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Abstract4

Encouraged by decision makers’ appetite for future information on topics ranging from elections to pan-
demics, and enabled by the explosion of data and computational methods, model based forecasts have
garnered increasing influence on a breadth of decisions in modern society. Using a classic example from
fisheries management, I demonstrate that selecting the model or models that produce the most accurate
and precise forecast (measured by statistical scores) can lead to decidedly worse outcomes (measured by
real-world objectives). This can create a forecast trap, in which the outcomes such as fish biomass or eco-
nomic yield decline while the manager becomes increasingly convinced that these actions are consistent with
the best models and data available. The forecast trap is not unique to this example, but possible whenever
(1) the optimal management policy is not unique to the generative process, and (2) the generative process
is not in our candidate set of models.
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Global change issues are complex and outcomes are difficult to predict (Clark et al. 2001). To guide14

decisions in an uncertain world, researchers and decision makers may consider a range of alternative plausible15

models to better reflect what we do and do not know about the processes involved (Polasky et al. 2011).16

Forecasts or predictions from possible models can indicate what outcomes are most likely to result under17

what decisions or actions. This has made model-based forecasts a cornerstone for scientifically based decision18

making. By comparing outcomes predicted by a model to future observations, a decision maker can not only19

plan for the uncertainty, but also learn which models are most trustworthy. The value of iterative learning20

has long been reflected in the theory of adaptive management (Walters & Hilborn 1978) as well as in actual21

adaptive management practices such as Management Strategy Evaluation (MSE) (Punt et al. 2016) used22

in fisheries, and is a central tenet of a rapidly growing interest in ecological forecasting (Dietze et al. 2018).23

But, do iterative learning approaches always lead to better decisions?24

In this paper, I demonstrate that the model that makes the better prediction (rigorously defined as25

a strictly proper score, Gneiting & Raftery (2007)) is not necessarily the model that makes the better26

policy (rigorously defined in terms of utility, e.g. expected net present value, Clark (1990)). I show that27

our best methods for learning about model structure or parameters by repeatedly comparing forecasts to28

observations can be counter-productive. Put another way, the value of information (VOI, as measured by the29

expected utility given that information minus the utility without it; see Howard (1966); Katz et al. (1987)),30

can actually be negative. When VOI is negative, the decision-maker may become trapped into accepting31

mediocre outcomes derived from a model that makes accurate forecasts, even when a less accurate model that32

would generate better outcomes is available. In our example, the manager will decide the fishery in question33

simply has low productivity, because such a model yields better predictions, rather than realizing that the34

low productivity observed is in fact a consequence of the over-harvesting. This disconcerting situation can35

arise whenever two conditions are met: (1) the optimal management policy is not unique to the generative36

process, and (2) the generative process is not included in candidate set of models. These conditions do not37

guarantee the trap will occur, only the circumstances in which it cannot be ruled out entirely.38

The forecast trap is not the only mechanism by which some model-choice methods lead to worse outcomes.39

Previous work has long acknowledged the panoply of ways in which model-based decision making can go40

astray due to conflicting incentives, implementation errors, or lack of resources for monitoring and updating41

(e.g. Ludwig et al. 1993). Another widely recognized problem is that of over-fitting (Burnham & Anderson42

1998), in which the model that best fits historical data fails to best predict future data (Ginzburg &43

Jensen 2004). Under such circumstances, it is easy to see how an over-fit model would also lead to bad44

outcomes. However, over-fitting plays no role in the forecast trap, where model predictions are assessed45

only using probabilistic forecasts, and not observations which had previously been used to fit the models.46

Formally, these scores satisfy the ‘proper scoring’ rule of Gneiting & Raftery (2007), which proves no other47

probabilistic prediction Q(x) will have a better expected score than that of the generative process P (x).48

Gneiting & Raftery (2007)’s proof of proper scoring has since become a critical tool to avoid over-fitting49

when choosing models to make decisions, but as I illustrate, will not prevent the forecast trap.50

