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Abstract

Encouraged by decision makers’ appetite for future information on topics ranging from elections to pan-
demics, and enabled by the explosion of data and computational methods, model based forecasts have
garnered increasing influence on a breadth of decisions in modern society. Using a classic example from
fisheries management, I demonstrate that selecting the model or models that produce the most accurate
and precise forecast (measured by statistical scores) can lead to decidedly worse outcomes (measured by
real-world objectives). This can create a forecast trap, in which the outcomes such as fish biomass or eco-
nomic yield decline while the manager becomes increasingly convinced that these actions are consistent with
the best models and data available. The forecast trap is not unique to this example, but possible whenever
(1) the optimal management policy is not unique to the generative process, and (2) the generative process
is not in our candidate set of models.
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Global change issues are complex and outcomes are difficult to predict (Clark et al. 2001). To guide
decisions in an uncertain world, researchers and decision makers may consider a range of alternative plausible
models to better reflect what we do and do not know about the processes involved (Polasky et al. 2011).
Forecasts or predictions from possible models can indicate what outcomes are most likely to result under
what decisions or actions. This has made model-based forecasts a cornerstone for scientifically based decision
making. By comparing outcomes predicted by a model to future observations, a decision maker can not only
plan for the uncertainty, but also learn which models are most trustworthy. The value of iterative learning
has long been reflected in the theory of adaptive management (Walters & Hilborn 1978) as well as in actual
adaptive management practices such as Management Strategy Evaluation (MSE) (Punt et al. 2016) used
in fisheries, and is a central tenet of a rapidly growing interest in ecological forecasting (Dietze et al. 2018).
But, do iterative learning approaches always lead to better decisions?

In this paper, I demonstrate that the model that makes the better prediction (rigorously defined as
a strictly proper score, Gneiting & Raftery (2007)) is not necessarily the model that makes the better
policy (rigorously defined in terms of utility, e.g. expected net present value, Clark (1990)). I show that
our best methods for learning about model structure or parameters by repeatedly comparing forecasts to
observations can be counter-productive. Put another way, the value of information (VOI, as measured by the
expected utility given that information minus the utility without it; see Howard (1966); Katz et al. (1987)),
can actually be negative. When VOI is negative, the decision-maker may become trapped into accepting
mediocre outcomes derived from a model that makes accurate forecasts, even when a less accurate model that
would generate better outcomes is available. In our example, the manager will decide the fishery in question
simply has low productivity, because such a model yields better predictions, rather than realizing that the
low productivity observed is in fact a consequence of the over-harvesting. This disconcerting situation can
arise whenever two conditions are met: (1) the optimal management policy is not unique to the generative
process, and (2) the generative process is not included in candidate set of models. These conditions do not
guarantee the trap will occur, only the circumstances in which it cannot be ruled out entirely.

The forecast trap is not the only mechanism by which some model-choice methods lead to worse outcomes.
Previous work has long acknowledged the panoply of ways in which model-based decision making can go
astray due to conflicting incentives, implementation errors, or lack of resources for monitoring and updating
(e.g. Ludwig et al. 1993). Another widely recognized problem is that of over-fitting (Burnham & Anderson
1998), in which the model that best fits historical data fails to best predict future data (Ginzburg &
Jensen 2004). Under such circumstances, it is easy to see how an over-fit model would also lead to bad
outcomes. However, over-fitting plays no role in the forecast trap, where model predictions are assessed
only using probabilistic forecasts, and not observations which had previously been used to fit the models.
Formally, these scores satisfy the ‘proper scoring’ rule of Gneiting & Raftery (2007), which proves no other
probabilistic prediction Q(x) will have a better expected score than that of the generative process P(z).
Gneiting & Raftery (2007)’s proof of proper scoring has since become a critical tool to avoid over-fitting
when choosing models to make decisions, but as I illustrate, will not prevent the forecast trap.

