
Vol.:(0123456789)

Natural Hazards
https://doi.org/10.1007/s11069-022-05404-w

1 3

ORIGINAL PAPER

VEC model of water infrastructure in Los Angeles: 
implications for community resilience and recovery

Daniel J. Pastor1   · Bradley T. Ewing2

Received: 8 November 2021 / Accepted: 12 May 2022 
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
Los Angeles is a community that is susceptible to earthquakes, wildfires and other disasters 
that may cause water utility disruption. This study estimates water production in Los Ange-
les using a vector autoregressive error correction model (VECM). The model captures 
the short- and long-run dynamics among water production and elements of the economic 
system related to the labor market, built environment, energy and transportation networks 
in the Los Angeles area. We find evidence of a single cointegrating relationship between 
water production as measured by total monthly potable in gallons, employment, the S&P/
Case-Shiller CA-Los Angeles Home Price index, and retail unleaded gasoline prices. 
VECM results suggest that after a shock that disrupts the equilibrium, such as an earth-
quake, system moves about 24% toward eliminating the disequilibrium in the first month, 
with a return to equilibrium in about 4–5  months. The results have implications both 
domestically and internationally for understanding a community’s resilience and recovery 
to shocks and, thus, may shed light on how natural disasters affect a local economy.
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JEL Classification  Q54 · C22

1 � Brief introduction and background

Events such as natural disasters (e.g., earthquakes, hurricanes, tornadoes) have the poten-
tial to damage critical infrastructure such as a community’s water production system. This 
study utilizes a vector error-correction model (VECM) to examine the relationship among 
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water production and several important economic variables. The term water production is 
used to describe the service or delivery of water that flows through the infrastructure sys-
tem.1 We take the approach that the system is initially in equilibrium and we are interested 
in events that lead to deviations from that equilibrium. Our focus is on Los Angeles, a com-
munity that is susceptible to infrastructure failures due to earthquakes, wildfires, age, etc., 
that may cause water utility disruption (Hofer et al. 2018; Zhang et al. 2018). In particular, 
while there have been no major earthquakes in our sample period (June 2014–December 
2019), the area is known for being on or near several fault lines such as the San Andreas 
Fault and seismic activity resulting in various degrees of shaking is fairly common. 
Wildfires in Los Angeles County also occur with some regularity and our sample period 
includes both the Woolsey Fire (November 2018) and the Sand Fire (July 2016). Neverthe-
less, understanding the behavior of the data series as a system provides important informa-
tion regarding disaster preparation to policy makers and regional planners. In our analysis, 
we treat the disrupting event as a shock to the time series of a multivariate system that 
includes water production. In addition to water production, the model uses a set of vari-
ables that capture elements of the labor market, built environment, energy and transporta-
tion networks. This set of other variables is chosen as they correspond to those found in the 
Hurricane Resiliency Index (HRI) and have been shown to represent an area’s resilience 
to natural hazards and ability to recover following a disaster (Cui et al. 2014, 2016, 2019).

Earthquakes and other natural disasters can be viewed as a severe disruption to the com-
munity and the response depends on the level of disturbance. Community resiliency is 
defined as its ability to rapidly recover from a disaster and return to normal socioeconomic 
activity (Gilbert 2010). In an area such as Los Angeles, assessment of the resiliency of the 
community is needed for disaster preparation, recovery, and estimation of potential losses 
(Baade et al. 2007; Klein et al. 2003; Rose 2007). In fact, a number of studies both domes-
tically and internationally have examined the importance of recovery and resiliency at the 
city or community level and highlight the importance of this type of work.2

Prior work on disaster resilience is frequently focused on social, economic, institutional, 
and community elements (Bruneau et al. 2003; Cutter et al. 2008; Gunderson 2009; Norris 
et  al. 2008; Rus et  al. 2018). Recent work has identified elements with significant impacts 
on the health of economic enterprises such as individual businesses, industries, and regional 
economic activities (Ewing et al. 2005; Guimaraes et al. 1993; Taskin and Lodree Jr 2010). 
The economic effects of an earthquake or other natural disaster include physical damage that 
may prevent a community from returning to normal economic activity for months or years 
following the event. For instance, Rose et al. (2012) estimate a computable general equilib-
rium model for Los Angeles and analyze a scenario in which an earthquake closes the Cali-
fornia Aqueduct for 6, 24, or 36 months. The authors find that the 6-month scenario resulted 
in no economic losses whereas for the 24- and 36-months scenarios economic losses for Los 
Angeles are predicted to be $75 billion and $240 billion, respectively. Job losses for 24- and 
36-months scenarios were estimated at 742,000 and 1,315,000 job-years, respectively. Busi-
ness recovery time is also an important factor to consider (Cremen et al. 2020). Businesses 
operate in a complex economic environment and challenges to operations in the aftermath of 

