al. (2015) classifies capacity adjustment options into three groups: (1) capacity is adjusted
by changing the capacity levels of an existing single facility; (2) adjustments are realized by
adding/removing modular capacities or opening/closing the same type of facilities; and (3) facilities with
different capacities are opened/closed. Our work does not fit into any of these existing categories as we
consider capacity adjustments for multiple locations, and those adjustments can be achieved by combining
multiple types of facilities, and/or changing the capacity of an open facility and/or opening and closing
facilities. Thus, we introduce a new option, which represents the combination of the previous three capacity
adjustments based on the warehouse type.

Most DFLP with capacity adjustment papers restrict opening and closing decisions for ease of
solution approaches. For example, Dias et al. (2007) constrain the maximum number of facilities operating
at the same location in the same period. Wilhelm et al. (2013) highlight facility opening-closing decision
flexibility; however, these decisions are still limited by a maximum number of open facilities and a
restriction on re-opening facilities. In Hinojosa et al. (2000), new facilities can be opened in any period, but
closing is only allowed for the facilities opened in the first period and once a facility is closed, it cannot be
re-opened. Other papers consider modular capacity adjustment options. Antunes and Peeters (2001) add or

remove a capacity module. Jena et al. (2015) also study modular capacities for facility closing and re-
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opening and for capacity expansion and reduction. In their models, only one facility is allowed to be opened
on the selected candidate location, and the capacity adjustment or opening-closing decisions are considered
for these individual facilities. Recently Jena, Cordeau, and Gendron (2017) studied its multi-commodity
version. Other work considers interconnected but restricted time periods for strategical and tactical
decisions. The tactical decisions are made in each period and might include production, inventory, and
routing decisions. Whereas strategic decisions, including the location, opening/closing, or capacity
adjustment decisions, can only be realized at predefined strategic periods (Bashiri et al., 2012; Correia &
Melo, 2016; Fattahi et al., 2016).

Related is work considering different warehouse types with unique capacity, cost and commitment
properties (Bashiri et al., 2012; Fattahi et al., 2016; Thanh et al., 2008; Vila et al., 2006). In Vila et al.
(20006), the facility locations are initially defined. Then, dynamic decisions are made related to production
and distribution capacities. The cost structure of the three types of warehouses (owned, rented, public) and
also their approach to consider expansion and reduction are similar to our model; however, they do not
consider any commitment constraints. In Bashiri et al. (2012), public warehouses have no initial setup or
closing costs but relatively higher operational costs and are uncapacitated. On the other hand, private
warehouses have setup costs and lower operational costs and are restricted to be closed once opened. For
open private warehouses, capacity expansion can be considered; however, capacity contraction is not
allowed. Similarly, in Fattahi et al. (2016) public warechouses do not have restricted opening and closing
decisions. In contrast, the private warehouses can only be opened once and are not allowed to be closed.
Thanh et al. (2008) start with all facility locations and capacities known, and decide facility closing,
opening, and capacity expansions over time. In their model, private warehouses should be kept open or
closed for the entire planning horizon after a decision is made. However, a public warehouse can be opened
and closed multiple times, but there should be at least a two-period gap between the decision points. This
property is like our commitment duration (granularity), but we capture it for different types of warehouses.

To the best of our knowledge, Thanh et al. (2008) is the only existing paper introducing such an approach
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to decision periods. However, they do not incorporate a 3PL warehouse type with a commitment duration
between totally flexible (public) and totally constrained (private), nor do they consider location decisions.
To model a firm’s decision of simultaneously having the option to utilize three different warehouse
types over multiple unrestricted time periods, we need to incorporate multiple types of facilities and their
unique characteristics into a multi-period facility location-allocation optimization model. The model needs
to capture (a) multiple decision periods, (b) the ability for multiple facility types to be located in a given
location, (c) the ability to open facilities during any period, (d) the ability to capture different cost structures
associated with the different facility types, and (e) varying commitment and capacity granularities of
different facility types. Despite the vast amount of distribution system and supply chain network design
literature, none have all of these unique properties.
4. Optimization Model to Plan a Firm’s Distribution Strategy
In this section, we introduce a deterministic mixed-integer linear model for our DFLP with capacity
adjustment and commitment options. All notations used in the model are defined in Table 2.

Table 2: Notations for sets, input parameters, and decision variables

I : Set of supply locations; indexed on i
] : Set of candidate DC locations; indexed on j
D : Set of customer locations; indexed on d
U : Superset (union) of all location points U = {1 U J U D }; indexed on u
T : Set of time periods; indexed on p
A : Set of distribution center alternatives indexed on a where A = {4° U A' U A%}.
The subsets of 4 are disjoint, i.e., i.e., A° N Al = @; A° N A5 = @; AL N AS = @.
A° : Set of on-demand type DCs, A° c A
Al : Set of 3PL type DCs, A ¢ A4
AS : Set of self-distribution type DCs, A° c 4
A€ : Set of DCs without the on-demand type, A€ = {A' U A%}
Alo : Set of 3PL and on-demand type DCs, A = {4° U A}
o : Set of whole numbers capturing the operating facility quantity O ={1..|A|*|J|}; indexed on f
Input Parameters
N, : Commitment granularity in number of periods for an alternative a (a € A)
Kqjp  : Capacity of a DC at location j for alternative a at time period p (a € A%,j € ,p €T)

Foip : Cost of initial set-up of an alternative a DC at location j at time period p (a € A%,j € J,p €T)

Hgj,  : Cost of holding one unit in an alternative a DC for period p (a € A%,j € /,p € T)

Rajp  :Fixed cost of keeping open an alternative a DC for period p (a € A%,j € J,p €T)

Ggajp  : Cost of handling one unit in an alternative a DC at location j at time period p (a € A je],p€eET)

Cijp : Freight cost per mile per unit between supply point i and DC at location j at time periodp (i €I, j € J,p € T)
CFijp  : Freight cost per unit between supply point i and DC at location j at time periodp (i €I, j € J,p €T)
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Ejap : Freight cost per mile per unit between DC at location j and customer d at time periodp (j € J,d € D,p € T)
EFjq, : Freight cost unit between DC at location j and demand d at time periodp (j €/, d € D,p € T)

Adp : Expected demand at customer d in time period p (d € D,p € T)

0.,u, : Distance between location point u; and location point u,; (uq, u; € U)

a : Max distance (range) allowed to assign a demand point d to a DC at location j

y : Sales price of the product

4] : Loss of sales cost in percentage of product sales price

p : Cost increase factor defining the premium cost for extra capacity usage of 3PL facilities

4 : Extra capacity ratio allowed additional to the capacity of 3PL facilities (f < 1)

SS, : amount of safety stock for the distribution system if a single centralized location is used at period p (p € T)
M : A large positive number (Big-M)

Decision Variables
7 ) {1 if alternative a at location j is first opened at period p,
wp (0 otherwise (a € A,j€J,p€ET)
oc... - {1 if a 3PL alternative a at location j uses an extra capacity option (at a premium costs) in period p
@P " 0otherwise (a €A,jEJ,pET)
Xaijp - Units delivered from supply location i to alternative a at location j at periodp (i €1, j€J,a €A, p€T)
Wajap : Demand ratio fulfilled by alternative a at location j to demand d at periodp (d €D, j€J,a €A, p€T)
Sajp : Amount of inventory in alternative a at location j at the end periodp (a € 4,j € /,p € T)
LS4,  :Ratio of demand not fulfilled (Loss of sales) at demand point d at period p (d € D,p € T)

0 . {1 if f number of DCs are operating at period p
e 10 otherwise

We model three echelons, in which the supply and demand locations are given input parameters,
and we decide where to locate DCs. Given each DC type can have multiple alternative capacities and costs,
we use subsets over the DC alternative set A = {4° U A' U A5} to denote DC alternatives of each type: on-
demand (A4°), 3PL (4"), and self distribution (A%). These subsets are disjoint, i.e., A° N Al = @; A° N AS =
@; A' N AS = @. For a multi-period planning horizon (p € T), the model decides whether to open a DC of
alternative a in location j at period p with the binary variable Z, ;,, and for 3PL alternatives a € Al whether
temporary extra capacity (at a premium cost) in location j at period p is planned with the binary variable
OCyqjp- Additional continuous decisions made every period (see Table 2) include the units delivered from
supply locations to DCs, the ratio of fulfilled demand from DCs to assigned customer locations, the ratio
of unfulfilled demand at a customer location, and the inventory at each alternative and location. We also
capture the number of open DC facilities at a given period to approximate network safety stock impacts.
We model a single commodity problem, and the model can be extended by adding a new index representing

different commodities with different properties.
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The previously introduced capacity and commitment granularities of DC alternatives correspond
to the input parameters Kgj, and Ny, respectively. Self-distribution and 3PL alternatives (a € A“) have
finite capacities K j, and can be opened at any period p and location j but an opened DC stays operational
until the end of their commitment duration of N, periods. To capture a common 3PL practice, we allow the
temporary capacity of 3PL alternatives (a € A') in location j at period p to exceed their contracted capacity
Kqjp with up to an extra capacity level (f) at a premium cost (p). In the optimization model, we assume the
on-demand type is uncapacitated and can be opened and closed without any restrictions (N, = 1,Va € A°).
Access to scale is captured via a parameter for the allowed maximum distance («) between a demand
location and the DC that satisfies the demand.