From Predictive Models to Decision Policies51

How do we translate a model-based forecast into a decision? It is impossible to discuss outcomes associ-52

ated with a forecast without first agreeing on this process. In practice, decision-makers may use a forecast53

in a wide variety of ways in selecting a course of action, including ways which may run counter to the stated54

objectives of management (Ludwig et al. 1993). In principle at least, the field of decision theory provides a55

formal mechanism for determining the optimal strategy given a model forecast. For instance, a wide range56

of ecological conservation and management problems can be expressed as a Markov Decision Process (MDP)57

problems (Marescot et al. 2013). Existing computer algorithms such as stochastic dynamic programming58

(SDP) take a probabilistic model forecast (more precisely, the probability P (xt+1|xt, at) of the system being59

in state xt+1 in the next iteration given that it was previously in state xt and the manager selected action60

at) and the desired management objective (i.e. the maximize the expected biomass of species protected or61

the expected dollar profit of a fishery (see Clark 1990; Halpern et al. 2013)) as input, and return the decision62
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policy which maximizes that objective (Marescot et al. 2013). This provides a principled way to associate63

a decision policy with any given forecast model.64

Two features of this approach are worth emphasizing. First, the resulting decision is derived directly from65

the forecast model and the desired objective. The SDP algorithm is a reasonable description of the approach66

any ideal manager would use – considering all possible outcomes from all possible sequences of actions and67

selecting the best sequence. For complex models this process is too laborious even for a computer, and68

is often simplified by considering only a selection of predetermined policies (as in Management Strategy69

Evaluation, MSE, Punt et al. (2016)), or scenarios (as in scenario analysis, Polasky et al. (2011)). Such70

shortcuts are often necessary for complex real-world models, but open additional room for error: the policy71

we derive from a given forecast may perform poorly not because the model forecast was at fault, but because72

of those simplifying assumptions about possible policies. To ensure that the forecast trap is not a result of73

such assumptions about possible policies, we will consider a problem simple enough to solve directly with74

SDP. This leads to the second point: the resulting decision policy is optimal, so long as the forecast model75

is correct. In this way, the SDP merely stands in for a mathematically precise way in which forecasts are76

turned into decisions. Recognizing that the SDP-derived policy (A) comes directly from the forecast model,77

and (B) gives the optimal policy for said forecast, seems to suggest that the whatever model makes the78

better forecast will surely also lead to better outcomes (as measured in terms of whatever utility we have79

chosen to maximize). While this intuition is no doubt often accurate, our purpose here is to demonstrate80

that it is by no means guaranteed: it is also possible for the model which makes the better forecast to lead81

to worse outcomes.82

Ecological Models83

I illustrate this problem using an example from fisheries management. Fisheries are a significant economic84

and conservation concern worldwide and their management remains an important debate (e.g. Worm et al.85

2006, 2009; Costello et al. 2016). Moreover, their management has been a proving grounds for theoretical86

and practical decision-making issues which are widely applicable in other areas of ecology and conservation87

(Ludwig et al. 1993; Lande et al. 1994), and one that has long wrestled with issues of uncertainty in the88

context of management decisions (e.g. Clark 1973; Reed 1979; Walters 1981; Ludwig & Walters 1982).89

While methods such as iterative forecasting (Dietze et al. 2018) and adaptive management (Walters &90

Hilborn 1978) can be applied to real-world using empirical data, we can only evaluate their potential in91

hypothetical examples when the true model is known, e.g. through numerical simulation. That approach92

allows us to compare both predictions and outcomes across implementations in independent identical repli-93

cate worlds. As noted above, we will assume our underlying model simple enough to solve by SDP, ensuring94

any poor outcomes from a given forecast are not merely an artifact of an imperfect decision process. Simple95

models also have the virtue in being accessible to closed form analysis, which, as we shall see, can give greater96

insight into when and why this forecast trap arises. That insight will in turn will allow us to examine if the97

same problem is likely to arise under more complex models.98

The sustainable harvest decision problem can be stated as follows: The fish stock is observed to be in99

state Xt at time t, and is then subjected to some harvest Ht before recruiting new fish, subject to stochastic100

environmental noise ξt, to bring the stock to Xt + 1,101

Xt+1 = f(Xt − Ht, ξt) (1)