2  See Asgary et al. (2012); Belasen and Polachek (2008); Chang (2010); Sydnor et al. (2017); Wasileski 
et al. (2011); Zhang et al. (2009).

1  For consistency we follow the terminology that the Los Angeles Department of Water and Power uses 
to define the water that is moved through the water system. The term “water production” is not necessarily 
used to convey a factor demand function is used.
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a disaster include not only physical damage but also employee injuries, waste management, 
health and well-being. Including the interaction between engineering and economic indicators 
are important to consider (Bruneau et al. 2003; Freeman and Hancock 2017; Tierney and Bru-
neau 2007; Zhang et al. 2018).

Natural disasters such as earthquakes also expose the vulnerability of the built environment 
(Bosher et al. 2007). The ability of society to meet human needs when elements of the built 
environment are damaged or destroyed can be severely disrupted (Bartuska and Young 2007). 
In the aftermath of an earthquake or other natural disaster, a wide range of construction activi-
ties such as restoring public services such as water supply, schools, hospitals, power, com-
munications, homes, and other infrastructure are needed (Young 2004). Post-disaster recovery 
policies also have significant link to household and neighborhood recovery (He et al. 2021). 
Elements of the built environment may be captured by the housing price index which reflects 
general construction and restoration activities (Ewing et al. 2007).

Another measure of critical infrastructure and energy use is retail gasoline prices. Gasoline 
prices are a proxy used to capture the impact of transportation cost on businesses and consum-
ers. Transportation costs are known to fluctuate after a natural disaster (Boin and McConnell 
2007; Commission 2006; Deltas 2008; Lewis 2009).

Disruptions to business activity and supply chain can also be a consequence of an earth-
quake and can result in a redistribution of resources (Chow and Elkind 2005; Comfort and 
Haase 2006; Kaiser et al. 2009; Sword-Daniels et al. 2015). As a result of the impairment of 
capacity to produce goods and services, employment may decline (in den Bäumen et al. 2015; 
Ewing et al. 2009). Employment can rebound in the post-disaster period as affected locales 
engage in cleanup and redevelopment with the goal of restoring pre-disaster levels of business 
activities (Burton 2015). There have been various labor market measures studied in the litera-
ture; however, a common one is employment (Ewing et al. 2005, 2009; Groen and Polivka 
2008; Vigdor 2008).

The VECM provides insight as to both short run and long dynamics among the variables 
(Engle and Granger 1987). Moreover, the VECM provides a measure of the speed of adjust-
ment from disequilibrium to equilibrium following a shock to the system. The VECM results 
provide a new look at understanding, measuring, and analyzing the resiliency and recovery 
process of a community. In addition, the findings shed light on modeling community recov-
ery, measuring and assessing resiliency, and in optimizing the risk management policies and 
practices of water utility authorities and regulators. The findings complement the recent work 
of (Davis 2021) which emphasizes water as a basic service lifeline where delivery, quantity, 
quality, and fire protection are critical elements in the context of resilience and infrastructure 
performance. As Rojahn, et al. (2019) illustrate, lifeline infrastructure systems such as water 
and wastewater systems, telecommunications, transportation, and power systems such as natu-
ral gas and liquid fuels, are vulnerable to disruptions in many locations. This vulnerability 
impedes the response and recovery efforts after a natural disaster and thus, the authors advo-
cate for policy, modeling, and research to improve performance post-disaster.