The DC types have different cost structures, which we break into four cost parameters that can vary
based on their location j and time period p. For self-distribution and 3PL alternatives a € A°, initial costs
(Fqjp) are one-time costs required before becoming operational. Operational costs (Rgjy,) are fixed per
period recurring expenses required to keep the self-distribution or 3PL DC functioning, regardless of the
satisfied demand amount. On-demand alternatives a € A° incur holding costs (Hgjp), which are variable
costs of one unit storage per each time period. On-demand and 3PL alternatives a € A also incur handling
costs (Ggjp), Which are per unit costs every time a unit is handled for receiving, put-away, and picking.

Aligned with common freight practices, transportation costs have two components. The first

(CFijp, EFjqp) is the fixed (per unit delivery cost) independent of the distance between two locations and

jp’

the second (Cjjp, Ejqp) are per unit distances. Additionally, the transportation costs capture differences in

jp’

more efficient inbound (CF;jp, Cijp,) versus outbound (EFjgp, Ejqp) loads. The inventory at the beginning

jp’
of the first period at each DC location and alternative is set to zero (Syj0 = 0,Va € A, Vj € ]).

The objective function minimizes the total costs related to the complete distribution system design,
where (1)-(a) is the total first-mile costs captured as the sum of the delivery costs from supply locations to
DCs, (1)-(b), (1)-(c) and (1)-(d) incorporate DC opening costs, handling costs, and inventory holding costs,

respectively. We assume that a holding cost for one period occurs for the fulfilled demand quantity
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(Wa jdpldp) and (1)-(e) is this additional holding cost. The total operational costs of DCs are calculated by
(1)-(f) and (1)-(g). The former is used when the commitment duration’s last period is within the planning
horizon (p < |T| — N,), and (1)-(g) when the remaining planning horizon is shorter than the commitment
period. We also assume that when the extra capacity option is triggered for a 3PL alternative, the premium
cost for the entire expansion ratio is added to the objective function at that period, as shown in (1)-(h).
Finally, the last mile delivery costs and the costs regarding the unfulfilled demand are incorporated into the
objective function with expressions (1)-(i) and (1)-(j). In reporting results, we denote the sum of (1)-(b) to

(1)-(h) as DC Costs and the sum of (1)-(a) and (1)-(i) as Transportation Costs.

ZZ Z ZXMJP (HUCUP + CFL}p) + zz Z Za]p ajp

Minimize

i€l jel peT a€A JEJ PET acA¢
a b
22,0, 2 Kanban+ ), ) Sui Hain +
i€l j€EJ pET qeAlo JEJ PET a€A°
d
SIS Wttt Y, Nt
jEJ dED pET acA® JEJ PET: ps(IT|-Ng) a€A
e f
Z Zajp (lTl - p) Rajp + Z Z Z (OCajp Rajp) ﬁ p +
jEJ pET: p>(IT|-Ng) a€A J€J PET aeAl
g h
1
DY NAERCFIRTTIEY 3) R ®
j€J] deD peT a€A deD peT
i j

While multiple alternatives can be operating at the same location, opening the same alternative DC at the
same location is not allowed. This is defined by constraint (2), which also enforces that once a decision to

open an alternative a warehouse at location j, it will stay open during the entire commitment period.

14
Zgjz <1 Vie];, VpeET,; Va€eA (2)
z=max {1,(p—Ng+1)}

In (3) and (4) the distribution facility capacity constraints limit the inbound and outbound deliveries. As the
self-distribution and 3PL alternatives are capacitated, and the on-demand alternatives are uncapacitated, the
capacity constraints only consider the alternative subset A€.
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P vj€eJ;

3

ZXaijp + Sajp-1 < Z ZajzKajp |+ (Ocaijajpﬁ) Va € A¢; 3)
i€l z=max {1,(p—Ngz+1)} VpeT
P vji€eJ;

2 WajapAap + Sajp < z ZajKajp |+ (0CapKajpB) Va € A (4)
deD z=max {1,(p—Ng+1)} VpeT

The extra capacity option is limited only to the opened 3PL alternatives with constraints (5) and (6).
Constraint (7) guarantees demand locations must be assigned a DC within the maximum distance allowed
(range). The model allows lost sales and demand quantities can be fulfilled from more than one DC; the

total demand fulfillment and lost sales are linked to each other with constraint (8).

0Cqujp =0 Vi €]; Vp€eT; Vae (A°UA®) (5)
p
0Cqjp = Z Zajz Vji€J; Vp€ET; Vae€ A (6)
z=max {1,(p—Ng+1)}
Wojap(a@—6;4) = 0 VaEA; VpET; VjEJ; Vd ED (7)
LSdp+ZZWajap=1 VdeD; VpeT (8)
a€A jej

The capacity constraint (3) incorporates the inventory at the end of each period. Thus, to keep inventory at
the end of a period (p — 1) the subject DC should be open with available capacity on the following period
(p). In addition, (9) constrains the inventory kept in an open facility for the last period p = |T| to be less
than its capacity. Constraints (10) and (11) link the on-demand alternative’s inventory keeping decisions to

the opening decisions. Constraints (12) assure the inventory is balanced at each DC.

7|
Sajir| = ZajzKajir) | + (0Cajir\Kajir|B) VjEJ; Va€ A* 9)
z=max {1,(|T|-Ng+1)}
Sajp-1) = ZajpM VieJ; VacA®;vpeT  (10)
Sajir) < Zajir|M Vj€J; Va€A® (11)
Sajip-1) ZXaijp = z WajapAap + Sajp VjEJ;VaeA;YpeT  (12)
iel deD

For a (Q, r) inventory policy that moves from centralized stocking to one where stock is kept amongst f

facilities, then the total safety stock will increase with a ratio of \/7 (assuming same parameters, fill rate,
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and demand being independent and identically distributed) (Eppen, 1979). In any given period, the number
of open facilities can be up to |J| * |A| which can increase the required system safety stock drastically. As
the direct use of the square root rule requires non-linear constraints, the model considers the safety stock
changes at the echelon level and then decides the distribution of the inventory to the open DCs. Using a set
of linear constraints (13)-(15), a stepwise function captures safety stock being the square root of the total

number of open DCs at a given period. Finally, (16)-(22) capture non-negativity and binary conditions.