A manager seeks each year to select the harvest quota Ht which will maximize the sum of the utility102

derived from such a harvest and such a state, U(Xt, Ht), over all time, subject to discount rate δ (Clark103

1973):104

t=∞
∑

t=0

U(Xt, Ht)δ
t (2)

We will assume we have been given a fixed price of fish p = 1 with no additional cost on additional105

harvest, U(Xt, Ht) = p min(Ht, Xt) modest discount δ = 0.99.106

3
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Let us assume that our set of candidate models are simply the possible parameterizations of a stochastic107

version of the classic Gordon-Schaefer model (Gordon & Press 1954; Schaefer 1954):108

fi(Yt+1) = Yt + riYt



1 −
Yt

Ki



∗ ξt(σ) (3)

Where Y is the population size after harvest, Yt = Xt − Ht and ξt(σ) represents log-normal random109

noise with a mean of unity and log-standard-deviation σi.110

Before this or any other model can generate a forecast, we must first come up with some parameter111

estimates. Because the model includes (log-normal) stochastic growth, no amount of data will make any112

parameter combination impossible, though certain parameter values are more likely than others. Remember113

too that parameter estimates may be derived in other ways than than model fitting, especially when pa-114

rameters are amenable to biological interpretation. We will consider the whole range of possible parameters115

in a moment, but for simplicity, let us begin by focusing in around two of the most interesting regions of116

that are already included within that larger parameter space of all possible values for r, K, and σ. Let us117

take “Model 1” as being given by r1 = 2, K1 = 16, σ1 = 0.05, “Model 2” by r2 = 0.5, K2 = 10, σ2 = 0.075.118

We can imagine our comparison of these two models as a microcosm of the larger comparison between all119

possible paremeterizations.120

Ecologists will rightly scoff at the simplicity of these models – the real world is much more complicated.121

So it is important to bear in mind that these are not models that seek to approximate the stock dynamics122

of real world fisheries, only to approximate whatever “true model” we are using to drive the simulation.123

In recognition of the fact that real world is always more complex than even our best ecological models, we124

will assume a “true model” for the simulations that is not in the Gordon-Schaefer class (i.e. our candidate125

models will never contain the true model), but is not so rich that a Gordon-Schaefer curve would seem a126

hopelessly poor approximation.127

For illustrative purposes, we will thus assume the “true” process to be given by Model 3, which is unknown128

to the decision-maker, but similar enough to at least one of the candidate models might be considered a129

reasonable approximation:130

f3(Y ) = Y + r3Y 4



1 −
Y

K3



(4)

with r3 = 0.002, K3 = 10 and σ3 = 0.05.131

Certainly, the challenge of choosing which model to base a decision policy on in the real world is much132

harder than this binary choice between two models, and yet it is sufficient to illustrate the trap. We will see133

later why making the models much more complex does not guarantee that the task becomes easier or that134

the trap may be ruled out.135

Methods for Managing Under Model Uncertainty136

I will use this example to illustrate two alternative approaches for iterative learning over model uncer-137

tainty: iterative forecasting and adaptive management. The central difference in the approaches is that138

iterative forecasting is premised on the ability to score the predictions of alternative models. Iterative fore-139

casting is silent on the issue of what to do with those scores, this is left up to the decision-maker. Adaptive140

management approaches, by contrast, explicitly seek to integrate probabilities over all candidate models to141

reach a decision. I consider each in turn.142

Statistical approaches: Forecasting under “Proper” Scoring Rules143

Like many decision problems, the task of setting a sustainable harvest quota appears to hinge on having144

an accurate forecast: if we can predict to what size the fish stock will increase next year, Xt + 1, and we145

know the current stock, Xt, then we can sustainably harvest Xt+1 −Xt without decreasing the biomass over146

the long term. Selecting a model based on forecast skill is also justifiable on theoretical grounds, since it147
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reduces the risk of overfitting by comparing model predictions to later observations that were not used to148

estimate the model (Gneiting & Katzfuss 2014).149

I illustrate the process of model selection by strictly proper scoring rules using two scenarios. In Scenario150