From Predictive Models to Decision Policies

How do we translate a model-based forecast into a decision? It is impossible to discuss outcomes associ-
ated with a forecast without first agreeing on this process. In practice, decision-makers may use a forecast
in a wide variety of ways in selecting a course of action, including ways which may run counter to the stated
objectives of management (Ludwig et al. 1993). In principle at least, the field of decision theory provides a
formal mechanism for determining the optimal strategy given a model forecast. For instance, a wide range
of ecological conservation and management problems can be expressed as a Markov Decision Process (MDP)
problems (Marescot et al. 2013). Existing computer algorithms such as stochastic dynamic programming
(SDP) take a probabilistic model forecast (more precisely, the probability P(xz:y1|x¢, a;) of the system being
in state xy41 in the next iteration given that it was previously in state x; and the manager selected action
a;) and the desired management objective (i.e. the maximize the expected biomass of species protected or
the expected dollar profit of a fishery (see Clark 1990; Halpern et al. 2013)) as input, and return the decision
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policy which maximizes that objective (Marescot et al. 2013). This provides a principled way to associate
a decision policy with any given forecast model.

Two features of this approach are worth emphasizing. First, the resulting decision is derived directly from
the forecast model and the desired objective. The SDP algorithm is a reasonable description of the approach
any ideal manager would use — considering all possible outcomes from all possible sequences of actions and
selecting the best sequence. For complex models this process is too laborious even for a computer, and
is often simplified by considering only a selection of predetermined policies (as in Management Strategy
Evaluation, MSE, Punt et al. (2016)), or scenarios (as in scenario analysis, Polasky et al. (2011)). Such
shortcuts are often necessary for complex real-world models, but open additional room for error: the policy
we derive from a given forecast may perform poorly not because the model forecast was at fault, but because
of those simplifying assumptions about possible policies. To ensure that the forecast trap is not a result of
such assumptions about possible policies, we will consider a problem simple enough to solve directly with
SDP. This leads to the second point: the resulting decision policy is optimal, so long as the forecast model
is correct. In this way, the SDP merely stands in for a mathematically precise way in which forecasts are
turned into decisions. Recognizing that the SDP-derived policy (A) comes directly from the forecast model,
and (B) gives the optimal policy for said forecast, seems to suggest that the whatever model makes the
better forecast will surely also lead to better outcomes (as measured in terms of whatever utility we have
chosen to maximize). While this intuition is no doubt often accurate, our purpose here is to demonstrate
that it is by no means guaranteed: it is also possible for the model which makes the better forecast to lead
to worse outcomes.

Ecological Models

Tillustrate this problem using an example from fisheries management. Fisheries are a significant economic
and conservation concern worldwide and their management remains an important debate (e.g. Worm et al.
2006, 2009; Costello et al. 2016). Moreover, their management has been a proving grounds for theoretical
and practical decision-making issues which are widely applicable in other areas of ecology and conservation
(Ludwig et al. 1993; Lande et al. 1994), and one that has long wrestled with issues of uncertainty in the
context of management decisions (e.g. Clark 1973; Reed 1979; Walters 1981; Ludwig & Walters 1982).

While methods such as iterative forecasting (Dietze et al. 2018) and adaptive management (Walters &
Hilborn 1978) can be applied to real-world using empirical data, we can only evaluate their potential in
hypothetical examples when the true model is known, e.g. through numerical simulation. That approach
allows us to compare both predictions and outcomes across implementations in independent identical repli-
cate worlds. As noted above, we will assume our underlying model simple enough to solve by SDP, ensuring
any poor outcomes from a given forecast are not merely an artifact of an imperfect decision process. Simple
models also have the virtue in being accessible to closed form analysis, which, as we shall see, can give greater
insight into when and why this forecast trap arises. That insight will in turn will allow us to examine if the
same problem is likely to arise under more complex models.

The sustainable harvest decision problem can be stated as follows: The fish stock is observed to be in
state X; at time ¢, and is then subjected to some harvest H; before recruiting new fish, subject to stochastic
environmental noise &, to bring the stock to X; 4+ 1,

Xip1 = f(Xy — Hy, &) (1)

A manager seeks each year to select the harvest quota H; which will maximize the sum of the utility
derived from such a harvest and such a state, U(Xy, H;), over all time, subject to discount rate § (Clark
1973):

t=o00

> U(Xy, Hy)ot (2)
t=0
We will assume we have been given a fixed price of fish p = 1 with no additional cost on additional
harvest, U(X¢, H;) = pmin(Hy, X;) modest discount ¢ = 0.99.

3
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Let us assume that our set of candidate models are simply the possible parameterizations of a stochastic
version of the classic Gordon-Schaefer model (Gordon & Press 1954; Schaefer 1954):

fi(Yi) = Yi £ 1iYe (1 - Ii) e 3)
K3

Where Y is the population size after harvest, Y; = X; — H; and & (o) represents log-normal random
noise with a mean of unity and log-standard-deviation o;.