Z Qp =1 VpET (13)
feo
14
Zprf: Z Z Z Zajs + Z Zzajp VpET (14)
feo a€AC jej z=max {1,(p—Ng+1)} a€cA”° jej
Z Qpp SSpVf < Z zsajp VpeT (15)
feo a€A j€j
Zajp € {0,1} Va€AVje]VpEeT (16)
0Cqjp € {0,1} Va€AVje]VpeT (17)
Qfp € {0,1} VfEO,VpET (18)
Xaijp 20 VaeAVielLVje]VpeT (19)
Weajap = 0 VYa€eAVje],VdeEDVpeET (20)
Sajp 20 Va€e€eAVje] VpeT 21
LS4y =0 vd € D,VpET (22)

Valid inequalities (23) and (24) connect the demand fulfillment variables with the opening decisions, and
are added to improve solution times (Jena et al., 2015); e.g., such valid inequalities have reduced the

computational time on other DFLPs by a ratio of 1.2-2 (Jardin et al., 2006).

p
Wajap < Z Zajz Vie]; VpeT;Vd € D; Vae A° (23)
z=max {1,(p—Ng+1)}
Wajap < Zajp Vj€J; Vp€ET; Vd €D; Va € A° (24)

5. Description of the Design of Experiments
Using representative input parameters from industry and a design of experiments (DOE), we provide new
understanding of which DC alternatives should be selected when and where and quantify the influence of

different factors on distribution network design with and without on-demand warehousing. The
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optimization model presented in Section 4 is helpful as a strategic planning tool to determine facility
alternative and location decisions, especially as deciding to build a DC or committing to a 3PL contract
requires some lead time to implement. Like aggregate planning in manufacturing, these facility decisions

(i.€., Zgqjp = 1 values) would be made using a forecast for demand across locations and time periods. We

assess operational performance of this plan using a Monte Carlo simulation (see supplemental materials for
details) that updates operational decision variables due to (i) demand variability or (ii) on-demand
warehousing capacity variability (as there are no long-term contacts, the amount and location of on-demand
warehousing capacity can vary period to period beyond what was expected). In the simulation, demand
quantities (/po vd € D,V p € T) and on-demand warehousing capacities (K, pVa€A’VjE]VPET)
are now random variables, which influences the units supplied, units delivered, demand ratios fulfilled, lost

sales, and inventory levels. Due to insufficient capacity, a firm may need to return some inventory and these

return costs are incorporated into the total cost values reported in the simulation.

In the DOE, first, the deterministic optimization model is used to find optimal/near-optimal network
designs for the first full factorial design given in Table 3-(1). Then each of these optimization solutions are
evaluated operationally via a simulation model, with a second full factorial design conducted on factors in
Table 3-(2). A full factorial set of experiments based on these factors requires 96 optimization runs and for
each optimization run we run 32 simulation runs (based on a full factorial experiment for factors (2-1)
through (2-5)), for a total of 3072 simulation runs. For each simulation run, we report results using 100

replications.
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Table 3: (1) Optimization and (2) Simulation Model Design of Experiment Factors and Levels

[Factor o
No (Short Description) [Factor Level Definitions
1.1 On-demand Alternative (OD) - With on-demand alternative
(1-1) (Opt_OnDemand) (NOD) -Without on-demand alternative
(TDown) - Increasing Demand (trend upwards) Opt_Trend=+0.01
(1-2) Demand Trend (TNone) - No trends in demand Opt_Trend=0
(Opt_Trend)
(TDown) - Decreasing Demand (trend downwards) Opt_Trend =-0.01
(SNone) - No seasonal effect (OptSeason, =0 Vp €T
Seasonality Opt_Season,=-4.70% Vp € {1,5,9,13,17}
(1-3) {Opt_Season) (SMajor) - Major Seasonal effects |0pt_Season,=-0.90% Vp € {2,6,10,14,18}
- based on quarters (OptSeasonp) Opt_Season,=-1.30% Vp € {3,7,11,15,19}
Opt_Season,= 6.90% Vp € {4,8,12,16,20}
(1-4) Response requirement (100) miles range (same day delivery) a =100
(Opt_Range) (250) miles range (one day delivery) a =250
3PL option capacity expansion (NOC) - No capacity expansion p=0
(1-5) : . . p=02
(Opt_ ExtraCapacity) (OC) - Capacity expansion w/ penalty B =01
(NSS) - No Safety stock at DC echelon SSp =0; VpeT
(1-6) Safety Stock
(Opt_SafetyStock) (SS) - Safety stock in DCs $Sp = 0.025 Z Aap;Vp ET
deD
- Demand Variability (0.1) - Low variability Sim_DemandVariability = 0.10
-1 (Sim_DemandVariability) (0.3) - High variability Sim_DemandVariability = 0.30
22) Time dependent forecast uncertainty |(0) - Time independent Sim_TimeVariability = 0
(Sim_TimeVariability) 0.1) - Yes Sim_TimeVariability = 0.10
0.1)
(2:3) New On-Demand alternative (0-NO) - No new on-demand DCs (only optimization results)
" |(Sim_NewOndemand) (1-YES) - Allow additional on-demand DCs
New 3PL alternative capacity (0-NO) - No capacity expansion (only optimization results)
(2-4) |expansion
(Sim_NewExtraCapacity) (1-YES) - Allow additional capacity expansion for opened 3PL facilities
On-Demand alternative available (0-NO) - No capacity constraints
(2-5) Capacity X . Kin = K, U[O1
(Sim_OnDemandCapacity) (1-YES) - Variable Capacity P el

The factor (1-1)’s no on-demand decision (NOD) level is enforced in the optimization formulation

with an additional constraint Z;¢j, = 0Vj € J;Vp inT. The factors (1-4), (1-5) and (1-6) are tested by

changing the input parameter values as given in Table 3-(1). To generate the demand quantities for the

entire planning horizon (Vp € T) at each demand location (Vd € D), the optimization and simulation

models use the initial demand input parameter based on city populations (see Section 6 for detailed

calculations of 4,;;) and equation (25). For a given demand location, the demand quantity is a function of

its initial demand in the first period, adjusted for trends, seasonal factors, and variability (noise). Expected

Page 15 of Author Accepted Version for /ISE Transactions (2022)
doi = 10.1080/24725854.2021.2008066




demand forecast values, used in the optimization model, are created for different trend (1-2) and seasonality
(1-3) factors using (25)-a. Specifically, the seasonality factors replicate the retail sector and emphasize the
impact of the holiday season. Then the second part, denoted as (25)-b, incorporates demand variability (2-
1) and forecasting errors (2-2) factors and simulates demand uncertainty with a randomly generated
coefficient (U[—1,1]). For the optimization model, (25)-b is assumed to take on a value of zero, whereas

in the simulation model, a random demand generation is created due to the Uniform random variable.

Aap = Aax (1 + Opt_Trend(p — 1) + Opt_Season, +

a

(25)
(Sim_DemandVariability + Sim_TimeVariability%) Ul-11] |vdeD VpeT:p>1
b
Opt_Trend : (1-2) trend; demand increase/decrease in each period
Opt_Season,, : (1-3) seasonality factor for period p (Vp € T)
Sim_DemandVariability : (2-1) demand variability; uncertainty
Sim_TimeVariability : (2-2) forecast error at the end of planning horizon (linearly increasing over time)

Ul] : uniform distribution

The on-demand alternative capacity factor (2-5), used in the simulation, is based on the smallest 3PL
alternative size. The factors (2-3) and (2-4) consider whether new capacity decisions can be made period
to period or if the firm must stick with the capacity decisions planned with the optimization model. The
simulation model does not allow reducing planning capacities, i.e., opened facility locations and alternatives
and extra capacity decisions determined by the optimization model are directly adopted. We do explore the
impact of operationally obtaining on-demand DCs and 3PL extra capacity in addition to the planned
capacity from the optimization model (see the factors in Table 3). Specifically, when the factor
Sim_NewOndemand = 1, then if there is not enough capacity at an opened 3PL or self-distribution facility,
a new on-demand DC is opened at that location and period (with this new capacity decision denoted as

Zajp Va € A, j € ],p € T). This adjusts the available in-bound capacity to include Z=a jpl?a Further, if

jp-
the factor Sim NewExtraCapacity = 1, then new 3PL extra capacity is executed when there is insufficient

3PL capacity at a location and period (and this new decision is denoted as ﬁa jpVa € ALje],peT).
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This adjusts the available in-bound capacity to include ﬁa jpKajpB and can occur only when and where

the opened 3PL alternative with insufficient capacity had not planned to execute the extra capacity option.
6. Description of Input Parameters

We introduce our remaining input parameters, which are representative of a company that receives pallets
of products produced outside of the US into the Newark, NJ port to fulfill the US Northeast region’s
demand. Cost expressions capture DC and freight costs associated with storing, handling and delivery of a
40x48 inch standard GMA pallet as the smallest stock-keeping unit (SKU). We use quarters as the periods
and five years (20 periods) as the planning horizon. In the optimization model, the total demand is
normalized for all instances. Therefore, regardless of the trend and seasonality factors, the total expected
demand quantity for each location summed over the planning horizon is kept the same for all instances.
DC Data: Alternatives, capacities, commitment durations, and costs used in the computational experiments
are presented in Table 4. This represents ten total alternatives, with three capacity levels for self-
distribution, six for 3PL, and one uncapacitated on-demand alternative. As given in Table 4, these
capacities are set based on a max capacity assumption as presented in equation (26). After generating the
demand quantities for the model run, the maximum demand quantity over the entire planning horizon are
summed over the demand locations and divided by 0.6P, where P is the minimum number of DCs required
to cover all locations, found by solving a classical set covering model based on the selected response
requirement . To accommodate for spatial demand variations that require some DCs to need additional

capacities to fulfill the requirements, we incorporate a safety coefficient of 0.6 when setting capacities.

