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SUMMARY 

Cortical processing of task-relevant information enables recognition of behaviorally meaningful 

sensory events. It is unclear how task-related information is represented within cortical networks 

by the activity of individual neurons and their functional interactions. Here, we use 2-photon 

imaging to record neuronal activity from the primary auditory cortex of mice during a pure-tone 

discrimination task. We find that a subset of neurons transiently encode sensory information used 

to inform behavioral choice. Using Granger causality analysis, we show that these neurons form 

functional networks in which information transmits sequentially. Network structures differ for target 

vs non-target tones, encode behavioral choice, and differ between correct vs incorrect behavioral 

choices. Correct behavioral choices are associated with shorter communication timescales, larger 

functional correlations, and greater information redundancy. In summary, specialized neurons in 

primary auditory cortex integrate task-related information and form functional networks whose 

structures encode both sensory input and behavioral choice. 

 

INTRODUCTION 

Cortical processing of task-relevant information enables mammals to recognize behaviorally 

meaningful stimuli while navigating the sensory environment. Performance of an auditory task 

modulates neural representations of task-related sounds at the level of single neurons or small 

populations, already in primary auditory cortex (A1) (Kuchibhotla et al., 2017, Kato et al., 2015, 

David et al., 2012, Francis et al., 2018b, Tsunada et al., 2016, Brosch et al., 2011, Francis et al., 
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2018a, Carcea et al., 2017, Fritz et al., 2003, Insanally et al., 2019, Schwartz and David, 2018, 

Yin et al., 2020, Bagur et al., 2018, McGinley et al., 2015, Guo et al., 2019, Rodgers and 

DeWeese, 2014, Niwa et al., 2013, Christison-Lagay and Cohen, 2018). We recently showed that 

performing a pure-tone detection task increases neuronal responses to target tones in A1 layer 

2/3 (L2/3) and changes functional connectivity by forming small strongly linked neuronal networks 

that encode behavioral choice (Francis et al., 2018b). However, natural auditory scenes typically 

include both target and non-target sounds that require discrimination. The effect of discrimination 

on the functional networking of neurons and how target vs non-target information propagates 

through the population are poorly understood. 

Given the diversity of neuronal connectivity and stimulus selectivity in A1 L2/3 (Atencio 

and Schreiner, 2010, Atzori et al., 2001, Oviedo et al., 2010, Meng et al., 2017, Bandyopadhyay 

et al., 2010, Rothschild et al., 2010, Kanold et al., 2014, Maor et al., 2016, Winkowski and Kanold, 

2013, Sakata and Harris, 2009, Yang et al., 2008, Sadagopan and Wang, 2009), we hypothesized 

that there may exist specialized neurons in A1 L2/3 that represent varying amounts of sensory or 

choice information and that a subset of these neurons, which carry sensory information used to 

inform behavioral choice, form functionally connected networks whose structural properties 

encode behavioral choice during task performance. 

To investigate our hypotheses, we trained mice to behaviorally discriminate target vs non-

target pure-tones while we recorded neuronal activity in A1 L2/3 using 2-photon (2P) Ca2+ 

imaging. We then quantified how much stimulus information (SI), behavioral choice information 

(CI), and intersection information (II), i.e., sensory information that is used to inform behavioral 

choice, was carried by individual neurons (Runyan et al., 2017, Panzeri et al., 2017). We used 

Granger causality (GC) analysis to study how these neurons were organized into functional 

networks (Kim et al., 2011, Sheikhattar et al., 2018, Francis et al., 2018b, Seth et al., 2015, 

Kaminski et al., 2001, Bressler and Seth, 2011, Quinn et al., 2015), and compiled network 

statistics to quantitatively compare key aspects of network structure. Here, we extended GC 
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analysis to not only study functional network structure, but also the timescales of network 

interactions. Finally, to study how task-related information is transmitted and shared within 

functional networks, we computed information redundancy between pairs of neurons 

(Schneidman et al., 2003, Pola et al., 2003). 

We found that task performance modulated neuronal response amplitudes, network 

structures, and information transmission in A1 L2/3. Individual neurons encoded II at different 

peak times which, across the population, tiled the duration of a trial. Networked neurons encoding 

II exhibited sparse connectivity and shared redundant stimulus information relevant for behavioral 

choice. Network structures differed for target vs non-target tones, encoded behavioral choice, and 

differed between correct and incorrect behavioral choices. Moreover, choice-dependent 

functional networks also showed different communication timescales. Together, our results 

describe how networked neurons in A1 L2/3 that integrate sensory and behavioral information 

during auditory task performance sequentially transmit task-related information. 

 

RESULTS 

To study how task-relevant information is transmitted within neuronal networks, we trained 9 

transgenic CBA x Thy1-GCaMP6s F1 mice (Frisina et al., 2011, Dana et al., 2014) to perform a 

pure-tone frequency discrimination task (Kuchibhotla et al., 2017, Pi et al., 2013) while we imaged 

neuronal responses in A1 L2/3 using in vivo 2P Ca2+ imaging (Fig. 1).  

 

Head-fixed mice learned to perform an auditory tone discrimination task 

Head-fixed mice were trained to lick a waterspout in response to hearing a low-frequency target 

tone (Fig. 1A; 7 or 9.9 kHz, red), and to avoid licking the waterspout after hearing a high-frequency 

non-target tone (14 or 19.8 kHz, blue). The four frequencies were randomly interleaved across 

trials. Fig. 1B shows that the mice learned to behaviorally discriminate targets vs non-targets. 

Each trial’s behavioral response was categorized into four groups, based on the first lick on each 
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trial: hit (H: licking after target onset), miss (M: no licking after a target), false alarm (F: licking 

after non-target onset), or correct rejection (C: no licking after a non-target). The middle panel of 

Fig. 1B shows the distribution of H and F behavioral response times (i.e., the time of the first lick 

in a trial). The average H and F response latencies relative to stimulus onset were 0.64s ± 0.02s 

and 0.75s ± 0.04s, respectively. Across the 34 experiments, the hit rate (78.8% ± 5.1%) was 

significantly higher than the false alarm rate (F = 27.1% ± 7.3%; p<0.001, t-test) and the correct 

rejection rate (74.3% ± 6.9%) was significantly higher (p<0.001, t-test) than both the F and M rate 

(20.8% ± 5.2%). Thus, the mice were able to discriminate between target vs non-target tones (d’ 

= 1.4 ± 0.4).  

 

Decision-making modulated neuronal response amplitude in A1 L2/3 

To characterize neural responses during behavior, we imaged Ca2+-dependent fluorescence in 

auditory cortex. To localize 2P imaging fields for each experiment to A1, we first mapped the 

tonotopy of the auditory cortex in each mouse using widefield imaging (Fig. 1C) (Liu et al., 2019, 

Francis et al., 2018b). 

We performed 2P imaging (Fig. 1D-G) at a depth of 150-250 µm from the cortical surface 

in each mouse (34 experiments, 9 mice, N = 2792 neurons). We observed fluorescence (F/F) 

responses to all 4 tones with response dynamics typical of GCaMP6s (Chen et al., 2013, Dana et 

al., 2014). Similar to previous studies, neural traces showed a complex pattern of task-dependent 

changes in response amplitude (Bagur et al., 2018, Brosch et al., 2011, Carcea et al., 2017, David 

et al., 2012, Francis et al., 2018a, Francis et al., 2018b, Guo et al., 2019, Kato et al., 2015, 

Kuchibhotla et al., 2017, Rodgers and DeWeese, 2014, Schwartz and David, 2018, Tsunada et 

al., 2016, Yin et al., 2020).  

To make sure our results do not reflect neural coding of task-related movement (i.e., 

licking/behavioral choice) or reward, we first quantified how neuronal response amplitude varied 

with task performance and pure-tone frequency during passive trials, in which the mouse sat 
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quiescently hearing tones without doing an auditory task, and then during behavioral task 

performance. To make a fair comparison, we averaged neural traces only during the first 0.5 s 

after tone onset for the trials with behavioral response latencies greater than 0.5 s after stimulus 

onset. This accounted for 74% of H trials. While licking has been shown to impact activity in 

auditory cortex (Nelson and Mooney, 2016), we previously showed that it did not drive neural 

activity in A1 L2/3 during a go/no-go task (Francis et al., 2018b). 

As shown in Fig. 1F, we found significant neural responses (p<0.001) at all frequencies in 

both passive and behavior conditions, indicating that the mice could hear the tones. This result, 

in combination with our finding that behavioral responses were similarly time-locked to both low 

and high-frequency tone presentations in our go/no-go task (Fig. 1B), provides compelling 

evidence that the mice were in fact doing a target vs non-target discrimination task, and not simply 

target detection. Overall, responses to non-target tones were smaller than those to target tones 

(p<0.001). In contrast, trials without behavioral responses (M & C) had the lowest average 

response amplitudes and there were no significant differences in neuronal responses to target vs 

non-target frequencies (p>0.05, Kruskal-Wallis test). Thus, the amplitude of pure-tone responses 

in A1 during task performance was strongly modulated not only by acoustic stimulation, but also 

by behavioral choice.  

 

Aberrant attentional gain in A1 L2/3 reflects incorrect decision-making 

The change in neuronal response amplitude to the same sound for passive vs behavior 

trials quantifies attentional gain in A1. As shown in Fig. 1G, correct behavioral choices (i.e., hits 

and correct rejections) had a small, but significant negative gain (7 kHz, H: -1.9% +/- 0.97%, 

p<0.001; 9.9 kHz, H: -1.2% +/- 1.01%, p<0.05; 14 kHz, C: -1.85% +/- 1.08%, p<0.001; 19.8 kHz, 

C: -0.5% +/- 1.02%, p>0.05). In contrast, attentional gain for incorrect behavioral choices was 

more varied. False alarms occurred when neuronal responses had a small positive gain (14 kHz, 

F: 1.97% +/- 1.23%, p<0.001; 19.8 kHz, C: 1.96% +/- 1.42%, p<0.01), whereas misses occurred 
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when responses had a large negative attentional gain (7 kHz, M: -9.76% +/- 1.25%, p<0.001; 9.9 

kHz, C: -7.7% +/- 1.24%, p<0.001). Thus, incorrect decision making was associated with aberrant 

attentional gain, i.e., deviations from the slight negativity observed during correct decision making. 

 

Task-relevant information is transiently encoded by individual neurons in A1 L2/3 

We hypothesized that single neurons in A1 might represent varying amounts of sensory or choice 

information. We first performed spike inference, as summarized in Fig. 2A and described in detail 

in Methods, followed by quantifying the task-relevant information carried by each neuron in single 

trials using information theory (Shannon, 1948, Quian Quiroga and Panzeri, 2009). For each 

neuron we quantified how much information was present about the acoustic stimulus (SI; i.e., 

target vs non-target tone; Fig. 2B, left) and about the behavioral choice (CI; i.e., lick vs no-lick; 

Fig. 2B, right). We also computed intersection information, (II; Fig. 2B, middle) (Panzeri et al., 

2017, Pica et al., 2017), which quantifies how much of the sensory information encoded by the 

neurons is used to inform behavioral choices, and is thus a direct measure of task-relevant 

information. We found that 1183/2792 neurons (42%) carried either significant SI or CI 

(permutation test, p<0.1, corrected for comparisons across multiple time windows, see Methods). 

