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SUMMARY

Humans and other animals can identify objects by active touch, requiring the coordination of exploratorymo-
tion and tactile sensation. Both the motor strategies and neural representations employed could depend on
the subject’s goals. We developed a shape discrimination task that challenged head-fixed mice to discrim-
inate concave from convex shapes. Behavioral decoding revealed that mice did this by comparing contacts
across whiskers. In contrast, a separate group of mice performing a shape detection task simply summed up
contacts over whiskers. We recorded populations of neurons in the barrel cortex, which processes whisker
input, and found that individual neurons across the cortical layers encoded touch, whisker motion, and task-
related signals. Sensory representations were task-specific: during shape discrimination, but not detection,
neurons respondedmost to behaviorally relevant whiskers, overriding somatotopy. Thus, sensory cortex em-
ploys task-specific representations compatible with behaviorally relevant computations.

INTRODUCTION

In active sensation, animals choose how to move their sensory

organs to most effectively gather information about the world

(Gibson, 1962; Yang et al., 2016). A key challenge in neurosci-

ence is to understand the strategies animals use to explore the

world and how they interpret the resulting sensory input.

We investigated this problem in the mouse whisker system.

Freely moving rodents actively move their whiskers to identify

objects and obstacles (Brecht et al., 1997; Grant et al., 2018;

Hutson and Masterton, 1986; Lyon et al., 2012; St€uttgen and

Schwarz, 2018; Voigts et al., 2015), but the sensorimotor stra-

tegies and neuronal mechanisms that enable whisker-based

object recognition are not well understood. In freely moving an-

imals, it is difficult to track the whiskers (Petersen et al., 2020;

Voigts et al., 2008) and ensure that whiskers alone are used,

instead of vision, olfaction, or touch with skin (Mehta et al.,

2007). Head fixation enables better whisker tracking and stim-

ulus control, but most tasks for head-fixed mice focus on

spatially simple features, like the location or orientation of a

pole or the texture of sandpaper (Chen et al., 2013; Kim

et al., 2020; O’Connor et al., 2010a). Indeed, the head-fixed

mouse is often trimmed to a single whisker, though a few

studies have considered multi-whisker behaviors (Brown

et al., 2021; Celikel and Sakmann, 2007; Knutsen et al., 2006;

Pluta et al., 2017).

We asked how mice discriminate concave from convex ob-

jects. Curvature is one of the fundamental components of

form, and discriminating curvature requires integrating informa-

tion over space (Connor et al., 2007; Lederman and Klatzky,

1987). Shape discrimination has never been studied with precise

whisker tracking (although cf. Anjum et al., 2006; Brecht et al.,

1997; Diamond et al., 2008; Harvey et al., 2001; Polley et al.,

2005). Curved stimuli have been used in visual and somatosen-

sory experiments in primates but were typically presented

passively (Nandy et al., 2013; Yau et al., 2009), whereas active

sensation is critical for shape discrimination in humans and other

species (Chapman and Ageranioti-Bélanger, 1991; von der

Emde et al., 2010; Klatzky and Lederman, 2011).

We set out to understand the sensorimotor strategies and

neuronal representations of two tasks: shape discrimination

and shape detection. Behavioral decoding revealed that shape

discrimination mice compared contacts across whiskers,

whereas shape detection mice summed up contacts across

whiskers. Populations of individual neurons in barrel cortex en-

coded the mouse’s choice in addition to other sensory, motor,

and task variables. Most importantly, neural representations

were task specific, overriding even basic cortical topography.
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Our behavioral decoding approach revealed why these task-

specific representations were useful in object recognition.

RESULTS

The shape discrimination and detection tasks
We developed a shape discrimination task in which head-fixed

mice licked left for concave and right for convex shapes to obtain

water rewards (Video S1). On each trial, a linear actuator moved

a curved shape (either convex or concave) into range of thewhis-

kers on the right side of the face, stopping at one of three

different positions (termed close, medium, or far; Figures 1A

and 1B). At all positions, mice had to activelymove their whiskers

Figure 1. The shape discrimination and

shape detection tasks

(A) Diagram of the behavioral apparatus. A motor

(black) rotated a shape (orange) into position, and

a linear actuator (green) moved it toward the

whiskers.

(B) Example high-speed video frames. Shapes

were presented at one of three different positions

(pink and cyan lines labeled close, medium, and

far).

(C) Lesioning right barrel cortex (ipsilateral to

shapes) had no effect on shape discrimination

(left; n = 2 mice), whereas contralateral lesions

impaired performance, with no sign of recovery

over 3 days (right; n = 8 mice).

(D) Same as (C), averaging over 3 days. Paired t

test.

(E) Task rules.

(F) Mouse performance (fraction of correct trials)

on both tasks exceeded chance (dashed line).

(G) Mouse performance by task, stimulus, and

position. On the ‘‘nothing’’ condition, the actuator

moves to the correct position, but no shape is

present. One-way repeated-measures ANOVA.

(H) Trial timeline. Pink arrow, opening of response

window. Cyan arrow, choice lick.

(I) Left: total lick rate regardless of lick direction

(black) and total contact rate (pink) on the same

timescale as (H), pooled across tasks. Right:

probability that licks were correct (solid) or

congruent (dashed; i.e., in the same direction as

the eventual choice lick).

Error bars represent SEM over mice. In all figures,

*p < 0.05, **p < 0.01, and ***p < 0.001.

to contact the shape. The use of different

positions ensured that mice did not sim-

plymemorize the location of a single point

on the object. Mice could generalize to

flatter shapes that were more difficult to

discriminate (Figure S1A). Trimming off

all the whiskers caused performance to

fall to chance, demonstrating that mice

could not use non-whisker cues to

choose correctly (Figure S1B). Lesioning

the contralateral barrel cortex, which pro-

cesses whisker input, substantially and

significantly degraded the performance of untrimmed mice for

multiple days (Figures 1C and 1D). Thus, mice relied on whiskers

and barrel cortex to discriminate shape.

To assess which features of the behavioral and neural re-

sponses were specific to the task, we trained a separate group

of mice on shape detection (Figure 1E). These mice learned to

lick right for either shape and lick left on trials when the actuator

presented an empty position with no shape. The trial timing and

shapes were identical in both tasks, which differed only in the

rule governing which direction the mice should lick to receive

reward.

Both groups of mice learned to perform well above chance

(Figure 1F; n = 5 detection and 10 discriminationmice). Detection
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mice more accurately reported the presence of a shape when it

was closer (Figure 1G). Discrimination mice identified concave

shapes equally well at all locations but were more likely to iden-

tify convex shapes correctly when closer. Thus, shape discrimi-

nation relied on ‘‘detecting convexity,’’ an observation we return

to below.

Precise video tracking of multiple whiskers
To permit unambiguous identification of each whisker in videog-

raphy, we gradually trimmed off whiskers until only the middle

row of whiskers remained. Mice were initially impaired by each

trim but could recover with training (Figure S1C), suggesting

that they initially used many rows but could learn to rely on just

one. Within the spared middle row, C1 is the caudal-most and

longest whisker, and C3 is the rostral-most and shortest whisker

still capable of reaching the shapes. The straddler whisker (b or

g, denoted ‘‘C0’’) rarely made contact and was therefore

excluded from analysis.

To reveal howmice identified the shapes, we acquired video of

their whiskers at 200 frames per second. This large dataset (15

mice, 88.9 h, 115 sessions, 18,514 trials, and 63,979,800 frames)

necessitated high-throughput automated tracking. To do this,

we used the human-curated output of a previous-generation

whisker tracking algorithm (Clack et al., 2012) to bootstrap the

training of a deep convolutional neural network (Insafutdinov

et al., 2016; Mathis et al., 2018; Pishchulin et al., 2015). This

method precisely tracked the full extent of the whiskers (accu-

racy >99.7%; Figures S2A–S2D), even as they moved rapidly,

became obscured, or contacted the shape.

The timing of sensory evidence and behavioral reports
We used the timing of the contacts and licks within each trial to

understand when the mice made their decisions (Figure 1H).

Each trial began with the linear actuator moving the shape into

the mouse’s whisker field, and the ‘‘response window’’ always

opened 2.0 s after the trial began. The direction of the first lick

in the response window (the ‘‘choice lick’’) determined whether

the trial was correct or incorrect. The opening of the response

window (defined as t = 0 throughout our analyses) was

not explicitly cued. The shape reached its final position in the

interval �0.8 < t < �0.4, depending on whether it was a close,

medium, or far trial.

Mice could move their whiskers, contact the shape, and lick

at any time during the trial, although ‘‘early licks’’ (i.e., t < 0) had

no effect on the outcome. We defined ‘‘correct early licks’’ as

those in the direction that would be rewarded and ‘‘congruent

early licks’’ as those in the same direction as the choice lick

(Figure 1I). Early in the trial (�2.0 < t < �1.5), mice made few

or no contacts, and accordingly, their rate of correct licking

was near the chance level of 0.5. As the mice made the bulk

of their contacts (�1.5 < t < 0), the rate of correct and congruent

licks steadily increased. After the choice lick on error trials, the

mice could infer their error from the absence of reward and

often switched their lick direction, even though this had no ef-

fect on the outcome. The rate of contacts peaked before the

rate of licking did, indicating that contacts were not an inci-

dental effect of licking: mice first collected evidence and then

registered their decision.

Contact count, but not whisking or contact force, differs
between discrimination and detection
Trained mice whisked in stereotyped patterns that could differ

widely across individuals (Figure 2A). We decomposed whisker

motion into individual cycles (Figure 2B; n = 882,893 whisks

from 15mice, excluding inter-trial intervals). Micemade contacts

near the peak of the whisk cycle (Figure 2C), synchronously

across whiskers (Figure 2D; cf. Sachdev et al., 2001). During

both tasks, performance increased with the number of contacts

made on each trial (Figure 2E).

Surprisingly, the statistics of whisker motion and contact kine-

matics were similar in both shape discrimination and detection

(Figures S2E and S2F) and in both cases differed strikingly

from previously published tasks. For instance, we exclusively

observed tip contact, whereas mice localizing poles make con-

tact with the whisker shaft (Hires et al., 2013; cf. a similar obser-

vation in rats discriminating texture in Carvell and Simons, 1990).

We never observed animals dragging their whiskers across the

objects’ surfaces, as they do with textured stimuli (Carvell and

Simons, 1990; Jadhav et al., 2009; Ritt et al., 2008). In both shape

detection and discrimination, contacts were brief (median 15ms,

interquartile range [IQR] 10–25 ms, n = 167,217; Figure S2G).

Whisker bending, a commonly used proxy for contact force

(Birdwell et al., 2007; but see also Quist et al., 2014; Yang and

Hartmann, 2016), was dynamic (Figure 2F); a whisker could

bend slightly while pushing into a shape and then bend in the

other direction while detaching. Occasionally, we observed dou-

ble pumps, a signature of active exploration (Wallach et al.,

2020). The contact forces we observed were much smaller

than in many studies; the typical maximum bend (Dk) was

5.1 ± 1.0 m�1 for C1, 11.2 ± 1.2 m�1 for C2, and 19.1 ± 3.3

m�1 for C3 (mean ± SEM over mice; Figures 2G and S2F),

much less bent than the 50–150 m�1 typical of pole localization

(Hires et al., 2015; Hong et al., 2018; Huber et al., 2012). The

sensorimotor strategy we observe here is similar to the ‘‘minimal

impingement’’ mode used by freely moving rodents (Grant et al.,

2009; Mitchinson et al., 2007).

Though the whisking and contact kinematics were in large part

similar between shape discrimination and detection, two specific

differences suggested task-specific processing. Compared with

the detection group, mice performing shape discrimination

made more single- and multi-whisker contacts, and they made

significantly more contacts with C2 and C3, though not with

C1 (Figure 2H). They also made much longer duration contacts

with the C3 whisker than the shape detection group did (Fig-

ure 2I). In sum, these analyses suggested that mice rely more

on contact number than on contact force to discriminate shape.

Behavioral decoding reveals sensorimotor strategies
To pinpoint the strategies mice used to perform these tasks, we

developed an analysis termed behavioral decoding that iden-

tifies the sensorimotor events driving behavioral choice (Fig-

ure 3A). In this approach, we first quantified a large suite of

sensorimotor features from the video (e.g., contact location,

cross-whisker contact timing) as well as task-related variables

(choice and reward history). All 31 features are listed in Table S1.