2 � Description of data

Data are for the city of Los Angeles and correspond to the area covered by the LA Depart-
ment of Water and Power. The sample period contains monthly observations covering June 
2014 through December 2019. Water is total (natural log) water production (total monthly 
potable in gallons, served by Los Angeles Department of Water and Power). The natural 
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log of the Housing Price Index (HPI) is used to represent the built environment and is the 
S&P/Case-Shiller CA-Los Angeles Home Price Index. Gasoline price is in US dollars for 
unleaded regular gasoline per gallon in Los Angeles-Long Beach-Anaheim, CA (CBSA) 
and captures changes in energy use and transportations costs. Employment is All Employ-
ees: Total nonfarm in Los Angeles-Long Beach-Anaheim, CA (MSA), thousands of per-
sons. Water data are from the California Water Board provided to the authors by LADWP 
while all other series obtained from Federal Reserve Economic Data (FRED) (Fig. 1). All 
variables are seasonally adjusted. Descriptive statistics are provided in Table 1.

3 � Empirical methods

We employ two different tests to check the stationarity properties of the data series. If any 
data series is nonstationary then there is a time-dependent element to the data generat-
ing process. This makes it difficult to represent the data series over a specified interval of 
time using an econometrics model. On the other hand, if the data is stationary, then the 

Fig. 1   Graphs of the data series. Water Production is the natural logarithm of the total water production in 
monthly potable in gallons, served by Los Angeles Department of Water and Power; Housing Price Index 
(HPI) is the natural logarithm of the S&P/Case-Shiller CA-Los Angeles Home Price Index; Gasoline price 
is the natural logarithm of US dollars for unleaded regular gasoline per gallon in Los Angeles-Long Beach-
Anaheim, CA; Employment is the natural logarithm of total nonfarm employees in Los Angeles-Long 
Beach-Anaheim, CA (MSA), in thousands of persons
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data generating process can be modeled using a mathematical equation and coefficients can 
be estimated using past observations of the data (Pindyck and Rubinfeld 1998). Thus, we 
employ two different statistical tests to determine whether our data series are stationary or 
nonstationary. The (augmented) Dickey-Fuller (1979) test is based on Eq. (1) and is known 
as the ADF test.

where y
t
 is the series being examined, Δ is the first-difference operator; t represents a linear 

time trend, et is a covariance stationary random error and the number of lags m is deter-
mined by Schwarz information criterion to ensure serially uncorrelated residuals. The null 
hypothesis that y

t
 is a nonstationary time series if (ρ1 – 1) < 0 is rejected based on the finite 

sample critical values from MacKinnon (1996).
Phillips and Perron (1988) developed a unit root test that allows for weak dependence, 

heterogeneity in the error term, and is robust to a wide range of serial correlation and time-
dependent heteroskedasticity. The Phillips-Perron (PP) test is based on Eq. (2).

where (t – T/2) is the time trend, T represents the sample size, and vt is the error term. The 
null hypothesis of a unit root (Ho: λ = 1) is tested against the alternative hypothesis that the 
series y

t
 is stationary around a deterministic trend (Ha: λ < 1) where statistical significance 

is determined using MacKinnon (1996) critical values.
If any of the data series display evidence of a unit root, then there is a possibility of 

cointegration between the series. In other words, there may be a common stochastic rela-
tionship within the series. This means that there may be a linear combination of the vari-
ables that is stationary (Lütkepohl 2005). The presence of cointegration that is not ade-
quately accounted for in the estimation of the model would render the results invalid. Thus, 
we need to examine whether there is cointegration present in our data. Specifically, we 
utilize the popular method of testing for cointegration proposed by Johansen and Juselius 
(1990, 1991). The Johansen-Juselius analysis is based on the following:

(1)Δy
t
= �0 + (�1 − 1)y

t−1
+ �2t +

∑m

k=1
�kΔyt−k + et

(2)y
t
= �0 + �1(t − T∕2) + �y

t−1
+ vt

Table 1   Descriptive statistics

Descriptive statistics. The sample period is from June 2014 until December 2019. Water Production is 
the natural logarithm of the total water production in monthly potable in gallons, served by Los Angeles 
Department of Water and Power; Housing Price Index (HPI) is the natural logarithm of the S&P/Case-
Shiller CA-Los Angeles Home Price Index; Gasoline price is the natural logarithm of US dollars for 
unleaded regular gasoline per gallon in Los Angeles-Long Beach-Anaheim, CA; Employment is the natural 
logarithm of total nonfarm employees in Los Angeles-Long Beach-Anaheim, CA (MSA), in thousands of 
persons