708/1183 neurons did not carry significant II (permutation test, p>0.1), i.e., they either had 

stimulus information that did not inform choice (e.g., stimulus response was not causal to 

formation of the choice), or choice information not related to the stimulus (e.g., internal choice 

bias). The remaining 475/1183 neurons carried significant II, SI, and CI (permutation test, p<0.1), 

and thus integrate both sensory and behavioral information that is directly relevant for the 

decision-making task (Panzeri et al., 2017).  

To better illustrate the dynamics of the information carried by either the whole population 

or by the neurons with significant II, SI and CI (shortened to “II neurons” hereafter), we computed 

the average II, SI, and CI time-courses. II neurons carried the largest amounts of II, SI and CI 

throughout the trial (Fig. 2C). Moreover, CI was highly correlated to SI (Pearson correlation = 0.9) 
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for II neurons, while this correlation was smaller across the entire population (Pearson correlation 

= 0.51), suggesting that similar levels of CI and SI are present across II neurons (Fig. 2C). At the 

time of peak information, each neuron carried 0.117 ± 0.003 bits of SI, 0.121 ± 0.004 bits of CI 

and 0.085 ± 0.002 bits of II, respectively (mean ± SEM across the 475 II neurons). 

We restricted our further analyses to 12 out of 34 sessions with at least 20 II neurons due 

to our interest in subsequent network analyses for which, given the number of experimental trials, 

up to 20 neurons could be analyzed with statistical confidence. This left us with 375/475 II neurons 

for subsequent analyses (see Methods). Figure 3A shows the peak-normalized information time-

courses for each II neuron, sorted by the peak-latency of the respective information (SI, CI or II) 

across neurons. Qualitative inspection showed that neurons transiently encoded SI, CI, or II, tiling 

the trial duration. The SI, CI, and II time-courses of II neurons showed similar average trends, 

while neurons that carried either significant SI or CI, but not II, showed more heterogeneous 

trends (Supp. Fig. S1).  

We next computed the II/SI and II/CI ratios to identify how much of the stimulus and choice 

information was used for informing behavioral choice. The average II/SI and II/CI ratio was high 

(>70%) for II neurons throughout the trial, meaning that most of the SI was used for informing 

choice and most of the CI reflected stimulus discrimination rather than a stimulus-unrelated choice 

bias (Fig. 3A). Conversely, neurons with significant SI or CI, but not II, showed an overall decrease 

of information within the 500 ms waiting period after tone onset (Supp. Fig. S1). In addition, they 

showed lower II/SI or II/CI ratios down to ~30%, especially at the peak times, meaning that SI and 

CI are not optimally used to perform the task. These results indicate that we identified neurons in 

A1 L2/3 that transiently carry significant stimulus information used to inform behavioral choice. To 

quantify this transiency, we aligned information peaks across neurons and analyzed the peak-

aligned traces within ± 1 s of the peak (Fig. 3A), which admitted an exponential fit with a time 
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constant 𝜏 ~ 
1

3.9
𝑠 ~ 250 𝑚𝑠. Thus, individual neurons transiently carried SI, CI, II for an effective 

duration of ~250 𝑚𝑠.  

To inspect the dynamics of information carried across the trial duration, we clustered the 

neurons based on their II-peak latencies. We labelled neurons that peaked in the first 1.5 seconds 

after stimulus onset as peri-stimulus II, and the remainder as post-stimulus II (Fig. 3B). We 

subdivided the peri-stimulus II neurons into three sequential task-related periods within a trial: (1) 

the 500 ms waiting period just after tone onset, (2) the 500 ms interval after the waiting period, 

and (3) the 500 ms after tone offset (labeled respectively in Fig. 3B, left column). We found that 

52/375, 85/375, and 60/375 neurons had II that peaked in the first, second, and third peri-stimulus 

periods, respectively (Fig. 3B, left column), adding up to 197/375 neurons. Furthermore, 45/375, 

40/375, and 48/375 neurons had II that peaked in the fourth, fifth, and sixth post-stimulus periods 

(1.5-3 s), respectively (labeled respectively in Fig. 3B, right column). The remaining 45/375 

neurons peaked after 3 s. Although the values of SI, CI and II remained comparable throughout 

the trial, neurons with earlier responses carried slightly more SI than CI (Fig. 3B, left column, blue 

vs green traces) and neurons with later responses carried slightly higher CI than SI (Fig. 3B, right 

column, green vs blue traces).  

Given that II neurons carried SI, we next examined their tuning properties (Fig. 3C). We 

found that the best frequencies (BFs; the frequency values eliciting the highest response during 

passive tone presentation) of II neurons were lower (p<0.01, Wilcoxon rank sum test) than the 

average BF of the overall population. II neurons also had narrower bandwidth (BW) (p<0.05, 

Wilcoxon rank sum test) than the overall population. Our results show that task-relevant 

information was transiently encoded by individual neurons, yet sustained throughout the trial by 

sequential encoding across a population of neurons in A1 L2/3. 
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Neurons with intersection information form sparse timescale-invariant functional 

networks   

Since individual neurons had low information content and only transiently encoded II (Fig. 2B,C; 

Fig. 3A), we hypothesized that II neurons might form functional networks to more robustly encode 

task-relevant information. We previously used Granger causality (GC) analysis to identify small 

functional networks of interacting neurons whose network structure depended on behavioral 

choice (Francis et al., 2018b), but did not study how network structure might vary with integration 

timescales, i.e., the duration over which neurons might interact. Our finding that II was transiently 

encoded by individual neurons, but sustained across time by the population, necessitated the 

examination of relevant timescales of interactions between II neurons. Hence, we extended our 

previous GC analysis by considering the interaction timescales.  

GC analysis uses multivariate statistics to infer causal influences within a population of 

neurons by testing if the recent history of a neuron can improve the prediction of another neuron's 

activity. The duration of the recent history over which interactions are quantified, referred to as 

the ‘integration window’, is a hyperparameter of GC analysis, whose value, w, sets the longest 

interaction window considered (Fig. 4A, left schematic). Short (S; w=233 ms) integration windows 

quantify dynamics that are more likely to reflect local neuronal interactions. Long (L; w=1033 ms) 

integration windows would additionally capture the effects of potentially slower and indirectly 

mediated interactions that may involve distant neurons. The specific values of w we used were 

integer multiples of the imaging frame rate. Importantly, the S-timescale interactions are a subset 

of the L-timescale interactions (see Methods). For each experiment (N=12), we performed GC 

analysis on the 20 neurons with the lowest, i.e, “shortest”, II-peak latencies to identify the 

contribution of neurons whose activity carried task-relevant information during stimulus 

presentation. We used 20 neurons per experiment to avoid overfitting the data, given the limited 

number of experimental trials (see Methods). GC networks were estimated individually for each 

behavioral choice category (H, M, C, and F) in the discrimination task, importantly contrasting 
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previous work (Francis et al., 2018b) in which we could only analyze networks corresponding to 

H and M categories in a detection task. 

We found that across all trials GC networks were sparse: only 1% of possible links 

connecting 21.98% of the selected II neurons were detected in S-timescale networks, while 3.61% 

were detected in L-timescale networks connecting 51.67 % of the selected II neurons. Unlike 

simpler measures such as Pearson correlation, GC is a directed measure of communication, 

which can distinguish senders from receivers (Figure 4A). This allowed us to investigate the 

proportion of senders and receivers within the network. For the S-timescale networks, 10.10% of 

neurons were senders, 9.06% were receivers, and 2.81% were GC-linked neurons that had net 

degree of zero. For the L-timescale networks, however, 24.58% of the neurons were senders, 

19.79% were receivers and 7.29% had a net degree of zero. This indicates that an additional 

29.69% of the selected II neurons were recruited over the longer integration window.  

Speculating that the information content of GC-linked neurons differed from GC-unlinked 

neurons, we compared SI, CI, and II at the II peak time. We found that SI, CI, and II were higher 

in GC-linked than in GC-unlinked neurons, in both S- and L-timescale networks (Figure 4B). 

These results suggest that GC-linked neurons form networks carrying signals of greater relevance 

for performing the auditory discrimination task. Given that neurons carry information over a wide 

range of timescales (Fig. 4B), we tested whether neurons’ II-peak latencies depended on their 

membership in S- or L-timescale networks. We compared the distributions of II-peak latencies of 

neurons in S- vs L-timescale networks and found no significant difference (Wilcoxon rank sum 

test, p=0.5847). Furthermore, we compared the II-peak latency for pairs of GC-linked neurons 

and found that the II-peak of receiver follows that of sender neurons by 2.07 time bins (69 ms) on 

average; however this difference was not statistically significant (Wilcoxon signed rank test, 

p=0.1743). As such, we found no evidence to support that II-peak latency correlates with 

membership of the linked neurons in S- vs L-timescale networks or the direction of the GC links.  
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To characterize how the structure of the GC networks depends on the timescale of 

interactions and on behavioral choice, we analyzed 4 network statistics separately for H, M, C, 

and F trials: number of links, number of subnetworks (isolated subsets of neurons), subnetwork 

size (number of member neurons), and statistical strength of links (Youden’s J-statistic) (Francis 

et al., 2018b) (shown from left to right in Fig. 4C; see also Supp. Table S1). We focused on 

neurons with low II-peak latency, as they are more likely to be causally related to choice. For both 

M and F networks (incorrect behavior), the number of links and the size of subnetworks were 

greater for L- than S-timescale networks, while link strength was less for L- than S-timescale 

networks. In contrast, we found no differences for L- vs S-timescale networks in H or C trials 

(correct behavior), for the number of links, size of subnetworks, and link strengths. In C trials, 

number of subnetworks increased with integration window length. Together, our results show that 

incorrect decision (M & F) L-timescale networks are larger but connected less strongly than their 

S-timescale counterparts. In contrast, the structure of correct decision networks (H & C) was 

invariant across timescales. Noting that S-timescale interactions are a subset of the L-timescale 

ones in our model, the invariance of the correct decision network structure between S- and L-

timescales may suggest the involvement of a network of local cortical interactions, rather than of 

interactions mediated by wider loops involving farther neurons. 

For S-timescale, comparison of H and M networks showed the former had more links and 

larger subnetworks, suggesting that larger networks are beneficial for encoding correct detection 

of the target. The average link strength was greater in C than in F networks, suggesting that 

stronger links are beneficial for encoding correct rejection of the non-target. In contrast, for L-

timescale, both the number of links and the sizes of subnetworks were smaller for correct than 

incorrect categories, while links remained stronger for the correct category. 