Laep max(Aap)

0.6P

max(K) = (26)

For self-distribution alternatives, the commitment covers the entire planning horizon (20 periods or five
years), whereas 3PL alternatives have a commitment of 4 quarters (one year), and the on-demand
alternative’s commitment is one quarter (see Table 4). The DC cost input parameter values are calculated
for each DC alternative using formulations, assumptions, and cost references in Unnu & Pazour, 2019. We

assume alternative capacities and costs are the same for all locations over the entire planning horizon, and
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thus we drop the index for location and period for the cost input parameters. We validate the cost relations
between the alternatives and confirm that they incorporate the economies of scale and the ownership cost
advantages (see supplemental materials for details).

Table 4: Capacities and costs of the 10 alternatives used in the computational studies

a Type Capacity (K,) |Capacity|Commitment| Initial Costs | Operational | Holding Costs | Handling
(units) (period) (&) Costs ($/period/unit) Costs
(Ko) (No) (Fo) ($/period) (H,) ($/unit)
(Rg) (Go)
1 Self 0.20 * Max(K) | 10,000 20 1,030,000 368,550 0 0
2 Self 0.50 * Max(K) | 25,000 20 2,400,000 897,000 0 0
3 Self Max(K) 50,000 20 4,700,000 1,691,000 0 0
4 3PL 0.05 * Max(K) 2,500 4 7,000 115,000 0 6.33
5 3PL 0.08 * Max(K) 4,000 4 8,100 175,000 0 6.00
6 3PL 0.10 * Max(K) 5,000 4 8,900 210,000 0 5.67
7 3PL 0.20 * Max(K) | 10,000 4 13,000 405,000 0 5.33
8 3PL 0.50 * Max(K) | 25,000 4 24,500 975,000 0 5.00
9 3PL Max(K) 50,000 4 45,000 1,900,000 0 433
10| On-Demand Infinite Infinite 1 0 0 33.00 15.00

Locations: The 49 metropolitan areas with populations more than 50,000 in the US Northeast region are
used as demand points (US Census, 2018). The center of each of the metropolitan area is set as the center
of its most populated county (US Census, 2019). The great-circle distances between the locations’ centers
(6y,u,), calculated with the Haversine formula, are used as surrogates for the transportation costs and are
gathered from the US Census and National Bureau of Economic Research’s County Distance Databases
(US Census, 2010, County distance database). One of US’s largest ports is located at Newark, NJ, and is
used as a single supply point in our model (McCabhill, 2017).

To set candidate DC locations, we rely on the 14 publicly available locations of Amazon, Walmart
and Target’s DCs in the Northeast US region. Two maximum ranges (o<) represent customer delivery
expectations, with x=250 miles capturing next day delivery and «=100 miles capturing same day delivery.
The feasibility of meeting these maximum range constraints using the 14 identified locations was tested
using a set covering model with the 49 demand points being candidate locations and with an additional
constraint to keep the identified 14 DC locations open. The set covering model solution required 3
additional candidate DC locations (for the 100 miles range) and we adopted these 17 candidate locations in

our models for both values of o.
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Demand Quantity: The population of each metro (Metropolitan and Micropolitan Statistical Areas Totals,

metro population

2019) divided by 1000 are used to set the initial demands A1 = ( 1000 ).

Freight Cost Data: Data from transportation resources (Lojistic, 2020; National van Rates, 2020; Keller,
2017) are used to estimate freight costs based on truck deliveries. The inbound and outbound costs are
different due to capacity utilization, number of stops on the route, and distances traveled. Inbound trucks
are assumed, on average, 75% utilized, and trucks from DCs to demand locations are assumed 60% utilized
(Mathers, 2015). A logistic practice is to use the weight cost or cost per unit delivery in addition to distance-
based costs to estimate the freight costs (2020 UPS Rate & Service Guide, 2019; FedEx Freight Zone-Based
Rates, 2018). Accordingly, these values are used in our computational studies: Cj;p: 0.083 $/mile/unit,
CFijp: 3.00 $/unit, Ejgp: 0.251 $/mile/unit, and EFjgp,: 15.00 $/unit.

Other Data: The lost sales cost (¥ * ¢) is 200 $/unit, which is higher than the unit distribution cost, and
thus in the optimization model, for all experiments, it will be optimal to have no lost sales.

7. Computational Results

This section summarizes the computational results from the previously introduced datasets, assumptions,
and factor levels. The optimization models are solved with IBM ILOG CPLEX 12.9 with a maximum time
limit based on the model characteristics. The optimization solution times varied between 30 seconds up to
of 22 hours and returned optimality gaps between 0% and 1.15%. All 96 optimization runs were solved
using 154 hours of solve time. The simulation models are coded with Python 3.7.3 and results are based on
100 replications per simulation run. 516 hours of computational time were required to solve the 3072
simulation runs explained in Table 4. This number of replications is selected based on confidence interval
calculations and variability analysis of the total distribution costs (see supplemental materials for details).
Optimization Model Results

Figure 1 provides the box plots of the optimization objective function values grouped by factor levels if the

total distribution cost difference between factor levels was greater than one million dollars. Factors having
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the largest impact at the planning stage are whether on-demand warehousing is considered or not, the

response requirement range value, and whether safety stock is planned for or not.

160,000,000 Opt_OnDemand Opt Range Opt_SafetyStock
158,000,000 1 1
156,000,000
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Figure 1: Optimization model factors’ box plots of the total distribution costs for factor levels that
have a difference greater than or equal to $1Million.

Utilizing the on-demand alternative yields nearly a 4% decrease, on average, in total planned
distribution costs. The optimal decision variable values indicate that solely using on-demand warehousing
to fulfill customer requests is not justified; instead, hybrid solutions, utilizing a mix of self-distribution,
3PL, and on-demand alternatives, are recommended. Companies should consider on-demand warehousing
(in addition to self distribution and 3PL facilities) when designing their distribution network to reduce total
costs. To understand the reasons for the distribution cost differences, we analyze the average number of
open facilities at each period by type. There are 17 candidate locations, with each location having the
opportunity to open 10 alternatives (if the on-demand alternative is considered, and only 9 alternatives if
on-demand warehousing is not considered). Therefore, considering on-demand warehousing, the
optimization model has 170 candidate facilities across 17 locations available per period. As presented in
Table 5, with the advent of on-demand warehousing, the average number of total open locations per period
increased, both through use of on-demand facilities but also by increasing the number of self-distribution
facilities. Yet, the reliance on lease facilities (at least with 3PL’s current commitment granularities and cost

structures) decreased.
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Table 5: The average number of open facilities per period and the transportation, DC and total
costs of the optimization runs, segregated into when the on-demand alternative is not available
(NOD) and when on-demand warehousing is available (OD)

Average Number of Open Facilities per Period Transportation
Opt_OnDemand Total Self P 3PL gn- demand Cpos ts DC Costs Total Costs
NOD 10.08 2.52 7.56 0.00 94,106,294 58,095,684 | 152,201,978
OD 12.00 2.92 2.63 6.45 94,673,816 51,691,326 | 146,365,142
Diff -0.60% 12.54% 3.99%

When the number of facilities increases, we would traditionally expect an increase in total DC
costs. However, with on-demand warehousing, the DC costs decrease by 12.54%, even though the number
of facilities has increased, and on-demand warehousing has higher costs. This cost reduction is due to on-
demand warehouses being only opened for one period at a time, which creates more efficient demand
fulfillment and better capacity utilization amongst the opened DCs (of all types). As presented in Table 6,
with on-demand warehousing, the average capacity utilization for both self-distribution and 3PL
alternatives increases (94% to 98% and 85% to 98%, respectively). Also, the demand fulfilled by self-
distribution increases (71% to 80%). Thus, on-demand warehousing’s reduced granularity enables better

capacity utilization and decreased DC costs of the opened self-distribution and 3PL facilities.