Before this or any other model can generate a forecast, we must first come up with some parameter
estimates. Because the model includes (log-normal) stochastic growth, no amount of data will make any
parameter combination impossible, though certain parameter values are more likely than others. Remember
too that parameter estimates may be derived in other ways than than model fitting, especially when pa-
rameters are amenable to biological interpretation. We will consider the whole range of possible parameters
in a moment, but for simplicity, let us begin by focusing in around two of the most interesting regions of
that are already included within that larger parameter space of all possible values for r, K, and o. Let us
take “Model 1”7 as being given by r; = 2, K1 = 16, o1 = 0.05, “Model 2” by ro = 0.5, Ky = 10, 02 = 0.075.
We can imagine our comparison of these two models as a microcosm of the larger comparison between all
possible paremeterizations.

Ecologists will rightly scoff at the simplicity of these models — the real world is much more complicated.
So it is important to bear in mind that these are not models that seek to approximate the stock dynamics
of real world fisheries, only to approximate whatever “true model” we are using to drive the simulation.
In recognition of the fact that real world is always more complex than even our best ecological models, we
will assume a “true model” for the simulations that is not in the Gordon-Schaefer class (i.e. our candidate
models will never contain the true model), but is not so rich that a Gordon-Schaefer curve would seem a
hopelessly poor approximation.

For illustrative purposes, we will thus assume the “true” process to be given by Model 3, which is unknown
to the decision-maker, but similar enough to at least one of the candidate models might be considered a
reasonable approximation:

(YY) =Y +r3Y*? (1 - Y) (4)
K

with r3 = 0.002, K3 = 10 and o3 = 0.05.

Certainly, the challenge of choosing which model to base a decision policy on in the real world is much
harder than this binary choice between two models, and yet it is sufficient to illustrate the trap. We will see
later why making the models much more complex does not guarantee that the task becomes easier or that
the trap may be ruled out.

Methods for Managing Under Model Uncertainty

I will use this example to illustrate two alternative approaches for iterative learning over model uncer-
tainty: iterative forecasting and adaptive management. The central difference in the approaches is that
iterative forecasting is premised on the ability to score the predictions of alternative models. Iterative fore-
casting is silent on the issue of what to do with those scores, this is left up to the decision-maker. Adaptive
management approaches, by contrast, explicitly seek to integrate probabilities over all candidate models to
reach a decision. I consider each in turn.

Statistical approaches: Forecasting under “Proper” Scoring Rules

Like many decision problems, the task of setting a sustainable harvest quota appears to hinge on having
an accurate forecast: if we can predict to what size the fish stock will increase next year, X; + 1, and we
know the current stock, Xy, then we can sustainably harvest X;; — X; without decreasing the biomass over
the long term. Selecting a model based on forecast skill is also justifiable on theoretical grounds, since it
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reduces the risk of overfitting by comparing model predictions to later observations that were not used to
estimate the model (Gneiting & Katzfuss 2014).

T illustrate the process of model selection by strictly proper scoring rules using two scenarios. In Scenario
A (passive observation) the fish stock is unharvested and allowed to recover towards carrying capacity (as
simulated under our “true” model, Model 3) while comparing the observed stock size in each subsequent
time step to the distribution predicted under model 1 and model 2 respectively [Fig 1]. The mean, p; and
variance, o; of the forecast are compared against the true observation z; using a proper scoring rule given
by Gneiting & Raftery (2007),

S(welpe, 00) = — (e — w¢)? /07 — log(ov) (5)

for each prediction over 100 replicate simulations of 100 time steps each [Fig 1].
[Figure 1 about here.]

In Scenario B (actively harvest), I have first solved for the optimal management strategy using the
forecast-matrices of both model 1 and model 2 [Fig 1b] using SDP [Marescot et al. (2013); code in the
Appendix|. Replicate simulations of the stock are harvested at each time step using the optimal quota
dictated by either model’s forecasts, according to the SDP. The resulting stock sizes in the subsequent
timestep are scored against the forecast probabilities of each model using Eq (5). Model 2 unequivocally
outperforms model 1 in both scenarios of passive observation and active harvest.

