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SUMMARY

Humans and other animals can identify objects by active touch, requiring the coordination of exploratory mo-
tion and tactile sensation. Both the motor strategies and neural representations employed could depend on
the subject’s goals. We developed a shape discrimination task that challenged head-fixed mice to discrim-
inate concave from convex shapes. Behavioral decoding revealed that mice did this by comparing contacts
across whiskers. In contrast, a separate group of mice performing a shape detection task simply summed up
contacts over whiskers. We recorded populations of neurons in the barrel cortex, which processes whisker
input, and found that individual neurons across the cortical layers encoded touch, whisker motion, and task-
related signals. Sensory representations were task-specific: during shape discrimination, but not detection,
neurons responded most to behaviorally relevant whiskers, overriding somatotopy. Thus, sensory cortex em-

ploys task-specific representations compatible with behaviorally relevant computations.

INTRODUCTION

In active sensation, animals choose how to move their sensory
organs to most effectively gather information about the world
(Gibson, 1962; Yang et al., 2016). A key challenge in neurosci-
ence is to understand the strategies animals use to explore the
world and how they interpret the resulting sensory input.

We investigated this problem in the mouse whisker system.
Freely moving rodents actively move their whiskers to identify
objects and obstacles (Brecht et al., 1997; Grant et al., 2018;
Hutson and Masterton, 1986; Lyon et al., 2012; Stuttgen and
Schwarz, 2018; Voigts et al., 2015), but the sensorimotor stra-
tegies and neuronal mechanisms that enable whisker-based
object recognition are not well understood. In freely moving an-
imals, it is difficult to track the whiskers (Petersen et al., 2020;
Voigts et al., 2008) and ensure that whiskers alone are used,
instead of vision, olfaction, or touch with skin (Mehta et al.,
2007). Head fixation enables better whisker tracking and stim-
ulus control, but most tasks for head-fixed mice focus on
spatially simple features, like the location or orientation of a
pole or the texture of sandpaper (Chen et al., 2013; Kim
et al., 2020; O’Connor et al., 2010a). Indeed, the head-fixed
mouse is often trimmed to a single whisker, though a few
studies have considered multi-whisker behaviors (Brown

et al., 2021; Celikel and Sakmann, 2007; Knutsen et al., 2006;
Pluta et al., 2017).

We asked how mice discriminate concave from convex ob-
jects. Curvature is one of the fundamental components of
form, and discriminating curvature requires integrating informa-
tion over space (Connor et al., 2007; Lederman and Klatzky,
1987). Shape discrimination has never been studied with precise
whisker tracking (although cf. Anjum et al., 2006; Brecht et al.,
1997; Diamond et al., 2008; Harvey et al., 2001; Polley et al.,
2005). Curved stimuli have been used in visual and somatosen-
sory experiments in primates but were typically presented
passively (Nandy et al., 2013; Yau et al., 2009), whereas active
sensation is critical for shape discrimination in humans and other
species (Chapman and Ageranioti-Bélanger, 1991; von der
Emde et al., 2010; Klatzky and Lederman, 2011).

We set out to understand the sensorimotor strategies and
neuronal representations of two tasks: shape discrimination
and shape detection. Behavioral decoding revealed that shape
discrimination mice compared contacts across whiskers,
whereas shape detection mice summed up contacts across
whiskers. Populations of individual neurons in barrel cortex en-
coded the mouse’s choice in addition to other sensory, motor,
and task variables. Most importantly, neural representations
were task specific, overriding even basic cortical topography.
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Our behavioral decoding approach revealed why these task-
specific representations were useful in object recognition.

RESULTS

The shape discrimination and detection tasks

We developed a shape discrimination task in which head-fixed
mice licked left for concave and right for convex shapes to obtain
water rewards (Video S1). On each trial, a linear actuator moved
a curved shape (either convex or concave) into range of the whis-
kers on the right side of the face, stopping at one of three
different positions (termed close, medium, or far; Figures 1A
and 1B). At all positions, mice had to actively move their whiskers
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Figure 1. The shape discrimination and
shape detection tasks

(A) Diagram of the behavioral apparatus. A motor
(black) rotated a shape (orange) into position, and
a linear actuator (green) moved it toward the
whiskers.

(B) Example high-speed video frames. Shapes
were presented at one of three different positions
(pink and cyan lines labeled close, medium, and
far).

(C) Lesioning right barrel cortex (ipsilateral to
shapes) had no effect on shape discrimination
(left; n = 2 mice), whereas contralateral lesions
impaired performance, with no sign of recovery
over 3 days (right; n = 8 mice).

(D) Same as (C), averaging over 3 days. Paired t
test.

(E) Task rules.

(F) Mouse performance (fraction of correct trials)
on both tasks exceeded chance (dashed line).
(G) Mouse performance by task, stimulus, and
position. On the “nothing” condition, the actuator
moves to the correct position, but no shape is
present. One-way repeated-measures ANOVA.
(H) Trial timeline. Pink arrow, opening of response
window. Cyan arrow, choice lick.

(I) Left: total lick rate regardless of lick direction
(black) and total contact rate (pink) on the same
timescale as (H), pooled across tasks. Right:
probability that licks were correct (solid) or
congruent (dashed; i.e., in the same direction as
the eventual choice lick).

Error bars represent SEM over mice. In all figures,
*p < 0.05, **p < 0.01, and ***p < 0.001.

to contact the shape. The use of different
positions ensured that mice did not sim-
ply memorize the location of a single point
on the object. Mice could generalize to
flatter shapes that were more difficult to
discriminate (Figure S1A). Trimming off
all the whiskers caused performance to
fall to chance, demonstrating that mice
could not use non-whisker cues to
choose correctly (Figure S1B). Lesioning
the contralateral barrel cortex, which pro-
cesses whisker input, substantially and

significantly degraded the performance of untrimmed mice for
multiple days (Figures 1C and 1D). Thus, mice relied on whiskers

and barrel cortex to discriminate shape.
To assess which features of the behavioral and neural re-
sponses were specific to the task, we trained a separate group

reward.

of mice on shape detection (Figure 1E). These mice learned to
lick right for either shape and lick left on trials when the actuator
presented an empty position with no shape. The trial timing and
shapes were identical in both tasks, which differed only in the
rule governing which direction the mice should lick to receive

Both groups of mice learned to perform well above chance
(Figure 1F; n =5 detection and 10 discrimination mice). Detection
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mice more accurately reported the presence of a shape when it
was closer (Figure 1G). Discrimination mice identified concave
shapes equally well at all locations but were more likely to iden-
tify convex shapes correctly when closer. Thus, shape discrimi-
nation relied on “detecting convexity,” an observation we return
to below.

Precise video tracking of multiple whiskers

To permit unambiguous identification of each whisker in videog-
raphy, we gradually trimmed off whiskers until only the middle
row of whiskers remained. Mice were initially impaired by each
trim but could recover with training (Figure S1C), suggesting
that they initially used many rows but could learn to rely on just
one. Within the spared middle row, C1 is the caudal-most and
longest whisker, and C3 is the rostral-most and shortest whisker
still capable of reaching the shapes. The straddler whisker (8 or
vy, denoted “C0”) rarely made contact and was therefore
excluded from analysis.

To reveal how mice identified the shapes, we acquired video of
their whiskers at 200 frames per second. This large dataset (15
mice, 88.9 h, 115 sessions, 18,514 trials, and 63,979,800 frames)
necessitated high-throughput automated tracking. To do this,
we used the human-curated output of a previous-generation
whisker tracking algorithm (Clack et al., 2012) to bootstrap the
training of a deep convolutional neural network (Insafutdinov
et al., 2016; Mathis et al., 2018; Pishchulin et al., 2015). This
method precisely tracked the full extent of the whiskers (accu-
racy >99.7%; Figures S2A-S2D), even as they moved rapidly,
became obscured, or contacted the shape.

The timing of sensory evidence and behavioral reports
We used the timing of the contacts and licks within each trial to
understand when the mice made their decisions (Figure 1H).
Each trial began with the linear actuator moving the shape into
the mouse’s whisker field, and the “response window” always
opened 2.0 s after the trial began. The direction of the first lick
in the response window (the “choice lick”) determined whether
the trial was correct or incorrect. The opening of the response
window (defined as t = 0 throughout our analyses) was
not explicitly cued. The shape reached its final position in the
interval —0.8 < t < —0.4, depending on whether it was a close,
medium, or far trial.

Mice could move their whiskers, contact the shape, and lick
at any time during the trial, although “early licks” (i.e., t < 0) had
no effect on the outcome. We defined “correct early licks” as
those in the direction that would be rewarded and “congruent
early licks” as those in the same direction as the choice lick
(Figure 1l). Early in the trial (—2.0 < t < —1.5), mice made few
or no contacts, and accordingly, their rate of correct licking
was near the chance level of 0.5. As the mice made the bulk
of their contacts (—1.5 <t < 0), the rate of correct and congruent
licks steadily increased. After the choice lick on error trials, the
mice could infer their error from the absence of reward and
often switched their lick direction, even though this had no ef-
fect on the outcome. The rate of contacts peaked before the
rate of licking did, indicating that contacts were not an inci-
dental effect of licking: mice first collected evidence and then
registered their decision.
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Contact count, but not whisking or contact force, differs
between discrimination and detection

Trained mice whisked in stereotyped patterns that could differ
widely across individuals (Figure 2A). We decomposed whisker
motion into individual cycles (Figure 2B; n = 882,893 whisks
from 15 mice, excluding inter-trial intervals). Mice made contacts
near the peak of the whisk cycle (Figure 2C), synchronously
across whiskers (Figure 2D; cf. Sachdev et al., 2001). During
both tasks, performance increased with the number of contacts
made on each trial (Figure 2E).

Surprisingly, the statistics of whisker motion and contact kine-
matics were similar in both shape discrimination and detection
(Figures S2E and S2F) and in both cases differed strikingly
from previously published tasks. For instance, we exclusively
observed tip contact, whereas mice localizing poles make con-
tact with the whisker shaft (Hires et al., 2013; cf. a similar obser-
vation in rats discriminating texture in Carvell and Simons, 1990).
We never observed animals dragging their whiskers across the
objects’ surfaces, as they do with textured stimuli (Carvell and
Simons, 1990; Jadhav et al., 2009; Ritt et al., 2008). In both shape
detection and discrimination, contacts were brief (median 15 ms,
interquartile range [IQR] 10-25 ms, n = 167,217; Figure S2G).
Whisker bending, a commonly used proxy for contact force
(Birdwell et al., 2007; but see also Quist et al., 2014; Yang and
Hartmann, 2016), was dynamic (Figure 2F); a whisker could
bend slightly while pushing into a shape and then bend in the
other direction while detaching. Occasionally, we observed dou-
ble pumps, a signature of active exploration (Wallach et al.,
2020). The contact forces we observed were much smaller
than in many studies; the typical maximum bend (Ak) was
51+ 1.0m " for C1, 11.2 + 1.2 m~ " for C2, and 19.1 = 3.3
m~' for C3 (mean + SEM over mice; Figures 2G and S2F),
much less bent than the 50-150 m~" typical of pole localization
(Hires et al., 2015; Hong et al., 2018; Huber et al., 2012). The
sensorimotor strategy we observe here is similar to the “minimal
impingement” mode used by freely moving rodents (Grant et al.,
2009; Mitchinson et al., 2007).

Though the whisking and contact kinematics were in large part
similar between shape discrimination and detection, two specific
differences suggested task-specific processing. Compared with
the detection group, mice performing shape discrimination
made more single- and multi-whisker contacts, and they made
significantly more contacts with C2 and C3, though not with
C1 (Figure 2H). They also made much longer duration contacts
with the C3 whisker than the shape detection group did (Fig-
ure 2l). In sum, these analyses suggested that mice rely more
on contact number than on contact force to discriminate shape.

Behavioral decoding reveals sensorimotor strategies
To pinpoint the strategies mice used to perform these tasks, we
developed an analysis termed behavioral decoding that iden-
tifies the sensorimotor events driving behavioral choice (Fig-
ure 3A). In this approach, we first quantified a large suite of
sensorimotor features from the video (e.g., contact location,
cross-whisker contact timing) as well as task-related variables
(choice and reward history). All 31 features are listed in Table S1.
We distinguished between “sampling whisks” (those on
which mice protracted far enough to reach the closest
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Figure 2. Mice briefly tapped the shapes with multiple whiskers

(A) Angular position of the C2 whisker on three representative correct trials from each of ten mice.