Table 6: Broken down by DC type, the optimization model results of total costs, percent demand

fulfilled and capacity utilization, without and with on-demand warehousing.
Opt_OnDemand Opt_OnDemand Opt_OnDemand
NOD OD NOD oD
% Demand Capacity % Demand Capacity
Total Costs Fulfilled Utilization Fulfilled Utilization
Diff Self | 3PL |OnD| Self | 3PL || Self | 3PL |OnD| Self | 3PL
Mean (152,201,978|146,365,142| 5,836,836 | 3.99% | | 71% | 29% | 0% | 94% | 85% ||80% |13% | 7% |98% | 98%
StDev 4,883,296| 981,810| 4,432,216

As shown in Table 7, in scenarios with a maximum 100-mile range, using on-demand warehousing
decreases the costs by 6.93% compared to when on-demand was not considered. Yet, the savings with on-
demand is only 1.03% with looser response requirements of 250-miles. Thus, on-demand warehousing has
the most value when a firm has tight responsiveness requirements. For both response requirements, on-
demand warehousing changes the alternative selected, as well as how many and where facilities are located.
Using on-demand warehousing in looser response requirement environments led to a greater increase in the

average number of facilities opened per period than for the tighter response requirement environments.
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Table 7: For both response requirements, the mean, min, and max open facilities per period and the
optimization’s total costs, when on-demand is not available (NOD) versus available (OD).
Opt_OnDemand

NOD (0)))
Open Facilities Open Facilities Diff
per Period Total Costs per Period Total Costs
Mean | Min | Max Mean | Min | Max % Mean Stdev

Opt 100 13.1 12 16 156,944,553 | 13.2 12 17 146,778,733 | 6.93% | 10,165,819 | 908,475
Range | 250 7.1 5 11 147,459,403 | 10.8 7 17 145,951,551 | 1.03% | 1,507,852 | 456,166

% 6.43% % 0.57%
Diff Mean | 9,485,150 Diff Mean 827,182
Stdev | 1,054,812 Stdey 224,552

To observe how the optimization model decisions affect specific DC-to-demand location
assignments, capacity utilization and costs, with and without on-demand warehousing, we examine an
instance in detail. This instance has demand with a downward trend and seasonality, allows 3PL extra
capacity at a premium, has safety stock depending on the number of open DCs, and a 100 miles maximum
range. Figure 2 illustrates how demand is fulfilled differently with and without on-demand warehousing.
Similar DC locations are selected, but different DC alternative combinations are used. Figure 3 illustrates
that with the inclusion of on-demand warehousing, most of the 3PLs are replaced with on-demand
alternatives and the number of self-distribution types also increased. As shown in Table 8, when we analyze
DC type capacities and demand fulfillments over the planning horizon, the capacity utilization of 3PL
option is 79% on average without the on-demand alternative. With on-demand warehousing, the 3PL
capacity utilization increases to 95% and self-distribution to 99%. Thus, the on-demand alternative’s
reduced granularity and commitment, allows for changing capacity levels over time that better match with

demand requirements and enables better capacity utilization for the other DC alternative types.
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Figure 2: Location allocation decisions of a selected example
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Table 8: Cost and demand fulfilment details of the selected example

Without On-demand (NOD) With On-demand (OD) Diff
DC Types Fulfilled Demand Capacity Fulfilled Demand Capacity
Utilization Utilization
Self-Distribution 633,243 | 60.8% 93% 825,994 | 79.3% 99%
3PL 408,456 | 39.2% 79% 118,915 11.4% 95%
On-Demand 96,790 9.3%
Across all DC Types | 1,041,700 | 100.0% 1,041,700 | 100.0%
Total Costs 156,364,049 147,830,309 | 5.8%
Transportation Costs 91,818,793 93,864,946 | -2.2%
DC Costs 64,545,256 53,965,363 | 19.6%
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Figure 3: DC type capacity, demand fulfilment and number of facilities per period of the selected

example, with and without on-demand warehousing
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Simulation Model Results

To assess operational performance of the distribution networks created by our optimization model, in this
section we analyze the mean total distribution cost from using 100 replications for each of the 3072
simulation runs. Figure 4 presents box plots of the simulation’s mean total distribution costs between main
factor levels that change available capacity; this includes in the planning stage whether on-demand
warehousing as well as whether premium extra 3PL capacity was considered or not, as well as in the
simulation whether new on-demand facilities could be opened, whether new extra 3PL capacity can be

obtained, and whether on-demand capacity is available as planned.
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Figure 4: Boxplots of the simulation runs’ mean distribution cost values for factors that change
available capacity

Even when demand operationally varies from the estimates used to create the distribution network
and only limited adjustments to the planned decisions are allowed, the presence of on-demand warehousing
can decrease total distribution costs. Yet, in general, the impact is small. As we explore in this section, the

business case for on-demand warehousing is influenced by several interactions.

As displayed in Figure 5 (a), if there is a demand trend (opt_Trend - either upward or downward),
using on-demand warehousing can reduce distribution costs. However, if no trend exists, traditional ways
of obtaining distribution capacity are sufficient. Capacity sizing decisions, specifically whether to plan to
obtain extra capacity over expected demand during the network design planning stage, is investigated
through the safety stock factor (Opt_SafetyStock) in Figure 5 (b). If a company does not plan to use on-

demand warehousing in its distribution network, it is better not to incorporate an extra demand buffer (NSS

Page 24 of Author Accepted Version for /ISE Transactions (2022)
doi = 10.1080/24725854.2021.2008066



— No safety stock). This is because of the larger capacity granularities of the self-distribution and 3PL DCs,
which already have a built-in capacity buffer due to their higher capacity granularities. However, due to
on-demand’s low capacity granularity and higher capacity utilization of 3PL and self-distribution options
when on-demand is present, less of such buffers exist with hybrid distribution networks using on-demand
warehousing. Therefore, firms planning to utilize on-demand alternatives are advised to incorporate an

extra capacity buffer during distribution network design planning.

185,000,000 185,000,000
- 184,500,000 % 184,500,000
- o
U 184,000,000 ~ 184,000,000
S 183,500,000 2 183,500,000 -
-] 2 -
K= o -
| S 183,000,000 =
] ] -
2182, A 182,500,000 -
a = -
= 182,000,000 8 182,000,000 -~
] < -
S 181,500,000 £ 181500000 =
g b5
3 181,000,000 ﬁ 181,000,000
= 180,500,000 180,500,000
180,000,000 180,000,000
Tdown Tnone Tup S8 NSS
Opt_Trend Opt_safetyStock
Opt_OnDemand Opt_OnDemand
—NOD = =0D ——NOD = = 0D
(a) Demand Trend (b) Safety Stock

Figure 5: Evaluation of the mean total costs with and without on-demand warehousing for (a)
different demand trends, and (b) whether safety stock is considered at the planning stage or not.

The business case for on-demand warehousing is influenced by a firm’s response requirements
(Opt_Range) and whether on-demand capacity is always available when and where a firm needs it
(Sim_OnDemandCapacity). Figure 6(a) displays the interaction effects of response requirements and
whether the network is designed considering on-demand warehousing. If a firm has a tight service
requirement (maximum 100-miles of service range), then on-demand warehousing is useful. However, if a
company has less stringent response requirements of 250 miles, then on-demand warehousing’s higher per
unit costs are not justified because the longer-range enables self-distribution and 3PL type DCs to better
utilize their larger capacity granularities to serve multiple demand locations. On-demand warehousing does
not have long-term contracts, resulting in a risk that the on-demand alternative is not always available period
to period as planned. This risk is captured in the simulation factor, with Sim_OnDemandCapacity=1. If on-
demand warehousing needs are always met as planned (Sim_OnDemandCapacity=0), Figure 6(b) illustrates

network designs with on-demand warehousing are beneficial in both response ranges, and the impact is
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greater with tighter response times. Yet, as shown in Figure 6(c), when on-demand capacity is not always
available (Sim_OnDemandCapacity=1), on-demand warchousing’s benefits are minor for tight response

times, and not justified for relaxed response requirements.

Sim_OnDemandCapacity - ALL Sim_OnDemandCapacity - 0 (NO) Sim_OnDemandCapacity - 1 (YES)
= ;185,000,000 = > 185,000,000 =
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Figure 6: Evaluation of mean total costs with and without on-demand warehousing and for
different response requirements over (a) all simulation cases, (b) when on-demand warehousing is
available as planned, and (c) when on-demand warehousing is not always available as planned.