We distinguished between ‘‘sampling whisks’’ (those on

which mice protracted far enough to reach the closest
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possible position of either shape) and ‘‘non-sampling whisks’’

(all other whisks). Because non-sampling whisks could not

have touched any shape on any trial, they could not be infor-

mative and were discarded from analysis. The remaining sam-

pling whisks were divided into ‘‘whisks with contact’’ (those

that contacted the shape) and ‘‘whisks without contact’’

(those that did not; Figure 3A). We used two-dimensional ar-

rays over whisker and time to represent whisks with contact,

whisks without contact, and continuous values like ‘‘angle of

contact.’’

Next, we trained linear classifiers using logistic regression to

predict either the stimulus identity (concave versus convex for

discrimination; something versus nothing for detection) or the

mouse’s choice (lick left or lick right) on each trial using all of

these features. Predicting the stimulus indicated which features

carried information about shape, whereas predicting choice indi-

cated which features might have influenced the mouse’s deci-

sion (Nogueira et al., 2017). However, stimulus and choice are

correlated; indeed, they are perfectly correlated on correct trials.

To address this, we weighted error trials in inverse proportion to

Figure 2. Mice briefly tapped the shapes with multiple whiskers

(A) Angular position of the C2 whisker on three representative correct trials from each of ten mice.

(B) Angular position of C1, C2, and C3 over a single trial using timescale in Figure 1H. Colored bars, whisker contacts.

(C) Left: mean angle of each whisker aligned to the C2 whisk cycle peak. Right: probability that each whisker was in contact, aligned to the same time axis as on

left. For both, n = 94,999 whisk cycles during which at least one whisker made contact.

(D) Autocorrelation of contact times within each whisker (solid) and cross-correlation of contact times across pairs of adjacent whiskers (dashed).

(E) Performance versus the number of contacts in the detection (left) or discrimination (right) task. Orange circle, trials during detection when no shape is present.

We excluded mice from any bin in which they had <10 trials.

(F) Mean whisker bending (Dk) over time during each contact aligned to its onset and relative to the pre-contact baseline (dashed line), plotted separately for each

whisker (row) and contact duration (column). Pink shaded area, duration of contact. Not all mice made contacts of all possible durations; data points with <10

contacts per mouse were excluded.

(G) Whisker bending quantified as the minimum, maximum, and standard deviation of Dk over the duration of each contact.

(H) Compared to detection mice, discrimination mice made significantly more contacts with C2 and C3 (left) and significantly more contacts with a single whisker

and with multiple whiskers (right). Unpaired t test.

(I) Mean duration of contacts. C3 contacts are significantly longer during discrimination. Unpaired t test.

Error bars represent SEM over mice. All panels include 10 discrimination mice; (E), (H), and (I) also include 5 detection mice.

ll
Article

4 Neuron 109, 1–18, July 21, 2021

Please cite this article in press as: Rodgers et al., Sensorimotor strategies and neuronal representations for shape discrimination, Neuron (2021),
https://doi.org/10.1016/j.neuron.2021.05.019



Figure 3. Behavioral decoding reveals sensorimotor strategies

(A) Behavioral decoding. We used 31 contact, whisking, and task-related features (Table S1) to predict the stimulus or choice. Left: example frame showing the

peak of a sampling whisk. C1–C3 protracted enough to reach the shapes at some positions (pink lines); C1 and C2 were scored as ‘‘with contact’’ and C3 as

‘‘without contact.’’ Middle: example features, each an array over whisker (rows) and 250-ms time bins (columns). Example frame in third column. Sampling whisks

were binarized as with contact or without contact. Continuous variables like angle of contact were defined only during contact and were otherwise null. Right:

logistic regression classifiers predicted stimulus or choice.

(B) Accuracy of behavioral decoders trained on a single feature to identify stimulus (green) or choice (pink). During shape detection (right), the total number of

contacts (black arrow) was the most informative feature but was much less useful during discrimination.

(C) Features were combined in a stepwise fashion to create a simple model that captured behavior. Shown is the accuracy of decoders trained on (1) whisks with

contact only, (2) also including whisks without contact, (3) also including angle of contact, and (4) including all features in the entire dataset. The third model

(dashed box, optimized behavioral decoder) performs as well as the full model while using far fewer features.

(D)The optimized behavioral decoder predicts stimulus and choice well during both shape discrimination and detection, though less accurately when the mouse

made an error (open bars).

(legend continued on next page)
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their abundance, such that correct and incorrect trials were

balanced (i.e., equally weighted in aggregate). This notably

improved our ability to predict the mouse’s errors (Figure S3A).

Numerical simulations validated the accuracy and statistical ef-

ficiency of this method in comparison to other techniques (Fig-

ures S3B and S3C).

Contact count is the most informative feature about
stimulus and choice
To identify the most important features, we compared the accu-

racy of separate decoders trained on every individual feature

during shape discrimination (Figure 3B, left). The most informa-

tive feature for decoding both stimulus and choice was whisks

with contact—which whiskers made contact. The next most

informative feature waswhisks without contact—whichwhiskers

were protracted enough to rule out the presence of some

shapes. The angle-of-contact feature was also useful for predict-

ing the stimulus, likely due to the geometrical information it con-

tains, but less useful for predicting choice, suggesting that mice

did not exploit that information despite its utility. The remaining

28 analyzed features were relatively uninformative about choice

(Figure S3D), including mechanical/kinematic variables like

speed or contact-induced whisker bending, contact timing

across whiskers or within the trial or whisk cycle, and task vari-

ables like choice history.

We tested our hypothesis that mice used different information

for discrimination and detection by comparing the usefulness of

each feature across tasks. During shape detection, the total con-

tact count summed over whiskers explained stimulus and choice

better than any other variable (Figure 3B, right). Total contact

count was far less informative during discrimination. This reflects

the fundamental difference between these tasks: detection

required the mouse only to know that contacts occurred

whereas discrimination required additional information—most

critically, the identities of the contacting whiskers.

A combination of a few features suffices to explain
behavior
Having assessed the relative importance of each feature, we

asked whether themost important features contained redundant

information or could be combined to improve decoding. We

gradually added features in decreasing order of usefulness until

the model’s performance plateaued (Figure 3C). The model

improved after including whisks with contact, whisks without

contact, and contact angle, and these three features together

performed aswell as the full model with all 31measured features.

Therefore, we used the reduced three-feature model (the ‘‘opti-

mized behavioral decoder’’; dashed box, Figure 3C) for all further

analyses. Dropping individual features or whiskers from the opti-

mized behavioral decoder impaired its performance, confirming

their individual importance (Figures S3E and S3F).

The optimized behavioral decoder accurately predicted either

stimulus or choice on both correct and error trials during both

detection (Figure 3D; stimulus: 83.5% ± 2.2%; choice:

75.9% ± 1.8%; mean ± SEM) and discrimination (stimulus:

87.7% ± 1.8%; choice: 76.9% ± 1.6%). It outperformed the

mice on shape discrimination (Figure 3E), indicating that the

mice did not optimally use this sensory information. In sum,

this decoder constitutes a model of behavior capable of either

identifying the stimulus or predicting the mouse’s choice, even

on error trials. To achieve this, the model primarily required bi-

nary information about which whiskers made contact rather

than the fine temporal dynamics of those contacts.

This decoder’s ability to identify shapes could have been a triv-

ial consequence of mice whisking onto distinct objects or an

important reflection of the behavioral goals of the mice. To test

this, we compared the optimized behavioral decoder’s ability

to classify shape identity in mice performing shape discrimina-

tion versus mice performing shape detection. Although the

same shapes were used in both tasks and the same features

were quantified in all cases, the decoder was substantially better

able to classify shape identity in mice performing shape discrim-

ination than detection (Figure 3F). Thus, more information about

shape identity is collected by mice actively attempting to

discriminate those shapes.

Mice compare the prevalence of contacts across
whiskers to discriminate shape
Wenext used the weights of the optimized behavioral decoder to

reveal the strategy used for each task. Whether predicting stim-

ulus (Figure 3G) or choice (Figure S3G), this decoder assigned

strikingly different weights to contacts made by each whisker.

For shape detection, all weights were positive, meaning contact

by any whisker signaled the presence of an object (Figure 3G,

left). In sharp contrast, weights of different whiskers had oppo-

site signs during shape discrimination (Figure 3G, right): each

C1 contact indicated a greater likelihood of convex, whereas

eachC3 contact indicated a greater likelihood of concave. These

results were not affected by early licking or trial balancing (Fig-

ures S3H and S3I).

Thus, mice compare the prevalence of contacts across whis-

kers to discriminate an object’s curvature, whereas they sum up

contacts across whiskers to detect an object. Critically, this is

not because any given whisker can only reach one of the

shapes—all whiskers can touch both shapes (Figure 3H).

Instead, the whisking strategy employed for discrimination

(E) Accuracy of the decoder at identifying stimulus and choice versus the performance of each mouse.

(F) The decoder more accurately predicted shape identity for mice performing shape discrimination than detection. Unpaired t test.

(G) The weights assigned by the decoder to the whisks-with-contact feature, separately plotted by which whisker made contact. Weights were relatively

consistent over the trial time course (data not shown) and are averaged over time here for clarity. They are expressed as the change in log odds (logits) per

additional contact.

(H) The mean number of contacts per trial for each whisker during shape discrimination, separately by shape identity and position (cf. Figure 1B). Although each

whisker may contact one shape more frequently, no whisker touches a single shape exclusively.

Error bars represent SEM over mice. n = 10 shape discrimination mice and 4 shape detection mice. Behavioral decoding requires error trials, and one detection

mouse made too few errors to be included.
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biases contact prevalence acrosswhiskers. To visualize this pro-

cess of spatial sampling, we registered all of our whisker video

into a common reference frame (Figure 4A). The C1 whisker

sampled the region in which contacts indicated convexity and

absence of contacts indicated concavity, and the reverse was

true for C3 (Figures 4B and 4C). The location that mice chose

to sample even in the absence of contacts was also informative

about their upcoming choice (Figure S4; Dominiak et al., 2019).

We confirmed these results with other analyses that did not

rely on behavioral decoding. Mouse performance on shape

discrimination significantly increased with the number of whis-

kers making contact (Figure 4D), indicating that they benefited

from combining information across whiskers. Mice better identi-

fied convex shapes when they made C1 contacts and concave

shapes when they made C3 contacts (Figure 4E). When trimmed

to a single whisker, mice were still able to discriminate shape

above chance, but they showed a specific pattern of errors, indi-

cating that this ability was no longer invariant to stimulus position

(Figures 4F–4H). Similarly, although humans discriminate shapes

better when they scan withmultiple fingers, they can still perform

above chancewhen forced to use an inferior strategy relying on a

single finger (Davidson, 1972).

In summary, behavioral decoding produced a computational

model of the distinct sensorimotor strategies that mice adopted

in two different tasks. Mice summed up contacts across whis-

kers to detect shapes, whereas they compared contacts across

whiskers to discriminate shape identity. Behavioral decoding

could be used to dissect other large behavioral tracking datasets

to reveal the strategies used in other tasks and by other model

organisms.

Barrel cortex neurons encode movement, contacts, and
choice
We next asked how neural activity in barrel cortex mediated

these strategies by recording populations of individual neurons

across the cortical layers using an extracellular electrode array

(Figures 5A–5D; Video S2). We recorded 675 neurons from 7

shape discrimination mice and 301 neurons from 4 shape detec-

tion mice. Putative inhibitory interneurons were identified from

their narrow waveform width (Figure 5B). Neurons responded

to individual contact events but not licks (Figures 5E and S5A).

Because the whisk cycle correlates contacts across whiskers

and over time (Figures 2C and 2D), we analyzed responses on

individual whisk cycles. Neurons exhibited rapid transient re-

sponses to whisks with contact, but not to whisks without con-

tact (Figures 5F and S5B). Contact responses were stronger in

the superficial layers and in inhibitory neurons, likely reflecting

greater thalamocortical input to this cell type (Bruno and Simons,

2002; Cruikshank et al., 2007). Firing rate tracked the amplitude

of each individual whisk, especially in deep inhibitory neurons

(Figure 5G). Thus, neurons encoded whisking amplitude in a

graded fashion while also responding phasically to individual

contacts.