 

Neuronal network structure encodes behavioral choice 
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Since the GC network structures for neurons with low II-peak latency strongly depended on 

behavioral choice, we sought to directly test if the network structures encode behavioral choice. 

Thus, we used the 4 network statistics as features for a support vector machine (SVM) trained to 

distinguish between correct (H & C) and incorrect (M & F) decisions. For comparison, we trained 

a similar classifier for networks of neurons with high response rates, chosen regardless of the 

information content they carry. The comparison between the network structure of II neurons and 

responsive neurons is non-trivial because a pair of neurons both carrying II is neither necessary 

nor sufficient for there to be a GC link between them (See Supp. Fig. S2 for counterexamples). 

The GC network statistics of highly responsive neurons are reported in Supp. Table S2. Of all low 

II-peak latency neurons, 30.21% were also identified as highly responsive neurons (see Methods 

for selection criterion). The network structure of S-timescale networks for low II-peak latency 

neurons classified behavioral choice much more accurately than that of highly responsive neurons 

(Fig. 4D, left bar plots). In contrast, the features of L-timescale networks classified behavioral 

choice well for both low II-peak latency and highly responsive neurons, though more accurately 

for the former (Fig. 4D, right bar plots). These results show that S-timescale networks of low II-

peak latency neurons better encode behavioral choice than those of highly responsive neurons 

and suggest that low II-peak latency neurons form a specialized group of neurons in A1. 

One possibility is that strong choice predictivity from network interactions is not a special 

property of networks formed by II neurons, but is also present in networks of neurons with either 

SI not used for choice or CI not related to the stimulus. To test this possibility, we compared the 

predictivity of low II-peak latency neurons to that of SI and CI neurons that did not have significant 

II (Supp. Fig. S3A-B and Supp. Table S3). While 7 sessions had a sufficient number of exclusively 

CI neurons, only 1 session had a sufficient number of exclusively SI neurons for GC network 

analysis; hence, we focused on the networks of exclusively CI neurons to contrast with the low-

latency II neurons analyzed in Fig. 4. Network structures of low II-peak latency neurons were 

more predictive than CI neurons (Supp. Fig. S3B). Furthermore, the network structures of neurons 
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with the greatest II-peak magnitudes (Supp. Fig. S3C-D and Supp. Table S4) were also more 

predictive of behavioral choice than highly responsive neurons (Supp. Fig. S3D). Our results 

suggest that the encoding of behavioral choice in the S-timescale network structure is specific to 

II neurons, and it is not found as much in groups of neurons with choice information not related to 

the stimulus.  

 

The spatial extent of neuronal subnetworks varies less by timescale during correct 

behavioral choices 

Since 2P imaging gives the exact spatial location of each neuron in a field of view, we sought to 

characterize how II neurons and their functional networks were distributed spatially. We first 

studied if neurons with II peaks in peri vs post-stimulus intervals were in different regions or if they 

were intermingled. We calculated the sum of the average distances of peri- (Pe) and post-stimulus 

(Po) neurons to their centroids (RPe and RPo, respectively) and compared the sum to the distance 

between the centroids (RPe - Po). The distance between centroids was smaller than the spread of 

each set of neurons (Fig. 5A). Thus, Pe and Po neurons were heterogeneously distributed within 

the field of view, suggesting that information flow did not have intrinsic directionality from one 

subarea to another during task performance. 

We next analyzed how subnetworks were dispersed by computing the vector distances of 

subnetworked neurons to the subnetwork centroid (Fig. 5B, top schematic; see also Methods). 

Subnetworks of L-timescale interactions tended to be more spatially dispersed than the S-

timescale ones (Fig. 5B, bottom subpanels), as indicated by the determinant of the distance vector 

covariance matrix (Fig. 5C). The dispersion of M, F, and C subnetworks were larger for L- than 

S-timescales. Differences in dispersion were also observed between H and M trials for S-

timescale subnetworks and between C and F trials for L-timescale subnetworks. To see if 

differences in the dispersion of subnetworks across timescales were due to greater distances 

between linked neurons, rather than the inclusion of additional neurons, we computed the average 
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pairwise distance between linked neurons, i.e., the average link length (Fig. 5D). Except for M 

networks, GC link lengths were stable across timescales, indicating that the greater subnetwork 

spatial dispersion for L-timescale interactions was more likely due to the inclusion of additional 

neurons than an increased distance between linked neurons. These results suggest that correct 

choices are associated with spatially stable compact subnetworks while incorrect choices involve 

activity spread to additional neurons. 

 

Networked neurons communicate task-relevant stimulus information that reverberates 

redundantly 

A functional link between neurons suggests that task-relevant information is transmitted from one 

neuron to another. This would create a population code whose information content is reverberated 

redundantly across neurons because the same information is shared by different neurons.  

To investigate the nature of information present in the functional networks, we measured 

information redundancy (Schneidman et al., 2003, Pola et al., 2003) between GC-linked neurons 

(Fig. 6A). We used a normalized redundancy index defined as the information carried jointly by 

two neurons minus the sum of the information that each carried independently, normalized with 

respect to the total information carried by the two neurons jointly. The value of the normalized 

redundancy index indicates the fraction of total joint information that is shared by two neurons. 

Neurons share redundant information when the redundancy index is negative, i.e., together they 

carry less information than the sum of the information they carry separately. Positive values of 

the redundancy index are associated to synergy, i.e., the contribution from the interaction between 

the neurons to the joint information cannot be inferred by considering each neuron individually.  

For SI, CI, and II, we computed redundancy at the peak time of II, for each pair of neurons used 

in GC analysis. Normalized redundancy between pairs of neurons with a S-timescale GC link was 

compared to those with no GC link (Fig. 6A). For S-timescales, we found that information shared 

by pairs of neurons was redundant. This implies that neurons shared part of the information they 
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transiently carried at different times. Normalized redundancy was much larger for II than CI and 

SI (Fig. 6A, left bar plots vs middle and right bar plots). For L-timescales, we found similar trends 

but proportionally smaller variations between GC-linked and GC-unlinked neurons (Supp. Fig. 

S4). This means that neurons shared more of the behaviorally-relevant, than behaviorally-

irrelevant, portion of the SI they carried. Importantly, the difference between normalized 

redundancy for GC-linked vs GC-unlinked neurons was much larger for II than for SI or CI (Fig. 

6A, red vs black bar plots), reinforcing the interpretation that S-timescale GC links mediate the 

exchange of behaviorally-relevant sensory information.  

GC links can be positive or negative valued, reflecting functionally facilitative or 

suppressive interactions, respectively (Francis et al., 2018b, Sheikhattar et al., 2018). We found 

that negative GC links had a much larger effect on redundancy, suggesting they mediate more II 

exchange than positive links (Fig. 6A, orange vs yellow bar plots). These results might indicate a 

mediating role of inhibitory circuits in task-related network activity (Kuchibhotla et al., 2017). 

Sorting the normalized redundancy with respect to the II peak time lags (Fig. 6B, left panel) 

revealed that II redundancy varies across time lags with an overall increasing trend (from -0.1 to 

-0.15). This indicates that redundant information persists during the trial. 

Previous studies showed that nearby cells typically interact redundantly (Nirenberg et al., 

2001, Reich et al., 2001, Chechik et al., 2006). We thus investigated how redundant information 

spreads spatially for II, SI, and, CI by plotting the time-lagged redundancy as a function of the 

Euclidean distance between pairs of neurons (Fig. 6B, right panel). We found a peak of redundant 

interaction for II at a distance of ~50 𝜇𝑚 (𝐼𝐼 = −0.1971 ± 0.0187) which then reached a plateau 

at ~320 𝜇𝑚 (𝐼𝐼 = −0.1499 ± 0.0039), followed by a distance-independent trend. SI and CI were 

similarly redundant and reached a plateau at ~208 𝜇𝑚 (𝑆𝐼 = −0.0691 ± 0.0019, 𝐶𝐼 = −0.0709 ±

0.0019. Together, these results suggest that GC links indicate redundant communication of 

behaviorally-relevant stimulus information, and that redundant neurons are located in close 

proximity of each other. 
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Signal correlations, noise correlations and redundancy in correct vs incorrect trials  

Redundancy is critically shaped by signal and noise correlation (Schneidman et al., 2003, Pola et 

al., 2003). To gain more insights into the origin of redundancy, we quantified noise correlations, 

i.e., the single-trial covariations of activity that are unrelated to stimulus signals, and signal 

correlations, i.e., the covariations of activity that reflect similarity in trial-averaged stimulus tuning 

(see Methods).  

Fig. 6C shows the signal and noise correlations for GC-linked and unliked pairs of neurons 

computed at the II peak times using all available trials. Noise correlations reduce population 

information (and thus contribute to redundancy) when they have the same sign as the signal 

correlations (Schneidman et al., 2003, Pola et al., 2003). In our analysis, both signal and noise 

correlations were on average positive (Fig. 6C). Thus, the observed redundancy reflects the 

matching positive signs of both signal and noise correlations. GC-linked pairs of neurons exhibited 

higher noise correlations than GC-unlinked pairs of neurons, consistent with the view that trial-to-

trial correlations should be stronger for neurons that are functionally linked. Signal correlations 

did not vary (p>0.05, t-test) between GC-linked and GC-unlinked pairs of neurons.  

 To examine the possible advantages of the observed correlations and redundancy values 

for task performance and behavioral accuracy, we next refined them by separating correct (H or 

C) and incorrect (M or F) trials (Fig. 6D). We found several results of interest. First, in correct 

trials, noise correlations were stronger and had the same sign as the signal correlations (Fig. 6D, 

two leftmost subplots), leading to a strong redundancy of information in correct trials (Fig. 6D, 

third subplot).  

Second, neurons did not exhibit redundancy in incorrect trials, and were indeed 

synergistic, i.e., with positive redundancy index (Fig. 6D, third subplot). This property held for both 

pairs that were or were not GC-linked. It is important here to note that GC-linked neurons had 

stronger noise correlations in correct trials (Fig. 6D, leftmost subplot), suggesting that stronger 
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noise correlations during correct behavior results, at least in part, from network communication 

as revealed by GC analysis. The source of the synergy between neurons during incorrect trials, 

despite having positive signal and noise correlations, is further examined in Supp. Fig. S5.  

Third, when computing the difference between the normalized redundancy index in correct 

and incorrect trials, we observed that there was more redundancy in correct trials for GC-linked 

pairs (Fig. 6D, rightmost panel). Together, these results suggest that redundancy and noise 

correlations may provide advantages for task performance. In addition, greater redundancy during 

correct behavior choices may partly result from increased within-network communication.   