(B) Angular position of C1, C2, and C3 over a single trial using timescale in Figure 1H. Colored bars, whisker contacts.

(C) Left: mean angle of each whisker aligned to the C2 whisk cycle peak. Right: probability that each whisker was in contact, aligned to the same time axis as on
left. For both, n = 94,999 whisk cycles during which at least one whisker made contact.

(D) Autocorrelation of contact times within each whisker (solid) and cross-correlation of contact times across pairs of adjacent whiskers (dashed).

(E) Performance versus the number of contacts in the detection (left) or discrimination (right) task. Orange circle, trials during detection when no shape is present.
We excluded mice from any bin in which they had <10 trials.

(F) Mean whisker bending (Ak) over time during each contact aligned to its onset and relative to the pre-contact baseline (dashed line), plotted separately for each
whisker (row) and contact duration (column). Pink shaded area, duration of contact. Not all mice made contacts of all possible durations; data points with <10
contacts per mouse were excluded.

(G) Whisker bending quantified as the minimum, maximum, and standard deviation of Ak over the duration of each contact.

(H) Compared to detection mice, discrimination mice made significantly more contacts with C2 and C3 (left) and significantly more contacts with a single whisker
and with multiple whiskers (right). Unpaired t test.

() Mean duration of contacts. C3 contacts are significantly longer during discrimination. Unpaired t test.

Error bars represent SEM over mice. All panels include 10 discrimination mice; (E), (H), and (I) also include 5 detection mice.

possible position of either shape) and “non-sampling whisks”
(all other whisks). Because non-sampling whisks could not

Next, we trained linear classifiers using logistic regression to
predict either the stimulus identity (concave versus convex for

have touched any shape on any trial, they could not be infor-
mative and were discarded from analysis. The remaining sam-
pling whisks were divided into “whisks with contact” (those
that contacted the shape) and “whisks without contact”
(those that did not; Figure 3A). We used two-dimensional ar-
rays over whisker and time to represent whisks with contact,
whisks without contact, and continuous values like “angle of
contact.”

4 Neuron 109, 1-18, July 21, 2021

discrimination; something versus nothing for detection) or the
mouse’s choice (lick left or lick right) on each trial using all of
these features. Predicting the stimulus indicated which features
carried information about shape, whereas predicting choice indi-
cated which features might have influenced the mouse’s deci-
sion (Nogueira et al., 2017). However, stimulus and choice are
correlated; indeed, they are perfectly correlated on correct trials.
To address this, we weighted error trials in inverse proportion to
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Figure 3. Behavioral decoding reveals sensorimotor strategies

(A) Behavioral decoding. We used 31 contact, whisking, and task-related features (Table S1) to predict the stimulus or choice. Left: example frame showing the
peak of a sampling whisk. C1-C3 protracted enough to reach the shapes at some positions (pink lines); C1 and C2 were scored as “with contact” and C3 as
“without contact.” Middle: example features, each an array over whisker (rows) and 250-ms time bins (columns). Example frame in third column. Sampling whisks
were binarized as with contact or without contact. Continuous variables like angle of contact were defined only during contact and were otherwise null. Right:
logistic regression classifiers predicted stimulus or choice.

(B) Accuracy of behavioral decoders trained on a single feature to identify stimulus (green) or choice (pink). During shape detection (right), the total number of
contacts (black arrow) was the most informative feature but was much less useful during discrimination.

(C) Features were combined in a stepwise fashion to create a simple model that captured behavior. Shown is the accuracy of decoders trained on (1) whisks with
contact only, (2) also including whisks without contact, (3) also including angle of contact, and (4) including all features in the entire dataset. The third model
(dashed box, optimized behavioral decoder) performs as well as the full model while using far fewer features.

(D)The optimized behavioral decoder predicts stimulus and choice well during both shape discrimination and detection, though less accurately when the mouse
made an error (open bars).

(legend continued on next page)
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their abundance, such that correct and incorrect trials were
balanced (i.e., equally weighted in aggregate). This notably
improved our ability to predict the mouse’s errors (Figure S3A).
Numerical simulations validated the accuracy and statistical ef-
ficiency of this method in comparison to other techniques (Fig-
ures S3B and S3C).

Contact count is the most informative feature about
stimulus and choice

To identify the most important features, we compared the accu-
racy of separate decoders trained on every individual feature
during shape discrimination (Figure 3B, left). The most informa-
tive feature for decoding both stimulus and choice was whisks
with contact—which whiskers made contact. The next most
informative feature was whisks without contact—which whiskers
were protracted enough to rule out the presence of some
shapes. The angle-of-contact feature was also useful for predict-
ing the stimulus, likely due to the geometrical information it con-
tains, but less useful for predicting choice, suggesting that mice
did not exploit that information despite its utility. The remaining
28 analyzed features were relatively uninformative about choice
(Figure S3D), including mechanical/kinematic variables like
speed or contact-induced whisker bending, contact timing
across whiskers or within the trial or whisk cycle, and task vari-
ables like choice history.

We tested our hypothesis that mice used different information
for discrimination and detection by comparing the usefulness of
each feature across tasks. During shape detection, the total con-
tact count summed over whiskers explained stimulus and choice
better than any other variable (Figure 3B, right). Total contact
count was far less informative during discrimination. This reflects
the fundamental difference between these tasks: detection
required the mouse only to know that contacts occurred
whereas discrimination required additional information—most
critically, the identities of the contacting whiskers.

A combination of a few features suffices to explain
behavior

Having assessed the relative importance of each feature, we
asked whether the most important features contained redundant
information or could be combined to improve decoding. We
gradually added features in decreasing order of usefulness until
the model’s performance plateaued (Figure 3C). The model
improved after including whisks with contact, whisks without
contact, and contact angle, and these three features together
performed as well as the full model with all 31 measured features.
Therefore, we used the reduced three-feature model (the “opti-
mized behavioral decoder”; dashed box, Figure 3C) for all further

Neuron

analyses. Dropping individual features or whiskers from the opti-
mized behavioral decoder impaired its performance, confirming
their individual importance (Figures S3E and S3F).

The optimized behavioral decoder accurately predicted either
stimulus or choice on both correct and error trials during both
detection (Figure 3D; stimulus: 83.5% =+ 2.2%; choice:
75.9% + 1.8%; mean + SEM) and discrimination (stimulus:
87.7% + 1.8%; choice: 76.9% + 1.6%). It outperformed the
mice on shape discrimination (Figure 3E), indicating that the
mice did not optimally use this sensory information. In sum,
this decoder constitutes a model of behavior capable of either
identifying the stimulus or predicting the mouse’s choice, even
on error trials. To achieve this, the model primarily required bi-
nary information about which whiskers made contact rather
than the fine temporal dynamics of those contacts.

This decoder’s ability to identify shapes could have been a triv-
ial consequence of mice whisking onto distinct objects or an
important reflection of the behavioral goals of the mice. To test
this, we compared the optimized behavioral decoder’s ability
to classify shape identity in mice performing shape discrimina-
tion versus mice performing shape detection. Although the
same shapes were used in both tasks and the same features
were quantified in all cases, the decoder was substantially better
able to classify shape identity in mice performing shape discrim-
ination than detection (Figure 3F). Thus, more information about
shape identity is collected by mice actively attempting to
discriminate those shapes.

Mice compare the prevalence of contacts across
whiskers to discriminate shape

We next used the weights of the optimized behavioral decoder to
reveal the strategy used for each task. Whether predicting stim-
ulus (Figure 3G) or choice (Figure S3G), this decoder assigned
strikingly different weights to contacts made by each whisker.
For shape detection, all weights were positive, meaning contact
by any whisker signaled the presence of an object (Figure 3G,
left). In sharp contrast, weights of different whiskers had oppo-
site signs during shape discrimination (Figure 3G, right): each
C1 contact indicated a greater likelihood of convex, whereas
each C3 contact indicated a greater likelihood of concave. These
results were not affected by early licking or trial balancing (Fig-
ures S3H and S3lI).

Thus, mice compare the prevalence of contacts across whis-
kers to discriminate an object’s curvature, whereas they sum up
contacts across whiskers to detect an object. Critically, this is
not because any given whisker can only reach one of the
shapes—all whiskers can touch both shapes (Figure 3H).
Instead, the whisking strategy employed for discrimination

(E) Accuracy of the decoder at identifying stimulus and choice versus the performance of each mouse.

(F) The decoder more accurately predicted shape identity for mice performing shape discrimination than detection. Unpaired t test.

(G) The weights assigned by the decoder to the whisks-with-contact feature, separately plotted by which whisker made contact. Weights were relatively
consistent over the trial time course (data not shown) and are averaged over time here for clarity. They are expressed as the change in log odds (logits) per

additional contact.

(H) The mean number of contacts per trial for each whisker during shape discrimination, separately by shape identity and position (cf. Figure 1B). Although each
whisker may contact one shape more frequently, no whisker touches a single shape exclusively.
Error bars represent SEM over mice. n = 10 shape discrimination mice and 4 shape detection mice. Behavioral decoding requires error trials, and one detection

mouse made too few errors to be included.
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biases contact prevalence across whiskers. To visualize this pro-
cess of spatial sampling, we registered all of our whisker video
into a common reference frame (Figure 4A). The C1 whisker
sampled the region in which contacts indicated convexity and
absence of contacts indicated concavity, and the reverse was
true for C3 (Figures 4B and 4C). The location that mice chose
to sample even in the absence of contacts was also informative
about their upcoming choice (Figure S4; Dominiak et al., 2019).

We confirmed these results with other analyses that did not
rely on behavioral decoding. Mouse performance on shape
discrimination significantly increased with the number of whis-
kers making contact (Figure 4D), indicating that they benefited
from combining information across whiskers. Mice better identi-
fied convex shapes when they made C1 contacts and concave
shapes when they made C3 contacts (Figure 4E). When trimmed
to a single whisker, mice were still able to discriminate shape
above chance, but they showed a specific pattern of errors, indi-
cating that this ability was no longer invariant to stimulus position
(Figures 4F-4H). Similarly, although humans discriminate shapes
better when they scan with multiple fingers, they can still perform
above chance when forced to use an inferior strategy relyingon a
single finger (Davidson, 1972).

In summary, behavioral decoding produced a computational
model of the distinct sensorimotor strategies that mice adopted
in two different tasks. Mice summed up contacts across whis-
kers to detect shapes, whereas they compared contacts across
whiskers to discriminate shape identity. Behavioral decoding
could be used to dissect other large behavioral tracking datasets
to reveal the strategies used in other tasks and by other model
organisms.

Barrel cortex neurons encode movement, contacts, and
choice

We next asked how neural activity in barrel cortex mediated
these strategies by recording populations of individual neurons
across the cortical layers using an extracellular electrode array
(Figures 5A-5D; Video S2). We recorded 675 neurons from 7
shape discrimination mice and 301 neurons from 4 shape detec-
tion mice. Putative inhibitory interneurons were identified from
their narrow waveform width (Figure 5B). Neurons responded
to individual contact events but not licks (Figures 5E and S5A).

Because the whisk cycle correlates contacts across whiskers
and over time (Figures 2C and 2D), we analyzed responses on
individual whisk cycles. Neurons exhibited rapid transient re-
sponses to whisks with contact, but not to whisks without con-
tact (Figures 5F and S5B). Contact responses were stronger in
the superficial layers and in inhibitory neurons, likely reflecting
greater thalamocortical input to this cell type (Bruno and Simons,
2002; Cruikshank et al., 2007). Firing rate tracked the amplitude
of each individual whisk, especially in deep inhibitory neurons
(Figure 5G). Thus, neurons encoded whisking amplitude in a
graded fashion while also responding phasically to individual
contacts.