Mean Maximum Minimum Std. dev Skewness Kurtosis

LNWATER 23.307 23.449 23.121 0.064 0.030 3.335
LNGAS 1.173 1.390 0.944 0.128 − 0.188 1.719
LNEMP 8.702 8.745 8.644 0.029 − 0.442 2.042
LNHPI 5.552 5.673 5.400 0.086 − 0.231 1.694
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where X is a vector of variables and ε is a vector of error terms with zero mean and con-
stant variance. Re-writing in first-differences gives:

where �
i
= −I +�

�
+…+�

i
, and � = I −�

�
−…−�

k

Note that the p x p Π matrix contains information about long-run relations among the 
variables in the vector. If Π has rank zero, r = 0, then all elements of X are nonstationary. 
Thus, there are no cointegrating relations among the variables. If r = p then Π is of full 
rank which suggests a convergent system of difference equations and that all variables are 
stationary. For the case where r < p there are r nonzero cointegrating vectors among the 
elements of X and p − r common stochastic trends. Π can be factored into αβ′ where α is a 
p x r matrix of the vector error-correction parameters and β is a p x r matrix of cointegrat-
ing vectors. The cointegration vector can be found as an eigenvector, λ, via a maximum 
likelihood procedure by solving the following eigenvalue problem:

where S00 is the residual moment matrix from an ordinary least squares regression of ΔXt 
on ΔXt-1, …, ΔXt-k-1; Skk is the residual moment matrix from an ordinary least squares 
regression of Xt-k on ΔXt-k+1; and S0k is the cross-product moment matrix. Following, the 
number of lags used in the vector autoregression may be chosen based on the evidence pro-
vided by AIC (Choudhry 1997) or other choice method such as SBC.3

Johansen-Juselius provide two distinct tests to determine the number of cointegrating 
vectors: the trace test and the maximum eigenvalue test. First, to test the hypothesis that 
there are at most r cointegrating vectors we use the trace statistic as follows:

where λr+1, …, λp are the p − r smallest eigenvalues (characteristic roots). The null hypoth-
esis is that the number of cointegrating vectors is less than or equal to r against a general 
alternative. The test statistic λtrace equals zero when all λi = 0. The further the eigenvalues 
are from zero the more negative is ln (1 − λi), thus the larger the λtrace statistic. Second, the 
maximum eigenvalue test is based on the null hypothesis that the number of cointegrating 
vectors is r against the alternative of r + 1 cointegrating vectors, and is given by:

The maximum eigenvalue test λmax equals zero when all λi = 0. As in the case of the 
trace test, the further the eigenvalues are from zero the more negative is ln (1 − λr+1) thus 

(3)X
t
= �

�
X
t−� +⋯ +�

k
X
t−k + �

�
t = 1,… , T

(4)ΔX
t
= �

�
ΔX

t−� +…+ �
k−�Δ�X

t−k−� −�X
t−k + �

t

(5)
|||
�Skk − Sk0S

−1
00

S
0k
|||
= 0

(6)𝜆trace(r) = −T

p∑

r+1

ln
(
1 − 𝜆̂r

)

(7)𝜆max(r, r + 1) = −T ln
(
1 − 𝜆̂r+1

)

3  For the former, the optimal lag length chosen is the one that minimizes AIC, where AIC = ln det 
k
n + (2d2k)/T, and k = 1, 2,…, n, d is the number of variables in the system, n is the maximum lag length 

considered, det denotes determinant, and k is the estimated residual variance–covariance matrix for lag k. 
An alternative to the AIC method for choosing the model specification is the Schwartz Bayesian Criterion 
(SBC), where SBC = T ln (residual sum of squares) + n ln (T). The latter places a heavier penalty on addi-
tional lag parameters than does AIC, and is asymptotically consistent. In our case, AIC and SBC model 
selection were identical.
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the larger the λmax statistic. Osterwald-Lenum (1992) provides critical values for both the 
λtrace and λmax statistics.