  

DISCUSSION 

In this study we found that during the performance of an auditory discrimination task, individual 

neurons in A1 L2/3 transiently carried information about the stimulus (SI), behavioral choice (CI), 

or both (II) for hundreds of milliseconds, and that task-relevant information was sustained across 

the duration of a three-second trial by sequential propagation of SI, CI, and II in functionally 

connected neuronal populations. Furthermore, we identified a subpopulation of low II-peak 

latency neurons, which formed functionally connected networks whose structure could reliably 

predict behavioral choice. Our findings suggest that the spatiotemporal structure of functional 

connectivity between low II-peak latency neurons in A1 L2/3 may form a neural population base 

for sustained representation of task-relevant information.  

A1 L2/3 contains a diverse population of neurons with differing functional connectivity 

(Meng et al., 2017, Liu and Kanold, 2021). We here find that the bandwidth of II neurons is lower 

than that of other neurons. This suggests that these neurons might be part of a class of A1 L2/3 

neurons which receive L4 inputs and have limited integration across the tonotopic axis (Meng et 

al., 2017). 

 

Task Relevance of Short (S) vs Long (L) Timescale Neuronal Interactions 
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The nested parameterization of L- and S-timescale interactions allowed us to differentiate 

between solely S-timescale vs additional L-timescale interactions in functional networks. 

Comparing L- vs S-timescale networks showed that correct choice L-timescale networks 

consisted of fewer but stronger links that were mostly S-timescale influences. In contrast, incorrect 

choice networks are characterized by a mixture of both S- and L-timescale links, and by an 

increased network size due to recruitment of additional spatially distant neurons nearby (within a 

2P field of view). These additional L-timescale links likely reflect the local effects of slower 

interactions with distant neurons, perhaps reflecting non-sensory task-related interaction, such as 

error-signaling or deviance detection (Parras et al., 2021, Steinmetz et al., 2019, Stringer et al., 

2019, Chen et al., 2015, Khouri and Nelken, 2015). Since subnetworks during correct trials varied 

less by timescale, this suggests that the influence of more distant neurons is suppressed when 

correct decisions are made, leaving predominantly S-timescale interactions. Such suppression 

could be mediated by inputs to A1 which can activate inhibitory circuits (Fritz et al., 2010, 

Winkowski et al., 2018, Winkowski et al., 2013, Liu et al., 2021).  

 

Magnitude of stimulus, choice and intersection information in A1 L2/3 neurons 

We used information theory to characterize neural selectivity to the task variables, and quantify, 

as function of trial time, the amount of SI, CI, and II. Our non-parametric approach for establishing 

neural selectivity (Quiroga and Panzeri, 2009) is relatively assumption-free and can capture linear 

dependencies on stimulus and choice (which are commonly captured using parametric 

approaches such as Generalized Linear Models) as well as possible non-linear interactions 

between stimulus and choice. The latter non-linearities are expected to exist under general 

conditions (Chicharro et al., 2021) and are difficult to reveal with parametric approaches unless 

one introduces strong model assumptions. 

The amounts of SI and CI per neuron were similar, and approximately of 0.1 bits at the 

information peak. Given that 1 bit of information is needed to solve the binary discrimination task 
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and neurons were found to carry partly redundant information, a first implication of these values 

is that task performance must rely on networks of at least tens of neurons. This consideration is 

compatible with the high behavioral choice prediction afforded by networks of 20 functionally 

connected neurons. Previous studies of A1 L2/3 reported much higher values of SI than CI 

(Runyan et al., 2017, Pica et al., 2017). We interpret these dissimilarities as largely influenced by 

task design, which is distinct from the one used in Runyan et al. (2017), rather than a difference 

of computations. In contrast to our use of a go/no go task in tone discrimination, these previous 

studies involved discrimination of the location of broad-band sounds during spatial navigation in 

a virtual reality setting, with large delays between stimulus and reward, as well as using a forced-

choice task, in which all stimuli could be associated with a reward. Here, we found values of II to 

be close to those of SI, suggesting that most of the auditory information carried by the neurons 

we identified was used to inform choice, supporting the assumption that the identified functional 

networks are important for the execution of the task.  

 

Population Coding via Reverberation of Redundant Information in Networks 

We found high redundancy between the behaviorally-relevant stimulus information carried at the 

time of information peaks between pairs of low II-peak latency neurons. The redundancy was 

higher between pairs of neurons that were GC-linked based on S-timescale interactions, 

suggesting that the GC link may reflect the transfer of behaviorally-relevant information from one 

neuron to another. Redundancy has been traditionally viewed as a negative feature of population 

coding that should be reduced, based on theories of efficient coding (Attneave, 1954, Barlow, 

1961, Nigam et al., 2019), and on the often implicit assumption of optimal information readout, 

implying that higher neural information corresponds to better performance (Gold and Shadlen, 

2001). However, other studies have proposed that high values of spatiotemporal redundancy 

might facilitate biophysical signal propagation (Valente et al., 2021, Salinas and Sejnowski, 2001, 

Alonso et al., 1996).  
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         Recent studies have proposed that the benefits of redundancy may outweigh its 

disadvantages by making task-related signals available for longer timescales (Runyan et al., 

2017) and facilitating the behavioral readout of the sensory signal (Valente et al., 2021). Here, 

our results of higher redundancy and stronger noise correlations during correct behavior, 

especially for GC-linked neurons, confirm the prediction of these previous works and add the new 

insight that stronger noise correlations and higher redundancy during correct behavior may partly 

originate from increased within-network communication as revealed by GC analysis.    

Importantly, previous studies highlighting the role of redundancy in behavioral readout 

(Runyan et al., 2017, Valente et al., 2021) concentrated only on the average strength of pairwise 

noise correlations. In contrast, we characterized the network-level structure of behaviorally-

relevant information sharing and of correct perceptual decisions. We found that higher 

redundancy in GC-linked neurons was accompanied by a higher number of links, larger 

subnetworks in correct target detection, and stronger links in correct rejection of non-targets. 

Together, redundancy and GC analyses suggest that correct decisions in an auditory 

discrimination task may require temporary reverberation of information in the spatiotemporal 

structure of neuronal networks. This might explain larger redundancy for behaviorally-relevant 

than behaviorally-irrelevant sensory information. 

In summary, our results show that during behavioral discrimination of pure-tone 

frequencies, task-relevant information is transmitted sequentially across individual neurons in A1 

and is sustained for long periods of time within compact neuronal networks. 

 

Limitations of the study 

Our study demonstrates a statistical relationship between the considered features of neural 

activity and behavior, but does not causally demonstrate the role of these features in generating 

correct and incorrect perceptions. Only perturbations of and observation of the behavioral 

changes that manipulations of such features (e.g., using holographic 2P optogenetics) induce 
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could establish causality. Furthermore, we found similarities and differences with previous 

studies of the behavioral relevance of emergent features (e.g., correlations, redundancy, GC 

networks) of population codes in the auditory cortex. We speculated that some of these 

differences may be due to task differences. Since neither previous studies nor ours 

systematically manipulated the behavioral task design, we could not establish how our 

conclusions would vary in different task conditions.  
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FIGURES 

 

Figure 1. 2-photon imaging in awake-behaving mice shows neural responses modulated by 

behavioral choice. A. Head-fixed mice were trained to discriminate low-frequency target tones 

(red) vs high-frequency non-target tones (blue). B. Average lick rates within a trial during task 

performance (left panel). The horizontal black bar shows the tone presentation. The red trace 

(respectively, blue trace) shows the lick rate for hits (H) (respectively, false alarms (F)). The dotted 

line illustrates chance performance, where licking is not timed to tone presentation, but rather it 

is evenly distributed across a given trial. Cumulative distribution functions across experiments for 

hit (red) and false alarm (blue) response rates and latencies (middle panels). Average behavioral-

choice rates, i.e., hit (red), miss (pink), false alarm (blue), and correct rejection (cyan), for each 

presented tone (right panel). Error bars show two standard errors of the mean (SEMs; n=34 

experiments). C. Primary auditory cortex (A1) was localized within a craniotomy by using wide-

field imaging to visualize tonotopy in auditory cortex. D. Average neuronal population response 
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traces in A1 layer 2/3 (L2/3) (N=2792 neurons) color-coded for behavioral choice as in panel B. 

Each trace shows the response to the indicated tone. Shading shows 2 SEMs. The horizontal 

colored bars show the peri- and post-stimulus windows, respectively, used for later analyses. E. 

Neurons in A1 L2/3 responded transiently, with jittered amplitude and timing in response to 

repeated identical tones. F. Neuronal response amplitude varied with both task performance and 

tone frequency. G. Attentional gain was defined as the difference between neural responses 

during behavioral vs passive trials for the same tone.  

 

 

Figure 2. Processing pipeline and information-theoretic framework. A. Examples of deconvolution 

of the ΔF/F response traces (first panel); trial-by-trial spiking activity and peristimulus time 

histogram for a single neuron (second panel); average firing rate across neurons is higher in the 

post-stimulus interval than pre-stimulus (rightmost panels; p<0.001, Wilcoxon rank sum test). B. 

Stimulus encoding and behavioral read out during auditory task performance. Blue, green and 

red circles respectively represent neurons with stimulus information (SI) only, choice information 
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(CI) only, and intersection information (II). II accounts for the part of sensory and choice 

information used to perform the task. C. Time-courses of information types (SI, CI, and II) in 

different groups of neurons. Solid lines represent the mean and shaded areas represent SEM 

across all neurons in each group. 

 

 

Figure 3. A1 L2/3 neurons transiently carried stimulus (SI), choice (CI) and intersection 

information (II). A. Information time-courses were normalized to the peak of each neuron’s 

information and sorted by peak time of II. Information ratio was first computed for each neuron 
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and then averaged across neurons. Transiency of SI, CI, and II shown by the peak-aligned 

information decay within ± 1 s from the peak (bottom panel). Error bars show one SEM. B. Time-

course of SI, CI, and II averaged over neurons. We quantified the SI, CI, and II in six separate 

stages of the behavioral task, which account for the peri-stimulus (0-1.5 s) and the post-stimulus 

intervals (1.5-3 s) shown by the shaded regions. Error bars show one SEM. C. Violin plots of the 

estimated best frequency (BF; left) and tuning bandwidth (BW; right) of neurons with early II vs 

overall population. Early II neurons had significantly lower BFs (p<0.01, Wilcoxon rank sum test) 

and narrower BWs (p<0.05, Wilcoxon rank sum test) compared to the overall population.  

 

 

Figure 4. Behavioral choice was encoded in the network structure of low II-peak latency neurons. 

A. Functional networks of short (S)- and long (L)- timescale interactions amongst low II-peak 

latency neurons were estimated using Granger Causality (GC) analysis for each behavioral 
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choice: Hit (H), Miss (M), Correct Rejection (C), and False Alarm (F). Disjoint sets of interlinked 

neurons constituted subnetworks (dashed grey boundaries). B. GC-linked neurons, for both S 

and L timescales, had more information than GC-unlinked neurons (*p<0.05; **p<0.01; 

***p<0.001). C. Four GC network statistics were analyzed: number of links, number of 

subnetworks, size of subnetworks, and statistical strength of links. Error bars show 2 SEMs. 