Beyond encoding these rapid sensorimotor variables, some

neurons encoded the mouse’s choice through slower changes

in firing rate over the trial (example: Figure 6A). We quantified

this effect by decoding stimulus and choice from the neural pop-

ulation, again using trial balancing (Figure 6B, left and middle). We

also askedwhether this information was local (i.e., contained in in-

dividual whisk cycles; Isett et al., 2018) or continuous (integrated

over the trial). We removed local information about contacts by

setting the spike count to zero on sampling whisks (those large

enough to reach the shapes at their closest position). This largely

abolished the encoding of stimulus, but not choice (Figure 6B,

right), demonstrating that barrel cortex transiently carries stimulus

information during sampling whisks but encodes choice

more persistently. Choice encoding was not explained by early

licking (Figure S6). In sum, on fine timescales, barrel cortex neu-

rons respond to whisker movement and contacts (but not licks),

and on longer timescales, they encode cognitive variables like

choice.

Distributed coding of sensorimotor variables
We next used regression to assess how neurons encoded

whisker motion, contacts, and task-related features like choice.

Because these features are correlated with each other, deter-

mining their relative importance is analytically challenging. We

assessed the contribution of all features together using multivar-

iate regression (a generalized linearmodel [GLM]; Figures 7A and

S7A), similar to receptive field mapping by reverse correlation

with natural stimuli (Park et al., 2014; Sharpee, 2013). Rather

than binning the spikes into arbitrary time bins or averaging

over trials, we sought tomake predictions on individual whisk cy-

cles. Our observation that the whisk cycle packetized contacts

(Figure 2C) and spikes (Figure 5F) supported this level of

granularity.

To quantify the importance of each feature for predicting neu-

ral responses, we fit different GLMs on individual families of fea-

tures—contact (whisks with contact as above), whisking (ampli-

tude and set point), and task-related (choice and outcome of the

current and previous trial)—and compared their goodness of fit

on held-out data. Each family alone had explanatory power,

and a combined ‘‘task + whisking + contacts’’ model surpassed

any individual family (Figures 7B and S7B). Dropping any family

decreased the goodness of fit, indicating that each contained

unique information (Figure 7C). Goodness of fit varied widely

across the population but was generally higher in inhibitory and

deep-layer neurons (Figures 7D and S7C).

In both tasks, we found that >99% of neurons were signifi-

cantly modulated by at least one of the variables we measured

(task, whisking, or contacts; Figure 7E). A plurality of neurons

were significantly modulated by all three variables. Thus, across

these behaviors, individual neurons in barrel cortex are typically

tuned for a combination of sensorimotor and task-related fea-

tures and only rarely for a single feature (Rigotti et al., 2013).

Finally, we asked how neurons encoded task-related variables

over the course of the trial. Early in the trial, neurons encoded the

previous outcome, whereas later in the trial, they encoded the

choice on that trial (Figure 7F). This is related to our observation

that choice could be decoded from neural activity (Figure 6B),

but that analysis did not distinguish between coding of choice

per se versus coding of sensorimotor signals that might correlate

with choice. The GLM analysis disentangles these variables and

demonstrates that, in addition to coding for sensorimotor vari-

ables, barrel cortex neurons also persistently encode choice

and outcome.
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Figure 4. Mice compare information across whiskers to discriminate shape

(A) Videos for all sessions were registered into a common reference frame defined by the shape positions. Top: example frame. Bottom: location of the concave

(blue) and convex (red) shapes in the common reference frame. Whisker pad marked with an X.

(B) Location of the peak of each whisk with contact (top) or without contact (bottom) in the common reference frame. Each whisker samples distinct regions of

shape space (ovals).

(C) Same data from panel B, now colored by the evidence each whisk contains about shape, using the decoder weights. Top: C1 mainly contacts convex shapes

(arrow 1), whereas C3 mainly contacts concave shapes (arrow 2). Bottom: on whisks without contact, the mapping between whisker and shape identity is

reversed.

(D) Performance on shape discrimination increases with the number of whiskers making contact (p < 0.001). One-way ANOVA. In (D) and (E), error bars showSEM

over mice.

(E) Performance on concave shapes increases with C3 contacts (left, p < 0.001) and on convex shapes with C1 contacts (right, p < 0.01). One-way ANOVA.

(legend continued on next page)
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Cell-type-specific encoding of movement and contact
The tuning of individual neurons varied with cell type (excitatory

or inhibitory) and laminar location (superficial or deep). The most

prominent effect was that whisking strongly drove deep-layer

inhibitory neurons (Figures 8A–8C). Indeed, almost all (94/

107 = 87.9%) inhibitory neurons in the deep layers were signifi-

cantly excited by whisking (mean increase in firing rate: 23.9%

per 10� of whisking amplitude). Excitatory neurons and superfi-

cial inhibitory neurons also encoded whisking but were as likely

to be suppressed as excited.

In contrast, whisker contacts on the shapes more strongly

modulated superficial cells, including both layer 2/3 (L2/3) and

L4, than those in deep layers (Figures 8D–8F). Suppression by

contact was less frequent than excitation in all cell types. Thus,

movement and contact have their greatest impact on the deeper

and superficial layers, respectively.

Contact responses are dominated by whisker identity,
not finer sensorimotor parameters
We next asked which features of these contacts drove neurons.

Barrel cortex is arranged topographically, with neurons in each

cortical column typically responding to the corresponding

whisker (somatotopy). However, barrel cortex neurons are also

tuned for multiple whiskers, contact force, cross-whisker timing,

and global coherence, among other features (Brumberg et al.,

1996; Drew and Feldman, 2007; Ego-Stengel et al., 2005),

though this is less well understood in the behaving animal.

To assess the importance of each contact-related feature in

our dataset, we compared the goodness of fit of GLMs that

had access to each. Whisker identity (which whisker made con-

tact) was the most critical element determining neural firing (Fig-

ures 8G and S8A). The exact kinematics of contacts were less

important.

We considered the possibility that some alternative kinematic

feature that was not measured (e.g., due to limitations in frame

rate) might be driving neural activity. We therefore fit a model

that also included the identity of the shape (concave or convex)

on which each contact was made. If any unmeasured kinematic

feature drove neural activity differently depending on the stim-

ulus, then this feature should capture some variability. However,

it only slightly improved the model (Figure 8G, bottom bar). This

rules out, at least in a GLM framework, a latent variable that dif-

ferentiates the stimuli and strongly drives neural activity. Thus,

contact responses in barrel cortex are mainly driven by the iden-

tity of the contacting whisker, which alone almost fully accounts

for the neural encoding of shape.

Task-specific representation of contacts
Because the behavioral meaning of contacts made by each

whisker differed between detection and discrimination (Figures

3 and 4), we asked whether neural tuning was also task specific

using the weights that the GLM assigned to each whisker (Fig-

ures S8B and S8C). In shape detection mice, the population of

recorded neurons as a whole responded nearly equally to con-

tacts made by C1, C2, and C3 (Figure 8H, left). Individual neu-

rons could prefer any of the three whiskers, and in keeping

with the somatotopy of barrel cortex, superficial neurons tended

to prefer the whisker corresponding to their cortical column

(Figure S8D).

In marked contrast, we observed a widespread and powerful

bias in shape discrimination mice: at the population level, neu-

rons responded muchmore strongly to C1 contacts than to con-

tacts by C2 or C3 (Figure 8H, right). Neurons preferring C1 were

more prevalent in all cell types and in all recording locations,

including the C2 and C3 cortical columns (Figures S8E and

S8F; individual neurons in Figure 8I). This task-specific tuning

could not be explained by the shape stimuli, our analyses, or

the whisker trimming procedures, because all of these were

the same for both tasks. Contact force could not explain this ef-

fect (Figure S8G). Thus, whisker tuning was task specific and

overrode somatotopy.

Whisker-specific tuning explains the population choice
signal
The task-specific neural tuning we observed corresponds to

the different weights assigned to each whisker by the behav-

ioral decoders (compare Figure 3G, right and Figure 8H, right),

suggesting that neurons might be tuned to C1 in order to pro-

mote convex choices. This mirrors our behavioral observation

(Figure 1G) that mice seemed to rely on a ‘‘convexity detection’’

strategy. In theory, the population could instead have been

tuned to C3 in order to promote concave choices, but we did

not observe this.

We asked whether neurons’ coding of choice could be ex-

plained by their whisker tuning. Specifically, we assessed the

tuning of two subpopulations of neurons preferring either

concave or convex choices (i.e., those assigned positive or

negative weights by the neural decoder in Figure 6B). Indeed,

the convex-preferring subpopulation strongly preferred C1 con-

tacts (Figure 8J, orange bars).

In summary, our neural encoder model (Figures 7 and 8) ex-

plains how the neural decoder (Figure 6) was able to predict stim-

ulus and choice; neurons were tuned for sensory input that the

mouse had learned to associate with convex shapes. These rep-

resentations were task specific (Figure 8H) and could not be ex-

plained solely by simple geometrical aspects of the stimuli or

whiskers. Indeed, the representations matched weights used

by the behavioral decoders to identify shapes. Our results link

the tuning of individual neurons for fine-scale sensorimotor

events to the more global and persistent representations of

shape and choice. This bridging of local features to global iden-

tity is the essential computation of shape recognition.

(F) After trimming to a single whisker (C2), performance on shape discrimination is significantly lower but still above chance (p < 0.001, Fisher’s exact test). For

individual mouse data in (F) and (G), error bars show 95% Clopper-Pearson confidence intervals.

(G) Trimming to a single whisker impairs performance on specific combinations of shape and position (marked with black arrows). Thus, mice can discriminate

shape with a single whisker, but not in a position-invariant way.

(H) With a single C2 whisker, mice can only sample the area indicated by the black oval, where close contacts indicate convex and far contacts concave. This

strategy will fail on the closest concave and furthest convex shapes, as shown in (G).
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DISCUSSION

In this study, we developed a novel head-fixed shape discrimina-

tion behavioral paradigm. Mice accomplished this task by

comparing contacts made across whiskers. Barrel cortex neu-

rons exhibited distributed coding of sensory, motor, and task-

related signals. Deep inhibitory neurons robustly encoded

motion signals, and all populations of neurons coded for con-

tacts with a bias toward the whisker (C1) that preferentially con-

tacted convex shapes. In shape detection mice, we observed

similar coding of exploratory motion signals and of choice and

outcome-related signals, but not the whisker-specific bias in

contact responses. Thus, neural tuning for motion and choice

is shared across tasks, whereas tuning for contacts is task

specific.

Behavioral decoding reveals sensorimotor strategies
Understanding neural computations begins with defining the

subject’s strategy (Krakauer et al., 2017; Marr and Poggio,

1976). Our approach was to measure as many sensorimotor

parameters as was feasible and then to use behavioral decod-

ing to predict the stimulus and choice from these data. This al-

lowed us to identify informative variables and understand the

corresponding task-specific neural responses. Our approach

could readily be extended to other tasks, modalities, and model

organisms.

Some variables, such as contact count, were important for

both stimulus and choice. Others, such as contact angle, were

more important for predicting stimulus than choice, suggesting

that mice did not (or could not) effectively exploit it. This effect

is likely due to the incomplete information mice have about the

Figure 5. Whisker motion and contacts drive barrel cortex neurons

(A) Schematic of the multi-electrode recording array overlaid on image of NeuN-labeled neurons spanning all cortical layers.

(B) The bimodal distribution of extracellular waveform half-widths (the time between peak negativity and return to baseline) permits classification into narrow-

spiking (putative inhibitory; blue) and broad-spiking (putative excitatory; red) cell types. Inset: normalized average waveforms from individual neurons.

(C) Relative fraction of excitatory (red) and inhibitory (blue) neurons recorded in each layer.

(D) Firing rates of individual neurons (meaned over the entire session) versus their depth in cortex. Inhibitory and deep-layer neurons typically exhibit higher firing

rates. Lines: smoothed with a Gaussian kernel.

(E) Top: spike rasters from an example layer 2/3 (L2/3) inhibitory neuron in the C3 cortical column aligned to licks or to contacts of individual whiskers. Bottom:

responses to those events averaged over all neurons recorded during shape discrimination. To compare across neurons with different baseline firing rates, we

defined the firing rate gain as the evoked response divided by each neuron’s mean firing rate over the session, so that 1.0 indicates no evoked response.

(F) Firing rate gain of each cell type locked to the whisk cycle (cf. Figure 2C). Absolute firing rates in Figure S5B.