Cointegration among the four series, according to the Granger representation theorem 
(Engle and Granger 1987), implies the existence of an error correction model of the form 
outlined in Eq.  (8). If cointegration is present among the variables under consideration, 
then we will be interested in examining the following equation from the vector error cor-
rection model, where the natural logarithm of the water production series (LNWATER) 
is the left hand-side variable, LNHPI denotes the natural logarithm of the housing price 
index, LNGAS denotes natural logarithm of gasoline price, and LNEMP denoted natural 
logarithm of employment. Given our focus on the water production, we concentrate our 
discussion only on this particular equation.

Table 2   Unit root tests

Unit root results for the Augmented Dickey-Fuller (ADF) and Philips-
Perron (PP). The null for the ADF and PP tests is a unit root. Δ is the 
first-difference operator
*, **, *** denote significance at the 10%, 5%, and 1% levels, respec-
tively

ADF PP

LNWATER − 4.264*** − 4.264***
ΔLNWATER − 11.0157*** − 13.5276***
LNEMP − 2.140 − 2.912**
ΔLNEMP − 3.5595*** − 9.6309***
LNGAS − 1.880 − 1.915
ΔLNGAS − 8.3716*** − 8.3716***
LNHPI − 1.454 − 1.805
ΔLNHPI − 2.419 − 5.008***

Table 3   Cointegration analysis

Johansen cointegration results for model: LNWATERGAL LNHPI LNGAS LNEMP
* denotes statistically significant. Trace refers to the trace statistic; Max refers to the maximum eigenvalue 
statistic

Johansen cointegration tests

Trace
None 5% c.v At most 1 5% c.v At most 2 5% c.v At most 3 5% c.v
62.384* 47.856 22.698 29.797 7.511 15.495 2.210 3.842
Max
None 5% c.v At most 1 5% c.v At most 2 5% c.v At most 3 5% c.v
39.686* 27.584 15.187 21.132 5.300 14.265 2.210 3.842



	 Natural Hazards

1 3

where a is a constant; bj, cj, dj, fj, and η are estimated parameters; Δ is the difference opera-
tor representing the first differencing of the respective data series; et is the idiosyncratic 
error term; and ut-1 is the error correction term, which is the lagged residual series of the 
cointegrating vector normalized for LNWATER, LNHPI, LNGAS and LNEMP. The error 
correction term measures deviations of the series from the long-run equilibrium relation, 
and 0 < η < 1 in order for the series to converge to the long-run equilibrium relation. Coin-
tegration implies that (not all) of the error correction term(s) coefficients should be zero 
in the vector autoregression error correction model. From Eq. (8) the null hypothesis that 
LNHPI (or LNGAS or LNEMP) does not Granger-cause LNWATER is rejected not only 
if the coefficients on the lagged values of LNHPI (or LNGAS or LNEMP) are jointly sig-
nificant, but also if the coefficient on the error correction term is significant. Changes in the 
independent variables may be interpreted as representing the short run causal impact while 
the error correction term provides the adjustment of changes in them toward their respec-
tive long run equilibrium.

4 � Results and discussion

The results of the unit root tests are shown in Table 2. The findings suggest that water pro-
duction may be integrated of order zero, I(0), or stationary while there is some evidence 
that each of the other variables is I(1).4 As such, we proceed to examine the cointegrating 
properties among the variables.

Table  3 presents findings from the cointegration analysis. The results suggest that 
there is one cointegrating equation and indicate that a long run stable relation among 
these variables exists. Since we find evidence of a cointegrating relationship, we proceed 
with estimating a vector error correction model (VECM). The first step is to estimate the 
error correction term. These terms are presented in Eq.  (9), which presents the normal-
ized cointegrating vector equation of the stable water production relation as a function of 
the LNHPI, LNGAS, and LNEMP with subscripts omitted. The standard errors are in the 
parenthesis.

(8)

ΔLNWATERt = a +

n∑

j=1

bjΔLNWATERt−j +

n∑

j=1

cjΔLNHPIt−j +

n∑

j=1

djΔLNGASt−j

+

n∑

j=1

fjΔLNEMPt−j + ��t−1 + et

(9)

LNWATERGAL = −153.834 − 7.889 ∗ LNHPI + 0.711 ∗ LNGAS + 19.937 ∗ LNEMP

(1.431) (0.153) (4.048)

4  The results and conclusions are robust to the Dickey and Fuller (1981) with GLS detrending, Elliot, Roth-
enberg, and Stock (1996) point optimal, and Ng and Perron (2001) unit root tests, as well as the Kwiat-
kowski, Phillips, Schmidt, and Shin (1992) stationarity test. Results not reported for brevity but are avail-
able from the authors upon request.
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The normalized cointegrating vector can be considered an estimation of the long-run 
relationship. Following the literature on cointegration we normalize the vector by setting 
the coefficient on water production at 1 so that the vectors may be interpreted as a water 
production determination function. All of the variables in the normalized cointegrating 
equation are statistically significant.