A (passive observation) the fish stock is unharvested and allowed to recover towards carrying capacity (as151

simulated under our “true” model, Model 3) while comparing the observed stock size in each subsequent152

time step to the distribution predicted under model 1 and model 2 respectively [Fig 1]. The mean, µt and153

variance, σt of the forecast are compared against the true observation xt using a proper scoring rule given154

by Gneiting & Raftery (2007),155

S(xt|µt, σt) = −(µt − xt)
2/σ2

t
− log(σt) (5)

for each prediction over 100 replicate simulations of 100 time steps each [Fig 1].156

[Figure 1 about here.]157

In Scenario B (actively harvest), I have first solved for the optimal management strategy using the158

forecast-matrices of both model 1 and model 2 [Fig 1b] using SDP [Marescot et al. (2013); code in the159

Appendix]. Replicate simulations of the stock are harvested at each time step using the optimal quota160

dictated by either model’s forecasts, according to the SDP. The resulting stock sizes in the subsequent161

timestep are scored against the forecast probabilities of each model using Eq (5). Model 2 unequivocally162

outperforms model 1 in both scenarios of passive observation and active harvest.163

Despite the clearly superior predictive accuracy of model 2 in both scenarios, the outcomes from man-164

agement under model 2 are substantially worse. We can assess such outcomes in less abstract terms than165

forecasting skill, such as economic value (in dollars) or the ecological value (unharvested biomass). In our166

simple formulation of the decision problem, the “utility” the manager seeks to maximize is simply the eco-167

nomic value (net present value: the discounted sum of all profits from future harvests, Eq (2)) of harvested168

fish. This formulation ignores any utility provided by fish that are not harvested, beyond their contribution169

to future potential harvests. While it is possible to include such contributions directly in the utility func-170

tion being optimized (e.g. Halpern et al. 2013), even without doing so, model 1 maintains both a higher171

unharvested biomass and also leads to higher economic returns throughout [Fig 2].172

[Figure 2 about here.]173

In both scenarios, the careful comparison through proper scoring rules has led us to select the worse-174

performing model. Crucially, a manager operating under this selection would have little indication that175

their model was flawed: both future stock sizes and expected harvest yields consistently match model176

predictions. Had we been able to include Model 3 in our forecast comparisons, it would equal or outperform177

the forecasting skill of both model 1 and model 2 (as guaranteed by the theorem of Gneiting & Raftery178

(2007)), while also matching or out-performing their economic utility (as guaranteed by the theorem of179

Reed (1979)). In practice, we never have access to the generating model, so it is reasonable to expect model180

selection to determine the better approximation. As we see here, the better approximation for forecasting181

future states does not in fact lead to better outcomes.182

One obvious limitation in this comparison is that scenario B treats each model as fixed over the entire183

course of the management simulation. In reality, managers will typically re-estimate model parameters after184

each subsequent observation. And rather than consider each model/parameter combination in isolation,185

managers will generate forecasts which reflect the current uncertainty as to which model or parameter values186

are most likely. Re-estimating model parameters results in adjusting those probabilities. This approach is187

characterized by adaptive management for sequential decision problems (e.g. Smith & Walters 1981), which188

I employ in the next section.189

Decision-Theoretic Approaches190

Any adaptive management strategy updates posterior distributions over model uncertainty (Ludwig &191

Walters 1982; Punt et al. 2016). Unfortunately, in this case, any such adaptive updating leads to worse192