Statistically significant differences, indicated by asterisks, were identified by Wilcoxon’s signed 

rank test (p<0.05). See also Supp. Table S1. D. Network statistics were used to train a support 

vector machine (SVM) to classify behavioral responses into correct or incorrect decisions. Across 

timescale and selection of neurons, decisions were predicted significantly better than chance 

(p<0.001). S-timescale network structure of low II-peak latency neurons was better decoded than 

highly responsive neurons (p<0.001). L-timescale network structures had high decoding 

accuracy, but low II-peak latency networks were better decoded than highly responsive neurons 

(p<0.001). Two-sample t-tests (p<0.05) were used to compare distributions and a one-sample t-

test (p<0.05) to compare with chance performance. 

 

 

Figure 5. Subnetwork dispersion varied less by timescale during correct behavioral choices. A. 

Neurons with peri- (Pe) and post-stimulus (Po) II peaks were spatially intermingled. The sum of 

average distances of Pe neurons to their centroid (RPe) and of Po neurons to theirs (RPo), denoted 
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as RPe + Po, was smaller than the distance between centroids (RPe - Po) (p<0.001, two-sample t-test). 

B. Subnetwork spatial distributions. Low II-peak latency neurons (black) that are linked (green) in 

groups isolated from others constitute subnetworks (top left). Relative locations of subnetworked 

neurons were aggregated over all subnetworks (top right). The distributions of relative locations 

are shown as 2D histograms (25 µm x 25 µm bins) for S- and L-timescales (bottom left and right). 

C. Determinant of spatial distribution covariance matrix. L-timescale C, M, and F subnetworks 

were more spatially dispersed than S-timescale subnetworks (M: p<0.001; F: p=0.002; C: 

p=0.014). For S-timescales, H vs M subnetworks were more dispersed (p=0.002), as were F vs 

C subnetworks for L-timescales (p=0.003) D. Pairwise distances between linked neurons 

remained similar for S- vs L-timescales, except for M trials (p=0.047). Panels C and D show mean 

± 2 SEM. Asterisks indicate statistically significant differences based on Wilcoxon’s signed rank 

test (p<0.05). 

 

 

Figure 6. Redundancy and correlations increase during correct behavioral choice. A. Left panel: 

Decomposition of joint information of pairs of neurons into synergistic, cell-unique and redundant 
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components. Right panel: Normalized time-lagged redundancy computed for GC-linked neurons 

(red), either positive (orange) or negative (salmon), and GC-unlinked pairs of neurons (black). 

GC-linked neurons carried more redundant information than GC-unlinked neurons (II, SI, CI). 

Pairs of neurons connected with negative GC-links carried more redundant information related to 

II. B. Normalized redundancy across time-lagged neuronal activity (left panel), and vs the 

Euclidean distance (right panel) between pairs of both GC-linked and GC-unlinked neurons. C. 

Pairwise time-lagged signal and noise correlations between pairs of neurons at the peak of 

intersection information. Noise correlations were higher in GC-linked than GC-unlinked neurons, 

while signal correlations are distributed similarly. D. Noise and signal correlations in correct vs 

incorrect trials (2 leftmost panels); normalized time-lagged redundancy in correct vs incorrect trials 

(center-right panel); difference between the redundancy in correct vs incorrect trials for GC-linked 

and GC-unlinked neurons (rightmost panel). Statistical comparisons were made with a two-

sample t-test (*p<0.05; **p<0.01; ***p<0.001). 

 

STAR METHODS 

RESOURCE AVAILABILITY 

Lead contact 

Further information and requests for resources should be directed to and will be fulfilled by the 

Lead Contact, Patrick O. Kanold (pkanold@jhu.edu). 

 

Materials availability 

This study did not generate new unique reagents. 

 

Data and code availability 

mailto:pkanold@jhu.edu
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• Imaging data have been deposited in the Digital Repository at the University of 

Maryland and are publicly available as of the date of publication. DOIs are listed in 

the key resources table. 

 

• All original code has been deposited at Zenodo and the Digital Repository at the 

University of Maryland and is publicly available as of the date of publication. DOIs 

are listed in the key resources table. 

 

• Any additional information required to reanalyze the data reported in this paper is 

available from the lead contact upon request. 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

All procedures were approved by the University of Maryland Institutional Animal Care and Use 

Committee. We used N=9 mice (3 female, 6 male) F1 offspring of CBA/CaJ strain (The Jackson 

Laboratory; stock #000654) crossed with transgenic C57BL/6J-Tg(thy1-GCaMP6s)GP4.3Dkim/J 

mice (Dana et al., 2014)(The Jackson Laboratory; stock #024275) (CBAxThy1), 8–24 weeks old, 

in 34 total experiments. We used the F1 generation of the crossed mice because they have good 

hearing into adulthood (Frisina et al., 2011). Each mouse was tested once per day over multiple 

days. The mice were trained to perform the task before collecting 2P data during task 

performance. Mice were housed under a reversed 12 h-light/12 h-dark light cycle and trained 

during the dark cycle. 

 

METHOD DETAILS 

Auditory task 
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We designed a pure-tone frequency discrimination task that used behavioral response-timing 

rules to induce well controlled behavioral responses in mice. Each mouse was first trained on a 

positive reinforcement tone detection task, with water used as a rewarding stimulus, as done 

previously (Francis et al., 2018b). We then trained the mice on the frequency discrimination task. 

Each trial began with 1 second of silence, followed by a 55 dB SPL amplitude modulated (8 Hz) 

tone presented for 1 s. The target tone frequencies were 7 and 9.9 kHz. The non-target 

frequencies were 14 and 19.8 kHz. The tone frequency was randomized across trials. The tone 

was followed by 2 s of silence, and a random 5-9 s inter-trial interval (ITI). The tone was presented 

during every trial of task-performance, and the mice were trained to lick a waterspout after the 

onset of a target tone and to avoid licking the waterspout after a non-target tone. Each trial’s 

behavioral response was categorized as a hit (licking after target onset), miss (no licking after a 

target), false alarm (licking after non-target onset), or correct rejection (no licking in response to 

a non-target). Incorrect behavioral responses were punished with an 8 s time-out added to the 

ITI. The mice were trained to delay behavioral responses until 0.5 s after the onset of a target 

tone in order to be rewarded with a water droplet. While licking has been shown to impact activity 

in auditory cortex (Nelson and Mooney, 2016), we have previously shown that licking in the 

absence of perceptual decision making does not drive neural activity in A1 L2/3 during a go/no-

go task (Francis et al., 2018b). Here, our use of a behavioral delay was primarily for improving 

task performance, since behavioral delays in a go/no-go task design reduces impulsive licking. 

Mice were trained on the task until hit rates were consistently above 70%, and then imaged during 

behavior. Mouse health was monitored daily by a skin turgor test and checking that body weight 

remained above 80% of the initial off-study weight.  

 

Imaging 

Chronic window implantation, widefield imaging, and 2-photon (2P) imaging, were performed as 

previously (Francis et al., 2018b). In brief, a chronic imaging window was implanted over a 3 mm 
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craniotomy over auditory cortex. For widefield imaging, neuronal activity was quantified by 

comparing fluorescence during the stimulus versus the silent pre-stimulus baseline, resulting in a 

response amplitude (ΔF/F). After visualizing wide-field tonotopic maps, a site was selected for 2P 

imaging in primary auditory cortex (A1) for each mouse. For each 2P imaging site, we determined 

the frequency selectivity (best frequency [BF]) of individual neurons during passive trials, i.e., 

trials when the mouse sat quiescently hearing tones without doing an auditory task. BFs were 

determined from neuronal responses to 55 dB SPL pure tones ranging f–om 4 - 56.6 kHz. We 

used a scanning microscope (Bergamo II series, B248, Thorlabs) coupled to a pulsed 

femtosecond Ti:Sapphire 2-photon laser with dispersion compensation (Vision S, Coherent). The 

microscope was controlled by ThorImageLS software. The laser was tuned to λ = 940 nm. The 

field of view was 370 x 370 μm. Imaging frames of 512×512 pixels (pixel size 0.72 μm) were 

acquired at 30 Hz by bidirectional scanning of an 8 KHz resonant scanner. 

A different set of neurons was imaged for each experiment. Using an average field of view 

from each experiment, the somatic centers of putative neurons were manually localized and 

stored. A ring-like region of interest (ROI) was cropped around the cell center using the method 

described in Chen et al. (2013). Overlapping ROI pixels (due to closely juxtaposed neurons) were 

excluded from analysis. For each labeled neuron, a raw fluorescence signal over time was 

extracted from somatic ROIs. Pixels within the ROI were averaged to create individual neuron 

fluorescence traces, FC(t), for each trial of the experiment. Neuropil fluorescence was estimated 

for each cellular ROI using an additional ring-shaped ROI, which began 3 pixels from the somatic 

ROI. Pixels from the new ROI were averaged to obtain neuropil fluorescence traces, FN(t), for the 

same time-period as the individual neuron fluorescence traces. Pixels from regions with 

overlapping neuropil and cellular ROIs were removed from neuropil ROIs. Neuropil-corrected 

cellular fluorescence was calculated as F̂C(t) = FC(t) – 0.7FN(t). Only cells with positive values 

obtained from averaging F̂C(t) across time were kept for analysis, since negative values may 
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indicate the dominance of neuropil contamination. ΔF/F was calculated from F̂C(t), for each 

neuron, by finding the average F taken from the silent baseline period, subtracting that value from 

subsequent time-points, then dividing all time-points by the baseline F. All images were processed 

using Matlab (The Mathworks) using our prior methods (Francis et al., 2018b). 