(G) Firing rate gain of each cell type on individual whisk cycles versus the amplitude of that whisk cycle, excluding cycles with contact. Deep inhibitory neurons

(solid blue line) are modulated most strongly.

In (B)–(D), (F), and (G), n = 976 neurons from both tasks, pooled because the results were similar. In (E), n = 675 neurons recorded during shape discrimination only.

Error bars represent SEM over neurons.
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instantaneous location of the whisker tips (Fee et al., 1997; Hill

et al., 2011; Moore et al., 2015; Severson et al., 2019).

In most tasks, stimulus and choice are correlated, especially

when the subject’s accuracy is high. We disentangled stimulus

and choice through trial balancing—overweighting incorrect tri-

als so that in aggregate they are weighted the same as correct

trials. Other approaches include separately fitting correct and

incorrect trials, comparing stimulus prediction with choice,

and so on (Campagner et al., 2019; Isett et al., 2018; Waiblinger

et al., 2018; Zuo and Diamond, 2019). A benefit of trial

balancing is that it jointly optimizes over correct and incorrect

trials.

Mice compare the number of contacts across whiskers
to discriminate shape
Shape discrimination fundamentally differs from pole localiza-

tion and texture discrimination because it explicitly requires

integration over different regions of space. Thus, comparing

input across whiskers was a reasonable strategy for mice to

pursue. Although rodents can perform other tasks better with

multiple whiskers (Carvell and Simons, 1995; Celikel and Sak-

mann, 2007; Knutsen et al., 2006; O’Connor et al., 2010a),

those cases likely reflect statistical pooling of similar informa-

tion from multiple sensors, as in our shape detection control

task (Krupa et al., 2001). Our results go beyond statistical pool-

ing. We are unaware of any published examples of mice as-

signing opposite behavioral meaning to input from different

nearby whiskers. This strategy mirrors the way primates

compare across fingers when grasping objects (Davidson,

1972; Thakur et al., 2008).

For shape discrimination, the identity of the contacting whis-

kers was themost important feature determining both behavioral

choice and neural responses. Cross-whisker contact timing has

been hypothesized to be an important parameter for shape

discrimination (Benison et al., 2006; cf. primate fingertips in Jo-

hansson and Flanagan, 2009) but was uninformative in our

task. This may be because whisker flexibility during movement

adds too much variability to this parameter. It had also been pro-

posed that the pattern of forces over the whiskers as they

‘‘grasp’’ an object could be informative about shape (Bush

et al., 2016; Hobbs et al., 2016a), but we observed little contribu-

tion of whisker bending. In sum, whisker identity during contact

was the critical parameter for shape discrimination (Hobbs

et al., 2016b).

Adaptive motor exploration strategies simplify the
sensory readout
Reflecting this difference in strategy, mice interacted with

shapes in a fundamentally different way than in many other

tasks. In our task, mice lightly tapped the stimuli with the tips

of multiple whiskers simultaneously. This ‘‘minimal impinge-

ment’’ approach (Mitchinson et al., 2007) is likely the natural

mode of the whisker system (Grant et al., 2009; Ritt et al.,

2008). Multiple light touches could also engage adaptation cir-

cuits within the somatosensory pathway, enhancing their ability

to perform fine discrimination (Wang et al., 2010). In contrast,

mice locate and detect poles by contacting them with high

enough force to cause substantial whisker bending (Hong

et al., 2018; Pammer et al., 2013). This likely drives a strong neu-

ral response, an adaptive strategy for detection (Campagner

et al., 2016; O’Connor et al., 2010b; Ranganathan et al., 2018),

though perhaps more useful for nearby poles than for surfaces.

A common thread running through the literature of whisking

behavior is that animals learn a motor exploration strategy opti-

mized for the task at hand, including targeting whisking to a nar-

row region of space to locate objects (Cheung et al., 2019;

O’Connor et al., 2010a), rubbing whiskers along surfaces to

generate the high-acceleration events that correlate with texture

(Isett et al., 2018; Jadhav et al., 2009; Schwarz, 2016), or target-

ing contacts to specific whiskers in the present work. Thus, an-

imals pursue amotor strategy that simplifies the sensory readout

(e.g., to a threshold on spike count; O’Connor et al., 2013). Per-

formance is consequently limited by errors in motor targeting

rather than sensation (Cheung et al., 2019).

Similarly, humans learn adaptive motor strategies for directing

gaze and grasp (Gamzu and Ahissar, 2001; Yang et al., 2016).

The challenge of these tasks may lie in learning a skilled action

that enhances active perception rather than in drawing fine cate-

gory boundaries through sensory representations as in classical

perceptual learning. Behavior may thus be considered a motor-

sensory-motor sequence combining purposive exploration and

sensory processing to guide further actions (Ahissar and

Assa, 2016).

Figure 6. Barrel cortex persistently encodes choice

(A) An example L5 excitatory neuron that encodes choice. Left: mean spike

rate over trials for convex (red) or concave (blue) choices, separately by correct

(solid) and incorrect (dashed). Right two panels: example spike rasters from

randomly chosen trials. This neuron’s firing rate is elevated for convex choices,

regardless of the identity of the shape. Error bars represent SEM over trials.

(B) Stimulus (green) or choice (pink) can be decoded from a pseudopopulation

(n = 450 neurons) aggregated across shape discrimination sessions (timescale

as in Figure 1H). Left: with a naive (unbalanced) approach, stimulus or choice

can be decoded with similar accuracy. Middle: equally balancing correct and

incorrect trials decouples stimulus and choice. Right: removing spike counts

from all sampling whisks (i.e., whisks sufficiently large to reach the shapes)

largely abolishes stimulus information while preserving choice information.

Dashed line, chance. Error bars represent 95% bootstrapped confidence in-

tervals.
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Distributed coding of sensorimotor signals in barrel
cortex
In natural behavior, active sensing is the norm; animals

explore by moving their heads, eyes, and ears and by

sniffing, chewing, or grasping objects. Motion signals

should perhaps be expected in sensory areas, because they

provide context for interpreting sensory input. In barrel

cortex, recent studies have variously found that neurons

respond to whisking onset (Muñoz et al., 2017; Yu et al.,

2016), whisking phase modulates contact responses (Curtis

and Kleinfeld, 2009; Hires et al., 2015), or whisking simply

has mixed effects on neuronal firing (Ayaz et al., 2019;

Figure 7. Distributed coding in barrel cortex

(A) A GLM used features about contacts (whisker identity), whisking (amplitude and set point), and task (choice and reward history) to predict neural responses on

individual whisk cycles. Bottom left: predicted firing rate (pink) for an example neuron (black raster: recorded spikes) given the position of each whisker (colored

traces) and contacts (colored bars). This L6 neuron mainly responded to whisking, regardless of contacts. Bottom right: this L2/3 neuron mainly responded to

contacts regardless of whisking. Models were always evaluated on held-out trials.

(B) The goodness of fit (ability to predict neural responses) of the GLM using features from the task, whisking, or contact families. Each feature family significantly

improves the log-likelihood over a null model that used only information about baseline firing rate (p < 0.001, Wilcoxon test). The full model (‘‘task + whisking +

contacts’’) outperforms any individual feature family. Similar results are obtained when testing on the entire dataset (left) or only on whisks with contact (right).

(C) The effect on goodness of fit of leaving out one family at a time from the full task + whisking + contacts model.

(D) Goodness of fit versus cortical depth (left) and grouped by cell type (right) in the task + whisking + contacts model.

(E) Top: proportion of neurons that significantly (p < 0.05, permutation test) encoded each variable during each task. Bottom: Venn diagram showing percentage

of neurons significantly encoding features from task (red), whisking (green), and contact (blue) families during each task. Less than 1% of neurons did not

significantly encode any of the features.

(F) Proportion of neurons significantly modulated by the outcome or choice of the previous (dashed) or current (solid) trial. Timescale as in Figure 1H.

n = 301 neurons during shape detection and 675 neurons during shape discrimination, pooled in (B)–(D) and (F) because the results were similar. Error bars

represent 95% confidence intervals, obtained by bootstrapping (B–D) or Clopper-Pearson binomial (F).
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O’Connor et al., 2010b; Peron et al., 2015). Technical limita-

tions of whisker tracking perhaps explain these disparate re-

sults (Krupa et al., 2004).

We measured all of these variables with high-speed video and

considered them together using multivariate regression. This

approach was critical to understanding the structure of neural

Figure 8. Task-specific contact responses are formatted for shape discrimination

(A) Proportion of neurons of each cell typewhose activity is significantly (p < 0.05, permutation test) increased, decreased, or unmodulated bywhisking amplitude.

In (A)–(C), n = 301 neurons during shape detection and n = 675 neurons during shape discrimination, pooled because the results were similar.

(B) Firing rate gain per each additional 10 degrees of whisking amplitude, grouped by cell type.

(C) Data in (B) for individual neurons versus cortical depth. Lines, smoothed with a Gaussian kernel.

(D–F) Like (A)–(C), but for whisker contacts (averaged across C1, C2, and C3 whiskers). In (D)–(H), n = 235 neurons during shape detection and n = 675 neurons

during shape discrimination. We excluded neurons for which too few whisker contacts occurred to estimate a response.

(G) Goodness of fit of models incorporating contact-related features, compared to the task + whisking + contacts model (top row, ‘‘baseline’’). Removing whisker

identity (second row) markedly decreases the quality of the fit. Adding contact-related parameters only slightly improves fit, even when including stimulus identity

(bottom row).

(H) Response to contacts made by each whisker. Left: during shape detection, the population responds nearly equally to each whisker (p > 0.05; one-way

ANOVA). Right: during shape discrimination, the population strongly prefers C1 contacts (p < 0.001).

(I) Contact response of each individual neuron during shape discrimination (n = 675), split by location within barrel cortex. Neurons preferring C1 contacts (upper

right corner of each heatmap) are more common in each location.

(J) Similar to the right of (H) but separately for neurons that preferred convex (n = 110; orange) or concave choices (n = 76; purple), as assessed by the decoder

analysis in Figure 6B. Neurons that prefer convex choices respondmore strongly to C1 contacts than to C3 contacts (p < 0.001; t test), similar to the weights used

by the optimized behavioral decoder to identify convex shapes in the right panel of Figure 3G.

Logarithmic y axis (B, C, E, F, H, and J). Error bars represent 95% bootstrapped confidence intervals (B, E, and G) or SEM over neurons (H and J).

ll
Article

Neuron 109, 1–18, July 21, 2021 13

Please cite this article in press as: Rodgers et al., Sensorimotor strategies and neuronal representations for shape discrimination, Neuron (2021),
https://doi.org/10.1016/j.neuron.2021.05.019



responses, because it allowed us to compare the relative impor-

tance of each sensorimotor variable even when they were corre-

lated with each other. We have recently observed that barrel cor-

tex encodes nonlinear combinations of motion and contact

signals, even though such combinations are not necessary for

this task (Nogueira et al., 2021).

Motion encoding was widespread but had a strong cell-type-

specific bias; inhibitory neurons in the deep layers were robustly

and consistently excited by whisking, consistent with previous

reports (Muñoz et al., 2017; Yu et al., 2019). These inhibitory neu-

rons receive direct input fromprimarymotor cortex (Kinnischtzke

et al., 2014) and can potently suppress the entire cortical column

(Bortone et al., 2014; Frandolig et al., 2019). Inhibitory coding of

motion could allow the brain to predict and account for the sen-

sory consequences of movement (Yu et al., 2016), as in the audi-

tory cortex (Schneider et al., 2018).

The superficial and deep layers of cortex can encode sensory

stimuli independently (Constantinople and Bruno, 2013), but

they can also strongly interact (Pluta et al., 2019). We observed

stronger touch responses in the superficial layers and stronger

whisking responses in the deep layers, potentially useful for

simulating the effects of motor exploration (Brecht, 2017).

More generally, whisker motion signals may be analogous to

the preparatory saccade signals identified in visual cortex. Like

whisking, saccades aremotor actions directed toward collecting

information, and the cortex predicts the resulting change in sen-

sory input (Steinmetz and Moore, 2010).

It is an open question why sensory cortex is required for some

perceptual tasks and not others. We recently found that barrel

cortex was dispensable for detecting textured surfaces but

essential for discriminating them (Park et al., 2020). Here, we

also find barrel cortex to be essential for discriminating shape.

Barrel cortex may thus be generally necessary for discriminating

objects but dispensable for detecting them.