5

Page 5 of 15 Ecology Letters

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For Review
 O

nly

outcomes than the equivalent non-adaptive strategy, in which model uncertainty is held fixed. I illustrate193

the application of a passive adaptive management strategy to this simple example, following classic examples194

for parameter (Ludwig & Walters 1982) or structural (Smith & Walters 1981) model uncertainty. Passive195

adaptive management for a simple sequential decision problem is straightforward to implement over a discrete196

set of states and actions using dynamic programming with iterative updates (Smith & Walters 1981, example197

code in Appendix). To demonstrate that the behavior is not driven by failure to explore sufficiently, (active198

adaptive management), I will assign initial probability that model 2 is true at 1%. After a single iteration199

of adaptive learning, these probabilities are completely reversed, with the manager deciding that model 2 is200

almost certainly correct [Fig 3A]. As before, this results in a management practice with much worse ecological201

and economic outcomes than would have been realized by a manager who stubbornly clung to model 1202

without updating, which achieves a net present value that only 31% that expected under management using203

model 1 alone [Fig 2].204

[Figure 3 about here.]205

So far we have considered only two alternative combinations of the parameters r, K and σ. This206

simplifies the calculations, because each unique parameter value combination requires a new run of the207

SDP algorithm to determine the optimal policy from the corresponding forecast. Increasing the space of208

possible models to cover a whole plausible range of parameters r and K does little to resolve this problem209

[Fig 3B]. Iterative updates again quickly dismiss the parameter values assumed by model 1, though with210

more options to choose from, this probability is spread over a range of seemingly plausible candidate models211

instead of a single alternative model (see Appendix). While the adaptive management of additional actions212

and observations slowly narrow this subset of plausible models, decisions based on this uncertainty prevent213

fish stocks from recovering fully, and realize lower harvests as a result. Note that learning under either214

adaptive management approach (using two models or 42), the decision-maker becomes ever-increasingly215

convinced that they are using the right model or models. Future stock sizes fall consistently in the range216

predicted by the model(s), and consistently outside the range predicted by model 1. Consequently, each217

iteration the managers are only more firmly convinced that they are maintaining the fish stock near the218

biomass that supports maximum sustainable yield, when in fact they are sustaining a harvest regime that219

is preventing recovery of the stock to the much higher productivity regime which would have been achieved220

under model 1.221

Discussion222

Given this simple decision problem in which one of the two models leads to better ecological and economic223

outcomes, current approaches invariably choose the wrong one. Moreover, despite continuing to collect224

new observations, the decision maker has no way of realizing their mistake. The manager is trapped into225

believing whichever model produces the better forecast, even when this results in decidedly worse objective226

outcomes. Re-estimating parameters with as new observations accumulate only reinforces the problem [Fig227

3A], and introducing a larger suite of models, such as our wide range of r and K values, does not escape228

this trap either [Fig 3B]. Other model choice approaches such as goodness-of-fit, information criteria or229

cross-validation would all prefer model 2 as well. Only by including the true model in our set of candidates230

can we be certain that forecast-based methods will converge on optimal outcomes.231

The reason for model 1’s seemingly contradictory ability to make good decisions but bad forecasts be-232

comes obvious once we compare both curves to that of the underlying model, model 3. Looking at plots of233

the growth rate curves for each model [Fig 4A], it is hardly surprising that all model selection approaches234

prefer the closely overlapping curve of model 2 to the no-where-close curve of model 1 as the better approx-235

imation of model 3. Nevertheless, the decision policy derived from model 1 forecasts is indistinguishable236

from that based on the true model [Fig 4B], while the policy derived from model 2 forecasts lead to over-237

harvesting. Being closest to the true model’s forecast skill never guarantees that we are closest to the true238

model’s optimal policy.239

[Figure 4 about here.]240
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Perhaps this should not be surprising: ecologists have long observed that all models are wrong and the241

choice of better model depends on the the modeling goals (Levins 1966; Walters & Hilborn 1978; Ludwig et242