Beyond encoding these rapid sensorimotor variables, some
neurons encoded the mouse’s choice through slower changes
in firing rate over the trial (example: Figure 6A). We quantified
this effect by decoding stimulus and choice from the neural pop-
ulation, again using trial balancing (Figure 6B, left and middle). We
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also asked whether this information was local (i.e., contained inin-
dividual whisk cycles; Isett et al., 2018) or continuous (integrated
over the trial). We removed local information about contacts by
setting the spike count to zero on sampling whisks (those large
enough to reach the shapes at their closest position). This largely
abolished the encoding of stimulus, but not choice (Figure 6B,
right), demonstrating that barrel cortex transiently carries stimulus
information during sampling whisks but encodes choice
more persistently. Choice encoding was not explained by early
licking (Figure S6). In sum, on fine timescales, barrel cortex neu-
rons respond to whisker movement and contacts (but not licks),
and on longer timescales, they encode cognitive variables like
choice.

Distributed coding of sensorimotor variables

We next used regression to assess how neurons encoded
whisker motion, contacts, and task-related features like choice.
Because these features are correlated with each other, deter-
mining their relative importance is analytically challenging. We
assessed the contribution of all features together using multivar-
iate regression (a generalized linear model [GLM]; Figures 7A and
S7A), similar to receptive field mapping by reverse correlation
with natural stimuli (Park et al., 2014; Sharpee, 2013). Rather
than binning the spikes into arbitrary time bins or averaging
over trials, we sought to make predictions on individual whisk cy-
cles. Our observation that the whisk cycle packetized contacts
(Figure 2C) and spikes (Figure 5F) supported this level of
granularity.

To quantify the importance of each feature for predicting neu-
ral responses, we fit different GLMs on individual families of fea-
tures—contact (whisks with contact as above), whisking (@mpli-
tude and set point), and task-related (choice and outcome of the
current and previous trial) —and compared their goodness of fit
on held-out data. Each family alone had explanatory power,
and a combined “task + whisking + contacts” model surpassed
any individual family (Figures 7B and S7B). Dropping any family
decreased the goodness of fit, indicating that each contained
unique information (Figure 7C). Goodness of fit varied widely
across the population but was generally higher in inhibitory and
deep-layer neurons (Figures 7D and S7C).

In both tasks, we found that >99% of neurons were signifi-
cantly modulated by at least one of the variables we measured
(task, whisking, or contacts; Figure 7E). A plurality of neurons
were significantly modulated by all three variables. Thus, across
these behaviors, individual neurons in barrel cortex are typically
tuned for a combination of sensorimotor and task-related fea-
tures and only rarely for a single feature (Rigotti et al., 2013).

Finally, we asked how neurons encoded task-related variables
over the course of the trial. Early in the trial, neurons encoded the
previous outcome, whereas later in the trial, they encoded the
choice on that trial (Figure 7F). This is related to our observation
that choice could be decoded from neural activity (Figure 6B),
but that analysis did not distinguish between coding of choice
per se versus coding of sensorimotor signals that might correlate
with choice. The GLM analysis disentangles these variables and
demonstrates that, in addition to coding for sensorimotor vari-
ables, barrel cortex neurons also persistently encode choice
and outcome.
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Figure 4. Mice compare information across whiskers to discriminate shape

(A) Videos for all sessions were registered into a common reference frame defined by the shape positions. Top: example frame. Bottom: location of the concave
(blue) and convex (red) shapes in the common reference frame. Whisker pad marked with an X.

(B) Location of the peak of each whisk with contact (top) or without contact (bottom) in the common reference frame. Each whisker samples distinct regions of
shape space (ovals).

(C) Same data from panel B, now colored by the evidence each whisk contains about shape, using the decoder weights. Top: C1 mainly contacts convex shapes
(arrow 1), whereas C3 mainly contacts concave shapes (arrow 2). Bottom: on whisks without contact, the mapping between whisker and shape identity is
reversed.

(D) Performance on shape discrimination increases with the number of whiskers making contact (p < 0.001). One-way ANOVA. In (D) and (E), error bars show SEM
over mice.

(E) Performance on concave shapes increases with C3 contacts (left, p < 0.001) and on convex shapes with C1 contacts (right, p < 0.01). One-way ANOVA.

(legend continued on next page)
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Cell-type-specific encoding of movement and contact
The tuning of individual neurons varied with cell type (excitatory
or inhibitory) and laminar location (superficial or deep). The most
prominent effect was that whisking strongly drove deep-layer
inhibitory neurons (Figures 8A-8C). Indeed, almost all (94/
107 = 87.9%) inhibitory neurons in the deep layers were signifi-
cantly excited by whisking (mean increase in firing rate: 23.9%
per 10° of whisking amplitude). Excitatory neurons and superfi-
cial inhibitory neurons also encoded whisking but were as likely
to be suppressed as excited.

In contrast, whisker contacts on the shapes more strongly
modulated superficial cells, including both layer 2/3 (L2/3) and
L4, than those in deep layers (Figures 8D-8F). Suppression by
contact was less frequent than excitation in all cell types. Thus,
movement and contact have their greatest impact on the deeper
and superficial layers, respectively.

Contact responses are dominated by whisker identity,
not finer sensorimotor parameters

We next asked which features of these contacts drove neurons.
Barrel cortex is arranged topographically, with neurons in each
cortical column typically responding to the corresponding
whisker (somatotopy). However, barrel cortex neurons are also
tuned for multiple whiskers, contact force, cross-whisker timing,
and global coherence, among other features (Brumberg et al.,
1996; Drew and Feldman, 2007; Ego-Stengel et al., 2005),
though this is less well understood in the behaving animal.

To assess the importance of each contact-related feature in
our dataset, we compared the goodness of fit of GLMs that
had access to each. Whisker identity (which whisker made con-
tact) was the most critical element determining neural firing (Fig-
ures 8G and S8A). The exact kinematics of contacts were less
important.

We considered the possibility that some alternative kinematic
feature that was not measured (e.g., due to limitations in frame
rate) might be driving neural activity. We therefore fit a model
that also included the identity of the shape (concave or convex)
on which each contact was made. If any unmeasured kinematic
feature drove neural activity differently depending on the stim-
ulus, then this feature should capture some variability. However,
it only slightly improved the model (Figure 8G, bottom bar). This
rules out, at least in a GLM framework, a latent variable that dif-
ferentiates the stimuli and strongly drives neural activity. Thus,
contact responses in barrel cortex are mainly driven by the iden-
tity of the contacting whisker, which alone almost fully accounts
for the neural encoding of shape.

Task-specific representation of contacts

Because the behavioral meaning of contacts made by each
whisker differed between detection and discrimination (Figures
3 and 4), we asked whether neural tuning was also task specific
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using the weights that the GLM assigned to each whisker (Fig-
ures S8B and S8C). In shape detection mice, the population of
recorded neurons as a whole responded nearly equally to con-
tacts made by C1, C2, and C3 (Figure 8H, left). Individual neu-
rons could prefer any of the three whiskers, and in keeping
with the somatotopy of barrel cortex, superficial neurons tended
to prefer the whisker corresponding to their cortical column
(Figure S8D).

In marked contrast, we observed a widespread and powerful
bias in shape discrimination mice: at the population level, neu-
rons responded much more strongly to C1 contacts than to con-
tacts by C2 or C3 (Figure 8H, right). Neurons preferring C1 were
more prevalent in all cell types and in all recording locations,
including the C2 and C3 cortical columns (Figures S8E and
S8F; individual neurons in Figure 8l). This task-specific tuning
could not be explained by the shape stimuli, our analyses, or
the whisker trimming procedures, because all of these were
the same for both tasks. Contact force could not explain this ef-
fect (Figure S8G). Thus, whisker tuning was task specific and
overrode somatotopy.

Whisker-specific tuning explains the population choice
signal

The task-specific neural tuning we observed corresponds to
the different weights assigned to each whisker by the behav-
ioral decoders (compare Figure 3G, right and Figure 8H, right),
suggesting that neurons might be tuned to C1 in order to pro-
mote convex choices. This mirrors our behavioral observation
(Figure 1G) that mice seemed to rely on a “convexity detection”
strategy. In theory, the population could instead have been
tuned to C3 in order to promote concave choices, but we did
not observe this.

We asked whether neurons’ coding of choice could be ex-
plained by their whisker tuning. Specifically, we assessed the
tuning of two subpopulations of neurons preferring either
concave or convex choices (i.e., those assigned positive or
negative weights by the neural decoder in Figure 6B). Indeed,
the convex-preferring subpopulation strongly preferred C1 con-
tacts (Figure 8J, orange bars).

In summary, our neural encoder model (Figures 7 and 8) ex-
plains how the neural decoder (Figure 6) was able to predict stim-
ulus and choice; neurons were tuned for sensory input that the
mouse had learned to associate with convex shapes. These rep-
resentations were task specific (Figure 8H) and could not be ex-
plained solely by simple geometrical aspects of the stimuli or
whiskers. Indeed, the representations matched weights used
by the behavioral decoders to identify shapes. Our results link
the tuning of individual neurons for fine-scale sensorimotor
events to the more global and persistent representations of
shape and choice. This bridging of local features to global iden-
tity is the essential computation of shape recognition.

(F) After trimming to a single whisker (C2), performance on shape discrimination is significantly lower but still above chance (p < 0.001, Fisher’s exact test). For
individual mouse data in (F) and (G), error bars show 95% Clopper-Pearson confidence intervals.
(G) Trimming to a single whisker impairs performance on specific combinations of shape and position (marked with black arrows). Thus, mice can discriminate

shape with a single whisker, but not in a position-invariant way.

(H) With a single C2 whisker, mice can only sample the area indicated by the black oval, where close contacts indicate convex and far contacts concave. This
strategy will fail on the closest concave and furthest convex shapes, as shown in (G).
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Figure 5. Whisker motion and contacts drive barrel cortex neurons

(A) Schematic of the multi-electrode recording array overlaid on image of NeuN-labeled neurons spanning all cortical layers.

(B) The bimodal distribution of extracellular waveform half-widths (the time between peak negativity and return to baseline) permits classification into narrow-
spiking (putative inhibitory; blue) and broad-spiking (putative excitatory; red) cell types. Inset: normalized average waveforms from individual neurons.

(C) Relative fraction of excitatory (red) and inhibitory (blue) neurons recorded in each layer.

(D) Firing rates of individual neurons (meaned over the entire session) versus their depth in cortex. Inhibitory and deep-layer neurons typically exhibit higher firing
rates. Lines: smoothed with a Gaussian kernel.

(E) Top: spike rasters from an example layer 2/3 (L2/3) inhibitory neuron in the C3 cortical column aligned to licks or to contacts of individual whiskers. Bottom:
responses to those events averaged over all neurons recorded during shape discrimination. To compare across neurons with different baseline firing rates, we

defined the firing rate gain as the evoked response divided by each neuron’s mean firing rate over the session, so that 1.0 indicates no evoked response.
(F) Firing rate gain of each cell type locked to the whisk cycle (cf. Figure 2C). Absolute firing rates in Figure S5B.
(G) Firing rate gain of each cell type on individual whisk cycles versus the amplitude of that whisk cycle, excluding cycles with contact. Deep inhibitory neurons

(solid blue line) are modulated most strongly.

In (B)-(D), (F), and (G), n = 976 neurons from both tasks, pooled because the results were similar. In (E), n = 675 neurons recorded during shape discrimination only.

Error bars represent SEM over neurons.

DISCUSSION

In this study, we developed a novel head-fixed shape discrimina-
tion behavioral paradigm. Mice accomplished this task by
comparing contacts made across whiskers. Barrel cortex neu-
rons exhibited distributed coding of sensory, motor, and task-
related signals. Deep inhibitory neurons robustly encoded
motion signals, and all populations of neurons coded for con-
tacts with a bias toward the whisker (C1) that preferentially con-
tacted convex shapes. In shape detection mice, we observed
similar coding of exploratory motion signals and of choice and
outcome-related signals, but not the whisker-specific bias in
contact responses. Thus, neural tuning for motion and choice
is shared across tasks, whereas tuning for contacts is task
specific.
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Behavioral decoding reveals sensorimotor strategies
Understanding neural computations begins with defining the
subject’s strategy (Krakauer et al., 2017; Marr and Poggio,
1976). Our approach was to measure as many sensorimotor
parameters as was feasible and then to use behavioral decod-
ing to predict the stimulus and choice from these data. This al-
lowed us to identify informative variables and understand the
corresponding task-specific neural responses. Our approach
could readily be extended to other tasks, modalities, and model
organisms.

