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ABSTRACT:  Reported herein is the total synthesis of (+)-ambiguine G, the first member of the chlorinated pentacyclic ambiguines to yield 
to chemical synthesis. The synthesis is accomplished through a convergent strategy that proceeds in 10 steps from (S)-carvone oxide. Pivotal 
to the concise route is the successful realization of a [4+3] cycloaddition that conjoins two easily synthesized components of the carbon frame-
work of the natural product. Also featured in the synthesis is the efficient, diastereoselective construction of a key vinylated chloroketone and 
the unprecedented, one-pot reduction-elimination-oxidation sequence that transforms an enone to an advanced hydroxylated-diene interme-
diate. 

The ambiguines are a subset of the large hapalindole family of 
more than 80 cyanobacteria metabolites that also includes the fisch-
erindoles and welwitindolinones.1,2 The first of the ambiguines were 
identified by Smitka and Moore in 1992 while screening fungicidal 
extracts primarily from the terrestrial cyanophytes Fischerella am-
bigua.3 Although the full bioactivity profiles of these alkaloids have 
yet to be fully assessed, several members have displayed useful prop-
erties. Of note, ambiguine I isonitrile (4) is not only a stronger anti-
bacterial and antifungal agent than established clinical agents, but it 
is also a potent NF-κB inhibitor (IC50=30 nM), with cytotoxic activ-
ity against HT-29 colon cancer and MCF-7 breast cancer cells (Fig-
ure1).4,5 Structurally, all ambiguines contain the tetracyclic core of 
the hapalindoles, but thirteen of the eighteen members possess an 
additional, seven-membered ring that connects the indole to the dis-
tal six-membered ring. Furthermore, over half of the ambiguines 
possess a chlorine atom at C13, rendering them significantly more 
difficult as targets for synthesis.1,6 The intricate polycyclic architec-
ture and the unpredictable reactivity of the pentacyclic ambiguines 
present a significant challenge to the state-of-the-art of synthesis, 
one that went unmet despite numerous efforts over many years.7,8  It 
was only in 2019 that the first pentacyclic member of this family of 
natural products succumbed to synthesis. Two contemporaneous 
publications, one by Sarpong and coworkers and the other us, pre-
sented distinctly different strategies for the synthesis of ambiguine P 
(7).9 We now report the total synthesis of (+)-ambiguine G (8), the 
first member of the chlorinated pentacyclic ambiguines to yield to 
chemical synthesis.10  

Our strategy to ambiguine G (8) is intimated in the retrosynthesis 
shown in Scheme 1 and is enabled by three key insights. First, the 
chlorine atom at C13 would be installed early in the synthesis to 
avoid potential rearrangements induced by the adjacent vinyl group 
in a rigid, advanced intermediate, as observed in the welwitindo-
linones.11 Second, through advanced model studies, we determined 
that the desired [4+3] cycloaddition reaction, which was unrealized 
in our ambiguine synthesis,9b could be rendered efficacious by using 
an alkoxy diene instead of a siloxyl diene. Lastly, a removable func-
tionality at C15 with low tendency to leave as a cation was deemed 

 
Figure 1. Selected members of the ambiguine natural products. 
essential for the late-stage functionalization of C23. Otherwise, in-
stallation of the nitrile group at that position, whether through site-
selective, direct electrophilic cyanation or via halogenation followed 
by transition metal catalyzed coupling with cyanide, was expected to 
be complicated by untoward reactions (e.g., proton loss from C15). 
 

Scheme 1. Retrosynthetic Analysis 
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Our synthesis of ambiguine G (8) commenced with the prepara-
tion of chloroketone 17, a functionalized six-membered ring unit 
common to numerous members of the hapalindole family. While 
seemingly simple, ketone 17 presents unique challenges, and the 
only reported synthesis of it requires 10 steps.12 In devising an alter-
nate route to 17, we planned to install the chloride via a stereoinver-
tive-deoxychlorination of a hydroxy ketone precursor 16, which 
mapped nicely over (S)-carvone oxide, provided a vinyl group could 
be introduced from the side opposite to that of the isopropenyl unit. 
In simple carvone derivatives, however, it is well documented that 
carbon electrophiles are introduced at C2 cis to the isopropenyl unit 
due to stereoelectronic factors. Therefore, installation of a substitu-
ent trans to the isopropenyl unit would require harnessing the chi-
rality of a preexisting functionality on a carvone derivative, thereby 
overriding the intrinsic diastereoselectivity. With this recognition, 
we examined different strategies with the goal of preinstalling a hy-
droxyl group at C3 and using it to direct a vinylation reaction. Suc-
cess was achieved through the method reported by Coltart and 
coworkers.13  Addition of vinylmagnesium bromide to tosylhydra-
zone 15, which was easily prepared from commercially available (S)-
carvone oxide,14 followed directly by copper (II) chloride mediated 
hydrolysis of the hydrazone provided ketone 16 with nearly com-
plete diastereoselectivity (Scheme 2). 15  The vinyl addition took 
place as desired from the side away from the isopropenyl unit, osten-
sibly directed by coordination of the Grignard reagent with the 
alkoxide intermediate.13a,c To our knowledge, this epoxyhydrazone-
mediated directed introduction of a carbon substituent a-to a car-
bonyl group has not been utilized in natural product synthesis.16 
Conversion of the vinyl-alcohol product 16 to chloroketone 17 was 
accomplished using N-chlorosuccinimide and PPh3 with complete 
stereoinversion at the chlorine attaching carbon. The stereoreten-
tive chlorination product was not observed.   
Scheme 2. Synthesis of Chloroketone 17 