Motor strategies and neural representations are
adapted to the task
At first glance, thewhisker systemmay appear to be a labeled-line

system due to its somatotopic organization in the brainstem, thal-

amus, andcortex. Indeed, neurons in thalamorecipient L4 typically

respond best to stimulation of an anatomically corresponding

whisker. However, outside of L4, the preference for any particular

whisker is much weaker (Brecht et al., 2003; Clancy et al., 2015;

Jacob et al., 2008; de Kock et al., 2007; Peron et al., 2015; Pluta

et al., 2017; Ramirez et al., 2014), and attending to whisker input

actually decreases somatotopy (Wang et al., 2019).

Rather than maintaining a labeled-line code, the barrel cortex

may encodemulti-whisker sequences, a map of scanned space,

or entire tactile scenes (Bale and Maravall, 2018; Estebanez

et al., 2018; Laboy-Juárez et al., 2019; Pluta et al., 2017; Vi-

larchao et al., 2018). Similarly, auditory cortex is now thought

to encode high-level sound features rather than strict tonotopy

(Bandyopadhyay et al., 2010; Carcea et al., 2017; Rothschild

et al., 2010). Ethologically, integrating information across sen-

sors would seem more useful than maintaining in higher-level

areas a strict segregation based on peripheral organization.

We suggest that sensory cortex learns to accentuate the

sensory features that are most relevant for the animal’s goals

(Ramalingam et al., 2013). An important question for future

work will be whether these task-specific representations arise

from local plasticity induced by training or from long-range in-

puts signaling the context of the task (Rodgers and DeWeese,

2014). In future work, we plan to investigate the timescale over

which these representations emerge (Driscoll et al., 2017).

Neurons in visual cortex and auditory cortex can increase their

responses to, or slightly shift their tuning toward, rewarded stim-

uli (David et al., 2012; Fritz et al., 2003; Khan et al., 2018; Poort

et al., 2015). Our results are fundamentally different. First, no

whisker was ‘‘rewarded’’ or ‘‘punished’’ in our task, and indeed,

all whiskers could touch both objects. Second, the neurons did

not subtly shift their tuning but rather changed the whisker they

most responded to, akin to a V1 receptive field center moving

to a new retinal location. Indeed, the magnitude of the effect

we observe is more similar to the massive reconfiguration that

is driven by extreme manipulations such as stitching an eye

shut or removing a finger (Horton and Hocking, 1997; Merzenich

et al., 1984) but in our case arises solely through behavioral

training.

Our work provides a new conceptual way to think about task-

specific neural representations. We decompose the response to

the shape into the responses to the individual sensorimotor

events that indicate curvature. It was not a priori obvious that

any particular whisker would be associated with either shape,

and so our approach was to first identify the behavioral meaning

of each whisker’s contacts, which then explained the corre-

sponding neural response. A similar retuning could give rise to

the enhanced responses to rewarded stimuli observed in

other tasks.

Although the details of these effects are specific to this task

and stimulus geometry, we suggest that analogous computa-

tions in other brain areas and species could also implement ob-

ject recognition by comparing input across different sensors in

the context of exploratory motion. Recent results have demon-

strated an unexpectedly widespread coding of motion across

the brain (Musall et al., 2019; Stringer et al., 2019; reviewed in

Parker et al., 2020). These motion signals could be critical for in-

terpreting sensory input in the context of behavioral state. The

common structure of cortex across regions of disparate func-

tionality (Douglas and Martin, 2004) may be a signature of this

common computational goal.
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Materials availability
This study did not generate any unique reagents.

Data and code availability
Original data have been deposited to Zenodo: https://doi.org/10.5281/zenodo.4743837. The analysis code used here is available at

https://github.com/cxrodgers/Rodgers2021 (Rodgers, 2021).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

We report data here from 26 adult mice (14 females and 12 males) of the C57BL6/J strain bred in the Columbia University animal

facilities. The mice were used for the following experiments.

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-NeuN Antibody (rabbit) Sigma-Aldrich Cat# ABN78

Chemicals, peptides, and recombinant proteins

DiI (1,1’-Dioctadecyl-3,3,30,30-
tetramethylindocarbocyanine perchlorate)

Sigma-Aldrich CAS# 41085-99-8

Streptavidin, Alexa 647 conjugate ThermoFisher Cat# S21374

Deposited data

Raw and analyzed data This paper https://doi.org/10.5281/zenodo.4743837

Experimental models: organisms/strains

Mouse, C57BL/6J, bred at Columbia

University from Jackson lines

The Jackson Laboratory Stock# 000664

Software and algorithms

ImageJ Schneider et al., 2012 https://imagej.nih.gov/ij/

ImageJ plugin: TrakEM2 Cardona et al., 2012 https://imagej.net/TrakEM2

MATLAB MathWorks https://www.mathworks.com/products/

matlab.html

MATLAB toolbox: Image Acquisition

Toolbox

MathWorks https://www.mathworks.com/products/

image-acquisition.html

Python https://www.python.org/ https://www.python.org/

Python package: ipython Perez and Granger, 2007 http://ipython.org/

Python package: pandas McKinney, 2010 https://pandas.pydata.org/

Python package: numpy Van Der Walt et al., 2011 https://numpy.org/

Python package: scipy Virtanen et al., 2020 https://www.scipy.org/

Python package: scikit-learn Pedregosa et al., 2011 https://scikit-learn.org

Python package: scikit-image van Der Walt et al., 2014 https://scikit-image.org/

Python package: statsmodels =Seabold and Perktold, 2010 https://www.statsmodels.org

Python package: pyglmnet Jas et al., 2020 https://github.com/glm-tools/pyglmnet

Python package: matplotlib Hunter, 2007 https://matplotlib.org/

Python package: pose-tensorflow (forked) Insafutdinov et al., 2016 https://github.com/cxrodgers/PoseTF
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d 10mice (‘‘shape discrimination group’’; 6 females and 4males) were used for shape discrimination experiments throughout the

manuscript.

d 5mice (‘‘shape detection group’’; 4 females and 1male) were used for shape detection experiments throughout themanuscript.

d 8 mice (‘‘lesion group’’; 3 females and 5 males) were used for the lesion experiments in Figure 1C-D.

d 1 female (from a different anatomical study) was used for the image in Figure 5A.

d 1 male was used only for the single-whisker trim experiments (Figures 4F and 4G). 1 other male from the ‘‘shape discrimination

group’’ was also used for those experiments.

d 1 male was used only for the discrimination with flatter shapes (Figure S1A). 1 male and 2 females from the ‘‘shape discrimi-

nation group’’ were also used for those experiments.

Mice in our colony are continuously backcrossed to C57BL/6J wild-type mice from Jackson Laboratories. Some mice expressed

Cre, CreER, Halorhodopsin, Channelrhodopsin2, and/or EGFP for ongoing and unpublished studies. Some received tamoxifen, but

this was done well before any behavioral training or surgical manipulations. Mice received no probes, substances, viruses, or any

other surgical interventions relating to optogenetics or other genetic manipulations. We noted no difference in the results regardless

of the genes expressed and therefore pooled the data here.

Mice were group-housed (unless they did not tolerate this) and lived in a pathogen-free barrier facility. All experiments were con-

ducted under the supervision and approval of the Columbia University Institutional Animal Care and Use Committee.

METHOD DETAILS

Surgeries
Mice were implanted with a custom-designed stainless steel headplate (manufactured byWilke Enginuity) between postnatal day 90

and 180. They received carprofen and buprenorphine and were anesthetized with isoflurane throughout the stereotaxic procedure.

Using aseptic technique, we removed the scalp and fascia covering the dorsal surface of the skull. We then positioned the headplate

over the skull and affixed it with Metabond (Parkell).

After behavioral training (see below), some mice underwent another procedure to permit electrophysiological recording. First, we

used a dental drill to thin the cement and skull over barrel cortex, rendering it optically transparent, and coated it with cyanoacrylate

glue (Vetbond). We used intrinsic optical signal imaging (described below) to locate the cortical columns of the barrel field corre-

sponding to the whiskers on the face. We then used a scalpel (Fine Science) to cut a small craniotomy directly over the columns

of interest. Between recording sessions, the craniotomy was sealed with silicone gel (Dow DOWSIL 3-4680, Ellsworth Adhesives)

and/or silicone sealant (Kwik-Cast, World Precision Instruments).

Some mice (n = 8) were lesioned to test the necessity of barrel cortex in this task (Figures 1C and 1D). After these mice completed

behavioral training, we used intrinsic signal optical imaging to localize barrel cortex in the left and/or right hemispheres. Using aseptic

technique, we cut a craniotomy over barrel cortex on one side and aspirated all layers of cortex with a sterile blunt-tipped needle

connected to a vacuum line. These lesions had a diameter of 2-3 mm and were centered on the C2 column. Of these eight mice,

six were lesioned on the left side (contralateral to the stimulus), and two were lesioned on the right side (ipsilateral to the stimulus).

The two mice lesioned on the ipsilateral side were tested for any impairment, then lesioned again on the contralateral side, and then

tested again. Because the contralateral lesions produced similar results regardless of whether the ipsilateral side had already been

lesioned, the results for all contralateral lesions are pooled. Some of these mice were performing simpler versions of the shape

discrimination task (e.g., before trimming to one row, or only for a subset of the possible shape positions).

Intrinsic signal optical imaging
Individual barrel-related cortical columns were located with intrinsic imaging. While the mice were anesthetized with isoflurane, in-

dividual whiskers were deflected one at a time by a piezoelectric stimulator (8 pulses in the rostral direction at 5 Hz, with ~30 s be-

tween trains). We used custom software written in LabView (National Instruments) to acquire images of the cortical surface through

the transparent thinned skull under a red light source with a Rolera CCD camera (QImaging). Videos were averaged over 20-60 trains

of pulses. We repeated this procedure for the C1, C2, and C3 whiskers to locate the region of maximal initial reflectance change cor-

responding to each.

Behavioral apparatus
The behavioral apparatus was contained within a black box (Foremost) with a light-blocking door. It was built with posts (Thorlabs)

and custom-designed laser-cut plastic pieces on an aluminum bread board (EdmundOptics, Thorlabs, or Newport). A stepper motor

(Pololu 1204) rotated a custom-designed curved shape 3D-printed with ABS plastic (Shapeways) into position, and a linear actuator

(Actuonix L12-30-50-6-R) moved it within reach of the mouse’s whiskers. Rewards (~5 mL of water, chosen based on the mouse’s

weight and how many trials it typically completed) were delivered by opening a solenoid valve (The Lee Co. LFAA1209512H) that

allowed water to flow to the mouse from a reservoir to a thin stainless steel tube (McMaster).

An Arduino Uno, in communication with a desktop computer over a USB cable, controlled the motors. It also monitored licking by

sampling beam breaks of themouse’s tongue through infrared proximity detectors (QRD1114, Sparkfun) or capacitive touch sensors
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(MPR121, Sparkfun) in front of and slightly to the left or right of the mouse’s mouth, inspired by a published two-choice design (Guo

et al., 2014). Between trials only, the Arduino activated a white ‘‘house light’’ (LE LED; Amazon B00YMNS4YA) that prevented mice

from fully dark-adapting, preventing the use of visual cues. A computer fan (Cooler Master; Amazon B005C31GIA) continuously blew

air slowly over the shape such that the mouse’s nose was upwind from the shape, preventing the use of olfactory cues. We never

observed mice exploiting auditory or vibrational cues from the motors and thus no masking noises were necessary.

At a fine timescale the trial structure was controlled by the Arduino using a custom-written sketch. At the level of individual trials, the

desktop PC chose the stimulus and correct response and logged all events read from the Arduino to disk using custom Python code.

The training parameters for each mouse were stored in a custom-written django database and updated manually or semi-manually

by the experimenters depending on each mouse’s progress.

Two-alternative task design
In this two-alternative design, the mouse can lick left, lick right, or do nothing. If 45 s elapsed without any lick, the trial was marked as

‘‘spoiled’’ and discarded from analysis. Such trials typically only occurred at the end of the session when the mouse was satiated.

Thus, all included trials are either correct (licked the correct direction) or incorrect (licked the incorrect direction). There is no equiv-

alent to the ‘‘false positive’’ or ‘‘miss’’ outcome of go/nogo tasks.