Some variables, such as contact count, were important for
both stimulus and choice. Others, such as contact angle, were
more important for predicting stimulus than choice, suggesting
that mice did not (or could not) effectively exploit it. This effect
is likely due to the incomplete information mice have about the
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Figure 6. Barrel cortex persistently encodes choice

(A) An example L5 excitatory neuron that encodes choice. Left: mean spike
rate over trials for convex (red) or concave (blue) choices, separately by correct
(solid) and incorrect (dashed). Right two panels: example spike rasters from
randomly chosen trials. This neuron’s firing rate is elevated for convex choices,
regardless of the identity of the shape. Error bars represent SEM over trials.
(B) Stimulus (green) or choice (pink) can be decoded from a pseudopopulation
(n = 450 neurons) aggregated across shape discrimination sessions (timescale
as in Figure 1H). Left: with a naive (unbalanced) approach, stimulus or choice
can be decoded with similar accuracy. Middle: equally balancing correct and
incorrect trials decouples stimulus and choice. Right: removing spike counts
from all sampling whisks (i.e., whisks sufficiently large to reach the shapes)
largely abolishes stimulus information while preserving choice information.
Dashed line, chance. Error bars represent 95% bootstrapped confidence in-
tervals.

instantaneous location of the whisker tips (Fee et al., 1997; Hill
et al., 2011; Moore et al., 2015; Severson et al., 2019).

In most tasks, stimulus and choice are correlated, especially
when the subject’s accuracy is high. We disentangled stimulus
and choice through trial balancing—overweighting incorrect tri-
als so that in aggregate they are weighted the same as correct
trials. Other approaches include separately fitting correct and
incorrect trials, comparing stimulus prediction with choice,
and so on (Campagner et al., 2019; Isett et al., 2018; Waiblinger
et al., 2018; Zuo and Diamond, 2019). A benefit of trial
balancing is that it jointly optimizes over correct and incorrect
trials.

Mice compare the number of contacts across whiskers
to discriminate shape

Shape discrimination fundamentally differs from pole localiza-
tion and texture discrimination because it explicitly requires
integration over different regions of space. Thus, comparing
input across whiskers was a reasonable strategy for mice to
pursue. Although rodents can perform other tasks better with
multiple whiskers (Carvell and Simons, 1995; Celikel and Sak-
mann, 2007; Knutsen et al., 2006; O’Connor et al., 2010a),
those cases likely reflect statistical pooling of similar informa-
tion from multiple sensors, as in our shape detection control
task (Krupa et al., 2001). Our results go beyond statistical pool-

¢? CellPress

ing. We are unaware of any published examples of mice as-
signing opposite behavioral meaning to input from different
nearby whiskers. This strategy mirrors the way primates
compare across fingers when grasping objects (Davidson,
1972; Thakur et al., 2008).

For shape discrimination, the identity of the contacting whis-
kers was the most important feature determining both behavioral
choice and neural responses. Cross-whisker contact timing has
been hypothesized to be an important parameter for shape
discrimination (Benison et al., 2006; cf. primate fingertips in Jo-
hansson and Flanagan, 2009) but was uninformative in our
task. This may be because whisker flexibility during movement
adds too much variability to this parameter. It had also been pro-
posed that the pattern of forces over the whiskers as they
“grasp” an object could be informative about shape (Bush
etal., 2016; Hobbs et al., 2016a), but we observed little contribu-
tion of whisker bending. In sum, whisker identity during contact
was the critical parameter for shape discrimination (Hobbs
et al., 2016b).

Adaptive motor exploration strategies simplify the
sensory readout

Reflecting this difference in strategy, mice interacted with
shapes in a fundamentally different way than in many other
tasks. In our task, mice lightly tapped the stimuli with the tips
of multiple whiskers simultaneously. This “minimal impinge-
ment” approach (Mitchinson et al., 2007) is likely the natural
mode of the whisker system (Grant et al., 2009; Ritt et al.,
2008). Multiple light touches could also engage adaptation cir-
cuits within the somatosensory pathway, enhancing their ability
to perform fine discrimination (Wang et al., 2010). In contrast,
mice locate and detect poles by contacting them with high
enough force to cause substantial whisker bending (Hong
et al., 2018; Pammer et al., 2013). This likely drives a strong neu-
ral response, an adaptive strategy for detection (Campagner
et al., 2016; O’Connor et al., 2010b; Ranganathan et al., 2018),
though perhaps more useful for nearby poles than for surfaces.

A common thread running through the literature of whisking
behavior is that animals learn a motor exploration strategy opti-
mized for the task at hand, including targeting whisking to a nar-
row region of space to locate objects (Cheung et al., 2019;
O’Connor et al., 2010a), rubbing whiskers along surfaces to
generate the high-acceleration events that correlate with texture
(Isett et al., 2018; Jadhav et al., 2009; Schwarz, 2016), or target-
ing contacts to specific whiskers in the present work. Thus, an-
imals pursue a motor strategy that simplifies the sensory readout
(e.g., to a threshold on spike count; O’Connor et al., 2013). Per-
formance is consequently limited by errors in motor targeting
rather than sensation (Cheung et al., 2019).

Similarly, humans learn adaptive motor strategies for directing
gaze and grasp (Gamzu and Ahissar, 2001; Yang et al., 2016).
The challenge of these tasks may lie in learning a skilled action
that enhances active perception rather than in drawing fine cate-
gory boundaries through sensory representations as in classical
perceptual learning. Behavior may thus be considered a motor-
sensory-motor sequence combining purposive exploration and
sensory processing to guide further actions (Ahissar and
Assa, 2016).
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Figure 7. Distributed coding in barrel cortex

(A) A GLM used features about contacts (whisker identity), whisking (amplitude and set point), and task (choice and reward history) to predict neural responses on
individual whisk cycles. Bottom left: predicted firing rate (pink) for an example neuron (black raster: recorded spikes) given the position of each whisker (colored
traces) and contacts (colored bars). This L6 neuron mainly responded to whisking, regardless of contacts. Bottom right: this L2/3 neuron mainly responded to
contacts regardless of whisking. Models were always evaluated on held-out trials.

(B) The goodness of fit (ability to predict neural responses) of the GLM using features from the task, whisking, or contact families. Each feature family significantly
improves the log-likelihood over a null model that used only information about baseline firing rate (p < 0.001, Wilcoxon test). The full model (“task + whisking +
contacts”) outperforms any individual feature family. Similar results are obtained when testing on the entire dataset (left) or only on whisks with contact (right).
(C) The effect on goodness of fit of leaving out one family at a time from the full task + whisking + contacts model.

(D) Goodness of fit versus cortical depth (left) and grouped by cell type (right) in the task + whisking + contacts model.

(E) Top: proportion of neurons that significantly (p < 0.05, permutation test) encoded each variable during each task. Bottom: Venn diagram showing percentage
of neurons significantly encoding features from task (red), whisking (green), and contact (blue) families during each task. Less than 1% of neurons did not
significantly encode any of the features.

(F) Proportion of neurons significantly modulated by the outcome or choice of the previous (dashed) or current (solid) trial. Timescale as in Figure 1H.

n = 301 neurons during shape detection and 675 neurons during shape discrimination, pooled in (B)—~(D) and (F) because the results were similar. Error bars
represent 95% confidence intervals, obtained by bootstrapping (B-D) or Clopper-Pearson binomial (F).

Distributed coding of sensorimotor signals in barrel
cortex

provide context for interpreting sensory input. In barrel
cortex, recent studies have variously found that neurons

In natural behavior, active sensing is the norm; animals
explore by moving their heads, eyes, and ears and by
sniffing, chewing, or grasping objects. Motion signals
should perhaps be expected in sensory areas, because they

12 Neuron 709, 1-18, July 21, 2021

respond to whisking onset (Munoz et al., 2017; Yu et al,,
2016), whisking phase modulates contact responses (Curtis
and Kleinfeld, 2009; Hires et al., 2015), or whisking simply
has mixed effects on neuronal firing (Ayaz et al., 2019;
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Figure 8. Task-specific contact responses are formatted for shape discrimination

(A) Proportion of neurons of each cell type whose activity is significantly (p < 0.05, permutation test) increased, decreased, or unmodulated by whisking amplitude.
In (A)-(C), n = 301 neurons during shape detection and n = 675 neurons during shape discrimination, pooled because the results were similar.

(B) Firing rate gain per each additional 10 degrees of whisking amplitude, grouped by cell type.

(C) Data in (B) for individual neurons versus cortical depth. Lines, smoothed with a Gaussian kernel.

(D-F) Like (A)—(C), but for whisker contacts (averaged across C1, C2, and C3 whiskers). In (D)-(H), n = 235 neurons during shape detection and n = 675 neurons
during shape discrimination. We excluded neurons for which too few whisker contacts occurred to estimate a response.

(G) Goodness of fit of models incorporating contact-related features, compared to the task + whisking + contacts model (top row, “baseline”). Removing whisker
identity (second row) markedly decreases the quality of the fit. Adding contact-related parameters only slightly improves fit, even when including stimulus identity
(bottom row).

(H) Response to contacts made by each whisker. Left: during shape detection, the population responds nearly equally to each whisker (p > 0.05; one-way
ANOVA). Right: during shape discrimination, the population strongly prefers C1 contacts (p < 0.001).

(I) Contact response of each individual neuron during shape discrimination (n = 675), split by location within barrel cortex. Neurons preferring C1 contacts (upper
right corner of each heatmap) are more common in each location.

(J) Similar to the right of (H) but separately for neurons that preferred convex (n = 110; orange) or concave choices (n = 76; purple), as assessed by the decoder
analysis in Figure 6B. Neurons that prefer convex choices respond more strongly to C1 contacts than to C3 contacts (p < 0.001; t test), similar to the weights used
by the optimized behavioral decoder to identify convex shapes in the right panel of Figure 3G.

Logarithmic y axis (B, C, E, F, H, and J). Error bars represent 95% bootstrapped confidence intervals (B, E, and G) or SEM over neurons (H and J).

O’Connor et al., 2010b; Peron et al., 2015). Technical limita- We measured all of these variables with high-speed video and
tions of whisker tracking perhaps explain these disparate re- considered them together using multivariate regression. This
sults (Krupa et al., 2004). approach was critical to understanding the structure of neural
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responses, because it allowed us to compare the relative impor-
tance of each sensorimotor variable even when they were corre-
lated with each other. We have recently observed that barrel cor-
tex encodes nonlinear combinations of motion and contact
signals, even though such combinations are not necessary for
this task (Nogueira et al., 2021).

Motion encoding was widespread but had a strong cell-type-
specific bias; inhibitory neurons in the deep layers were robustly
and consistently excited by whisking, consistent with previous
reports (Munoz etal., 2017; Yu et al., 2019). These inhibitory neu-
rons receive direct input from primary motor cortex (Kinnischtzke
et al., 2014) and can potently suppress the entire cortical column
(Bortone et al., 2014; Frandolig et al., 2019). Inhibitory coding of
motion could allow the brain to predict and account for the sen-
sory consequences of movement (Yu et al., 2016), as in the audi-
tory cortex (Schneider et al., 2018).

The superficial and deep layers of cortex can encode sensory
stimuli independently (Constantinople and Bruno, 2013), but
they can also strongly interact (Pluta et al., 2019). We observed
stronger touch responses in the superficial layers and stronger
whisking responses in the deep layers, potentially useful for
simulating the effects of motor exploration (Brecht, 2017).
More generally, whisker motion signals may be analogous to
the preparatory saccade signals identified in visual cortex. Like
whisking, saccades are motor actions directed toward collecting
information, and the cortex predicts the resulting change in sen-
sory input (Steinmetz and Moore, 2010).

It is an open question why sensory cortex is required for some
perceptual tasks and not others. We recently found that barrel
cortex was dispensable for detecting textured surfaces but
essential for discriminating them (Park et al., 2020). Here, we
also find barrel cortex to be essential for discriminating shape.
Barrel cortex may thus be generally necessary for discriminating
objects but dispensable for detecting them.