al. 1993; Getz et al. 2018). And we are clearly considering different goals: forecast skill (a unitless statistical243

measure) vs policy outcomes (be they measured in dollars or fish in the ocean). Yet the result is surprising244

all the same. The forecast isn’t just some other arbitrary modeling objective; it is a central input into the245

decision making process, both in the real world (Clark et al. 2001; Dietze et al. 2018) and in our idealized246

decision-making algorithm, SDP (Marescot et al. 2013). Nor can we say the same model can never be best247

at both goals – obviously the ‘true’ model always optimizes both objectives.1 It is natural to assume from248

this that the candidate with the closest forecast will also be the one with the closest policy. The example249

presented here proves this is by no means guaranteed, but also begs the question – how common is this250

forecast trap?251

It may seem reasonable to expect that the forecast trap would be rare in real world situations: the252

chance that the candidate set of models would include anything coming close to the optimal policy of the253

(unknown) true model without also providing a good forecast seems like it ought to be vanishingly small.254

In our example, we were only able to capture the optimal policy with a Gordon-Schafer model because255

it turned out the optimal policy boiled down to a very simple rule. Surely this does not happen in the256

more complex models of the real world? Surprisingly, more complex models offer no such guarantee, while257

real-world constraints make this situation more likely, not less.258

How can the very different forecasts from model 1 and model 3 could produce exactly the same optimal259

management policy (Fig 4B) under the SDP algorithm? Analytic solutions offer more insight as to when260

and why very different forecasts can generate the identical policy. Such a solution was first provided by261

Reed (1979), who demonstrated the optimal policy in the case considered here would be a so-called “bang-262

bang” policy. Intuitively one can think of this as maintaining the biomass at the most productive size: the263

maximum population growth rate (position of the peak of the growth curves in Fig 4A), though this is only264

precisely true without discounting (δ = 1): the optimal stock size x̂ is the solution to f(x̂) = x̂/δ when265

stochasticity is sufficiently small (Reed 1979). Thus, all models in which the peak growth rate occurs at the266

same stock size will have the same optimal policy. These are not merely bad models getting lucky – all such267

models correctly capture the crucial feature relevant to the decision. In more complex models, such features268

are more difficult or impossible to identify analytically; but just because we cannot intuit the optimal policy269

does not mean it is uniquely complex.270

Do more complex models lead to more complex control rules? The theorems of Reed (1979), while quite271

general, say nothing about structured models or those with predator-prey or competitive interactions. Yet272

recent mathematical breakthroughs such as Holden & Conrad (2015), Hening et al. (2019), and Hening273

(2021) have finally been able to extend Reed’s theorem to such cases more generally. As with Reed’s result,274

these recent proofs make it clear that the optimal strategy for managing these more complex models is not275

unique, but will be shared by many much simpler models. So while the true population dynamics may be276

given by very complex non-linear functions of the interacting species, there will be simple two species models277

and even un-coupled, one-species models which would lead to the identical optimal policy. It may be more278

likely that our candidate set contains a model which matches the optimal policy than that it contains a279

model which matches the generative process.280

Real world considerations actually make this situation more likely, not less likely. Managers cannot281

resort to arbitrarily complex policies, regardless of how complex their models. Policy adjustments are costly282

(Boettiger et al. 2016) and the space of available actions is usually far more limited than the space of283

available states. In some ecological decision-making contexts, a manager may only be able to select between284

a handful of alternative actions. Such constraints make it much more likely that the optimal policy will285

be replicated by a much simpler model. Most well-managed marine fisheries are constrained to constant or286

simple piecewise-linear harvest control rules (Punt 2010). This ensures that an infinite number of possible287

1With enough data from enough of the state space, an SDP algorithm using a Gaussian Process prior (Boettiger et al.