Despite the clearly superior predictive accuracy of model 2 in both scenarios, the outcomes from man-
agement under model 2 are substantially worse. We can assess such outcomes in less abstract terms than
forecasting skill, such as economic value (in dollars) or the ecological value (unharvested biomass). In our
simple formulation of the decision problem, the “utility” the manager seeks to maximize is simply the eco-
nomic value (net present value: the discounted sum of all profits from future harvests, Eq (2)) of harvested
fish. This formulation ignores any utility provided by fish that are not harvested, beyond their contribution
to future potential harvests. While it is possible to include such contributions directly in the utility func-
tion being optimized (e.g. Halpern et al. 2013), even without doing so, model 1 maintains both a higher
unharvested biomass and also leads to higher economic returns throughout [Fig 2].

[Figure 2 about here.]

In both scenarios, the careful comparison through proper scoring rules has led us to select the worse-
performing model. Crucially, a manager operating under this selection would have little indication that
their model was flawed: both future stock sizes and expected harvest yields consistently match model
predictions. Had we been able to include Model 3 in our forecast comparisons, it would equal or outperform
the forecasting skill of both model 1 and model 2 (as guaranteed by the theorem of Gneiting & Raftery
(2007)), while also matching or out-performing their economic utility (as guaranteed by the theorem of
Reed (1979)). In practice, we never have access to the generating model, so it is reasonable to expect model
selection to determine the better approximation. As we see here, the better approximation for forecasting
future states does not in fact lead to better outcomes.

One obvious limitation in this comparison is that scenario B treats each model as fixed over the entire
course of the management simulation. In reality, managers will typically re-estimate model parameters after
each subsequent observation. And rather than consider each model/parameter combination in isolation,
managers will generate forecasts which reflect the current uncertainty as to which model or parameter values
are most likely. Re-estimating model parameters results in adjusting those probabilities. This approach is
characterized by adaptive management for sequential decision problems (e.g. Smith & Walters 1981), which
I employ in the next section.

Decision-Theoretic Approaches

Any adaptive management strategy updates posterior distributions over model uncertainty (Ludwig &
Walters 1982; Punt et al. 2016). Unfortunately, in this case, any such adaptive updating leads to worse
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outcomes than the equivalent non-adaptive strategy, in which model uncertainty is held fixed. I illustrate
the application of a passive adaptive management strategy to this simple example, following classic examples
for parameter (Ludwig & Walters 1982) or structural (Smith & Walters 1981) model uncertainty. Passive
adaptive management for a simple sequential decision problem is straightforward to implement over a discrete
set of states and actions using dynamic programming with iterative updates (Smith & Walters 1981, example
code in Appendix). To demonstrate that the behavior is not driven by failure to explore sufficiently, (active
adaptive management), I will assign initial probability that model 2 is true at 1%. After a single iteration
of adaptive learning, these probabilities are completely reversed, with the manager deciding that model 2 is
almost certainly correct [Fig 3A]. As before, this results in a management practice with much worse ecological
and economic outcomes than would have been realized by a manager who stubbornly clung to model 1
without updating, which achieves a net present value that only 31% that expected under management using
model 1 alone [Fig 2].

[Figure 3 about here.]

So far we have considered only two alternative combinations of the parameters r, K and ¢. This
simplifies the calculations, because each unique parameter value combination requires a new run of the
SDP algorithm to determine the optimal policy from the corresponding forecast. Increasing the space of
possible models to cover a whole plausible range of parameters » and K does little to resolve this problem
[Fig 3B|. Iterative updates again quickly dismiss the parameter values assumed by model 1, though with
more options to choose from, this probability is spread over a range of seemingly plausible candidate models
instead of a single alternative model (see Appendix). While the adaptive management of additional actions
and observations slowly narrow this subset of plausible models, decisions based on this uncertainty prevent
fish stocks from recovering fully, and realize lower harvests as a result. Note that learning under either
adaptive management approach (using two models or 42), the decision-maker becomes ever-increasingly
convinced that they are using the right model or models. Future stock sizes fall consistently in the range
predicted by the model(s), and consistently outside the range predicted by model 1. Consequently, each
iteration the managers are only more firmly convinced that they are maintaining the fish stock near the
biomass that supports maximum sustainable yield, when in fact they are sustaining a harvest regime that
is preventing recovery of the stock to the much higher productivity regime which would have been achieved
under model 1.