Motor strategies and neural representations are
adapted to the task

Atfirst glance, the whisker system may appear to be a labeled-line
system due to its somatotopic organization in the brainstem, thal-
amus, and cortex. Indeed, neurons in thalamorecipient L4 typically
respond best to stimulation of an anatomically corresponding
whisker. However, outside of L4, the preference for any particular
whisker is much weaker (Brecht et al., 2003; Clancy et al., 2015;
Jacob et al., 2008; de Kock et al., 2007; Peron et al., 2015; Pluta
et al., 2017; Ramirez et al., 2014), and attending to whisker input
actually decreases somatotopy (Wang et al., 2019).

Rather than maintaining a labeled-line code, the barrel cortex
may encode multi-whisker sequences, a map of scanned space,
or entire tactile scenes (Bale and Maravall, 2018; Estebanez
et al., 2018; Laboy-Juérez et al., 2019; Pluta et al., 2017; Vi-
larchao et al., 2018). Similarly, auditory cortex is now thought
to encode high-level sound features rather than strict tonotopy
(Bandyopadhyay et al., 2010; Carcea et al., 2017; Rothschild
et al., 2010). Ethologically, integrating information across sen-
sors would seem more useful than maintaining in higher-level
areas a strict segregation based on peripheral organization.

We suggest that sensory cortex learns to accentuate the
sensory features that are most relevant for the animal’s goals
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(Ramalingam et al., 2013). An important question for future
work will be whether these task-specific representations arise
from local plasticity induced by training or from long-range in-
puts signaling the context of the task (Rodgers and DeWeese,
2014). In future work, we plan to investigate the timescale over
which these representations emerge (Driscoll et al., 2017).

Neurons in visual cortex and auditory cortex can increase their
responses to, or slightly shift their tuning toward, rewarded stim-
uli (David et al., 2012; Fritz et al., 2003; Khan et al., 2018; Poort
et al., 2015). Our results are fundamentally different. First, no
whisker was “rewarded” or “punished” in our task, and indeed,
all whiskers could touch both objects. Second, the neurons did
not subtly shift their tuning but rather changed the whisker they
most responded to, akin to a V1 receptive field center moving
to a new retinal location. Indeed, the magnitude of the effect
we observe is more similar to the massive reconfiguration that
is driven by extreme manipulations such as stitching an eye
shut or removing a finger (Horton and Hocking, 1997; Merzenich
et al., 1984) but in our case arises solely through behavioral
training.

Our work provides a new conceptual way to think about task-
specific neural representations. We decompose the response to
the shape into the responses to the individual sensorimotor
events that indicate curvature. It was not a priori obvious that
any particular whisker would be associated with either shape,
and so our approach was to first identify the behavioral meaning
of each whisker’s contacts, which then explained the corre-
sponding neural response. A similar retuning could give rise to
the enhanced responses to rewarded stimuli observed in
other tasks.

Although the details of these effects are specific to this task
and stimulus geometry, we suggest that analogous computa-
tions in other brain areas and species could also implement ob-
ject recognition by comparing input across different sensors in
the context of exploratory motion. Recent results have demon-
strated an unexpectedly widespread coding of motion across
the brain (Musall et al., 2019; Stringer et al., 2019; reviewed in
Parker et al., 2020). These motion signals could be critical for in-
terpreting sensory input in the context of behavioral state. The
common structure of cortex across regions of disparate func-
tionality (Douglas and Martin, 2004) may be a signature of this
common computational goal.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER
Antibodies

Anti-NeuN Antibody (rabbit) Sigma-Aldrich Cat# ABN78
Chemicals, peptides, and recombinant proteins

Dil (1,1’-Dioctadecyl-3,3,3',3'- Sigma-Aldrich CAS# 41085-99-8
tetramethylindocarbocyanine perchlorate)

Streptavidin, Alexa 647 conjugate ThermoFisher Cat# S21374
Deposited data

Raw and analyzed data This paper https://doi.org/10.5281/zenodo.4743837

Experimental models: organisms/strains

Mouse, C57BL/6J, bred at Columbia
University from Jackson lines

The Jackson Laboratory

Stock# 000664

Software and algorithms

ImageJ
Imaged plugin: TrakEM2
MATLAB

MATLAB toolbox: Image Acquisition
Toolbox

Python

Python package: ipython
Python package: pandas
Python package: numpy
Python package: scipy
Python package: scikit-learn
Python package: scikit-image
Python package: statsmodels
Python package: pygimnet
Python package: matplotlib
Python package: pose-tensorflow (forked)

Schneider et al., 2012
Cardona et al., 2012
MathWorks

MathWorks

https://www.python.org/
Perez and Granger, 2007
McKinney, 2010

Van Der Walt et al., 2011
Virtanen et al., 2020
Pedregosa et al., 2011
van Der Walt et al., 2014
=Seabold and Perktold, 2010
Jas et al., 2020

Hunter, 2007
Insafutdinov et al., 2016

https://imagej.nih.gov/ij/
https://imagej.net/TrakEM2

https://www.mathworks.com/products/
matlab.html

https://www.mathworks.com/products/
image-acquisition.html
https://www.python.org/
http://ipython.org/
https://pandas.pydata.org/
https://numpy.org/
https://www.scipy.org/
https://scikit-learn.org
https://scikit-image.org/
https://www.statsmodels.org
https://github.com/gim-tools/pyglmnet
https://matplotlib.org/
https://github.com/cxrodgers/PoseTF

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Randy M.

Bruno (randybruno@columbia.edu).

Materials availability

This study did not generate any unique reagents.

Data and code availability

Original data have been deposited to Zenodo: https://doi.org/10.5281/zenodo.4743837. The analysis code used here is available at
https://github.com/cxrodgers/Rodgers2021 (Rodgers, 2021).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

We report data here from 26 adult mice (14 females and 12 males) of the C57BL6/J strain bred in the Columbia University animal
facilities. The mice were used for the following experiments.
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10 mice (“shape discrimination group”; 6 females and 4 males) were used for shape discrimination experiments throughout the
manuscript.

5 mice (“shape detection group”; 4 females and 1 male) were used for shape detection experiments throughout the manuscript.
8 mice (“lesion group”; 3 females and 5 males) were used for the lesion experiments in Figure 1C-D.

1 female (from a different anatomical study) was used for the image in Figure 5A.

1 male was used only for the single-whisker trim experiments (Figures 4F and 4G). 1 other male from the “shape discrimination
group” was also used for those experiments.

1 male was used only for the discrimination with flatter shapes (Figure S1A). 1 male and 2 females from the “shape discrimi-
nation group” were also used for those experiments.

Mice in our colony are continuously backcrossed to C57BL/6J wild-type mice from Jackson Laboratories. Some mice expressed
Cre, CreER, Halorhodopsin, Channelrhodopsin2, and/or EGFP for ongoing and unpublished studies. Some received tamoxifen, but
this was done well before any behavioral training or surgical manipulations. Mice received no probes, substances, viruses, or any
other surgical interventions relating to optogenetics or other genetic manipulations. We noted no difference in the results regardless
of the genes expressed and therefore pooled the data here.

Mice were group-housed (unless they did not tolerate this) and lived in a pathogen-free barrier facility. All experiments were con-
ducted under the supervision and approval of the Columbia University Institutional Animal Care and Use Committee.

METHOD DETAILS

Surgeries

Mice were implanted with a custom-designed stainless steel headplate (manufactured by Wilke Enginuity) between postnatal day 90
and 180. They received carprofen and buprenorphine and were anesthetized with isoflurane throughout the stereotaxic procedure.
Using aseptic technique, we removed the scalp and fascia covering the dorsal surface of the skull. We then positioned the headplate
over the skull and affixed it with Metabond (Parkell).

After behavioral training (see below), some mice underwent another procedure to permit electrophysiological recording. First, we
used a dental drill to thin the cement and skull over barrel cortex, rendering it optically transparent, and coated it with cyanoacrylate
glue (Vetbond). We used intrinsic optical signal imaging (described below) to locate the cortical columns of the barrel field corre-
sponding to the whiskers on the face. We then used a scalpel (Fine Science) to cut a small craniotomy directly over the columns
of interest. Between recording sessions, the craniotomy was sealed with silicone gel (Dow DOWSIL 3-4680, Ellsworth Adhesives)
and/or silicone sealant (Kwik-Cast, World Precision Instruments).

Some mice (n = 8) were lesioned to test the necessity of barrel cortex in this task (Figures 1C and 1D). After these mice completed
behavioral training, we used intrinsic signal optical imaging to localize barrel cortex in the left and/or right hemispheres. Using aseptic
technique, we cut a craniotomy over barrel cortex on one side and aspirated all layers of cortex with a sterile blunt-tipped needle
connected to a vacuum line. These lesions had a diameter of 2-3 mm and were centered on the C2 column. Of these eight mice,
six were lesioned on the left side (contralateral to the stimulus), and two were lesioned on the right side (ipsilateral to the stimulus).
The two mice lesioned on the ipsilateral side were tested for any impairment, then lesioned again on the contralateral side, and then
tested again. Because the contralateral lesions produced similar results regardless of whether the ipsilateral side had already been
lesioned, the results for all contralateral lesions are pooled. Some of these mice were performing simpler versions of the shape
discrimination task (e.g., before trimming to one row, or only for a subset of the possible shape positions).

Intrinsic signal optical imaging

Individual barrel-related cortical columns were located with intrinsic imaging. While the mice were anesthetized with isoflurane, in-
dividual whiskers were deflected one at a time by a piezoelectric stimulator (8 pulses in the rostral direction at 5 Hz, with ~30 s be-
tween trains). We used custom software written in LabView (National Instruments) to acquire images of the cortical surface through
the transparent thinned skull under a red light source with a Rolera CCD camera (QImaging). Videos were averaged over 20-60 trains
of pulses. We repeated this procedure for the C1, C2, and C3 whiskers to locate the region of maximal initial reflectance change cor-
responding to each.

Behavioral apparatus
The behavioral apparatus was contained within a black box (Foremost) with a light-blocking door. It was built with posts (Thorlabs)
and custom-designed laser-cut plastic pieces on an aluminum bread board (Edmund Optics, Thorlabs, or Newport). A stepper motor
(Pololu 1204) rotated a custom-designed curved shape 3D-printed with ABS plastic (Shapeways) into position, and a linear actuator
(Actuonix L12-30-50-6-R) moved it within reach of the mouse’s whiskers. Rewards (~5 pL of water, chosen based on the mouse’s
weight and how many trials it typically completed) were delivered by opening a solenoid valve (The Lee Co. LFAA1209512H) that
allowed water to flow to the mouse from a reservoir to a thin stainless steel tube (McMaster).

An Arduino Uno, in communication with a desktop computer over a USB cable, controlled the motors. It also monitored licking by
sampling beam breaks of the mouse’s tongue through infrared proximity detectors (QRD1114, Sparkfun) or capacitive touch sensors
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(MPR121, Sparkfun) in front of and slightly to the left or right of the mouse’s mouth, inspired by a published two-choice design (Guo
et al., 2014). Between trials only, the Arduino activated a white “house light” (LE LED; Amazon BOOYMNS4YA) that prevented mice
from fully dark-adapting, preventing the use of visual cues. A computer fan (Cooler Master; Amazon BO05C31GIA) continuously blew
air slowly over the shape such that the mouse’s nose was upwind from the shape, preventing the use of olfactory cues. We never
observed mice exploiting auditory or vibrational cues from the motors and thus no masking noises were necessary.

At afine timescale the trial structure was controlled by the Arduino using a custom-written sketch. At the level of individual trials, the
desktop PC chose the stimulus and correct response and logged all events read from the Arduino to disk using custom Python code.
The training parameters for each mouse were stored in a custom-written django database and updated manually or semi-manually
by the experimenters depending on each mouse’s progress.

Two-alternative task design

In this two-alternative design, the mouse can lick left, lick right, or do nothing. If 45 s elapsed without any lick, the trial was marked as
“spoiled” and discarded from analysis. Such trials typically only occurred at the end of the session when the mouse was satiated.
Thus, all included trials are either correct (licked the correct direction) or incorrect (licked the incorrect direction). There is no equiv-
alent to the “false positive” or “miss” outcome of go/nogo tasks.