2015), which spans the “true model” given by Eq 4, will escape the forecast trap, as guaranteed by Gneiting & Raftery (2007)’s
theorem. However, real ecological systems are much more complex than Eq 4, and not so easily spanned by mathematical
models.
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models will share the optimal solution with the true model.288

Because even complex models frequently have simple control rules or else we are constrained to simple289

control rules as a practical matter, it is much more likely that any set of candidate models includes parame-290

terizations that reproduce the true optimal policy than that they reproduce the optimal forecast. When data291

is initially limited, those simple models that could generate optimal outcomes may have non-negligible prob-292

abilities associated with them. This sets the stage for the forecast trap, adjustments with additional data293

or comparisons against alternative models that produce more accurate forecasts erodes those probabilities294

in favor of models which lead to less desirable outcomes.295

The forecast trap may become a more acute issue as the simple, process-based models that have histori-296

cally underpinned ecology and conservation policy are challenged by more accurate forecasts from statistical297

and machine learning tools. Buoyed by the rapid expansion of available data and computational power,298

complex and increasingly opaque models are becoming more common (Desjardins-Proulx et al. 2019). Eval-299

uating such models based on forecast skill will not only reduce concerns about over-fitting, but will make a300

compelling illustration of their viability as a tool for informing policy. In many cases, these more accurate301

forecasts may very well prove invaluable in delivering better (or less bad) real-world outcomes. But this302

paper is a reminder that such outcomes are by no means an inevitable consequence of better forecasts. These303

more accurate predictions are still not the true model, and it so it is always possible to improve predictive304

accuracy while less accurately reflecting the unknown key features that really drive the policy decision. I305

hope this simple and intuitive example will provide a ready reminder as to why the model that produces306

the best forecast will not always produce the best decision.307
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List of Figures388

1 Forecast performance of each model. Panels A, B: Step ahead predictions of stock size under389

unfished (A) and fished (B) scenarios. Error bars indicating the 95% confidence intervals390

around each prediction, while stars denote the observed value in that year. Because the391

models make different decisions each year in the fished scenario, the observed stock size in392

year 2, 3, etc under the management of model 1 (blue stars) is different from that under model393

2 (red stars). Panels C, D: corresponding distribution of proper scores across all predictions394

(100 replicates of 100 timesteps). Higher scores are better, confirming that model 2 makes395

the better forecasts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12396

2 Ecological and economic performance of each forecast. Harvest quotas derived from model 1397

result in a significantly higher fish stock size than under Model 2 (panel A). Economic returns398

under model 1 are also substantially higher (panel B) . . . . . . . . . . . . . . . . . . . . . . 13399

3 Adaptive management under model uncertainty. Solid lines trace the trajectories of the state400

(fish stock, circles) and action (harvest quota, triangles), under adaptive management (learn-401

ing). Dotted lines trace the corresponding trajectories if iterative learning is omitted, leaving402

the prior belief fixed throughout the simulation (planning). Color indicates the belief that403

model 1 is correct (blue), with an initial prior belief of 99%. Panel A: Management over the404

two candidate models, Model 1 and Model 2. Within a single iteration of adaptive manage-405

ment, the belief over models switches from a prior belief that heavily favored model 1 to a406

posterior that favors model 2 with near certainty. Future iterations reinforce the belief in407

model 2, resulting in both depressed harvests and low stock sizes (solid lines). If no iterative408

learning updates are performed, stock sizes and realized harvests (and thus economic profit)409

are both higher. Panel B: given 42 candidate models over a broad range of parameter values,410

adaptive management quickly reduces the probability of model 1, and substantially under-411

performs management without learning (dotted lines). While outcomes improve marginally412

relative to the two-model case (figure A) they remain significantly worse than had no iterative413

learning been included. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14414

4 Panel A: Population growth curves of each model. The positive equilibrium of each model415

occurs where the curve crosses the horizontal axis. Note that while Model 2 is a better416

approximation to the truth (Model 3), Model 1 better approximates the stock size which417

leads to maximum growth. Panel B: The optimal control policy under Model 1 is nearly418

identical to that under the true Model 3, while the optimal policy under Model 2 suppresses419

stock to a much lower escapement level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15420
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