Discussion

Given this simple decision problem in which one of the two models leads to better ecological and economic
outcomes, current approaches invariably choose the wrong one. Moreover, despite continuing to collect
new observations, the decision maker has no way of realizing their mistake. The manager is trapped into
believing whichever model produces the better forecast, even when this results in decidedly worse objective
outcomes. Re-estimating parameters with as new observations accumulate only reinforces the problem [Fig
3A], and introducing a larger suite of models, such as our wide range of r and K values, does not escape
this trap either [Fig 3B]. Other model choice approaches such as goodness-of-fit, information criteria or
cross-validation would all prefer model 2 as well. Only by including the true model in our set of candidates
can we be certain that forecast-based methods will converge on optimal outcomes.

The reason for model 1’s seemingly contradictory ability to make good decisions but bad forecasts be-
comes obvious once we compare both curves to that of the underlying model, model 3. Looking at plots of
the growth rate curves for each model [Fig 4A], it is hardly surprising that all model selection approaches
prefer the closely overlapping curve of model 2 to the no-where-close curve of model 1 as the better approx-
imation of model 3. Nevertheless, the decision policy derived from model 1 forecasts is indistinguishable
from that based on the true model [Fig 4B], while the policy derived from model 2 forecasts lead to over-
harvesting. Being closest to the true model’s forecast skill never guarantees that we are closest to the true
model’s optimal policy.

[Figure 4 about here.]
6
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Perhaps this should not be surprising: ecologists have long observed that all models are wrong and the
choice of better model depends on the the modeling goals (Levins 1966; Walters & Hilborn 1978; Ludwig et
al. 1993; Getz et al. 2018). And we are clearly considering different goals: forecast skill (a unitless statistical
measure) vs policy outcomes (be they measured in dollars or fish in the ocean). Yet the result is surprising
all the same. The forecast isn’t just some other arbitrary modeling objective; it is a central input into the
decision making process, both in the real world (Clark et al. 2001; Dietze et al. 2018) and in our idealized
decision-making algorithm, SDP (Marescot et al. 2013). Nor can we say the same model can never be best
at both goals — obviously the ‘true’ model always optimizes both objectives.! It is natural to assume from
this that the candidate with the closest forecast will also be the one with the closest policy. The example
presented here proves this is by no means guaranteed, but also begs the question — how common is this
forecast trap?

It may seem reasonable to expect that the forecast trap would be rare in real world situations: the
chance that the candidate set of models would include anything coming close to the optimal policy of the
(unknown) true model without also providing a good forecast seems like it ought to be vanishingly small.
In our example, we were only able to capture the optimal policy with a Gordon-Schafer model because
it turned out the optimal policy boiled down to a very simple rule. Surely this does not happen in the
more complex models of the real world? Surprisingly, more complex models offer no such guarantee, while
real-world constraints make this situation more likely, not less.

How can the very different forecasts from model 1 and model 3 could produce exactly the same optimal
management policy (Fig 4B) under the SDP algorithm? Analytic solutions offer more insight as to when
and why very different forecasts can generate the identical policy. Such a solution was first provided by
Reed (1979), who demonstrated the optimal policy in the case considered here would be a so-called “bang-
bang” policy. Intuitively one can think of this as maintaining the biomass at the most productive size: the
maximum population growth rate (position of the peak of the growth curves in Fig 4A), though this is only
precisely true without discounting (6 = 1): the optimal stock size & is the solution to f(2) = #/§ when
stochasticity is sufficiently small (Reed 1979). Thus, all models in which the peak growth rate occurs at the
same stock size will have the same optimal policy. These are not merely bad models getting lucky — all such
models correctly capture the crucial feature relevant to the decision. In more complex models, such features
are more difficult or impossible to identify analytically; but just because we cannot intuit the optimal policy
does not mean it is uniquely complex.

Do more complex models lead to more complex control rules? The theorems of Reed (1979), while quite
general, say nothing about structured models or those with predator-prey or competitive interactions. Yet
recent mathematical breakthroughs such as Holden & Conrad (2015), Hening et al. (2019), and Hening
(2021) have finally been able to extend Reed’s theorem to such cases more generally. As with Reed’s result,
these recent proofs make it clear that the optimal strategy for managing these more complex models is not
unique, but will be shared by many much simpler models. So while the true population dynamics may be
given by very complex non-linear functions of the interacting species, there will be simple two species models
and even un-coupled, one-species models which would lead to the identical optimal policy. It may be more
likely that our candidate set contains a model which matches the optimal policy than that it contains a
model which matches the generative process.