On some trials the mouse made no contacts. We included these trials in all analyses. On the detection task, the mouse could not
possibly make any contacts on the “stimulus-absent” trial type, and it would not have made sense to exclude those trials. For parity,
we included these trials in our analysis of the discrimination task. Choices on these trials were scored exactly the same—correct or
incorrect—as on trials with contact.

Behavioral training

Throughout, the mice were denied access to water in the home cage and learned to receive their water during behavioral training. We
closely monitored their water intake, weight, and general health to ensure they did not become dehydrated. Ad libitum water was
provided if necessary to ensure health.

Each mouse in our study learned either shape detection or shape discrimination throughout its training, rather than progressing
from one task to the other. Neither task was used as an initial shaping stage for the other. The number of training sessions did
not significantly differ between the two tasks: detection animals received 94.8 sessions on average (individual mice: 89, 93, 147,
121, 24) and discrimination animals received 118.0 sessions on average (individual mice: 107, 118, 93, 120, 157, 133, 106, 110).

Mice were trained to perform either the shape discrimination or detection tasks using a process of gradual behavioral shaping
described below.

1. “Lick training.” Mice initially learned to lick to receive water. They were advanced through each step of this stage only once
they learned to receive sufficient daily water from the apparatus. First, they were placed in the apparatus without head-fixing
and allowed to drink freely from the water pipes, which rewarded every lick. Next, we head-fixed the mice directly in front of a
single lick pipe and rewarded every lick. Finally, mice were presented with two lick pipes (left and right) and learned to lick alter-
nately from each of them, first in blocks of ten licks and gradually decreasing to a single lick on each side. This stage required
12.5 sessions on average.

2. “Forced alternation.” We introduced the complete trial structure for the first time, presenting shapes and rewarding the mouse
only for correct responses and punishing it with a timeout for incorrect responses. During this stage the shape on each trial was
not random; instead, mice were repeatedly presented with the same shape trial after trial until it gave the correct response.
After a correct response, the other stimulus was presented. Thus, mice could perform at 100% by alternating responses
from trial to trial. The timeout was initially 2 s and then increased to 5 s and finally 9 s as the mice became accustomed to
it. This stage required 11.3 sessions on average.

3. “Stimulus randomization with bias correction.” During this stage, stimulus identity was randomized on each trial and only pre-
sented at the closest position. Each session began with 45 trials of “forced alternation” to ensure that mice were able to lick
both directions. After that, trials were generally random. The software continuously monitored their performance for biases;
when a strong bias was detected, it stopped presenting trials randomly and began presenting trials designed to counteract
the bias. For instance, if mice responded on the left > 20% more than on the right, the software would deliver only right trials.
Alternatively, if the mice showed a significant perseverative bias (ANOVA “choice ~ stimulus + side + previous_choice,” p <
0.05 on previous_choice), the software would deliver “forced alternation” trials. Critically, we only ever analyzed truly random
trials from the session. Non-random trials were used only for behavioral shaping and were discarded from behavioral and neu-
ral analyses.

4. “Range of positions.” We now presented shapes at the first 2 positions (close and medium) and then all 3 positions (close,
medium, and far). Position was randomized across trials. The same automatic training and bias-prevention procedures as
before were used.

5. “Flatter shapes.” Some mice were now presented with flatter shapes as well as the shapes of the original curvature. Other mice
skipped this stage and were never presented with flatter shapes.

Neuron 709, 1-18.e1-e10, July 21, 2021 e3




Please cite this article in press as: Rodgers et al., Sensorimotor strategies and neuronal representations for shape discrimination, Neuron (2021),
https://doi.org/10.1016/j.neuron.2021.05.019

¢ CellP’ress Neuron

6. “Whisker trimming.” We gradually trimmed whiskers off the right side of the face: first we trimmed the A and E rows, then the B
row, then the D row. After any trimming, we allowed mice to recover to high performance before trimming additional rows. We
retrimmed previously trimmed whiskers as necessary to ensure they could not reach the shapes. Stages 3-6 required a total of
109.1 sessions on average.

Sometimes it was necessary to return mice to an earlier stage of training temporarily to facilitate learning (e.g., reducing the number
of positions at which the shapes were presented or returning to “forced alternation” trials only). Mice that successfully progressed
through all stages of the training procedure —those who could identify both shapes at all three positions with only the C-row of whis-
kers—were deemed fully trained. We only took high-speed video or neural recordings from fully trained mice.

Videography

For videography and electrophysiology, we moved the behavioral setup to a different light-blocking box mounted on a vibration-
isolating air table (TMC). We took video of fully trained mice using a high-speed camera (Photonfocus DR1-D1312IE-100-G2-8)
with a 0.15 ms exposure time to prevent motion blur. We used a lens with a 25 mm focal length (Fujinon HF25HA-1B) to prevent “fish-
eye” distortion. An aperture (F-stop) of approximately 6.0 optimized depth of field.

We designed and built a custom infrared backlight with a 7x8 grid of high-power surface-mount infrared (850 nm) LEDs (Digikey
VSMY2853G) soldered to a custom-designed PCB (manufactured by OSH Park) that allocated power to each LED through current-
limiting resistors. Diffusion paper mounted above the LEDs homogenized the light. The backlight was placed below the mouse and
pointed toward the camera so that the whiskers would show up as high-contrast black on a white background. The Arduino pulsed
this backlight off for 100 ms at the beginning of each trial, allowing us to synchronize the behavioral and video data. We used MAT-
LAB’s Image Acquisition Toolbox to store the video data to an SSD.

Electrophysiology

To record neural activity, we head-fixed the mouse in the behavioral arena as usual and removed the temporary sealant over the
craniotomy. We lowered an electrode array (Cambridge Neurotech H3) using a motorized micromanipulator (Scientifica PatchStar),
noting its depth at initial contact and at final position. We used an OpenEphys acquisition system (Siegle et al., 2017) with two digital
headstages (Intan C3314) to record 64 channels of neural data at 30 kHz at the widest possible bandwidth (1 Hz to 7.5 kHz). The
backlight sync pulse was acquired with an analog input to synchronize the neural, behavioral, and video data.

We used KiloSort (Pachitariu et al., 2016) to detect spikes and to assign them to putative single units. Single units had to pass both
subjective and objective quality checks. First, we used Phy (Rossant et al., 2016) to manually inspect every unit, merging units that
appeared to be from the same origin based on their amplitude over time and their auto- and cross-correlations. Units that did not
show a refractory period (i.e., a complete or partial dip in the auto-correlation within 3 ms) were deemed multi-unit and discarded.
Second, single units had to pass all of the following objective criteria: < 5% of the inter-spike intervals less than 3 ms; < 1.5%
change per minute in spike amplitude; < 20% of the recording at < 5% of the mean firing rate; < 15% of the spike amplitude dis-
tribution below the detection threshold; < 3% of the spike amplitudes below 10 uV; < 5% of the spikes overlapping with common-
mode artifacts.

We identified inhibitory neurons from their waveform half-width, i.e., the time between maximum negativity and return to baseline
on the channel where this waveform had highest power. Neurons with a half-width below 0.3 ms were deemed narrow-spiking and
putatively inhibitory. We measured the laminar location of each neuron (using the boundaries in Hooks et al., 2011) based on the
manipulator depth and the channel on which the waveform had greatest RMS power. Neurons in L1 or the cortical subplate were
discarded from this analysis because they were difficult to sort and showed variable properties across mice.

Histological reconstruction

We used a camera mounted on a surgical microscope to take a picture of the area around barrel cortex on every session from the time
of intrinsic signal imaging to the end of the experiment. We aligned all of these images with each other using the TrakEM2 plugin
(Cardona et al., 2012) in Fiji using surface vasculature. These images, referenced to individual barrel column locations determined
by intrinsic signal imaging, were used to guide the placement of the craniotomy and the electrode. We also photographed and aligned
images of the location of the implanted electrode array each day.

On the last day, we inserted a glass pipette coated with Dil (Sigma-Aldrich 468495) into the barrel field twice to leave two land-
marks, one anterior and one posterior, which were also photographed and aligned. At the conclusion of the experiment, we deeply
anesthetized the mice with pentobarbital, transcardially perfused them with 4% paraformaldehyde, and removed the brain for his-
tological processing.

The left hemisphere was sectioned tangentially to the barrel field using a Vibratome or freezing microtome to cut 50 or 100 um
sections. We stained for barrels with fluorescently conjugated streptavidin and imaged the sections on an epifluorescent microscope
to reveal the location of the barrels and the Dil landmarks. In this way we confirmed the exact location of each recording site with
respect to both the anatomical and functional barrel map.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Statistics
Throughout this manuscript, “*” indicates p < 0.05; “**” indicates p < 0.01; “***” indicates p < 0.001; and “n.s.” indicates “not
significant.”

To non-parametrically estimate the width of certain non-normal distributions, we used “bootstrapped confidence intervals.” This
means resampling the data with replacement 1000 times, taking the average of each resampled dataset, and then taking the interval
that spans the central 95% of this distribution of averages across resampled datasets.

Whisker video analysis

We used a lightly modified fork of the ‘pose-tensorflow‘ package (Insafutdinov et al., 2016; Pishchulin et al., 2015) to train and use a
deep convolutional neural network to identify and track whiskers in the video. This network is based on Resnet (He et al., 2015) and is
the same “feature detector” network incorporated into the first version of DeepLabCut (Mathis et al., 2018). We generated an initial
training set using the software ‘whisk‘ (Clack et al., 2012) to track individual whiskers and custom semi-automated code to clas-
sify them.

Eight equally spaced points along each tracked whisker were provided as the “joints” for the neural network to identify. We iter-
atively improved the neural network by evaluating it on new frames, choosing difficult frames from the result, semi-automatically
improving the labels, swapping in the results from ‘whisk’ as necessary, and then using this new training set to train a new version
of the network. This procedure is described in greater detail in the following section. Whiskers of below-threshold confidence or
below-threshold smoothness at any joint were discarded. We optimized these thresholds with a cross-validated grid search.

Sessions with inaccurate labeling were discarded: we required that every whisker be labeled in > 95% of the frames, that < 2% of
the contact events contained even a single frame with a missing label, and that the arcs traced out over the entire session by the
whisker contained no discontinuities or jumps suggestive of tracking errors. In the remaining well-traced sessions we interpolated
whiskers over any missing frames.

We identified the shape stimulus in each frame by thresholding and segmenting the frame and selecting the segment of the appro-
priate size and location. We identified contacts on the shape based on proximity (<10 pixels Cartesian distance) between the tip of
each whisker and the edge of the shape.

To estimate each whisker’s bending moment, we first fit a spline through its 8 identified joints and used the “measure” function of
‘whisk‘ to estimate curvature (k). k is the spatial rate of change of direction of the whisker at each point along its length, i.e., the recip-
rocal of the radius of curvature at that point, and is measured in units of m™. ‘whisk‘ averages « over the entire length of the traced
whisker and we followed this convention. For comparison with other studies, we note that 1 m™ is equal to 0.001 mm™ due to this
reciprocal. k = 0 for a straight line. In our study, k > 0 for a whisker pushing into a shape and k < 0 for the reverse curvature, typically
encountered while detaching from the shape.

To register all videos within a common reference frame for visualization (Figures 4A-4C), we extracted the location of the shape
edge at each location (close, medium, or far). Because we knew the exact distance between edges in reality, we used the vector
between adjacent locations in the image to measure the angle and scale for that particular video. After compensating for this angle
and scale, we used the peak in the 2D cross-correlation to find the offset that best aligned the videos with each other.

Quantification of whisker tracking accuracy

The simplest metric of tracking accuracy is the mean distance between the true label and the predicted label, which is 2.8 pixels in our
case. However, this is not a particularly informative metric, because the scientific utility of such an algorithm is limited by the prev-
alence of rare but large errors (e.g., misclassifying C1 as C2) which are too rare to affect such a metric. Indeed, there are multiple
additional kinds of errors to consider, such as false negatives and false positives, each of which has varying severity depending
on the analysis.