Finally, we analyze the impact of on-demand warehousing on the business model of 3PLs. As
shown in Figure 4, costs increase when firms use 3PLs extra capacity at a premium price if they do not
have enough capacity to fulfill their demand (Sim_NewExtraCapacity=1). In Table 9, we display the mean
total distribution costs for the different cases of obtaining extra capacity in the simulation. Planning and
operating the distribution network without on-demand warehousing (opt Ondemand=NOD,
sim_newOndemand=NO) and adding 10% more 3PL capacity for a 20% premium cost, increases the
overall distribution costs because the firm pays for unused premium capacity. As a reminder, the contract
simulated was that 3PL capacity is increased by 10% once a unit arrives over the contracted amount. Such
3PL premium capacity expansion clauses are found not cost effective for the lost sale parameters tested
because of both the higher costs and the requirement of paying for 10% capacity, even when the firm does
not need all this extra capacity. Without 3PL capacity expansions (Sim_NewExtraCapacity=0), and instead
both planning the network to use on-demand warehousing and operationally having a firm add new on-
demand facilities if capacity is insufficient (opt Ondemand=0D, sim newOndemand=YES) are better at

reducing costs and returns the lowest cost value in Table 9.
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Table 9: The mean total costs of using 3PL premium capacity expansion or adding new on-demand
warehousing, by whether the firm planned to use on-demand warehousing or not. (Highest and
lowest values are shaded.)

Opt Sim Sim_NewExtraCapacity
OnDemand NewOndemand 0 1
NOD NO 183,034,724 184,006,420
YES 182,364,909 183,856,086
oD NO 182,533,362 183,036,588
YES 182,047,985 182,919,942

8. Conclusions and Future Research

On-demand warehousing matches companies with underutilized warehouse and DC capabilities with
customers who need extra space or distribution services. Via reduced capacity and commitment
granularities, they create flexibility and increase responsiveness for customers, but also have different cost
structures, with much higher variable per-pallet costs, than traditional types of DCs. Given these tradeoffs,
this work is motivated by the following open question, “Is there a business case to be made for the use of
on-demand warehousing, and if so, in what environments?” Answering this question requires development
of a dynamic facility location model able to simultaneously consider the location and allocation decisions
of three DC types (self-distribution, 3PL, on-demand). A mixed-integer linear program captures the three
DC types’ varying commitment granularities, capacity reduction-expansion policies, and cost structures,
across multiple periods and locations. Through a comprehensive design of experiments based on industry
data, we evaluate the impact of having the on-demand alternative available.

As the first quantitative approach to understanding when and how to utilize on-demand
warehousing in a firm’s network design, we provide insights valuable to supply chain managers, especially
those at companies receiving products produced outside of the US to fulfill a set of regional customer
demands. Even with on-demand warehousing’s higher per unit costs, a company can reduce its distribution
costs by adopting on-demand warehousing as part of its network design strategy. The power of on-demand
warehousing’s reduced commitment and capacity granularity is in creating network designs that can meet
tight response requirements and more efficiently use owned and 3PL/leased facilities through improved
capacity utilization. Thus, on-demand warehousing can be a good supplement to more traditional forms of

acquiring fulfillment services. With the advent of on-demand warehousing, we expect firms to increase the
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number of DC locations, both using on-demand facilities but also by increasing the number of self-
distribution facilities. Companies planning to utilize on-demand warehousing should incorporate an extra
capacity buffer during distribution network planning

Evaluating the network designs obtained from the optimization model using a simulation model to
capture demand and on-demand warehousing capacity uncertainty, we find that the business case for on-
demand warehousing is influenced by several operational factors. With no long-term contracts, the
availability of on-demand capacity where and when a firm needs it depends on the markets’ supply-demand
relations. Therefore, a risk, which is not widely discussed in practice, is that the on-demand alternative may
not always be available as planned. We recommend considering on-demand warehousing if your firm has
tight response requirements, for example for same day delivery; however, if your firm has relaxed response
requirements, then on-demand warehousing is only recommended if capacity availability of planned on-
demand services is high. Lastly, 3PLs should consider offering more granular solutions to their customers
to stay competitive in the market.

This research opens several future research directions. The current model only captures truck
delivery, future research can incorporate multiple transportation modes into the model. In addition to
deciding what mode to select for each demand point and time period, an extended model could also relax
the maximum range constraint, capturing different transportation mode costs in the objective function. The
current optimization model is useful for planning, but additional tactical or operational models would be
useful to adjust and adapt a firm’s network strategy to changes dynamically. Another direction is to
incorporate the varying time of the different DC types required between a facility opening decision and the
facility being operational. On-demand systems enable quick access to the market, which is a competitive
advantage that should be captured in a dynamic model. Finally, future research also includes developing
specialized solution methods and heuristics for large scale networks. These large-scale dynamic facility
location problems could help to better model tight response requirements for national use cases.
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1. Cost Structural Differences between different DC types.
Supplemental Table 1: Cost Structures of the Different DC Types (Unnu & Pazour, 2019)

Cost
Type Initial Costs Operational Costs Holding Costs Handling Costs
DC ® ($/period) ($/unit/period) ($/unit)
Type (Fajp) (Rajp) (Hajp) (Gajp)
Self - Construction or - Labor (direct labor, - -
Distributi |acquisition common, management,
on - Equipment (handling, |etc.)
(4% storage, etc.) - Equipment rental (e.g.
- Closing costs, due forklift)
diligence - Other charges
(insurance, outsourced
services, etc.)
3PL - Security deposit, legal |- Contractual payments |- Variable (per use)
(AH fees (contract review), |per period handling costs
account setup fees - Other charges
(insurance, outsourced
services, etc.)
On- - - Variable storage | Variable (per use)
Demand cost handling costs
(4°%)
Reference:

Unnu, K., & Pazour, J. A. (2019). Analyzing varying cost structures of alternative warehouse strategies.
Proc. of the 2019 IISE Annual Conf., 480—-485.
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2. Monte Carlo Simulation Model Description

The optimization model presented in Section 4 is helpful as a strategic planning tool to determine facility
alternative and location decisions, especially because deciding to build a DC or committing to a 3PL
contract requires some lead time to implement. Like an aggregate planning problem in manufacturing, these
facility decisions (i.e., Zgj, = 1 values) would be made using a forecast for demand across locations and
time periods. We assess operational performance of this plan using a Monte Carlo simulation that updates
the remaining operational decision variables due to (i) demand variability or (ii) on-demand warehousing
capacity variability (as there are no long-term contacts, the availability of on-demand warehousing capacity
where and when a firm may want it can vary period to period beyond what was expected). Specifically, in

the simulation, demand quantities (/po Vd € D,Yp €T) and on-demand warchousing capacities

(Kqjp Va € A°,V j € ],V p € T) are now random variables. As we illustrate in Supplemental Figure 1, such
uncertainty can result in a firm updating their units supplied, units delivered, demand ratios fulfilled, lost
sales, and inventory levels. Further, due to insufficient capacity, a firm may need to return some inventory

back to supply locations, which requires introducing two additional variables, returnC,j, and

returnOf fujp-
In all our experiments, if the optimization model sets Z,j, = 1, then in the simulation model a
facility of alternative a is opened in location j in period p and the available capacity associated with this

decision is Kgjp,. Similarly, if the optimization has set OCyj;, = 1, then in the simulation model the extra

jp-
capacity for a 3PL alternative a is executed in location j at period p, providing K, available capacity.
For some of the computational factors (described in our design of experiments in Section 6), additional
capacity can be made available in limited situations. Specifically, in the case of a period having insufficient
capacity, we explore the value of a firm being able to add additional 3PL extra capacity options or to add

additional on-demand warehousing options for that period.
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Supplemental Figure 1: Simulation model decision flow chart.
For each period p € T, the simulation takes the optimization model’s optimal decision variable

values for DC opening, 3PL over capacity, inbound deliveries from supply location to DCs and demand

fulfill ratios (Zgjp, OCqjp, Xaijp and Wy jqap, respectively) as inputs. Then after observing values for the

simulated demand ()po) and on-demand DC capacities (I?a jp), an associated value for the simulated
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decision variables: new inbound deliveries, new demand fulfilled ratios, inventory and lost sales (ratio of
demand not fulfilled) are calculated, and are denoted as X ; ps w, jdp» S, jp» and ﬁdp, respectively.