On some trials the mouse made no contacts. We included these trials in all analyses. On the detection task, the mouse could not

possibly make any contacts on the ‘‘stimulus-absent’’ trial type, and it would not have made sense to exclude those trials. For parity,

we included these trials in our analysis of the discrimination task. Choices on these trials were scored exactly the same—correct or

incorrect—as on trials with contact.

Behavioral training
Throughout, themice were denied access to water in the home cage and learned to receive their water during behavioral training. We

closely monitored their water intake, weight, and general health to ensure they did not become dehydrated. Ad libitum water was

provided if necessary to ensure health.

Each mouse in our study learned either shape detection or shape discrimination throughout its training, rather than progressing

from one task to the other. Neither task was used as an initial shaping stage for the other. The number of training sessions did

not significantly differ between the two tasks: detection animals received 94.8 sessions on average (individual mice: 89, 93, 147,

121, 24) and discrimination animals received 118.0 sessions on average (individual mice: 107, 118, 93, 120, 157, 133, 106, 110).

Mice were trained to perform either the shape discrimination or detection tasks using a process of gradual behavioral shaping

described below.

1. ‘‘Lick training.’’ Mice initially learned to lick to receive water. They were advanced through each step of this stage only once

they learned to receive sufficient daily water from the apparatus. First, they were placed in the apparatus without head-fixing

and allowed to drink freely from the water pipes, which rewarded every lick. Next, we head-fixed the mice directly in front of a

single lick pipe and rewarded every lick. Finally, mice were presented with two lick pipes (left and right) and learned to lick alter-

nately from each of them, first in blocks of ten licks and gradually decreasing to a single lick on each side. This stage required

12.5 sessions on average.

2. ‘‘Forced alternation.’’ We introduced the complete trial structure for the first time, presenting shapes and rewarding the mouse

only for correct responses and punishing it with a timeout for incorrect responses. During this stage the shape on each trial was

not random; instead, mice were repeatedly presented with the same shape trial after trial until it gave the correct response.

After a correct response, the other stimulus was presented. Thus, mice could perform at 100% by alternating responses

from trial to trial. The timeout was initially 2 s and then increased to 5 s and finally 9 s as the mice became accustomed to

it. This stage required 11.3 sessions on average.

3. ‘‘Stimulus randomization with bias correction.’’ During this stage, stimulus identity was randomized on each trial and only pre-

sented at the closest position. Each session began with 45 trials of ‘‘forced alternation’’ to ensure that mice were able to lick

both directions. After that, trials were generally random. The software continuously monitored their performance for biases;

when a strong bias was detected, it stopped presenting trials randomly and began presenting trials designed to counteract

the bias. For instance, if mice responded on the leftR 20%more than on the right, the software would deliver only right trials.

Alternatively, if the mice showed a significant perseverative bias (ANOVA ‘‘choice ~ stimulus + side + previous_choice,’’ p <

0.05 on previous_choice), the software would deliver ‘‘forced alternation’’ trials. Critically, we only ever analyzed truly random

trials from the session. Non-random trials were used only for behavioral shaping and were discarded from behavioral and neu-

ral analyses.

4. ‘‘Range of positions.’’ We now presented shapes at the first 2 positions (close and medium) and then all 3 positions (close,

medium, and far). Position was randomized across trials. The same automatic training and bias-prevention procedures as

before were used.

5. ‘‘Flatter shapes.’’ Somemicewere nowpresentedwith flatter shapes aswell as the shapes of the original curvature. Othermice

skipped this stage and were never presented with flatter shapes.
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6. ‘‘Whisker trimming.’’ We gradually trimmed whiskers off the right side of the face: first we trimmed the A and E rows, then the B

row, then the D row. After any trimming, we allowed mice to recover to high performance before trimming additional rows. We

retrimmed previously trimmed whiskers as necessary to ensure they could not reach the shapes. Stages 3-6 required a total of

109.1 sessions on average.

Sometimes it was necessary to returnmice to an earlier stage of training temporarily to facilitate learning (e.g., reducing the number

of positions at which the shapes were presented or returning to ‘‘forced alternation’’ trials only). Mice that successfully progressed

through all stages of the training procedure—those who could identify both shapes at all three positions with only the C-row of whis-

kers—were deemed fully trained. We only took high-speed video or neural recordings from fully trained mice.

Videography
For videography and electrophysiology, we moved the behavioral setup to a different light-blocking box mounted on a vibration-

isolating air table (TMC). We took video of fully trained mice using a high-speed camera (Photonfocus DR1-D1312IE-100-G2-8)

with a 0.15ms exposure time to prevent motion blur. We used a lens with a 25mm focal length (Fujinon HF25HA-1B) to prevent ‘‘fish-

eye’’ distortion. An aperture (F-stop) of approximately 6.0 optimized depth of field.

We designed and built a custom infrared backlight with a 7x8 grid of high-power surface-mount infrared (850 nm) LEDs (Digikey

VSMY2853G) soldered to a custom-designed PCB (manufactured by OSH Park) that allocated power to each LED through current-

limiting resistors. Diffusion paper mounted above the LEDs homogenized the light. The backlight was placed below the mouse and

pointed toward the camera so that the whiskers would show up as high-contrast black on a white background. The Arduino pulsed

this backlight off for 100 ms at the beginning of each trial, allowing us to synchronize the behavioral and video data. We used MAT-

LAB’s Image Acquisition Toolbox to store the video data to an SSD.

Electrophysiology
To record neural activity, we head-fixed the mouse in the behavioral arena as usual and removed the temporary sealant over the

craniotomy. We lowered an electrode array (Cambridge Neurotech H3) using a motorized micromanipulator (Scientifica PatchStar),

noting its depth at initial contact and at final position. We used an OpenEphys acquisition system (Siegle et al., 2017) with two digital

headstages (Intan C3314) to record 64 channels of neural data at 30 kHz at the widest possible bandwidth (1 Hz to 7.5 kHz). The

backlight sync pulse was acquired with an analog input to synchronize the neural, behavioral, and video data.

We used KiloSort (Pachitariu et al., 2016) to detect spikes and to assign them to putative single units. Single units had to pass both

subjective and objective quality checks. First, we used Phy (Rossant et al., 2016) to manually inspect every unit, merging units that

appeared to be from the same origin based on their amplitude over time and their auto- and cross-correlations. Units that did not

show a refractory period (i.e., a complete or partial dip in the auto-correlation within 3 ms) were deemed multi-unit and discarded.

Second, single units had to pass all of the following objective criteria: % 5% of the inter-spike intervals less than 3 ms; % 1.5%

change per minute in spike amplitude; % 20% of the recording at < 5% of the mean firing rate; % 15% of the spike amplitude dis-

tribution below the detection threshold;% 3% of the spike amplitudes below 10 mV;% 5% of the spikes overlapping with common-

mode artifacts.

We identified inhibitory neurons from their waveform half-width, i.e., the time between maximum negativity and return to baseline

on the channel where this waveform had highest power. Neurons with a half-width below 0.3 ms were deemed narrow-spiking and

putatively inhibitory. We measured the laminar location of each neuron (using the boundaries in Hooks et al., 2011) based on the

manipulator depth and the channel on which the waveform had greatest RMS power. Neurons in L1 or the cortical subplate were

discarded from this analysis because they were difficult to sort and showed variable properties across mice.

Histological reconstruction
Weused a cameramounted on a surgical microscope to take a picture of the area around barrel cortex on every session from the time

of intrinsic signal imaging to the end of the experiment. We aligned all of these images with each other using the TrakEM2 plugin

(Cardona et al., 2012) in Fiji using surface vasculature. These images, referenced to individual barrel column locations determined

by intrinsic signal imaging, were used to guide the placement of the craniotomy and the electrode.We also photographed and aligned

images of the location of the implanted electrode array each day.

On the last day, we inserted a glass pipette coated with DiI (Sigma-Aldrich 468495) into the barrel field twice to leave two land-

marks, one anterior and one posterior, which were also photographed and aligned. At the conclusion of the experiment, we deeply

anesthetized the mice with pentobarbital, transcardially perfused them with 4% paraformaldehyde, and removed the brain for his-

tological processing.

The left hemisphere was sectioned tangentially to the barrel field using a Vibratome or freezing microtome to cut 50 or 100 mm

sections. We stained for barrels with fluorescently conjugated streptavidin and imaged the sections on an epifluorescent microscope

to reveal the location of the barrels and the DiI landmarks. In this way we confirmed the exact location of each recording site with

respect to both the anatomical and functional barrel map.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Statistics
Throughout this manuscript, ‘‘*’’ indicates p < 0.05; ‘‘**’’ indicates p < 0.01; ‘‘***’’ indicates p < 0.001; and ‘‘n.s.’’ indicates ‘‘not

significant.’’

To non-parametrically estimate the width of certain non-normal distributions, we used ‘‘bootstrapped confidence intervals.’’ This

means resampling the data with replacement 1000 times, taking the average of each resampled dataset, and then taking the interval

that spans the central 95% of this distribution of averages across resampled datasets.

Whisker video analysis
We used a lightly modified fork of the ‘pose-tensorflow‘ package (Insafutdinov et al., 2016; Pishchulin et al., 2015) to train and use a

deep convolutional neural network to identify and track whiskers in the video. This network is based on Resnet (He et al., 2015) and is

the same ‘‘feature detector’’ network incorporated into the first version of DeepLabCut (Mathis et al., 2018). We generated an initial

training set using the software ‘whisk‘ (Clack et al., 2012) to track individual whiskers and custom semi-automated code to clas-

sify them.

Eight equally spaced points along each tracked whisker were provided as the ‘‘joints’’ for the neural network to identify. We iter-

atively improved the neural network by evaluating it on new frames, choosing difficult frames from the result, semi-automatically

improving the labels, swapping in the results from ‘whisk‘ as necessary, and then using this new training set to train a new version

of the network. This procedure is described in greater detail in the following section. Whiskers of below-threshold confidence or

below-threshold smoothness at any joint were discarded. We optimized these thresholds with a cross-validated grid search.

Sessions with inaccurate labeling were discarded: we required that every whisker be labeled inR 95%of the frames, that% 2%of

the contact events contained even a single frame with a missing label, and that the arcs traced out over the entire session by the

whisker contained no discontinuities or jumps suggestive of tracking errors. In the remaining well-traced sessions we interpolated

whiskers over any missing frames.

We identified the shape stimulus in each frame by thresholding and segmenting the frame and selecting the segment of the appro-

priate size and location. We identified contacts on the shape based on proximity (%10 pixels Cartesian distance) between the tip of

each whisker and the edge of the shape.

To estimate each whisker’s bending moment, we first fit a spline through its 8 identified joints and used the ‘‘measure’’ function of

‘whisk‘ to estimate curvature (k). k is the spatial rate of change of direction of the whisker at each point along its length, i.e., the recip-

rocal of the radius of curvature at that point, and is measured in units of m-1. ‘whisk‘ averages k over the entire length of the traced

whisker and we followed this convention. For comparison with other studies, we note that 1 m-1 is equal to 0.001 mm-1 due to this

reciprocal. k = 0 for a straight line. In our study, k > 0 for a whisker pushing into a shape and k < 0 for the reverse curvature, typically

encountered while detaching from the shape.

To register all videos within a common reference frame for visualization (Figures 4A–4C), we extracted the location of the shape

edge at each location (close, medium, or far). Because we knew the exact distance between edges in reality, we used the vector

between adjacent locations in the image to measure the angle and scale for that particular video. After compensating for this angle

and scale, we used the peak in the 2D cross-correlation to find the offset that best aligned the videos with each other.

Quantification of whisker tracking accuracy
The simplest metric of tracking accuracy is themean distance between the true label and the predicted label, which is 2.8 pixels in our

case. However, this is not a particularly informative metric, because the scientific utility of such an algorithm is limited by the prev-

alence of rare but large errors (e.g., misclassifying C1 as C2) which are too rare to affect such a metric. Indeed, there are multiple

additional kinds of errors to consider, such as false negatives and false positives, each of which has varying severity depending

on the analysis.

Moreover, performance on the average frame is not particularly important, because in the majority of frames in the dataset the

whiskers are at rest or near rest, and in these frames tracking is easy. Mice make contact with the shapes in diverse ways, and

although this constitutes a tiny minority of the frames in the dataset, these are precisely the frames where accurate tracking is

most difficult and most important. Finally, before accurate training is available, such frames with whisker contacts cannot be a priori

identified for use in a training set or quantifying accuracy. Thus, for all these reasons, quantifying the accuracy of tracking algorithms

in general remains challenging.