Moreover, performance on the average frame is not particularly important, because in the majority of frames in the dataset the
whiskers are at rest or near rest, and in these frames tracking is easy. Mice make contact with the shapes in diverse ways, and
although this constitutes a tiny minority of the frames in the dataset, these are precisely the frames where accurate tracking is
most difficult and most important. Finally, before accurate training is available, such frames with whisker contacts cannot be a priori
identified for use in a training set or quantifying accuracy. Thus, for all these reasons, quantifying the accuracy of tracking algorithms
in general remains challenging.

We began by defining four disjoint types of whisker tracking errors, all defined with respect to a training set curated by a hu-
man (C.R.).

e “poorly traced”: The extent of the whisker is not traced correctly. For example, the tip is missing, or the trace “jumps” from one
whisker to another. This was defined by calculating the Cartesian distance between ground truth and reported location of each
joint in the whisker, and identifying whiskers where this distance was greater than 20 pixels for the tip or for the mean over all
joints.
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® “incorrectly classified”: The wrong label is assigned. For example, whisker C2 is correctly traced, but is labeled as C1. If the
whisker is both poorly traced and incorrectly classified, it is labeled as incorrectly classified.

o “false positive”: A non-whisker object is reported as a whisker, or the same whisker object is labeled as two different whiskers.

o “false negative”: The whisker is present in the frame, but is not labeled. This is possible because our algorithm applies a con-
fidence and smoothness threshold to the output of the neural network, and outputs that do not pass these thresholds are simply
dropped.

We used an iterative procedure to train our algorithm, which was critical to its success.

1. First, we chose n = 7433 frames randomly from all sessions for which we had video, applied a previous generation whisker
tracking algorithm (whiski), and manually labeled the identity of each whisker after verifying that it was correctly traced. This
is “curated dataset 1,” representative of typical frames in the video.

2. We trained a neural network on that dataset, and used it to label all the frames in all the videos.

3. Of all these frames, we chose the frames on which the network was most likely to have made mistakes. We did this in several
parallel ways: identifying frames where the reported confidence values were intermediate (i.e., unsure of presence or absence
of the whisker), where the whiskers were near the extreme ends of their typical ranges, where any whisker was missing, and
when any whisker was missing during a contact event. These are “challenge frames,” because they were chosen for their dif-
ficulty.

4. We manually evaluated and corrected every challenge frame, using the previous generation whisker tracking algorithm as a
backup method when necessary.

5. We repeated steps 2-4 four times, to generate curated datasets 2-5.

Each type of error is nearly zero (< 0.2%) on dataset 1, which is the only dataset representative of typical frames (Figure S2D). The
most common type of error is the false negative, because we used a relatively strict confidence threshold. However, false negatives
are also the least problematic, because we interpolated missing whiskers over frames. Error rates increase with each subsequent set
of challenge frames, because as the algorithm improves, the frames on which it still makes errors become more and more difficult.

Decomposition of individual whisks

We defined the whisker’s angle as the Cartesian angle between base and tip. We decomposed the whisking signal into individual
whisk cycles using the Hill transform (Hill et al., 2011). Briefly, we bandpassed the data from 8 to 50 Hz and applied the Hilbert trans-
form to extract phase. Peaks and troughs were defined as frames where the phase crossed zero or w. We defined set point as the
angle of each whisker at the trough of each whisk cycle, and amplitude as the angular difference between peak and trough on each
cycle for the C2 whisker. The whisking amplitude was very consistent across whiskers, so we used the amplitude of the C2 whisker
only. In contrast the relative set point of each whisker could vary, so we used the set point of each as regressors in the neural GLM
analysis. To smooth these amplitude and set point parameters, we applied a triangular window that weighted one cycle before and
after half as much as the current cycle.

To identify sampling whisks (those large enough to reach the shapes if they had been at their closest position), we aligned the
frames to the response window and found the convex hull of the edges of the shape (i.e., the boundary of closest points to the whisker
pad) versus time from the response window. A “whisk without contact” was one on which the whiskers crossed this boundary. This
could happen if, for instance, the C3 whisker investigated the space where the medial portion of the closest concave shape would be,
but actually a convex shape was present or a concave shape at a further position (example: Figure 3A). A “whisk with contact” is any
whisk on which contact was made. Sampling whisks are defined as either “whisks with contact” or “whisks without contact.” All
other whisks (non-sampling whisks) are those which did not cross the convex hull described above and did not make contact
with the shapes. Not all trials contained contacts, but the vast majority of trials included at least one sampling whisk.

Lick rates (Figure 1l)

We recorded the times of all licks, even those before the response window that had no effect on the trial outcome. In rare cases our
detector recorded a single lick as many licks (the “switch bouncing” effect) and so for analysis we binned licks in 100 ms bins and
discarded any surplus licks above one per bin.

To plot the rate of correct or concordant licks, we calculated the rate of licking on each side on every trial and defined each lick as
“correct/incorrect” depending on whether it matched the correct side, and as “concordant/discordant” depending on whether it
matched the direction of the choice lick (i.e., the first lick in the response window, which determined trial outcome). We then meaned
the lick rates for each trial type (correct, incorrect, concordant, discordant) within each mouse. Finally we divided the rate of correct
licks by the rate of all licks, and the rate of concordant licks by the rate of all licks, to generate the results plotted in Figure 11.

Behavioral decoding analysis (Figure 3)

We first selected only trials in which the mouse responded within the first 0.5 s of the response window in order to ensure that
behavior was roughly aligned across trials. This procedure excluded only a small fraction of trials. In some sessions we used opto-
genetic stimulation for separate studies; any trial with optogenetic stimulation was discarded from all analysis in this manuscript. In
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some sessions we also presented flatter shapes (performance data: Figure S1A) but for behavioral decoding and all neural analyses
we discarded any trials with the flatter shapes.

We then extracted all whisking and contact data from each trial from —2.0 to +0.5 s of the opening of the response window and
obliviated (set to zero or the mean value) all data after the time of the choice lick to ensure that only pre-choice activity was included in
the analysis. Each feature was measured on every individual whisk (e.g., presence of contact, cross-whisker latency within that con-
tact, interaction terms for multiple-whisker contact; complete list in Table S1). We then aggregated each feature within 250 ms bins
locked to the response window opening, so that trials with different numbers of whisks could be directly compared. Most features
were aggregated by meaning within the bin, but count-related features (like contact count) were aggregated by summing within
the bin.

Finally we concatenated some task-related features like previous choice and previous outcome that did not depend on the whisk
cycle. Even if the previous trial was itself excluded (for instance, due to optogenetic stimulation), the “previous outcome” and “pre-
vious choice” variables were still taken from that excluded trial.

If a feature was not defined for a time bin (for instance, cross-whisker contact timing and contact-induced bending have no mean-
ing if no contacts occurred), it was left as null (NaN). Because these parameters were only measured during contacts, they implicitly
contained information that a contact had occurred. Specifically, they were null at all times other than during contact. During feature
standardization (described below), we ensured that these features could have no effect on the coefficients or goodness-of-fit when
they were null. The net result of this procedure is that these features could only be informative conditioned on the presence of a con-
tact. This permits their interpretation as modulating the information gleaned by the mouse about each contact, above and beyond the
mere presence of a contact per se.

The result of this feature selection process was 725 scalar features per trial, some of which (e.g., contact count) depended on time
bin and some of which (e.g., previous choice) did not. For each session, we standardized all features by scaling them to zero mean
and unit standard deviation. At this point we imputed null (NaN) features with zero, so that they could not affect the coefficients ob-
tained. We used the same procedures to fit individual features (Figure 3B) or combinations of features (Figure 3C).

We also asked whether the three features (whisks with contact, whisks without contact, and angle of contact) in the optimized
behavioral decoder (Figure 3C; dashed box) contained unique information or were potentially redundant with one another. To do
this, we dropped one feature at a time, refit the decoder, and assessed the decrease in its accuracy on predicting stimulus or choice
(Figures S3E and S3F). That decrease is taken as that feature’s “unique contribution” to the decoder’s accuracy (Musall et al., 2019).

Choice decoders were trained to predict which way the mouse would lick (left or right). For shape discrimination sessions, stimulus
decoders were trained to predict the shape identity (concave versus convex). For shape detection sessions, stimulus decoders were
trained to predict the presence of a shape (concave or convex, versus nothing). The only exception to this is in Figure 3F, in which the
decoder was trained to predict shape identity (concave versus convex) regardless of the task.

Cross-validation scheme
Each session was fit separately —classifiers were never fit on one session and then applied to another session, even from the same
mouse. We grouped the trials into 4 separate “strata,” with one stratum for each combination of choice and stimulus (concave/
convex for discrimination; something/nothing for detection). We split the data into 7 “folds” for cross-validation, equally sampling
trials from each stratum. Each trial was in the “testing” set for one fold, the “tuning” set for one fold, and the “training” set for
five folds. For each fold, we fit a logistic regression model (‘sklearn.linear_model.LogisticRegression‘) on the training set over a range
of different regularization parameters, always using L2 regularization. We then evaluated the model on the held-out tuning set and
chose the regularization that optimized classifier accuracy over all sessions. Finally we evaluated the model with the chosen regu-
larization on the doubly held-out testing set and took that score as the model’s overall accuracy.

To analyze the weights of the classifier for the session as a whole, we averaged the weights across folds. To analyze the prediction
on an individual trial, we used the classifier for which that trial was in the testing (doubly held-out) set. Because each trial was in the
testing set in exactly one fold, there was only one unique prediction per trial.

The need to disentangle stimulus and choice
As a thought experiment, imagine a neuron that purely encodes the stimulus and is completely unaffected by choice, similar to what
we might expect in the sensory periphery. For instance, this neuron could respond with 1 spike to concave shapes (stimulus A) and
0 spikes to convex shapes (stimulus B).

If a mouse is performing 75% correct, the results might look like this:

e stimulus: {A, A, A, A, B, B, B, B}
e choice: {A, A A, B, B, B, B, A}
e neuron: {1,1,1,1,0,0, 0, 0}

By design, we know that this noiseless neuron is completely driven by stimulus and not at all by choice. Indeed, the variables “stim-
ulus” and “spikes” are perfectly correlated. However, the variables “choice” and “spikes” are also correlated: they are matched on 6
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of 8 trials (the correct trials). The naive approach of correlating the neural response with choice would report a spurious choice en-
coding, but this is in fact due to stimulus encoding coupled with a preponderance of correct trials (schematized in Figure S3B).

The most straightforward way to deal with this is by trial dropping—including correct and incorrect trials in equal proportion. For
instance, for each stimulus we could include 1 correct trial (out of 3 total) and 1 error trial (out of 1 total). The data would then look
like this:

o stimulus: {A, A, B, B}
o choice: {A, B, B, A}
e neuron: {1, 1, 0, 0}

After this procedure, “stimulus” and “neuron” are still perfectly correlated, but “choice” and “neuron” are perfectly uncorrelated (2
matches out of 4 trials). Thus, this procedure indeed reveals the true relationship in the data. However, it is woefully underpowered,
because it requires discarding a large proportion of the data—in this case, half the dataset was dropped. This lack of power becomes
more acute as the mouse’s performance increases and the error trials become rarer.

The procedure that we developed for this paper—trial balancing —achieves the same result as trial dropping but without the loss of
statistical power. In this example, instead of keeping 1/3 of the correct trials, we would include all of the correct trials but weight them
1/3 as much as the each error trial. We implemented this using the ‘sample_weight* argument in sklearn.linear_model.LogisticRe-
gression. In calculating the cost function to optimize, the decoder weights the cost of each datapoint in accordance with its sample
weight. The overall result is that correct and incorrect trials of each stimulus are all equally weighted in aggregate, thus disentangling
stimulus and choice.

Validation of trial balancing

We validated that trial balancing accurately and efficiently disentangles stimulus and choice using a simulation in which we know the
ground truth that the method should discover. We present this in the context of behavioral decoding (inferring stimulus or choice from
sensorimotor features) but the mathematical argument is identical for the case of neural decoding (inferring stimulus or choice from
neural responses).