 

Computation of stimulus and choice information 

We first deconvolved the single-trial fluorescence traces into spike rates, obtained with a sliding 

window approach across the entire duration of a trial (Fig. 2A). We inferred the relative spiking 

activity from the fluorescence traces with a first-order autoregressive model using the CaImAn 

algorithm (Giovannucci et al., 2019, Vogelstein et al., 2010) and binarized the deconvolved traces 

into 0, when there was no activity at all, and 1, if the spiking activity was above 0 (Fig. 2A). To 

validate our deconvolution, we computed the averaged spiking activity time-course of the whole 

population. In accordance with previous studies (Forli et al., 2018, Petrus et al., 2014), we found 

the firing rates in the pre-/peri-stimulus intervals were 4.4 ± 0.7 and 8.2 ± 1.6  Hz (mean ±   s.d. 

across cells) respectively (Fig. 2A). We computed mutual information carried by neurons at a 

given time either about stimulus category S (low vs high frequency tones), and about the 

behavioral choices C (lick vs. no-lick), defined as follows (Quian Quiroga and Panzeri, 2009, 

Cover and Thomas, 1991): 

𝐼(𝑋; 𝑅𝑡) = ∑ 𝑝(𝑥, 𝑟𝑡) log2 [
𝑝(𝑥, 𝑟𝑡)

𝑝(𝑥)𝑝(𝑟𝑡)
]

𝑥,𝑟𝑡

       (1) 

where 𝑋 = 𝑆, 𝐶 denotes the set of task variables, either stimuli S or choices C. 𝑅𝑡 is the set of 

responses of the neuron measured at a given time 𝑡. 𝑝(𝑥, 𝑟𝑡)𝑝(𝑟𝑡) denotes the joint probability of 

observing in a given trial a value x for the stimulus or choice variable and a value 𝑟𝑛,𝑡 for the 

activity of the neuron at time 𝑡. 𝑝(𝑥) = ∑ 𝑝(𝑥, 𝑟𝑡)𝑟 , and 𝑝(𝑟𝑡) = ∑ 𝑝(𝑥, 𝑟𝑡)𝑥 , are the marginal 

probabilities.  
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To compute the time dependent spike rates 𝑟𝑡, we first inferred the relative spiking activity 

from the fluorescence traces with the CaImAn first-order autoregressive model (Giovannucci et 

al., 2019, Vogelstein et al., 2010). We then averaged the spiking activities with a sliding window 

of 10 imaging frames, in time-steps of 1 imaging frame, and the resulting activity was binarized 

as 0/1 (occurrence or not of at least 1 spike in each window). We then computed information in 

these spike rates from Eq (1) with the Information Breakdown Toolbox (Magri et al., 2009). We 

then subtracted for each neuron the average information computed in the pre-stimulus interval. 

This procedure insures the removal of the limited sampling bias, as well as the removal of possible 

contributions of pre-stimulus choice signals (Niwa et al., 2013) reflecting e.g. stimulus-unrelated 

internal bias.  

 

Computation of intersection information 

We  computed intersection information 𝐼𝐼(𝑆, 𝑅, 𝐶), following exactly the procedure published in 

(Pica et al., 2017), to which we refer for full details. 𝐼𝐼(𝑆, 𝑅, 𝐶) quantifies the part of sensory 

information that is is used to inform behavioral readout and is bounded by both 𝐼(𝑆; 𝑅) and choice 

𝐼(𝑆; 𝐶) (Pica et al., 2017). As for stimulus and choice information, we subtracted the average 

intersection information evaluated in the pre-stimulus interval to remove limited sampling biases.  

 

Computation of information significance 

To select individual neurons with significant information of each type, we used a non-parametric 

permutation test (creating a null hypothesis distribution of information values obtained randomly 

shuffling across trials the stimulus-response or choice-response associations), and we set a 

threshold of p<0.1. Note that we constructed the null hypothesis distribution selecting for each 

random permutation the maximum information over all time windows of the permuted values. The 

so obtained p values are already corrected for multiple comparisons across time bins. Because 

having significant II also requires having significant CI and SI, when selecting neurons with 
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significant II we required that those neurons have also significant SI, CI and II at p<0.1. Given that 

these three tests are not independent, we could not evaluate the expected number of falsely 

labeled II neurons simply by taking the product of the three p-value thresholds. To empirically 

estimate the rate of falsely labeled II neurons, we repeated our selection procedure using 

surrogate data in which for each neuron we randomly permuted the trials at the outset. The 

fraction of surrogate neurons that exhibit significance at p<0.1 simultaneously for CI, SI 

and II provides an empirical estimate of the false positive rate in our selection procedure. 

We found that only 1% (31 out of 2792 neurons) of the surrogate neurons were classified as 

significant. Thus, our set of II-selected neurons contains 1% of falsely labeled II neurons, which 

corresponds effectively to a p<0.01 selection p-value.  

 We further checked how our results generalize when requiring at same time significant 

SI, CI and II with a more stringent threshold at p<0.05. In this case, we could only select 7 (rather 

than 12) experimental sessions with at least 20 II neurons for GC analysis. We repeated our 

analysis for II neurons chosen with threshold p<0.05 (See Supp. Fig. S3E-F and Supp. Table S5), 

finding the same qualitative trends of Fig. 4 but with fewer significant differences due to fewer 

number of sessions (N=7 in Supp. Fig. S3E-F vs. N=12 in Fig. 3). Notably, we were able to decode 

correct vs. incorrect choice more accurately (Supp. Fig. S3F) with this even more stringent 

threshold.  

 

Granger Causality Analysis 

Granger causality (GC) analysis evaluates the predictive influence of the past activity of one 

neural process on present activity of another. GC analysis was performed similarly as in our 

previous work (Francis et al., 2018b) by fitting sparse vector autoregressive (VAR) models to the 

ensemble neural responses (ΔF/F), calculating an unbiased GC measure for each potential link, 

and characterizing the GC link strengths using Youden’s J-statistics following false discovery rate 
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control at a rate of 0.001. We highlight here three key differences from previous analysis regarding 

model estimation, modelling history-dependency, and neuron selection, and refer the reader to 

(Francis et al., 2018b) for a recapitulation of the remaining details. 

In order to estimate GC network connectivity amongst larger networks, the maximum 

likelihood problem in (Francis et al., 2018b) is solved, employing the Orthogonal Matching Pursuit 

(OMP) algorithm (Zhang, 2011, Cai and Wang, 2011) to fit sparse VAR models rather than ℓ1-

regularisation. OMP enables the sparsity of the estimated parameter vector—i.e. the number of 

non-zero parameters—to be controlled, thus mitigating model overfitting more robustly. The 

sparsity level of each VAR model is obtained by cross-validation. The set of non-zero parameters, 

called the model support set, is iteratively selected: at each iteration, a new parameter with the 

greatest contribution to the residual estimation error is added to the support and maximum 

likelihood estimation is performed over the updated support set. 

 The neural responses of a set of 𝐶 neurons, indexed by 𝑐 = 1, … , 𝐶, are denoted by 

{𝑦𝑟,𝑛
(𝑐)

}
𝑟=1:𝑅,𝑛=1:𝑁

𝑐=1:𝐶
, where 𝑛 = 1, … , 𝑁 and 𝑟 = 1, … , 𝑅 index time bins and trial repetitions, 

respectively. The covariates of the VAR model of each neural response incorporate the self- and 

cross-histories of activity over an integration window of 𝐿 samples within which neuronal 

interactions are assumed to occur. The integration window is subdivided into 𝑀 non-overlapping 

windows of lengths {𝑊𝑚}𝑚=1:𝑀. The average activity of neuron (𝑐) in the 𝑚-th window lag with 

respect to time bin 𝑛 and trial 𝑟 is given by 

ℎ𝑟,𝑛,𝑚
(𝑐)

=  
1

𝑊𝑚
 ∑ 𝑦𝑟,𝑘

(𝑐)
,

𝑛−1−𝑏𝑚−1

𝑘=𝑛−1−𝑏𝑚

       (2) 

where 𝑏𝑚 = ∑ 𝑊𝑚
𝑚
𝑙=1  and 𝑏0 = 0. The collection of history covariates {ℎ𝑟,𝑛,𝑚

(𝑐)
}

𝑚=1:𝑀

𝑐=1:𝐶
 comprises the 

regressors of 𝑦𝑟,𝑛
(𝑐). Note that the conditional independence of responses given the collection of 

history covariates allows to estimate the VAR parameters at the single-trial level by maximizing 

the joint likelihood of the within-trial responses via OMP (Francis et al., 2018b). 
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Interactions between neurons over short timescales (S) are modelled with an integration window 

of 𝐿 = 7 lags with 𝑀 = 3 subdivisions with window lengths {𝑊𝑚}𝑚=1:𝑀 = {2𝑚−1}𝑚=1:𝑀 lags. Long 

timescale (L) interactions are modelled by instead using a cross-history integration window of 

length 𝐿 = 31 lags with 𝑀 = 5 subdivisions whose window lengths are similarly defined. S and L 

timescale interactions thus respectively correspond to 233 ms and 1033 ms windows of effective 

history. It is clear from the parameterization that the S and L interactions are modelled in a nested 

fashion. We validate this approach by simulating a 10 neuron network consisting of both S- and 

L-timescale links (see Supp. Fig. S6). Employing the L integration window for GC analysis, we 

are able to correctly identify all L- and S-timescale interactions; however, using the S integration 

window, while the S-timescale links are correctly identified, the L-timescale links are expectedly 

discarded, thus corroborating the sensitivity and specificity of our proposed inference framework. 

Twenty neurons were analyzed from each 2P experiment. Analyzing a subset of fixed size 

avoids intersession variations in the number of recorded neurons that could affect analyses. The 

total number of model parameters, 𝑀 ∙ 𝐶, needs to be much smaller than the total number of 

samples, 𝑅 ∙ 𝑁, for reliable model estimation. We use at most 𝑀 = 5 subintervals and per trial 

used the 𝑁 = 105 time samples of the response after stimulus onset; we calculated 𝐶 = 20 to be 

the maximum number of neurons that satisfies this condition, conservatively assuming at 

minimum 𝑅 = 10 trials per session of each behavioral choice category. In our main results, 20 II 

neurons with the lowest II-peak latency in each experiment (N=12) in which at least as many II 

neurons were identified. For consistency, 20 exclusively CI neurons were similarly selected in the 

analyses presented in Supp. Fig. S3A-B. Highly active neurons in each 2P experiment (N=34) 

were selected per behavioral choice category. The neural response of the 𝑐𝗍𝗁 neuron at the 𝑛𝗍𝗁 

time index of the 𝑟𝗍𝗁 repeated trial of a behavioral category, 𝑦𝑟,𝑛
(𝑐), is normalized 𝑦̃𝑟,𝑛

(𝑐)
=

𝑦𝑟,𝑛
(𝑐)

√∑ (𝑦𝑟,𝑛
(𝑐)

)2

𝑛

. 
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The 20 neurons with the smallest trial-averaged variances of the normalized responses, 𝜎(𝑐)2
=

1

𝑅
∑ 𝑉𝑎𝑟(𝑦𝑟,𝑛

(𝑐)
)

𝑟
, were selected. 

 

Decoding behavioral choice from network structure 

To test if network structures encode behavioral choice, we trained classifiers on four GC network 

statistics — number of links, number of subnetworks, size of subnetworks, and statistical strength 

of links — to distinguish correct (Hit or Correct Rejection) and incorrect (Miss or False Alarm) 

decisions. Feature vectors consisting of these statistics were compiled for each behavioral choice 

network from the VAR parameters estimated at the single-trial level. We then trained a linear 

support vector machine (SVM) at the single-trial level to predict behavioral choice using a 

randomly selected 75% of the feature vectors, with the remaining 25% used to evaluate prediction 

accuracy. This procedure was repeated 2000 times, each with a new randomized partition of 

feature vectors, to characterize the distribution of average classification accuracy.  