Both gasoline price and employment are positively related to water production. Because 
of the logarithmic nature of the model gas and employment estimates can be interpreted as 
elasticities. Energy use, transportation costs, economic activity, and jobs are all positively 
related to economic activity. Water production is a necessary input for all economic activ-
ity and the positive relationship is as expected. A 1% increase in the price of gasoline is 
associated with a 0.82% increase in water production. A similar increase in employment is 
associated with a 19% increase in water production.

An increase in the LNHPI is associated with a decrease in water production, albeit a 
relatively small effect. A possible explanation for the negative effect is that as the LNHPI 
increases the supply of homes decreases and water consumption declines as a result. 
Another explanation is that Los Angeles is located in a semi-arid region and is subject to 
state and local imposed water restrictions. Water consumers could respond with landscap-
ing, water efficient appliances, and other efforts to reduce water consumption. This conser-
vation effort could be responsible for the negative effect that housing prices have on water 
production.

Table 4   Summary of VEC model

t-statistics in brackets []. Δ is the first-difference operator

D(LNWATER)t

Error correctiont-1 − 0.239
[− 2.949]

Δ(LNWATER)t-1 − 0.270
[− 2.130]

Δ(LNWATER)t-2 − 0.037
[− 0.298]

Δ(LNHPI)t-1 − 0.182
[− 0.071]

Δ(LNHPI)t-2 − 1.818
[− 0.728]

Δ(LNGAS)t-1 0.077
[0.643]

Δ(LNGAS)t-2 − 0.275
[− 2.329]

Δ(LNEMP)t-1 16.917
[3.475]

Δ(LNEMP)t-2 5.227
[1.121]

C − 0.029
[− 1.703]

R-squared 0.356
Adj. R-squared 0.248



	 Natural Hazards

1 3

Table 4 provides a summary of the results from the VECM.5 For purposes of this analy-
sis, we focus on the disruption of water service disruption and discuss the results corre-
sponding to the water equation. Estimation of the VECM allows for us to further investigate 
the relation among water production, housing price index, gasoline price, and employment. 
Note that the vector error correction model includes the lagged residuals from the cointe-
grating regression as an explanatory variable which is referred to as the error correction 
term. The VEC model is a system of systems where the system is initially in equilibrium, 
i.e., the water system is operating normally, and there is an event that disrupts the equilib-
rium, there is a recovery, and then a return to equilibrium. The VEC model captures both 
the short-run effects of the shock and the long-run effects of the shock, the latter being 
captured by the error correction term.

The estimated coefficient on the error-correction term is negative and statistically sig-
nificant. This indicates that housing price index, gasoline price, and employment estab-
lish a long run equilibrium with the water production. However, the size or magnitude of 
the error-correction coefficient may be interpreted as a measure of the speed at which the 
series adjust to a change in equilibrium conditions and implies that the movement of the 
series toward eliminating disequilibrium within one month is about 24 percent. This result 
implies that the disequilibrium is completely eliminated in about 4–5 months. In terms of 
the short-run dynamics of water production, we find the second lag of gasoline price to be 
negative and statistically significant and the first lag of employment to be positive and sta-
tistically significant.

As a further check on our results, we examine the impulse responses to LNWATER 
from a simulated one standard deviation shock to the other variables. This exercise pro-
vides guidance as to how long water production takes to recover after a disaster. The shock 
is fully dissipated when the time path of the series is no longer significantly different from 
zero as determined by the ± 2 standard error confidence bands. We find that LNWATER 
stabilizes at a lower level after about 2.5 months in response to a shock to LNGAS. In 
response to a LNEMP shock, it takes about 2  months for LNWATER to return to the 
pre-shock level. See Fig. 2. These impulse response functions are in agreement with the 
error correction estimate of about 4 months for complete elimination of disequilibrium. 
Moreover, the results were insensitive to a reordering of the variables. However, we report 
the results for the ordering as shown based on the first two measures being price based, 
thus the effects would be felt relatively quickly, and the labor market effects more likely 
occurring with a longer lag. We note that although our results are specific to Los Angeles, 
they do provide guidance as to how to measure and interpret resiliency with respect to the 
water supply and thus provide a framework for disaster management.