Real world considerations actually make this situation more likely, not less likely. Managers cannot
resort to arbitrarily complex policies, regardless of how complex their models. Policy adjustments are costly
(Boettiger et al. 2016) and the space of available actions is usually far more limited than the space of
available states. In some ecological decision-making contexts, a manager may only be able to select between
a handful of alternative actions. Such constraints make it much more likely that the optimal policy will
be replicated by a much simpler model. Most well-managed marine fisheries are constrained to constant or
simple piecewise-linear harvest control rules (Punt 2010). This ensures that an infinite number of possible

1With enough data from enough of the state space, an SDP algorithm using a Gaussian Process prior (Boettiger et al.
2015), which spans the “true model” given by Eq 4, will escape the forecast trap, as guaranteed by Gneiting & Raftery (2007)’s
theorem. However, real ecological systems are much more complex than Eq 4, and not so easily spanned by mathematical
models.
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models will share the optimal solution with the true model.

Because even complex models frequently have simple control rules or else we are constrained to simple
control rules as a practical matter, it is much more likely that any set of candidate models includes parame-
terizations that reproduce the true optimal policy than that they reproduce the optimal forecast. When data
is initially limited, those simple models that could generate optimal outcomes may have non-negligible prob-
abilities associated with them. This sets the stage for the forecast trap, adjustments with additional data
or comparisons against alternative models that produce more accurate forecasts erodes those probabilities
in favor of models which lead to less desirable outcomes.

The forecast trap may become a more acute issue as the simple, process-based models that have histori-
cally underpinned ecology and conservation policy are challenged by more accurate forecasts from statistical
and machine learning tools. Buoyed by the rapid expansion of available data and computational power,
complex and increasingly opaque models are becoming more common (Desjardins-Proulx et al. 2019). Eval-
uating such models based on forecast skill will not only reduce concerns about over-fitting, but will make a
compelling illustration of their viability as a tool for informing policy. In many cases, these more accurate
forecasts may very well prove invaluable in delivering better (or less bad) real-world outcomes. But this
paper is a reminder that such outcomes are by no means an inevitable consequence of better forecasts. These
more accurate predictions are still not the true model, and it so it is always possible to improve predictive
accuracy while less accurately reflecting the unknown key features that really drive the policy decision. I
hope this simple and intuitive example will provide a ready reminder as to why the model that produces
the best forecast will not always produce the best decision.
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Figure 1: Forecast performance of each model. Panels A, B: Step ahead predictions of stock size under unfished (A) and fished
(B) scenarios. Error bars indicating the 95% confidence intervals around each prediction, while stars denote the observed value
in that year. Because the models make different decisions each year in the fished scenario, the observed stock size in year 2, 3,
etc under the management of model 1 (blue stars) is different from that under model 2 (red stars). Panels C, D: corresponding
distribution of proper scores across all predictions (100 replicates of 100 timesteps). Higher scores are better, confirming that
model 2 makes the better forecasts.

12

Page 12 of 15



Page 13 of 15 Ecology Letters

CONOUT A WN =

21 A. Ecological outcomes B. Economic outcomes

11

state

25 10 60

Net present value

29 40 model

32 7 o>
20

39 0 5 10 15 20 25 0 25 50 75 100

40 time time

42 Figure 2: Ecological and economic performance of each forecast. Harvest quotas derived from model 1 result in a significantly
43 higher fish stock size than under Model 2 (panel A). Economic returns under model 1 are also substantially higher (panel B)
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Figure 3: Adaptive management under model uncertainty. Solid lines trace the trajectories of the state (fish stock, circles)
and action (harvest quota, triangles), under adaptive management (learning). Dotted lines trace the corresponding trajectories
if iterative learning is omitted, leaving the prior belief fixed throughout the simulation (planning). Color indicates the belief
that model 1 is correct (blue), with an initial prior belief of 99%. Panel A: Management over the two candidate models,
Model 1 and Model 2. Within a single iteration of adaptive management, the belief over models switches from a prior belief
that heavily favored model 1 to a posterior that favors model 2 with near certainty. Future iterations reinforce the belief in
model 2, resulting in both depressed harvests and low stock sizes (solid lines). If no iterative learning updates are performed,
stock sizes and realized harvests (and thus economic profit) are both higher. Panel B: given 42 candidate models over a broad
range of parameter values, adaptive management quickly reduces the probability of model 1, and substantially underperforms
management without learning (dotted lines). While outcomes improve marginally relative to the two-model case (figure A)
they remain significantly worse than had no iterative learning been included.
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