We began by defining four disjoint types of whisker tracking errors, all defined with respect to a training set curated by a hu-

man (C.R.).

d ‘‘poorly traced’’: The extent of the whisker is not traced correctly. For example, the tip is missing, or the trace ‘‘jumps’’ from one

whisker to another. This was defined by calculating the Cartesian distance between ground truth and reported location of each

joint in the whisker, and identifying whiskers where this distance was greater than 20 pixels for the tip or for the mean over all

joints.
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d ‘‘incorrectly classified’’: The wrong label is assigned. For example, whisker C2 is correctly traced, but is labeled as C1. If the

whisker is both poorly traced and incorrectly classified, it is labeled as incorrectly classified.

d ‘‘false positive’’: A non-whisker object is reported as a whisker, or the same whisker object is labeled as two different whiskers.

d ‘‘false negative’’: The whisker is present in the frame, but is not labeled. This is possible because our algorithm applies a con-

fidence and smoothness threshold to the output of the neural network, and outputs that do not pass these thresholds are simply

dropped.

We used an iterative procedure to train our algorithm, which was critical to its success.

1. First, we chose n = 7433 frames randomly from all sessions for which we had video, applied a previous generation whisker

tracking algorithm (whiski), and manually labeled the identity of each whisker after verifying that it was correctly traced. This

is ‘‘curated dataset 1,’’ representative of typical frames in the video.

2. We trained a neural network on that dataset, and used it to label all the frames in all the videos.

3. Of all these frames, we chose the frames on which the network was most likely to have made mistakes. We did this in several

parallel ways: identifying frames where the reported confidence values were intermediate (i.e., unsure of presence or absence

of the whisker), where the whiskers were near the extreme ends of their typical ranges, where any whisker was missing, and

when any whisker was missing during a contact event. These are ‘‘challenge frames,’’ because they were chosen for their dif-

ficulty.

4. We manually evaluated and corrected every challenge frame, using the previous generation whisker tracking algorithm as a

backup method when necessary.

5. We repeated steps 2-4 four times, to generate curated datasets 2-5.

Each type of error is nearly zero (< 0.2%) on dataset 1, which is the only dataset representative of typical frames (Figure S2D). The

most common type of error is the false negative, because we used a relatively strict confidence threshold. However, false negatives

are also the least problematic, because we interpolated missing whiskers over frames. Error rates increase with each subsequent set

of challenge frames, because as the algorithm improves, the frames on which it still makes errors become more and more difficult.

Decomposition of individual whisks
We defined the whisker’s angle as the Cartesian angle between base and tip. We decomposed the whisking signal into individual

whisk cycles using the Hill transform (Hill et al., 2011). Briefly, we bandpassed the data from 8 to 50 Hz and applied the Hilbert trans-

form to extract phase. Peaks and troughs were defined as frames where the phase crossed zero or p. We defined set point as the

angle of each whisker at the trough of each whisk cycle, and amplitude as the angular difference between peak and trough on each

cycle for the C2 whisker. The whisking amplitude was very consistent across whiskers, so we used the amplitude of the C2 whisker

only. In contrast the relative set point of each whisker could vary, so we used the set point of each as regressors in the neural GLM

analysis. To smooth these amplitude and set point parameters, we applied a triangular window that weighted one cycle before and

after half as much as the current cycle.

To identify sampling whisks (those large enough to reach the shapes if they had been at their closest position), we aligned the

frames to the responsewindow and found the convex hull of the edges of the shape (i.e., the boundary of closest points to thewhisker

pad) versus time from the response window. A ‘‘whisk without contact’’ was one on which the whiskers crossed this boundary. This

could happen if, for instance, the C3whisker investigated the space where themedial portion of the closest concave shapewould be,

but actually a convex shape was present or a concave shape at a further position (example: Figure 3A). A ‘‘whisk with contact’’ is any

whisk on which contact was made. Sampling whisks are defined as either ‘‘whisks with contact’’ or ‘‘whisks without contact.’’ All

other whisks (non-sampling whisks) are those which did not cross the convex hull described above and did not make contact

with the shapes. Not all trials contained contacts, but the vast majority of trials included at least one sampling whisk.

Lick rates (Figure 1I)
We recorded the times of all licks, even those before the response window that had no effect on the trial outcome. In rare cases our

detector recorded a single lick as many licks (the ‘‘switch bouncing’’ effect) and so for analysis we binned licks in 100 ms bins and

discarded any surplus licks above one per bin.

To plot the rate of correct or concordant licks, we calculated the rate of licking on each side on every trial and defined each lick as

‘‘correct/incorrect’’ depending on whether it matched the correct side, and as ‘‘concordant/discordant’’ depending on whether it

matched the direction of the choice lick (i.e., the first lick in the response window, which determined trial outcome). We then meaned

the lick rates for each trial type (correct, incorrect, concordant, discordant) within each mouse. Finally we divided the rate of correct

licks by the rate of all licks, and the rate of concordant licks by the rate of all licks, to generate the results plotted in Figure 1I.

Behavioral decoding analysis (Figure 3)
We first selected only trials in which the mouse responded within the first 0.5 s of the response window in order to ensure that

behavior was roughly aligned across trials. This procedure excluded only a small fraction of trials. In some sessions we used opto-

genetic stimulation for separate studies; any trial with optogenetic stimulation was discarded from all analysis in this manuscript. In
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some sessions we also presented flatter shapes (performance data: Figure S1A) but for behavioral decoding and all neural analyses

we discarded any trials with the flatter shapes.

We then extracted all whisking and contact data from each trial from �2.0 to +0.5 s of the opening of the response window and

obliviated (set to zero or themean value) all data after the time of the choice lick to ensure that only pre-choice activity was included in

the analysis. Each feature was measured on every individual whisk (e.g., presence of contact, cross-whisker latency within that con-

tact, interaction terms for multiple-whisker contact; complete list in Table S1). We then aggregated each feature within 250 ms bins

locked to the response window opening, so that trials with different numbers of whisks could be directly compared. Most features

were aggregated by meaning within the bin, but count-related features (like contact count) were aggregated by summing within

the bin.

Finally we concatenated some task-related features like previous choice and previous outcome that did not depend on the whisk

cycle. Even if the previous trial was itself excluded (for instance, due to optogenetic stimulation), the ‘‘previous outcome’’ and ‘‘pre-

vious choice’’ variables were still taken from that excluded trial.

If a feature was not defined for a time bin (for instance, cross-whisker contact timing and contact-induced bending have no mean-

ing if no contacts occurred), it was left as null (NaN). Because these parameters were only measured during contacts, they implicitly

contained information that a contact had occurred. Specifically, they were null at all times other than during contact. During feature

standardization (described below), we ensured that these features could have no effect on the coefficients or goodness-of-fit when

they were null. The net result of this procedure is that these features could only be informative conditioned on the presence of a con-

tact. This permits their interpretation asmodulating the information gleaned by themouse about each contact, above and beyond the

mere presence of a contact per se.

The result of this feature selection process was 725 scalar features per trial, some of which (e.g., contact count) depended on time

bin and some of which (e.g., previous choice) did not. For each session, we standardized all features by scaling them to zero mean

and unit standard deviation. At this point we imputed null (NaN) features with zero, so that they could not affect the coefficients ob-

tained. We used the same procedures to fit individual features (Figure 3B) or combinations of features (Figure 3C).

We also asked whether the three features (whisks with contact, whisks without contact, and angle of contact) in the optimized

behavioral decoder (Figure 3C; dashed box) contained unique information or were potentially redundant with one another. To do

this, we dropped one feature at a time, refit the decoder, and assessed the decrease in its accuracy on predicting stimulus or choice

(Figures S3E and S3F). That decrease is taken as that feature’s ‘‘unique contribution’’ to the decoder’s accuracy (Musall et al., 2019).

Choice decoders were trained to predict which way themouse would lick (left or right). For shape discrimination sessions, stimulus

decoders were trained to predict the shape identity (concave versus convex). For shape detection sessions, stimulus decoders were

trained to predict the presence of a shape (concave or convex, versus nothing). The only exception to this is in Figure 3F, in which the

decoder was trained to predict shape identity (concave versus convex) regardless of the task.

Cross-validation scheme
Each session was fit separately—classifiers were never fit on one session and then applied to another session, even from the same

mouse. We grouped the trials into 4 separate ‘‘strata,’’ with one stratum for each combination of choice and stimulus (concave/

convex for discrimination; something/nothing for detection). We split the data into 7 ‘‘folds’’ for cross-validation, equally sampling

trials from each stratum. Each trial was in the ‘‘testing’’ set for one fold, the ‘‘tuning’’ set for one fold, and the ‘‘training’’ set for

five folds. For each fold, we fit a logistic regression model (‘sklearn.linear_model.LogisticRegression‘) on the training set over a range

of different regularization parameters, always using L2 regularization. We then evaluated the model on the held-out tuning set and

chose the regularization that optimized classifier accuracy over all sessions. Finally we evaluated the model with the chosen regu-

larization on the doubly held-out testing set and took that score as the model’s overall accuracy.

To analyze the weights of the classifier for the session as a whole, we averaged the weights across folds. To analyze the prediction

on an individual trial, we used the classifier for which that trial was in the testing (doubly held-out) set. Because each trial was in the

testing set in exactly one fold, there was only one unique prediction per trial.

The need to disentangle stimulus and choice
As a thought experiment, imagine a neuron that purely encodes the stimulus and is completely unaffected by choice, similar to what

we might expect in the sensory periphery. For instance, this neuron could respond with 1 spike to concave shapes (stimulus A) and

0 spikes to convex shapes (stimulus B).

If a mouse is performing 75% correct, the results might look like this:

d stimulus: {A, A, A, A, B, B, B, B}

d choice: {A, A, A, B, B, B, B, A}

d neuron: {1, 1, 1, 1, 0, 0, 0, 0}

By design, we know that this noiseless neuron is completely driven by stimulus and not at all by choice. Indeed, the variables ‘‘stim-

ulus’’ and ‘‘spikes’’ are perfectly correlated. However, the variables ‘‘choice’’ and ‘‘spikes’’ are also correlated: they arematched on 6
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of 8 trials (the correct trials). The naive approach of correlating the neural response with choice would report a spurious choice en-

coding, but this is in fact due to stimulus encoding coupled with a preponderance of correct trials (schematized in Figure S3B).

The most straightforward way to deal with this is by trial dropping—including correct and incorrect trials in equal proportion. For

instance, for each stimulus we could include 1 correct trial (out of 3 total) and 1 error trial (out of 1 total). The data would then look

like this:

d stimulus: {A, A, B, B}

d choice: {A, B, B, A}

d neuron: {1, 1, 0, 0}

After this procedure, ‘‘stimulus’’ and ‘‘neuron’’ are still perfectly correlated, but ‘‘choice’’ and ‘‘neuron’’ are perfectly uncorrelated (2

matches out of 4 trials). Thus, this procedure indeed reveals the true relationship in the data. However, it is woefully underpowered,

because it requires discarding a large proportion of the data—in this case, half the dataset was dropped. This lack of power becomes

more acute as the mouse’s performance increases and the error trials become rarer.

The procedure that we developed for this paper—trial balancing—achieves the same result as trial dropping but without the loss of

statistical power. In this example, instead of keeping 1/3 of the correct trials, we would include all of the correct trials but weight them

1/3 as much as the each error trial. We implemented this using the ‘sample_weight‘ argument in sklearn.linear_model.LogisticRe-

gression. In calculating the cost function to optimize, the decoder weights the cost of each datapoint in accordance with its sample

weight. The overall result is that correct and incorrect trials of each stimulus are all equally weighted in aggregate, thus disentangling

stimulus and choice.

Validation of trial balancing
We validated that trial balancing accurately and efficiently disentangles stimulus and choice using a simulation in which we know the

ground truth that themethod should discover. We present this in the context of behavioral decoding (inferring stimulus or choice from

sensorimotor features) but the mathematical argument is identical for the case of neural decoding (inferring stimulus or choice from

neural responses).