First, the simulation model checks the available capacity for each DC that is to receive products.
The available capacity from the optimization model decisions for 3PL or self-distribution facilities is
calculated using the right-hand side of constraint (3). For the on-demand facilities, it is determined by the
simulated random variable =a jp- Further, depending on the factor value in the DOE (see Section 6), this
available capacity may be further augmented to incorporate new 3PL extra capacity and new on-demand

warehousing decisions. If there is enough in-bound capacity remaining, then Xg;,j, = Xg;rjpWhere the

closest supply location is denoted as i’. Otherwise, X, = Available Capacity — S, jp—1, With the
excessive quantity shipped back to the closest supply location i’ using a new variable, returnCyj, =
Xairjp = Xairjp:

For the outbound delivery, the simulation model initially tries to apply the W4, ratios of the

optimization model. If the simulated demand idp cannot be fulfilled completely due to insufficient available

. y _ _ Sajpes Rt
inventory levels at the facility, new W 4, values are calculated as Wy 4, = % Wejap- The loss
ajap”-ap

sales are updated based on constraint (8). This process results in the lost sales being equally divided across
all demand locations served by an inadequately supplied DC. We then calculate the inventories (§a jp) at
the DC locations with the balance equation (12). If a DC reaches the end of its commitment period with
any remaining inventory, the excess inventory is shipped back to the closest supply location using
Wa jp- The detailed sets, variables and calculations are presented in the supplemental materials
simulation pseudocode section. The costs of the new return decisions, as shown in S(27) and S(28), are
added onto the objective function (1) and used to report total distribution costs from our simulation model.

ma jp ‘Total units shipped back to the closest supply location (denoted as i’) to location j
due to insufficient capacity at an alternative a DC at location j at period p

returnOf f,, : Total units shipped back to the closest supply location (denoted as i) to location
j due to closing of an alternative a DC at location j at period p.
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Z 2 Z returnCajp (8;1,Cirjp + CFyr iy + Gajp) 8(27)
a€A jejJ peT
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a€A jejJ peT
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3. Data Input Validation to Confirm Economies of Scale and Ownership Cost Advantages

The costs presented in Table 4 can change significantly based on various inputs. Therefore, we
validate the cost relations between the alternatives and confirm that they incorporate the economies of scale
and the ownership cost advantages. The cost input values are fed into equations S(29)-S(31) to estimate
unit cost, UC,, of distribution alternative a, given in $ per unit per period. These costs are a function of the
time a unit spends in a facility, and thus depend on inventory turns. Let i denote the average number of
turns per period. Assuming 100% capacity utilization for self and 3PL alternatives and ¥ = 3 inventory
turns per quarter in all DCs, then unit costs per period (quarter) and the relationship between alternatives’
input costs are presented in Supplemental Table 2. For example, economies of scale are seen in the self-
distribution alternatives, when the second largest capacity self-distribution alternative (¢=2) has unit costs
(UC,) which are 3% to 8% more compared to the largest self-distribution alternative (=3, UC3). Further,
economies of ownership (when fully utilized) are captured, for example, the 3PL alternative (¢=9) has unit

costs that are 30% to 35% more compared to the same sized self-distribution alternative (a=3).

1 /F
Self-distribution UC, = — (—a + Ra) Va € A® S(29)
Kq \Ng
1 (F,
3PL uc, = —(— + Ra) + Y G, Va € A S(30)
Kq \Ng
On-Demand UC,=H,+vY G, VYa € A° S31)

Supplemental Table 2: Capacity and cost relationship input data validation of DC alternatives
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a |Type Cost per unit per period (UC,) Cost per unit per period (quarter)
Uc)
1 |Self Distribution 1| (UC, * 1.03) < UC; < (UC, * 1.08) 42.00
2 |Self Distribution 2| (UC3 * 1.03) < UC, < (UC3 * 1.08) 40.68
3 |Self Distribution 3 UCs 38.52
4 |3PL 1 (UC5 x1.03) < UC, < (UC5 x1.08) 65.70
5 |3PL2 (UCg x1.03) < UCs < (UCg % 1.08) 62.25
6 |3PL 3 (UC, x1.03) < UC, < (UC, % 1.08) 59.46
7 |3PL 4 (UCg x1.03) < UC; < (UCg x1.08) 56.82
8 |3PL 5 (UCy x1.03) < UCq < (UCq * 1.08) 54.24
9 [3PL6 (UC3; x1.30) < UC, < (UG5 +1.35) 51.24
10|On-demand (UCy x1.15) < UCyy < (UC, x 1.20) 78.00
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4. Additional Simulation Results

Supplemental Figure 2 presents the confidence intervals calculated based on the samples selected from
the simulation replicates with bootstrapping method (5000 times random selection with replacement). This
graph shows that the variability of simulation result decrease over the number of simulation replicates and

we decided to use 100 replicates for our simulation models which appears to be adequate.
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Supplemental Figure 2: Simulation Replicate Adequacy

Supplemental Figure 3 presents the total distribution costs from the 96 optimization and the 307,200
simulation outputs. As expected, the optimization values are smaller than the related replications from the

simulation models.

Page 40 of Author Accepted Version for /ISE Transactions (2022)
doi =10.1080/24725854.2021.2008066



Total Distribution Cost

210,000,000

200,000,000

190,000,000

180,000,000

170,000,000

160,000,000

150,000,000

140,000,000

[ ] Simulation Results [ | Optimization Results || Simulation Results [ ] Optimization Results  —— Group Means
Opt_OnDemand="0D' Opt_OnDemand="OD' Opt_OnDemand="NOD' Opt_OnDemand="NOD'

- — - - -l
e e
— — - — -
50,000 100,000 150,000 200,000 250,000 300,000
Number of Experiments

Supplemental Figure 3: The total distribution costs for each of the optimization runs and

simulation replications.
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5. Reproducibility

5.1 Computer and software environment
Please describe the computer hardware conditions and software environment on which the authors
produce the results reported in the paper.

The optimization models are solved with IBM ILOG CPLEX 12.9 with a maximum time limit based on
the model characteristics. The optimization solution times varied between 30 seconds up to of 22 hours
and returned optimality gaps between 0% and 1.15%. All 96 optimization runs were solved using 154
hours of solve time. The simulation models are coded with Python 3.7.3 and results are based on 100
replications per simulation run. 516 hours of computational time were required to solve the 3072
simulation runs explained in Table 4.

5.2 Workflow
Which results Data File Code File Expected
to reproduce output
1 OD 100 NOC NSS.mod
2 OD 100 NOC_SS.mod
3 OD_100 OC _NSS.mod
4 OD _100_OC_SS.mod
1 _TUp SNone VNone.dat 5 OD 250 NOC NSS.mod
2 TUp SMajor VNone.dat 6_OD 250 NOC SS.mod Optimization
CPLEX 3_TNone_SN01}e_VNone.dat 7 OD 250 OC NSS.mod and decisic;n
Optimization 4 TNone SMajor_ VNone.dat | 8 OD 250 OC_SS.mod variables
Runs 5 TDown_SNone VNone.dat |9 NOD 100 NOC_NSS.mod (sce example
6_TDown_SMajor VNone.dat | 10 NOD 100 NOC SS.mod folder)
11 NOD 100 _OC _NSS.mod
ScenarioSet.xIsx 12 NOD_100_OC_SS.mod
13_NOD 250 NOC_NSS.mod
14 NOD_250 NOC_SS.mod
15_NOD 250 OC_NSS.mod
16 NOD 250 OC _SS.mod
Simulation o Simulatipn.py Simulation
Optimization  outputs and | (simulation model) results, and
runs based on :
optimization ScenarioSet.xIsx ' ' plots
SimulationRunner.py (automates | (see example
results . . .
simulation runs and automatically | folder)

changes the factor levels)
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Simulation Model Pseudocode

Input: Sets, parameters and decision variable results of the optimization model
Zajp < Zajp
for(a,j,p)in(Zyj, =1 Va€AVjE]VpET)
fortin[p,(p + NJ|: Zgj < 1
for rep =1 to Number of Replicates:

Xiajp» Wajaps Sajor Sajpr LSap, 0Cajp <« 0 Vi€, YVdED; VpET; VjEJ; VaEA
Kajp = Kajpy VYa€A VjEJ;VDET

returnCyj, ,returnOf fuj, < 0 Va€eA, Vje], VpeT

fort=11to|T]

if [demand variability = low| then
Aat = Aq¢(1 + (Uni[-0.1,0.1]) Vvd €D
endif
if [demand variability = high| then
Aat = Aq¢(1 + (Uni[-0.3,03]) Vvde€D
endif
if [forecast variability = yes| then
Tae = Aqe (1 + (Uni[-01,0.1] « %)) vd € D
endif
if |0n-demand capacity = yes| then
Kioje =Kaje. Uni[0,1] Vj €]
endif
Xiajt(_Xiajt vd € D; VjE]; Va€eA
0Cujs < 0Cyjr VAED; VjEJ; VaEA
if t # |T|then
forainA
forjin]
previnv « Sgi_y
availcap « (I?ajt(l + ﬁaﬁﬂ) — previnv),

tmprec « Z Xiajt
i€l
tmpdel « Z WajatAa

deD
if (tmpdel + tmprec = 0) then

if (availcap = tmprec) then
if tmpdel < (tmprec + previnv) then
fordinD: VT/ajdt < Wajar
if Zyji41 = 1then
if (tmprec — tmpdel + previnv > K,ji1)then
gajt < I?ajt+1
returnCyj, < mprec — tmpdel + previnv — I?ajtJr1
else
5=‘ajt « (tmprec — tmpdel + previnv)
endif
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else

Sajt «— O

returnOf f,;; < (tmprec — tmpdel + previnv)
endif

else
tmprec + previnv

for dinD: I/T/ajdt < Weyjar *

tmpdel
§ajt <0
endif
else
if (a € AY) & (0C,j; = 0) & (overcapacity open = yes) then
ﬁajt <1

availcap « (I?ajt(l + Waﬁﬂ) — previnv)
if (availcap < tmprec) then
. = availcap
foriinl: X, < (Xl-ajt *—tmprec )
tmprec, < z )?l-ajt
i€l
if tmpdel < (tmprec, + previnv) then
fordinD: I/T/ajdt < Wajar
if Zgjry1 = 1 then
§ajt « (tmprec, — tmpdel + previnv)
else

Sajt <0

returnOf f,;; < (tmprec, — tmpdel + previnv)
endif
else

tmprec, + previnv

fordinD: VT/ajdt < Wajar * tmpdel

Sajt <0
endif
returnC,j; < tmprec — tmprec,
endif
if (availcap = tmprec) then
if tmpdel < (tmprec + previnv) then
fOT dinD: VT/ajdt — Wajdt
if Zgjry1 = 1then
if (tmprec — tmpdel + previnv > I?ajtﬂ)then
Sajt < Kajes1
returnCyj, < mprec — tmpdel + previnv

- Kajt+1
else
.S=‘ajt « (tmprec — tmpdel + previnv)
endif
else
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Sajt — 0,

returnOf fq;; < (tmprec — tmpdel + previnv)
endif
else

. _ tmprec + previnv
fordinD:Wyjq « Wyjar *

tmpdel
§ajt <0
endif
endif

endif

if (a € AY) & (0C, it=0)& (overcapacity open = no)) then
availcap)

foriin I:Xiajt «— (Xiajt *

tmprec, < z )?l-ajt
iel
if tmpdel < (tmprec, + previnv) then
fOT' dinD: VT/ajdt « Wajdt
if Zyj41 = 1then

Sajt < (tmprec, — tmpdel + previnv)

tmprec

else
§ajt <0, returnOf fq;
« (tmprec, — tmpdel + previnv)
endif
else

tmprec, + previnv

fOTd inD: VT/ajdt — (Wajdt *

tmpdel
§ajt <0
endif
returnCyj; < tmprec — tmprec,
endif
endif
endif
ift =|T|then
forainA
forjin]

previnv « S=ajt_1, availcap « (I?ajt(l + ﬁaﬁﬂ) — previnv),

tmprec « ZX ,tmpdel « Z Wajdtidt
i€l jajt debD
if (tmpdel + tmprec = 0) then
if (availcap = tmprec) then
if tmpdel < (tmprec + previnv) then
fordinD: I/T/'ajdt < Wajar
§ajt <0, returnOf f,;; < (tmprec — tmpdel + previnv)
else
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tmprec + previnv

fordinD: VT/ajdt < Wgjar *

tmpdel
Sajt <0
endif
if (availcap < tmprec) then
if(aeA) & (ﬁa it=0)& (|overcapacity open = yes|) then
ﬁajt <1
availcap « (I?ajt(l + ﬁaﬂﬂ) — previnv)
if (availcap < tmprec) then

foriin I:Xiajt «— (Xiajt *

tmprec, < z )?l-ajt
iel
if tmpdel < (tmprec, + previnv) then
fO‘l" d ln D: Wajdt — Wajdt

availcap)
tmprec

Sajt <0
returnOf f,;; < (tmprec, — tmpdel + previnv)
if tmpdel > (tmprec, + previnv) then

_ — tmprec, + previnv
fordinD: Wyjq « (Wyjar *

tmpdel
§ajt <0
returnCyj; < tmprec — tmprec,
if (availcap = tmprec) then
if tmpdel < (tmprec + previnv) then
fordinD: I/T/ajdt < Wajar
§ajt <0
returnOf fq;; < (tmprec — tmpdel + previnv)
if tmpdel > (tmprec, + previnv) then

_ _ tmprec + previnv
fordinD: Wajdt « (Wajdt *

tmpdel
S=ajt <0
endif
if (aeAd)& (ﬁa it=0)& (|overcapacity open = no|) then
o = availcap
foriinl: X, < (Xiajt *W)

tmprec, « z )?iajt
i€l
if tmpdel < (tmprec, + previnv) then
fOT'diTlD:Wajdt& ajdt
§ajt <0
returnOf fq;; < (tmprec, — tmpdel + previnv)
endif
if tmpdel > (tmprec, + previnv) then
tmprec, + previnv

fordinD: VT/ajdt < Wajar * tmpdel
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§ajt <0
returnCyj; < tmprec — tmprec,
endif
endif
endif
endif
if lnew ondemand = yes| then
for(a,j,p)in (returnCq;, >0 Va€AVj€] Vp€ET)

if (a ¢ A° and (Z Wajar — Z I/T/a]-dt> > 0) then

deD aeD  _
Zyjp < 1(a’ € A%, availcap « Kyrj, (a' € A%)
fordinD

returnCa(U; < Wajap = Wajap) Aap

if (avallcap = returnCC(”;) then

W jap « Wajap = Wajap) + Werjap (@' € A%)

returnCyj, < (returnCajp — returnCé];)

availcap < availcap — returnC'?)

ajp
endif
if (availcap < returnCCE]; and availcap > 0) then
avallcap
w a'jdp < ( )+ Wa’jdp (a' € A%)

returnCy;j, < (returnCaJp availcap)
availcap < 0

endif
endif
endif
fordinD
forpinT
Dap « (1= ) > Wajap)
a€A jej

TransportCostl,e, < Z Z Z Z )?aijp (0;jCijp + CFijp)

i€l j€I p€eT a€A

StartupCost,q, < Z Z Z ZajpFajp

J€EJ PET a€A

HandlingCostye, < z Z Z z iajpGajp

i€l j€] peT a€A

HoldingCost1,e, « Z Z Z §ajp Hgjp

JEJ PET a€A°

HoldingCost2,¢, < 2 2 z Z Wajdpideajp

J€J dED p€eT acA°
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Fixedcost1,, < Z Z Zajp NaRajp
JjEJ pET: acA

p=(IT|-Ng)
FixedCost2,¢, < z Z Z Z=ajp (IT| =) Rajp
JEJ pET: a€eA
p>(IT|-Ng)
OverCapacityye, < Z Z Z (ﬁa]’p Rajp) Bp+
JEJ PET aeAl

TransportCost2,., < Z Z Z Z I/T/ajdpidp (0jaEjap + EFjap)

j€J dED p€ET acA
LossSalesCoStyep < Ygep Lper ﬁdpidpyqo
ReturnCostClose,ep, < Y jej Xper LacaTe€turnOf fqin (HijCijp + CFjp + Gajp) s iin min(6;;)
ReturnCostCaprep < Yjej Lper XacaTeturnCyjy, (BijCijp + CFjp + Gajp) : 1 in min(6;;)
SimObjFunct,, < (TransportCostl,,, + StartupCost,., + HandlingCost,, +

HoldingCost1,,, + Fixedcostl,,y, + Fixedcost2,., + OverCapacityy,

+ TransportCost2,.y, + LossSalesCost,, + ReturnCostClose e,
+ ReturnCostCapyep)
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