 

 

With a practical, two-step synthesis of chloroketone 17 in hand, 
we focused our attention on assembling the carbon framework of the 
natural product via the [4+3] cycloaddition reaction.17 Although our 
published route to ambiguine P (7) was inspired by this cycloaddi-
tion as the key step, in practice it proved unsuccessful.9b Rather than 
forging two C-C bonds to form the seven-membered ring, the reac-
tion gave what is effectively the Friedel-Crafts alkylation product of 
the silyl enol ether and the benzylic cation (cf. 11 + 12, Scheme 1). 
We reasoned that the reaction may proceed in a stepwise manner, 
wherein the labile silyl group falls off after formation of the first C-C 
bond to give an “interrupted” [4+3] product. Based on this hypoth-
esis, we examined the cycloaddition reaction of ethoxy diene 18, 
which was easily synthesized from ketone 17 via triflation followed 
by Stille cross-coupling. To our delight, treatment of diene 18 and 
indolic silyl ether 1918 with TMSOTf promoted the desired [4+3] 
reaction to afford tetracycle 20 cleanly, with no evidence of the 
Friedel-Crafts reaction product (Scheme 3).  

An efficient, two-pot reaction sequence was developed to trans-
form tetracycle 20 to pentacyclic alcohol 23. First, the [4+3] cy-
cloadduct was treated with BF3•OEt2 to annulate the final ring 
through a Friedel-Crafts reaction. Subsequent addition of TBAF to 
quench the Lewis acid followed by DDQ oxidized the intermediate 
ketone to enone 10 in good yield. In the next protocol, DIBAL re-
duction of the carbonyl group and elimination of the resulting alkox-
ide using Et2AlCl produced a mixture of the conjugated diene 21 and 
the cross-conjugated diene 22, greatly favoring the latter. The high 
regioselectivity for diene 22 likely reflects the stereoelectronic pref-
erence for elimination of the axially-oriented C15 proton over the 
C23 proton in the conformationally rigid pentacyclic framework. 
The facile deprotonation at C15 also complicates the required elec-
trophilic functionalization at C23 on diene 21 and necessitates the 
installation of a blocking group at C15. Fortunately, the C15 carbon 
of diene 22 was found to be unexpectedly electron rich, making it 
susceptible to air oxidation. Based on this realization, we developed 
a highly efficient procedure wherein after DIBAL reduction and 
Et2AlCl-mediated elimination, KHMDS was added to deprotonate 
the indole nitrogen and then the reaction mixture was exposed to air. 
Gratifyingly, the intermediate indole anion reacted with oxygen at 
C15 and the resulting hydroperoxide was reduced by the P(OMe)3 
present to provide alcohol 23 in good yield and excellent diastere-
oselectivity (13:1).  
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Scheme 3. Total Synthesis of (+)-Ambiguine G  

Having installed the hydroxyl group at C15, and thereby fore-
stalled side reactions arising from proton loss from that position, the 
next task was to introduce the nitrile group at C23. Although meth-
ods for the direct introduction the nitrile group proved unsuccessful, 
treatment of diene 23 with N-bromosuccinimide selectively bromin-
ated the distal carbon of the conjugated diene without touching the 
vinyl group.  A subsequent tautomerization in the presence of pyri-
dinium p-toluenesulfonate produced alkenyl bromide 24 in high 
yield. The nitrile group was then introduced in good yield by a palla-
dium catalyzed coupling reaction.19 Having served its function, the 
hydroxyl group was removed under ionic hydrogenation conditions 
(BF3•OEt2 and Et3SiH) to afford (+)-ambiguine G (8), which was 
formed as a single diastereomer. 

In summary, we have completed the enantiospecific synthesis of 
(+)-ambiguine G (8), a chlorinated member of the ambiguine fam-
ily of indole alkaloids. The synthesis is accomplished through a con-
vergent strategy that proceeds in 10 synthetic operations from (S)-
carvone oxide and demonstrates: (1) the construction of a key chlo-
rine substituted cyclohexanone precursor through an alkoxide di-
rected vinylation reaction, (2) the rapid assembly of the core skele-
ton of the natural product by a [4+3] cycloaddition reaction,  and (3) 
the unprecedented, one-pot reduction-elimination-oxidation se-
quence that transforms an enone intermediate to a pivotal hydroxy 
diene. The efficiency of the route is expected to provide ready access 
to more intricate members of the pentacyclic ambiguines, as well as 
their analogs.  
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