To assess this, we generated simulated data for a hypothetical sensorimotor feature (e.g., contact angle) that is purely driven by the

stimulus identity and has no causal relationshipwith themouse’s choice (Figure S3B). This hypothetical feature is positive for stimulus

B (blue) and negative for stimulus A (red), regardless of choice (solid versus dashed lines). A well-calibrated decoder algorithm should

reveal the presence of stimulus evidence in this data while rejecting the presence of choice evidence. The naive decoder would draw

a vertical line at zero, which clearly discriminates the two stimuli (red and blue). Critically, this same naive decoder would also discrim-

inate choice A on the left (solid) and choice B on the right (dashed). Essentially, this error occurs because stimulus and choice are

correlated with one another. The decoder would thus report spurious choice evidence in these data, which we know from construc-

tion is not true.

We argue that trial balancing and trial dropping can be used to prevent this false conclusion. The simulation bears this out. All three

decoders (naive, trial-balanced as in the manuscript, and trial-dropping) correctly infer that this feature has evidence about stimulus

(Figure S3C; left three bars). However, the naive decoder incorrectly infers that this feature has evidence about choice, whereas both

trial balancing and trial dropping give the correct result of no evidence in this case (Figure S3C, right three bars). In practice, we prefer

trial balancing over trial dropping, because in real data the number of errors on a given stimulus can be small, resulting in an unac-

ceptably small trial count. Trial balancing allows us to use all of the data while still successfully disentangling stimulus and choice and

inferring evidence correctly.

Finally, we compared the results obtained with trial balancing to those obtained from trial dropping, now using the actual data

collected from the mice instead of simulated data. As with trial balancing, we divided the trials into four groups: correct and incorrect

trials on each stimulus. However, instead of weighting each trial in inverse proportion to its prevalence (‘‘trial balancing’’), we now

perform ‘‘trial dropping’’ by identifying the size of the smallest of the four groups (N), and selecting N random trials from each of

the four groups.

The results with both methods are qualitatively similar (Figure S3I). However, because trial dropping discards most of the data, it is

less statistically powerful than trial balancing is. Thus, the weights obtained are much smaller, because the cross-validation proced-

ure adopts a stronger regularization to account for the higher noise level. Because of this higher noise, decoders using trial dropping

were also less accurate. Thus, the trial balancing procedure we describe here yields similar results as trial dropping, but with greater

statistical power.

Aggregation
To aggregate results across mice (e.g., Figures 3D and 3F) we averaged the accuracy of the classifier across sessions within each

mouse first. The sample size for error bars and statistical tests was then equal to the number of mice.

To plot the weights of the classifier in Figure 3H, we first averaged the weights over time for simplicity. Because the coefficients

plotted in Figure 3H are related to contact counts, we multiplied the coefficients by the standard deviation of the corresponding

column in the feature matrix before standardization. This effectively reverses the standardization, and puts the coefficient in
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more-interpretable ‘‘per contact’’ units rather than ‘‘per standard deviation of contact count’’ units. This was for visualization only and

did not affect the results.

To plot the evidence in Figure 4C, we applied the weights of the decoder to each individual whisk cycle and meaned this evidence

over all whisks with a peak within that spatial bin. For visualization in this panel, we used a model that incorporated the peak angle of

whisks without contact.

Neural decoding analysis (Figure 6B)
To decode stimulus and choice from neural activity, we used a resampling/bootstrapping approach to combine neural data across

sessions and mice. First the trials were split into five equally sized ‘‘folds,’’ one of which was the ‘‘test fold’’ and the rest ‘‘train folds.’’

No tuning set was necessary because we fixed the regularization at 1.0 in this analysis. For each shape (concave or convex), we

randomly chose a single trial with that shape from the test fold in each session. We concatenated all of the neural data from those

trials into a ‘‘pseudopopulation’’ as if all the neurons had been recorded simultaneously. We then repeated this process 30 times to

construct 30 pseudotrials of the test fold. Then, we repeated the process for the train folds, to generate 120 pseudotrials of the train

folds. By construction, the same trial could never be included in both the test and train folds.

The classifier was trained on the train fold and evaluated on the test fold. Because correlations can have a strong impact on the

amount of information encoded by a neuronal population (Nogueira et al., 2020), we maintained the correlation structure between

simultaneously recorded neurons. Specifically, for each pseudotrial we sampled the same trial from each simultaneously recorded

neuron. The entire process was repeated 100 times to generate the confidence intervals displayed in the plot, which we obtained by

fitting a normal distribution to the accuracy over repeats.

We call the procedure above the ‘‘naive’’ approach because it does not balance hits and errors; hence, it confounds stimulus and

choice. This naive approach is used in the left panel of Figure 6B. We also used a ‘‘balanced’’ approach to disentangle stimulus and

choice in the middle and right panels of Figure 6B. Specifically, we first divided all the trials into 4 strata (concave hit, concave error,

convex hit, convex error) instead of the 2 strata (concave or convex) used in the naive approach. We then repeated the same resam-

pling approach to draw pseudotrials from each of the 4 strata. This ensures equal weighting of correct and incorrect trials; hence, it is

balanced. We used disjoint train and test folds just as in the naive approach.

In all cases, to train the classifier we first standardized the firing rate of each neuron in the pseudopopulation to zero mean and unit

variance.We provided these normalized firing rates to a classifier (‘sklearn.linear_model.LogisticRegression‘) and trained it to predict

either the stimulus or choice on each trial. We trained separate classifiers on every time bin in the training fold. We used the classifiers

to predict stimulus or choice on each trial in the held-out test fold.

For both naive and balanced classifiers, we repeated the entire procedure five times, such that each trial was included in the test

fold exactly once (and in the training fold the other four times). We averaged the classifier’s accuracy over each of the four held-out

test sets (never including the training set) and reported this as the classifier’s overall cross-validated accuracy in Figure 6B.

For the right panel of Figure 6B, we zeroed out the spikes on all ‘‘sampling whisks’’ (defined above in the videographic methods).

We also zeroed out spikes on the cycle preceding and the two cycles following each sampling whisk to ensure complete removal of

whisk-locked stimulus information. This procedure removed phasic contact-evoked or whisk-evoked stimulus responses, but

spared long-timescale persistent representations.

We asked whether early licks could affect the results of behavioral decoding or neural decoding. To address this, we excluded all

trials in which the mousemade even a single lick in the interval�2 < t <�1. (As always, we use the timeline schematized in Figure 1H,

with t = 0 representing the opening of the response window.) We chose this period of time because it precedes the bulk of the whisker

contacts, and so licks during this time must be unrelated to the animal’s sampling strategy. This analysis resulted in essentially iden-

tical results for behavioral decoding (Figure S3H) and for neural decoding (Figure S6), indicating that our evaluation of the sampling

strategy and neural decoding is not affected by impulsive licks.

Neural encoding analysis (Figures 7 and 8)
For this analysis, we began with the same features (contact count, etc.) from the behavioral analysis. Rather than aggregate within

arbitrary time bins, we used the feature measurements on individual whisk cycles. We added some additional features that could

affect neural firing: the amplitude (peak-to-trough angle) of each whisk and the set point (start angle) of each individual whisker at

the beginning of each whisk.

We also added some additional trial-related features: current choice, previous choice, current outcome (rewarded or not), and pre-

vious outcome. Because the effect of these features could vary over the course of the trial, we used separate temporal indicator vari-

ables (Park et al., 2014). Specifically, we divided all whisks into 500 ms bins with respect to the response window opening. If the cur-

rent choicewas ‘‘left,’’ wemarked the temporal indicator variable corresponding to left choices within that whisk’s bin as 1, and left all

other variables as zero. We repeated this for each task variable.

Finally, we added two ‘‘nuisance features’’ for firing rate drift and cycle duration. For firing rate drift, we divided each session into 10

blocks and assessed the mean firing rate of each neuron within that block. We provided the logarithm of this value as a feature to the

GLM. The timescale of each block was far too long (~several minutes) to contain any information about individual whisks, but it

captured the baseline firing rate of the neuron, as well as any long-timescale variations, for example due to satiety. The second

nuisance feature was the logarithm of the duration of each individual whisk cycle. This is because a whisk cycle that is twice as
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long should be expected to emit twice as many spikes, all else equal. The use of a logarithm in both cases accounts for the expo-

nential link function in the GLM. Both of these nuisance features are highly predictive of neural firing by design and were important for

fitting the data but were not analyzed further for scientific conclusions.

We fit the data using a GLM for Poisson data like spike counts (i.e., with an exponential link function) using the ‘pyglmnet‘ module

(Jas et al., 2020). We used 5-fold cross-validation, ensuring that each trial was in the test set exactly once and evaluating the GLM on

these held-out test sets only. We always used L2 regularization but we varied the strength of this regularization. We typically used the

regularization value that optimized the model fit for that neuron, but when comparing coefficients across neurons (e.g., Figure 8) the

same value of regularization was used for all neurons to ensure coefficients were on the same scale.

In order to obtain the null distributions of each coefficient and thereby significance, we also trained 40 additional GLMs for each

neuron using permuted features. Specifically we permuted the rows but not the columns of the feature matrix, which maintains the

correlation structure of the features but randomizes the mapping to neural responses. Each row of data contains any necessary his-

tory terms, and the rows are always kept together. For instance, one column corresponds to the current whisk amplitude, and another

column to the previous whisk amplitude. No matter how the rows are arranged in the design matrix, they retain the same current and

previous cycle information. Thus, our current approach always preserves whisk-to-whisk information in the features, regardless of

whether they are aligned with the neural responses (the real fit) or randomly permuted with respect to the neural responses (the

null distribution).

The distribution of each coefficient over permutations had a near-zero mean but a non-zero standard deviation. To assess signif-

icance of individual coefficients (e.g., Figures 7E and 7F) we divided the actual coefficient by the standard deviation of the coefficients

obtained on the permutations to obtain the z-score of the coefficient. We then converted this into a two-tailed p value by integrating

the standard normal beyond this z-score. We validated that this approach controlled the false positive rate at a = 0.05 by including a

spurious regressor that was drawn from a random distribution and ensuring that the random regressor was found significant nomore

than 5% of the time (indeed, that the resulting p value distribution was uniform; data not shown).

To assess goodness-of-fit of anyGLM,we took the log-likelihood of the data under the best fit and compared it to the log-likelihood

of the data under a null model. The null model had access only to the ‘‘nuisance features’’ described above: baseline firing rate and

whisk cycle duration.We subtracted the log-likelihood of the null from the log-likelihood of the fit model, and divided by the total num-

ber of whisks in that session in order to permit comparison across datasets of different duration. We used a logarithm of base 2 to

permit presentation in ‘‘bits.’’ This is not an estimate of the information contained by the neural spike train, but rather an estimate of

the change in the KL-divergence between [the true (unknown) distribution of the data and the distribution predicted by the model

under consideration] versus [the same quantity, but replacing the model under consideration with the null model].

We also present the same data quantified as the pseudo R2 in Figures S7 and S8, using the function ‘pyglmnet.metrics.pseu-

do_R2‘. This quantity is defined as (LLM– L0) / (LS – L0), where LLM is the log-likelihood for the fitmodel, L0 the null model that always

predicts themean firing rate, and LS the saturatedmodel which predicts the data exactly. The saturatedmodel is not actually achiev-

able by any real fitting procedure, but provides an upper bound on performance for all possible models.

Direct comparison of task-specific neural responses while controlling for contact force
To determine whether the change in whisker-specific tuning that we observed during shape discrimination could be explained by the

intensity of the contacts, we directly compared neural responses to contactsmade by eachwhisker while controlling for contact force

(Figure S8G).We observed that the neural response increases with contact force in both tasks and on all whiskers. Inmice performing

the detection task, the relationship is quite similar regardless of which whisker makes contact. In mice performing the discrimination

task, the response to C1 is much larger than the response to C3, even as we now control for identical contact forces. Similar results

were obtained for other kinematic parameters (data not shown). This analysis, which does not use a GLM, directly validates the orig-

inal GLM-based conclusions: C1 contacts induce a larger neural response than C3 contacts in mice performing discrimination, but

not in mice performing detection, even after controlling for contact force.

Analysis software
We used the Python packages ipython (Perez and Granger, 2007), pandas (McKinney, 2010), numpy (Van DerWalt et al., 2011), scipy

(Virtanen et al., 2020), scikit-learn (Pedregosa et al., 2011), scikit-image (van Der Walt et al., 2014), statsmodels (Seabold and Perk-

told, 2010), pyglmnet (Jas et al., 2020), and matplotlib (Hunter, 2007) to investigate, analyze, and present the data.
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