To assess this, we generated simulated data for a hypothetical sensorimotor feature (e.g., contact angle) that is purely driven by the
stimulus identity and has no causal relationship with the mouse’s choice (Figure S3B). This hypothetical feature is positive for stimulus
B (blue) and negative for stimulus A (red), regardless of choice (solid versus dashed lines). A well-calibrated decoder algorithm should
reveal the presence of stimulus evidence in this data while rejecting the presence of choice evidence. The naive decoder would draw
a vertical line at zero, which clearly discriminates the two stimuli (red and blue). Critically, this same naive decoder would also discrim-
inate choice A on the left (solid) and choice B on the right (dashed). Essentially, this error occurs because stimulus and choice are
correlated with one another. The decoder would thus report spurious choice evidence in these data, which we know from construc-
tion is not true.

We argue that trial balancing and trial dropping can be used to prevent this false conclusion. The simulation bears this out. All three
decoders (naive, trial-balanced as in the manuscript, and trial-dropping) correctly infer that this feature has evidence about stimulus
(Figure S3C; left three bars). However, the naive decoder incorrectly infers that this feature has evidence about choice, whereas both
trial balancing and trial dropping give the correct result of no evidence in this case (Figure S3C, right three bars). In practice, we prefer
trial balancing over trial dropping, because in real data the number of errors on a given stimulus can be small, resulting in an unac-
ceptably small trial count. Trial balancing allows us to use all of the data while still successfully disentangling stimulus and choice and
inferring evidence correctly.

Finally, we compared the results obtained with trial balancing to those obtained from trial dropping, now using the actual data
collected from the mice instead of simulated data. As with trial balancing, we divided the trials into four groups: correct and incorrect
trials on each stimulus. However, instead of weighting each trial in inverse proportion to its prevalence (“trial balancing”), we now
perform “trial dropping” by identifying the size of the smallest of the four groups (N), and selecting N random trials from each of
the four groups.

The results with both methods are qualitatively similar (Figure S3I). However, because trial dropping discards most of the data, it is
less statistically powerful than trial balancing is. Thus, the weights obtained are much smaller, because the cross-validation proced-
ure adopts a stronger regularization to account for the higher noise level. Because of this higher noise, decoders using trial dropping
were also less accurate. Thus, the trial balancing procedure we describe here yields similar results as trial dropping, but with greater
statistical power.

Aggregation
To aggregate results across mice (e.g., Figures 3D and 3F) we averaged the accuracy of the classifier across sessions within each
mouse first. The sample size for error bars and statistical tests was then equal to the number of mice.

To plot the weights of the classifier in Figure 3H, we first averaged the weights over time for simplicity. Because the coefficients
plotted in Figure 3H are related to contact counts, we multiplied the coefficients by the standard deviation of the corresponding
column in the feature matrix before standardization. This effectively reverses the standardization, and puts the coefficient in
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more-interpretable “per contact” units rather than “per standard deviation of contact count” units. This was for visualization only and
did not affect the results.

To plot the evidence in Figure 4C, we applied the weights of the decoder to each individual whisk cycle and meaned this evidence
over all whisks with a peak within that spatial bin. For visualization in this panel, we used a model that incorporated the peak angle of
whisks without contact.

Neural decoding analysis (Figure 6B)

To decode stimulus and choice from neural activity, we used a resampling/bootstrapping approach to combine neural data across
sessions and mice. First the trials were split into five equally sized “folds,” one of which was the “test fold” and the rest “train folds.”
No tuning set was necessary because we fixed the regularization at 1.0 in this analysis. For each shape (concave or convex), we
randomly chose a single trial with that shape from the test fold in each session. We concatenated all of the neural data from those
trials into a “pseudopopulation” as if all the neurons had been recorded simultaneously. We then repeated this process 30 times to
construct 30 pseudotrials of the test fold. Then, we repeated the process for the train folds, to generate 120 pseudotrials of the train
folds. By construction, the same trial could never be included in both the test and train folds.

The classifier was trained on the train fold and evaluated on the test fold. Because correlations can have a strong impact on the
amount of information encoded by a neuronal population (Nogueira et al., 2020), we maintained the correlation structure between
simultaneously recorded neurons. Specifically, for each pseudotrial we sampled the same trial from each simultaneously recorded
neuron. The entire process was repeated 100 times to generate the confidence intervals displayed in the plot, which we obtained by
fitting a normal distribution to the accuracy over repeats.

We call the procedure above the “naive” approach because it does not balance hits and errors; hence, it confounds stimulus and
choice. This naive approach is used in the left panel of Figure 6B. We also used a “balanced” approach to disentangle stimulus and
choice in the middle and right panels of Figure 6B. Specifically, we first divided all the trials into 4 strata (concave hit, concave error,
convex hit, convex error) instead of the 2 strata (concave or convex) used in the naive approach. We then repeated the same resam-
pling approach to draw pseudotrials from each of the 4 strata. This ensures equal weighting of correct and incorrect trials; hence, it is
balanced. We used disjoint train and test folds just as in the naive approach.

In all cases, to train the classifier we first standardized the firing rate of each neuron in the pseudopopulation to zero mean and unit
variance. We provided these normalized firing rates to a classifier (‘sklearn.linear_model.LogisticRegression‘) and trained it to predict
either the stimulus or choice on each trial. We trained separate classifiers on every time bin in the training fold. We used the classifiers
to predict stimulus or choice on each trial in the held-out test fold.

For both naive and balanced classifiers, we repeated the entire procedure five times, such that each trial was included in the test
fold exactly once (and in the training fold the other four times). We averaged the classifier’s accuracy over each of the four held-out
test sets (never including the training set) and reported this as the classifier’s overall cross-validated accuracy in Figure 6B.

For the right panel of Figure 6B, we zeroed out the spikes on all “sampling whisks” (defined above in the videographic methods).
We also zeroed out spikes on the cycle preceding and the two cycles following each sampling whisk to ensure complete removal of
whisk-locked stimulus information. This procedure removed phasic contact-evoked or whisk-evoked stimulus responses, but
spared long-timescale persistent representations.

We asked whether early licks could affect the results of behavioral decoding or neural decoding. To address this, we excluded all
trials in which the mouse made even a single lick in the interval —2 <t < —1. (As always, we use the timeline schematized in Figure 1H,
with t = 0 representing the opening of the response window.) We chose this period of time because it precedes the bulk of the whisker
contacts, and so licks during this time must be unrelated to the animal’s sampling strategy. This analysis resulted in essentially iden-
tical results for behavioral decoding (Figure S3H) and for neural decoding (Figure S6), indicating that our evaluation of the sampling
strategy and neural decoding is not affected by impulsive licks.

Neural encoding analysis (Figures 7 and 8)

For this analysis, we began with the same features (contact count, etc.) from the behavioral analysis. Rather than aggregate within
arbitrary time bins, we used the feature measurements on individual whisk cycles. We added some additional features that could
affect neural firing: the amplitude (peak-to-trough angle) of each whisk and the set point (start angle) of each individual whisker at
the beginning of each whisk.

We also added some additional trial-related features: current choice, previous choice, current outcome (rewarded or not), and pre-
vious outcome. Because the effect of these features could vary over the course of the trial, we used separate temporal indicator vari-
ables (Park et al., 2014). Specifically, we divided all whisks into 500 ms bins with respect to the response window opening. If the cur-
rent choice was “left,” we marked the temporal indicator variable corresponding to left choices within that whisk’s bin as 1, and left all
other variables as zero. We repeated this for each task variable.

Finally, we added two “nuisance features” for firing rate drift and cycle duration. For firing rate drift, we divided each session into 10
blocks and assessed the mean firing rate of each neuron within that block. We provided the logarithm of this value as a feature to the
GLM. The timescale of each block was far too long (~several minutes) to contain any information about individual whisks, but it
captured the baseline firing rate of the neuron, as well as any long-timescale variations, for example due to satiety. The second
nuisance feature was the logarithm of the duration of each individual whisk cycle. This is because a whisk cycle that is twice as
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long should be expected to emit twice as many spikes, all else equal. The use of a logarithm in both cases accounts for the expo-
nential link function in the GLM. Both of these nuisance features are highly predictive of neural firing by design and were important for
fitting the data but were not analyzed further for scientific conclusions.

We fit the data using a GLM for Poisson data like spike counts (i.e., with an exponential link function) using the ‘pyglmnet‘ module
(Jas etal., 2020). We used 5-fold cross-validation, ensuring that each trial was in the test set exactly once and evaluating the GLM on
these held-out test sets only. We always used L2 regularization but we varied the strength of this regularization. We typically used the
regularization value that optimized the model fit for that neuron, but when comparing coefficients across neurons (e.g., Figure 8) the
same value of regularization was used for all neurons to ensure coefficients were on the same scale.

In order to obtain the null distributions of each coefficient and thereby significance, we also trained 40 additional GLMs for each
neuron using permuted features. Specifically we permuted the rows but not the columns of the feature matrix, which maintains the
correlation structure of the features but randomizes the mapping to neural responses. Each row of data contains any necessary his-
tory terms, and the rows are always kept together. For instance, one column corresponds to the current whisk amplitude, and another
column to the previous whisk amplitude. No matter how the rows are arranged in the design matrix, they retain the same current and
previous cycle information. Thus, our current approach always preserves whisk-to-whisk information in the features, regardless of
whether they are aligned with the neural responses (the real fit) or randomly permuted with respect to the neural responses (the
null distribution).

The distribution of each coefficient over permutations had a near-zero mean but a non-zero standard deviation. To assess signif-
icance of individual coefficients (e.g., Figures 7E and 7F) we divided the actual coefficient by the standard deviation of the coefficients
obtained on the permutations to obtain the z-score of the coefficient. We then converted this into a two-tailed p value by integrating
the standard normal beyond this z-score. We validated that this approach controlled the false positive rate at o = 0.05 by including a
spurious regressor that was drawn from a random distribution and ensuring that the random regressor was found significant no more
than 5% of the time (indeed, that the resulting p value distribution was uniform; data not shown).

To assess goodness-of-fit of any GLM, we took the log-likelihood of the data under the best fit and compared it to the log-likelihood
of the data under a null model. The null model had access only to the “nuisance features” described above: baseline firing rate and
whisk cycle duration. We subtracted the log-likelihood of the null from the log-likelihood of the fit model, and divided by the total num-
ber of whisks in that session in order to permit comparison across datasets of different duration. We used a logarithm of base 2 to
permit presentation in “bits.” This is not an estimate of the information contained by the neural spike train, but rather an estimate of
the change in the KL-divergence between [the true (unknown) distribution of the data and the distribution predicted by the model
under consideration] versus [the same quantity, but replacing the model under consideration with the null model].

We also present the same data quantified as the pseudo R? in Figures S7 and S8, using the function ‘pyglmnet.metrics.pseu-
do_R2‘. This quantity is defined as (LLM - L0) / (LS - L0O), where LLM is the log-likelihood for the fit model, LO the null model that always
predicts the mean firing rate, and LS the saturated model which predicts the data exactly. The saturated model is not actually achiev-
able by any real fitting procedure, but provides an upper bound on performance for all possible models.

Direct comparison of task-specific neural responses while controlling for contact force

To determine whether the change in whisker-specific tuning that we observed during shape discrimination could be explained by the
intensity of the contacts, we directly compared neural responses to contacts made by each whisker while controlling for contact force
(Figure S8G). We observed that the neural response increases with contact force in both tasks and on all whiskers. In mice performing
the detection task, the relationship is quite similar regardless of which whisker makes contact. In mice performing the discrimination
task, the response to C1 is much larger than the response to C3, even as we now control for identical contact forces. Similar results
were obtained for other kinematic parameters (data not shown). This analysis, which does not use a GLM, directly validates the orig-
inal GLM-based conclusions: C1 contacts induce a larger neural response than C3 contacts in mice performing discrimination, but
not in mice performing detection, even after controlling for contact force.

Analysis software

We used the Python packages ipython (Perez and Granger, 2007), pandas (McKinney, 2010), numpy (Van Der Walt et al., 2011), scipy
(Virtanen et al., 2020), scikit-learn (Pedregosa et al., 2011), scikit-image (van Der Walt et al., 2014), statsmodels (Seabold and Perk-
told, 2010), pyglmnet (Jas et al., 2020), and matplotlib (Hunter, 2007) to investigate, analyze, and present the data.
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