Finally, we perform Granger causality tests by estimating the VEC model and 
jointly testing the lags of the right-hand side variables using the Toda-Yamamoto (TY) 
procedure, which is appropriate when variables of different orders of integration, i.e., 
I(0) and I(1) (Toda and Yamamoto 1995). If the coefficients on the lagged values of 
LNHPI (or LNGAS or LNEMP) are jointly significant, then we reject the null that 
LNHPI (or LNGAS or LNEMP) does not Granger cause LNWATER. Results are pre-
sented in Table 5. We reject the null in the LNGAS and LNEMP cases, with LNGAS 
rejected at the 10% level, but the null is not rejected for LNHPI. These results are con-
sistent with the VECM estimates. Namely, that employment and gasoline prices have 
predictive content for water production.

5  For brevity, Table 4 only includes results VECM with LNWATER as the dependent variable. The full 
VECM results are available from the authors upon request.
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Fig. 2   The vertical axis is measured in relation to standard deviation of the natural log of water measured in 
monthly potable gallons and the horizontal axis is months since initial shock was imposed. The ± 2 standard 
error confidence bands are shown as dashed lines
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5 � Conclusions

Using cointegration and error correction modeling techniques, we find that housing prices, 
gasoline prices, employment, and water production share a long-run cointegrating relation 
in the community of Los Angeles. Given that these time series establish a long run equilib-
rium relation we estimate a vector autoregressive error correction model. The results imply 
that about 24 percent of the disequilibrium is eliminated within the first month. This trans-
lates to the “half-life” of the shock being about 4 months and highlights the importance of 
restoring water production to get the economic conditions, as measured by housing prices, 
gasoline prices, and employment, back to normal.

The results are an important addition to the literature on the disruptions to systems 
which include lifeline critical infrastructure components such as a community’s water sup-
ply. Our results are consistent with others who looked at various regions and found water, 
housing, and employment important in the resiliency and recovery process (Asgary et al. 
2012; Commission 2006; Davis 2021; Ewing et al. 2005; Sydnor et al. 2017). Further, the 
finding of a cointegrating relation and the subsequent finding that past changes in gasoline 
price and employment help to explain changes in current water production is an important 
contribution to the literature on community resilience and recovery (Davis 2021; Rojahn 
et al. 2019). Further, these results clearly underscore the importance of employment in the 
process of water production. Local policy makers who want community resiliency with 
respect to water production could create policies that ensure employment recovery in the 
event of a natural disaster.

It should be noted that there are several limitations to this study. First, the results are 
focused on one, large urban community and may not generalize to other cities or to rural 
areas. In particular, these results are only valid for the Los Angeles region. Second, the 
empirical analysis is time series based using monthly data. Higher frequency data may be 
desirable in order capture very short run disruptions. Similarly, data availability limits the 
analysis such that some variables may not be directly comparable particularly in terms of 
area covered. Also, the time to recover the equilibrium is not completely independent from 
the magnitude of the shock. The larger the shock the more likely an extended recovery 
period would be necessary to recover the pre-disaster equilibrium. Finally, the nature of 
the vector error correction model only accounts for where the shock is initiated (e.g., in 
employment) and not the underlying cause of the shock. However, the results may still 
help domestic and international policy makers model the resilience and recovery process 
at the city and/or community level based upon a framework that specifically incorporates 
elements of the built environment, energy and infrastructure, and the labor market. Future 

Table 5   Granger causality results

Granger Causality test results for Eq.  7 estimated using the Toda-
Yamamoto (1995) procedure

Dependent variable: D(LNWATERGAL)

Excluded Chi-sq df Prob

D(LNHPI) 1.186 2 0.553
D(LNGAS) 7.767 2 0.021
D(LNEMP) 7.132 2 0.028
All 12.717 6 0.048
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research may address these issues and provide further insight into community resilience 
and recovery.
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