 

Spatial Distribution of GC subnetworks 

To investigate the spatial scales over which functionally linked neurons interact, we leveraged the 

spatial location of individual neurons available in 2P imaging to analyze how subnetworks were 

distributed across the imaged cortical area. To this end, the locations of subnetworked neurons 

relative to their centroid were obtained as follows. For a subnetwork of 𝑅 neurons with positions 

{(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑅 , we compute their locations relative to the subnetwork centroid, {(𝑥𝑖  −  𝑥, 𝑦𝑖 − 𝑦)}𝑖=1

𝑅 , 

where 𝑥 =
1

𝑅
∑ 𝑥𝑖

𝑟
𝑖=1  and 𝑦 =

1

𝑅
∑ 𝑦𝑖

𝑟
𝑖=1 . The relative locations are compiled over all subnetworks to 

yield an empirical distribution. The covariance matrix of the distribution describes the spatial 

spread of subnetworks. Its determinant – which accounts for both the covariance between 𝑥 and 

𝑦 as well as their respective variances – is used as a comparative statistic to quantify differences 

in the spatial dispersion of subnetworks across conditions. 
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Computation of information redundancy  

We used a normalized redundancy index defined as the information carried jointly by two neurons 

minus the sum of the information that each carried independently, normalized with respect to the 

total information carried by the two neurons jointly (Pola et al., 2003, Schneidman et al., 2003): 

𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦 =
𝐼(𝑋; 𝑅1,𝑡1

, 𝑅2,𝑡2
) − 𝐼(𝑆; 𝑅1,𝑡1

) − 𝐼(𝑆; 𝑅2,𝑡2
)

𝐼(𝑋; 𝑅1,𝑡1
, 𝑅2,𝑡2

)
      (3) 

 For each of the two neurons, we selected activity at the time t1,t2 of their peak information. The 

single neuron information was computed as in section “Definition of stimulus, choice and 

intersection information for single neurons”. The joint time-lagged stimulus and choice information 

was computed as follows: 

𝐼(𝑋; 𝑅1,𝑡1
, 𝑅2,𝑡2

) = ∑ ∑ 𝑝(𝑥, 𝑟1,𝑡1
, 𝑟2,𝑡2

) log2 [
𝑝(𝑥, 𝑟1,𝑡1

, 𝑟2,𝑡2
)

𝑝(𝑥)𝑝(𝑟1,𝑡1
, 𝑟2,𝑡2

)
]

𝑟1,𝑡1 ,𝑟2,𝑡2𝑥

     (4) 

Notations are as in Eq. (1) , with now 𝑝(𝑋, 𝑟1,𝑡1
, 𝑟2,𝑡2

) denoting the probability of observing in a 

given trial a value x of the behavioral variable (stimulus category or choice) and a joint response 

𝑟1,𝑡1
, 𝑟2,𝑡2

 of the two neurons at times t1,t2 respectively. Intersection information was computed with 

the methods detailed in (Pica et al., 2017), using the joint response 𝑟1,𝑡1
, 𝑟2,𝑡2

 as the neural 

response variable.  

 

Computation of signal and noise correlations 

We computed noise correlations as across-trials Pearson correlations of the activity of pairs of 

neurons at fixed stimulus (then averaged over stimuli), whereas signal correlations were 

computed as Pearson correlations across stimuli of the trial-averaged responses to each of the 

two stimuli (high vs low frequency tones). Given the imbalance in the number of correct and 

incorrect trials, we equalized the sample sizes by randomly subsampling the correct trials, to avoid 

systematic errors in the comparisons between correct and incorrect trials (see Fig. 6D). 
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QUANTIFICATION AND STATISTICAL ANALYSIS 

Unless noted otherwise, statistical comparisons were performed using a bootstrap t-test with 

10000 iterations or a Kolmogorov–Smirnov test (KS-test), for both one- and paired-sample tests. 

Kruskal-Wallis tests were used when there were >2 groups being compared. We used a 

Bonferroni correction for multiple comparisons. All mean values are reported with 2 standard 

errors of the mean, unless noted differently. 
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SUPPLEMENTAL FIGURES 

 
 

Supplemental Figure S1. Time-course of SI, CI, and II averaged over neurons that carried 

stimulus information (SI) only in A-B and choice information (CI) only in C-D. As in Figure 3, we 

quantified the SI, CI, and II in six separate stages of the behavioral task, which account for the 

peri-stimulus (0-1.5 s) and the post-stimulus intervals (1.5-3 s) shown by the shaded regions. 

Error bars show one standard error of the mean (SEM; N=#neurons with SI, CI peaks within the 

stage). 
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Supplemental Figure S2. Two neurons having II is neither necessary nor sufficient for them to 

be GC-linked. Related to Figure 4. A. The first case shows two II neurons, i.e. two neurons that 

are modulated by stimulus signal and both modulate a choice signal. However, they do not 

modulate each other’s activity and hence there is no GC link. B. The second case shows two 

neurons in which the activity of neuron 1 is modulated by the activity of neuron 2, i.e. there is a 

GC link from neuron 2 to neuron 1. However, neither neuron is modulated by the stimulus signal 

nor do they modulate the choice signal and so the two neurons do not have II. 
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Supplemental Figure S3. Network structure of neurons with CI, but not II, neurons with greatest 

peak II magnitudes, and neurons with lowest II-peak latency but with more strict selection 
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threshold. Related to Figure 4. A. Functional networks of short (S)- and long (L)- timescale 

interactions amongst neurons with high CI, but not II, were estimated using GC analysis for each 

behavioral choice. 20 exclusively CI neurons with above-threshold peak CI and sub-threshold 

peak II that had the shortest CI peak latency were selected for GC network analysis in each 

session with at least 20 CI neurons. Number of links, number of subnetworks, size of subnetworks, 

and statistical strength of links are represented as means ± 2 SEM. Asterisks indicate statistically 

significant differences based on Wilcoxon’s signed rank test (p<0.05). See also Supp. Table S3. 

B. Network statistics were used to train an SVM to classify into correct or incorrect decisions. 

Across timescale and selection of neurons—except CI S-timescales—decisions were predicted 

significantly better than chance (p<0.001). S-timescale network structure of CI neurons was 

decoded at chance-level accuracy, less than of low-latency II neurons (p<0.001), shown in Fig. 

4. L-timescale network structure had higher decoding accuracy, and CI neuronal networks were 

decoded with similar accuracy (p=0.708). A two-sample t-test (p<0.05) was used to compare to 

neurons with low-latency II, and a one-sample t-test (p<0.05) to compare performance with 

chance decoding accuracy. C. Network statistics of greatest peak II magnitude neurons are 

shown in the same format as in panel A. Network statistics differed by timescale and behavioral 

choice similarly to network statistics of low II-peak latency neurons (Figure 4C). See also 

Supplemental Table S4. D. Network statistics were used to train an SVM to classify into correct 

or incorrect decisions. Across timescale and selection of neurons, decisions were predicted 

significantly better than chance (p<0.001). S-timescale network structure of high-magnitude II 

neurons was better decoded than of highly responsive neurons (p<0.001). L-timescale network 

structures had high decoding accuracy, but highly responsive neuronal networks were better 

decoded (p<0.001). E. Network statistics of low II-peak latency neurons chosen with II threshold 

of p<0.05 (see methods) are shown in the same format as in panel A. Network statistics differed 

by timescale and behavioral choice similarly to network statistics of low II-peak latency neurons 

(Figure 4C). Network structure of neurons with lowest II-peak latency is robust to selection 
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threshold. See also Supplemental Table S5. F. Network statistics were used to train an SVM to 

classify into correct or incorrect decisions. Across timescale and selection of neurons, decisions 

were predicted significantly better than chance (p<0.001). S-timescale network structure of low II-

peak latency neurons was better decoded than of highly responsive neurons (p<0.001). L-

timescale network structures had high decoding accuracy, and low II-peak latency neuronal 

networks were still better decoded (p<0.001). Thus, network structure of low II-peak latency 

neurons is robust to choice of II threshold. Importantly, decoding accuracies are higher (83.3%) 

with the lower threshold than our main result in Fig. 4C, but distributions are more skewed. 

Asterisks indicate statistically significant differences. Wilcoxon’s signed rank test (p<0.05) was 

used in panels A, C, and E, a two-sample t-test (p<0.05) to compare to neurons with high activity, 

and a one-sample t-test (p<0.05) to compare performance with chance decoding accuracy in 

panels B, D, and F. 
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Supplemental Figure S4. The normalized time-lagged redundancy index showed that GC-linked 

pairs of neurons in L-timescale networks shared more redundant information (II, SI, CI) than GC-

unlinked pairs of neurons (see Figure 6 in the main text for a comparison to S-timescale networks). 

Related to Figure 6. We report no difference in redundancy index between groups of positive and 

negative GC-linked neurons. Statistical comparisons between groups are made with a two-

sample t-test (*p<0.05; **p<0.01; ***p<0.001).  

  

-0.225

0

R
ed

un
da

nc
y

Information Redundancy for 
Long Timescale Links

II SI CI
***

*** **
GC
No GC

+GC
-GC



54 
 

54 
 

 

  
 

Supplemental Figure S5. Stimulus information of significant II neurons and contribution 

of noise correlation to joint information of neural pairs during correct and incorrect behavior.  

Related to Figure 6. A. Stimulus information was computed separately for correct and incorrect 

trials for significant II neurons at the time peak of each neuron’s information. Stimulus information 

was higher in correct trials. The upper and lower edges of the boxes show the 75th and 25th 

percentiles, respectively, and the horizontal line marks the sample median. B. Using the 

information breakdown approach of (Pola et al., 2003), we broke down the contribution of noise 

correlations to the joint information carried by neuron pairs into the finer sub-components of 

stimulus-independent (left panel) and stimulus-dependent (right panel) noise correlations, 

separately for GC-linked and GC-unlinked pairs. Stimulus-dependent information decreased in 

incorrect trials for both groups of cells, while stimulus-dependent information increased in 

incorrect trials for GC-unlinked pairs. Bar plots show mean ± SEM. Results are reported in bits 

(as opposed to Fig. 6 of the main text where we plotted normalized redundancy/synergy values). 

To avoid systematic error (bias) in the estimation of information due to the different number of 

correct and error trials, we equalized the number of correct and incorrect trials by randomly 

subsampling the correct trials. Asterisks indicate statistically significant differences computed with 

a Wilcoxon’s signed rank test (*p<0.05, ***p<0.001). The synergy between neurons during 

incorrect trials shown in Fig. 6D, despite having positive signal and noise correlations, is due to 
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the major decrease of signal correlations, through the deterioration of the stimulus information 

(panel A), and the decrease of noise correlation strengths. Panel B suggests that the decrease 

of signal and noise correlation strengths greatly diminished the information-limiting effects of 

stimulus-independent correlations and left only the information enhancing effect of stimulus-

dependent correlations, which led to synergy. 
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Supplemental Figure S6. Simulated example for assessing the use of the proposed 

parametrization of the integration window lengths in Granger causality (GC) network inference. 

Related to STAR Methods. A. Simulated responses of 10 neurons, shown averaged over 10 trials 

of 150 time samples in the left panel, were generated based on an underlying network of long (L) 

and short (S) timescale interactions (right subpanels). B. GC analysis using the short integration 

window identifies true S-timescale interactions, while expectedly discarding the L-timescale 

influences. False discovery rate (FDR) control prunes weak spurious interactions and retains 

significant links. C. Employing the L integration window for GC analysis captures both S and L 

influences, and after FDR control, the true functional connectivity is inferred correctly. 

 
 

 
  



57 
 

57 
 

SUPPLEMENTAL TABLES 

 

Supplemental Table S1. Statistical comparisons of GC network structure across short (S) and 

long (L) timescales, and behavioral choice categories — hit (H), miss (M), correct-rejection (C), 

and false-alarm (F) – using Wilcoxon’s signed rank test (p<0.05). See also Fig. 4C. 

  

# Links # Subnets Subnet Size Link Strength
S L p-value S L p-value S L p-value S L p-value

H 8.25 ± 1.61 8.33 ± 1.49 0.97 1.58 ± 0.19 2.08 ± 0.31 0.19 5.11 ± 0.75 4.16 ± 0.61 0.333 0.91 ± 0.009 0.89 ± 0.006 0.111
M 2.08 ± 1.05 21.42 ± 6.10 0.009 0.83 ± 0.24 1.50 ± 0.26 0.074 3.30 ± 0.99 7.94 ± 1.91 0.041 0.91 ± 0.012 0.85 ± 0.014 0.014
p-value 0.005 0.059 0.024 0.167 0.161 0.073 0.975 0.02
C 2.58 ± 0.91 4.58 ± 2.32 0.189 1.00 ± 0.28 1.92 ± 0.34 0.047 3.08 ± 0.42 3.00 ± 0.43 0.59 0.95 ± 0.011 0.93 ± 0.015 0.369
F 2.33 ± 0.73 20.5 ± 3.90 <0.001 1.42 ± 0.31 1.50 ± 0.19 0.824 2.59 ± 0.32 10.0 ± 1.72 <0.001 0.91 ± 0.012 0.85 ± 0.016 0.013
p-value 0.832 0.002 0.33 0.298 0.357 <0.001 0.049 0.002
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Supplemental Table S2. Highly responsive neurons: statistical comparisons of GC network 

structure across short (S) and long (L) timescales, and behavioral choice categories — hit (H), 

miss (M), correct-rejection (C), and false-alarm (F) – using Wilcoxon’s signed rank test (p<0.05). 

See also Figure 4. 

  

# Links # Subnets Subnet Size Link Strength
S L p-value S L p-value S L p-value S L p-value

H 8.41 ± 1.605 13.91±2.885 0.102 1.63 ± 0.178 2.53 ± 0.229 0.003 4.64 ± 0.556 4.48 ± 0.486 0.836 0.91 ± 0.009 0.88 ± 0.008 0.023
M 1.88 ± 0.453 29.91±4.544 <0.001 1.13 ± 0.233 1.47 ± 0.168 0.235 2.58 ± 0.171 10.11±1.174 <0.001 0.92 ± 0.007 0.84 ± 0.009 <0.001
p-value <0.001 0.004 0.093 <0.001 <0.001 <0.001 0.457 <0.001
C 6.72 ± 1.112 12.31±2.817 0.072 2.06 ± 0.206 2.34 ± 0.236 0.372 3.67 ± 0.390 4.48 ± 0.467 0.183 0.92 ± 0.007 0.90 ± 0.008 0.013
F 6.63 ± 1.261 19.25±3.057 <0.001 1.88 ± 0.245 1.59 ± 0.148 0.33 3.90 ± 0.454 8.23 ± 0.922 <0.001 0.90 ± 0.009 0.86 ± 0.009 0.002
p-value 0.956 0.1 0.56 0.01 0.697 <0.001 0.051 0.001
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Supplemental Table S3. Neurons exclusively with CI: statistical comparisons of GC network 

structure across short (S) and long (L) timescales, and behavioral choice categories — hit (H), 

miss (M), correct-rejection (C), and false-alarm (F) – using Wilcoxon’s signed rank test (p<0.05). 

See also Figure 4 and Supplemental Figure S3A. 

  

# Links # Subnets Subnet Size Link Strength
S L p-value S L p-value S L p-value S L p-value

H 1.57 ± 0.783 6.14 ± 3.233 0.213 0.86 ± 0.340 1.43 ± 0.572 0.411 2.83 ± 0.477 4.50 ± 1.594 0.339 0.93 ± 0.006 0.90 ± 0.029 0.385
M 2.29 ± 0.993 19.71±6.925 0.046 1.14 ± 0.340 1.43 ± 0.429 0.612 2.88 ± 0.516 9.0 ± 2.749 0.054 0.91 ± 0.022 0.83 ± 0.014 0.04
p-value 0.583 0.116 0.563 1 0.954 0.178 0.492 0.142
C 1.29 ± 0.566 1.71 ± 0.566 0.602 0.71 ± 0.286 1.0 ± 0.309 0.51 2.60 ± 0.400 2.43 ± 0.297 0.74 0.95 ± 0.007 0.92 ± 0.014 0.157
F 5.29 ± 3.08 22.14±7.640 0.075 0.86 ± 0.261 1.43 ± 0.369 0.233 6.0 ± 2.381 9.50 ± 2.487 0.033 0.89 ± 0.015 0.84 ± 0.015 0.069
p-value 0.246 0.037 0.718 0.391 0.215 0.019 0.021 0.006
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Supplemental Table S4. Neurons with greatest II-peak magnitudes: statistical comparisons of 

GC network structure across short (S) and long (L) timescales, and behavioral choice categories 

— hit (H), miss (M), correct-rejection (C), and false-alarm (F) – using Wilcoxon’s signed rank test 

(p<0.05). See also Figure 4 and Supplemental Figure S3C. 

  

# Links # Subnets Subnet Size Link Strength
S L p-value S L p-value S L p-value S L p-value

H 10.17±2.915 8.92 ± 2.704 0.756 2 ± 0.229 2 ± 0.427 0.401 5.42 ± 1.050 4.25 ± 0.813 0.383 0.89 ± 0.011 0.90 ± 0.001 0.282
M 0.92 ± 0.286 24.67 ± 6.59 0.004 0.83 ± 0.271 1.83 ± 0.366 0.04 2.1 ± 0.10 7.46 ± 1.036 0.002 0.93 ± 0.012 0.85 ± 0.013 0.002
p-value 0.009 0.043 0.046 0.77 0.005 0.074 0.065 0.002
C 3.17 ± 1.10 6.17 ± 1.714 0.157 1.25 ± 0.329 1.67 ± 0.334 0.383 2.93 ± 0.284 3.55 ± 0.651 0.393 0.93 ± 0.011 0.91 ± 0.012 0.27
F 1.83 ± 0.695 16.17±4.114 0.005 1.17 ± 0.366 2 ± 0.288 0.062 2.5 ± 0.360 6.56 ± 1.221 0.003 0.93 ± 0.014 0.86 ± 0.015 0.009
p-value 0.319 0.041 0.867 0.354 0.353 0.036 0.798 0.035
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Supplemental Table S5. Neurons with low II-peak latency (threshold p<0.05): statistical 

comparisons of GC network structure across short (S) and long (L) timescales, and behavioral 

choice categories — hit (H), miss (M), correct-rejection (C), and false-alarm (F) – using Wilcoxon’s 

signed rank test (p<0.05). See also Figure 4 and Supplemental Figure S3E. 

  

# Links # Subnets Subnet Size Link Strength
S L p-value S L p-value S L p-value S L p-value

H 12.0 ± 2.76 11.6 ± 3.02 0.918 1.86 ± 0.46 2.43 ± 0.30 0.32 5.62 ± 1.15 4.35 ± 0.96 0.408 0.90 ± 0.008 0.90 ± 0.010 0.801
M 1.00 ± 0.53 21.7 ± 5.78 0.012 0.71 ± 0.29 1.71 ± 0.29 0.029 2.40 ± 0.24 8.33 ± 2.02 0.014 0.89 ± 0.004 0.85 ± 0.008 <0.001
p-value 0.007 0.154 0.061 0.11 0.017 0.094 0.659 0.001
C 5.14 ± 2.41 7.43 ± 2.53 0.526 1.71 ± 0.71 2.00 ± 0.38 0.732 3.08 ± 0.47 4.00 ± 0.78 0.327 0.91 ± 0.14 0.93 ± 0.019 0.654
F 2.00 ± 0.58 19.6 ± 8.72 0.091 1.57 ± 0.43 1.86 ± 0.26 0.582 2.27 ± 0.20 6.85 ± 1.74 0.022 0.95 ± 0.023 0.86 ± 0.019 0.019
p-value 0.247 0.223 0.867 0.762 0.131 0.154 0.311 0.037
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Supplemental Table S6. Supplemental statistical comparisons of correct/incorrect decision GC 

network structure by stimulus — i.e., hit (H) vs. correct-rejection (C), and miss (M) vs. false-alarm 

(F) – for short (S) and long (L) timescales using Wilcoxon’s signed rank test (p<0.05). 

Comparisons performed for networks of low II-peak latency neurons (see also Figure 4 and Table 

S1); highly responsive neurons (see also Supp. Table S2); CI neurons (see also Supp. Fig. S3A-

B and Table S3); and high-magnitude II neurons (see also Supp. Fig. S3C-D and Supp. Table 

S4). 

 

 

 
 

 
 

 

 

S L S L S L S L

Low-Latency II Networks

H vs. C 0.007 0.06 0.098 0.72 0.025 0.128 0.0143 0.017

M vs. F 0.85 0.901 0.155 1 0.508 0.429 0.803 0.769

Highly Responsive Networks

H vs. C 0.391 0.694 0.113 0.57 0.157 0.998 0.277 0.229

M vs. F 0.001 0.055 0.03 0.579 0.008 0.213 0.125 0.091

CI Networks

H vs. C 0.773 0.223 0.753 0.525 0.717 0.231 0.196 0.582

M vs. F 0.384 0.818 0.518 1 0.251 0.894 0.488 0.797

High Magnitude II Networks

H vs. C 0.041 0.401 0.415 0.545 0.033 0.505 0.033 0.868

M vs. F 0.242 0.288 0.472 0.597 0.301 0.651 0.771 0.464

# Links # Subnets Subnet Size Link Strength
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